]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/sched/debug.c
Merge remote-tracking branch 'staging/staging-next'
[karo-tx-linux.git] / kernel / sched / debug.c
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18 #include <linux/mempolicy.h>
19
20 #include "sched.h"
21
22 static DEFINE_SPINLOCK(sched_debug_lock);
23
24 /*
25  * This allows printing both to /proc/sched_debug and
26  * to the console
27  */
28 #define SEQ_printf(m, x...)                     \
29  do {                                           \
30         if (m)                                  \
31                 seq_printf(m, x);               \
32         else                                    \
33                 printk(x);                      \
34  } while (0)
35
36 /*
37  * Ease the printing of nsec fields:
38  */
39 static long long nsec_high(unsigned long long nsec)
40 {
41         if ((long long)nsec < 0) {
42                 nsec = -nsec;
43                 do_div(nsec, 1000000);
44                 return -nsec;
45         }
46         do_div(nsec, 1000000);
47
48         return nsec;
49 }
50
51 static unsigned long nsec_low(unsigned long long nsec)
52 {
53         if ((long long)nsec < 0)
54                 nsec = -nsec;
55
56         return do_div(nsec, 1000000);
57 }
58
59 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
60
61 #ifdef CONFIG_FAIR_GROUP_SCHED
62 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
63 {
64         struct sched_entity *se = tg->se[cpu];
65
66 #define P(F) \
67         SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
68 #define PN(F) \
69         SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
70
71         if (!se) {
72                 struct sched_avg *avg = &cpu_rq(cpu)->avg;
73                 P(avg->runnable_avg_sum);
74                 P(avg->runnable_avg_period);
75                 return;
76         }
77
78
79         PN(se->exec_start);
80         PN(se->vruntime);
81         PN(se->sum_exec_runtime);
82 #ifdef CONFIG_SCHEDSTATS
83         PN(se->statistics.wait_start);
84         PN(se->statistics.sleep_start);
85         PN(se->statistics.block_start);
86         PN(se->statistics.sleep_max);
87         PN(se->statistics.block_max);
88         PN(se->statistics.exec_max);
89         PN(se->statistics.slice_max);
90         PN(se->statistics.wait_max);
91         PN(se->statistics.wait_sum);
92         P(se->statistics.wait_count);
93 #endif
94         P(se->load.weight);
95 #ifdef CONFIG_SMP
96         P(se->avg.runnable_avg_sum);
97         P(se->avg.runnable_avg_period);
98         P(se->avg.load_avg_contrib);
99         P(se->avg.decay_count);
100 #endif
101 #undef PN
102 #undef P
103 }
104 #endif
105
106 #ifdef CONFIG_CGROUP_SCHED
107 static char group_path[PATH_MAX];
108
109 static char *task_group_path(struct task_group *tg)
110 {
111         if (autogroup_path(tg, group_path, PATH_MAX))
112                 return group_path;
113
114         cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
115         return group_path;
116 }
117 #endif
118
119 static void
120 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
121 {
122         if (rq->curr == p)
123                 SEQ_printf(m, "R");
124         else
125                 SEQ_printf(m, " ");
126
127         SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
128                 p->comm, task_pid_nr(p),
129                 SPLIT_NS(p->se.vruntime),
130                 (long long)(p->nvcsw + p->nivcsw),
131                 p->prio);
132 #ifdef CONFIG_SCHEDSTATS
133         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
134                 SPLIT_NS(p->se.vruntime),
135                 SPLIT_NS(p->se.sum_exec_runtime),
136                 SPLIT_NS(p->se.statistics.sum_sleep_runtime));
137 #else
138         SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
139                 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
140 #endif
141 #ifdef CONFIG_NUMA_BALANCING
142         SEQ_printf(m, " %d", cpu_to_node(task_cpu(p)));
143 #endif
144 #ifdef CONFIG_CGROUP_SCHED
145         SEQ_printf(m, " %s", task_group_path(task_group(p)));
146 #endif
147
148         SEQ_printf(m, "\n");
149 }
150
151 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
152 {
153         struct task_struct *g, *p;
154         unsigned long flags;
155
156         SEQ_printf(m,
157         "\nrunnable tasks:\n"
158         "            task   PID         tree-key  switches  prio"
159         "     exec-runtime         sum-exec        sum-sleep\n"
160         "------------------------------------------------------"
161         "----------------------------------------------------\n");
162
163         read_lock_irqsave(&tasklist_lock, flags);
164
165         do_each_thread(g, p) {
166                 if (task_cpu(p) != rq_cpu)
167                         continue;
168
169                 print_task(m, rq, p);
170         } while_each_thread(g, p);
171
172         read_unlock_irqrestore(&tasklist_lock, flags);
173 }
174
175 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
176 {
177         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
178                 spread, rq0_min_vruntime, spread0;
179         struct rq *rq = cpu_rq(cpu);
180         struct sched_entity *last;
181         unsigned long flags;
182
183 #ifdef CONFIG_FAIR_GROUP_SCHED
184         SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
185 #else
186         SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
187 #endif
188         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
189                         SPLIT_NS(cfs_rq->exec_clock));
190
191         raw_spin_lock_irqsave(&rq->lock, flags);
192         if (cfs_rq->rb_leftmost)
193                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
194         last = __pick_last_entity(cfs_rq);
195         if (last)
196                 max_vruntime = last->vruntime;
197         min_vruntime = cfs_rq->min_vruntime;
198         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
199         raw_spin_unlock_irqrestore(&rq->lock, flags);
200         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
201                         SPLIT_NS(MIN_vruntime));
202         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
203                         SPLIT_NS(min_vruntime));
204         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
205                         SPLIT_NS(max_vruntime));
206         spread = max_vruntime - MIN_vruntime;
207         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
208                         SPLIT_NS(spread));
209         spread0 = min_vruntime - rq0_min_vruntime;
210         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
211                         SPLIT_NS(spread0));
212         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
213                         cfs_rq->nr_spread_over);
214         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
215         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
216 #ifdef CONFIG_SMP
217         SEQ_printf(m, "  .%-30s: %ld\n", "runnable_load_avg",
218                         cfs_rq->runnable_load_avg);
219         SEQ_printf(m, "  .%-30s: %ld\n", "blocked_load_avg",
220                         cfs_rq->blocked_load_avg);
221 #ifdef CONFIG_FAIR_GROUP_SCHED
222         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_contrib",
223                         cfs_rq->tg_load_contrib);
224         SEQ_printf(m, "  .%-30s: %d\n", "tg_runnable_contrib",
225                         cfs_rq->tg_runnable_contrib);
226         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
227                         atomic_long_read(&cfs_rq->tg->load_avg));
228         SEQ_printf(m, "  .%-30s: %d\n", "tg->runnable_avg",
229                         atomic_read(&cfs_rq->tg->runnable_avg));
230 #endif
231 #endif
232
233 #ifdef CONFIG_FAIR_GROUP_SCHED
234         print_cfs_group_stats(m, cpu, cfs_rq->tg);
235 #endif
236 }
237
238 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
239 {
240 #ifdef CONFIG_RT_GROUP_SCHED
241         SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
242 #else
243         SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
244 #endif
245
246 #define P(x) \
247         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
248 #define PN(x) \
249         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
250
251         P(rt_nr_running);
252         P(rt_throttled);
253         PN(rt_time);
254         PN(rt_runtime);
255
256 #undef PN
257 #undef P
258 }
259
260 extern __read_mostly int sched_clock_running;
261
262 static void print_cpu(struct seq_file *m, int cpu)
263 {
264         struct rq *rq = cpu_rq(cpu);
265         unsigned long flags;
266
267 #ifdef CONFIG_X86
268         {
269                 unsigned int freq = cpu_khz ? : 1;
270
271                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
272                            cpu, freq / 1000, (freq % 1000));
273         }
274 #else
275         SEQ_printf(m, "cpu#%d\n", cpu);
276 #endif
277
278 #define P(x)                                                            \
279 do {                                                                    \
280         if (sizeof(rq->x) == 4)                                         \
281                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
282         else                                                            \
283                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
284 } while (0)
285
286 #define PN(x) \
287         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
288
289         P(nr_running);
290         SEQ_printf(m, "  .%-30s: %lu\n", "load",
291                    rq->load.weight);
292         P(nr_switches);
293         P(nr_load_updates);
294         P(nr_uninterruptible);
295         PN(next_balance);
296         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
297         PN(clock);
298         P(cpu_load[0]);
299         P(cpu_load[1]);
300         P(cpu_load[2]);
301         P(cpu_load[3]);
302         P(cpu_load[4]);
303 #undef P
304 #undef PN
305
306 #ifdef CONFIG_SCHEDSTATS
307 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
308 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
309
310         P(yld_count);
311
312         P(sched_count);
313         P(sched_goidle);
314 #ifdef CONFIG_SMP
315         P64(avg_idle);
316 #endif
317
318         P(ttwu_count);
319         P(ttwu_local);
320
321 #undef P
322 #undef P64
323 #endif
324         spin_lock_irqsave(&sched_debug_lock, flags);
325         print_cfs_stats(m, cpu);
326         print_rt_stats(m, cpu);
327
328         rcu_read_lock();
329         print_rq(m, rq, cpu);
330         rcu_read_unlock();
331         spin_unlock_irqrestore(&sched_debug_lock, flags);
332         SEQ_printf(m, "\n");
333 }
334
335 static const char *sched_tunable_scaling_names[] = {
336         "none",
337         "logaritmic",
338         "linear"
339 };
340
341 static void sched_debug_header(struct seq_file *m)
342 {
343         u64 ktime, sched_clk, cpu_clk;
344         unsigned long flags;
345
346         local_irq_save(flags);
347         ktime = ktime_to_ns(ktime_get());
348         sched_clk = sched_clock();
349         cpu_clk = local_clock();
350         local_irq_restore(flags);
351
352         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
353                 init_utsname()->release,
354                 (int)strcspn(init_utsname()->version, " "),
355                 init_utsname()->version);
356
357 #define P(x) \
358         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
359 #define PN(x) \
360         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
361         PN(ktime);
362         PN(sched_clk);
363         PN(cpu_clk);
364         P(jiffies);
365 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
366         P(sched_clock_stable);
367 #endif
368 #undef PN
369 #undef P
370
371         SEQ_printf(m, "\n");
372         SEQ_printf(m, "sysctl_sched\n");
373
374 #define P(x) \
375         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
376 #define PN(x) \
377         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
378         PN(sysctl_sched_latency);
379         PN(sysctl_sched_min_granularity);
380         PN(sysctl_sched_wakeup_granularity);
381         P(sysctl_sched_child_runs_first);
382         P(sysctl_sched_features);
383 #undef PN
384 #undef P
385
386         SEQ_printf(m, "  .%-40s: %d (%s)\n",
387                 "sysctl_sched_tunable_scaling",
388                 sysctl_sched_tunable_scaling,
389                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
390         SEQ_printf(m, "\n");
391 }
392
393 static int sched_debug_show(struct seq_file *m, void *v)
394 {
395         int cpu = (unsigned long)(v - 2);
396
397         if (cpu != -1)
398                 print_cpu(m, cpu);
399         else
400                 sched_debug_header(m);
401
402         return 0;
403 }
404
405 void sysrq_sched_debug_show(void)
406 {
407         int cpu;
408
409         sched_debug_header(NULL);
410         for_each_online_cpu(cpu)
411                 print_cpu(NULL, cpu);
412
413 }
414
415 /*
416  * This itererator needs some explanation.
417  * It returns 1 for the header position.
418  * This means 2 is cpu 0.
419  * In a hotplugged system some cpus, including cpu 0, may be missing so we have
420  * to use cpumask_* to iterate over the cpus.
421  */
422 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
423 {
424         unsigned long n = *offset;
425
426         if (n == 0)
427                 return (void *) 1;
428
429         n--;
430
431         if (n > 0)
432                 n = cpumask_next(n - 1, cpu_online_mask);
433         else
434                 n = cpumask_first(cpu_online_mask);
435
436         *offset = n + 1;
437
438         if (n < nr_cpu_ids)
439                 return (void *)(unsigned long)(n + 2);
440         return NULL;
441 }
442
443 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
444 {
445         (*offset)++;
446         return sched_debug_start(file, offset);
447 }
448
449 static void sched_debug_stop(struct seq_file *file, void *data)
450 {
451 }
452
453 static const struct seq_operations sched_debug_sops = {
454         .start = sched_debug_start,
455         .next = sched_debug_next,
456         .stop = sched_debug_stop,
457         .show = sched_debug_show,
458 };
459
460 static int sched_debug_release(struct inode *inode, struct file *file)
461 {
462         seq_release(inode, file);
463
464         return 0;
465 }
466
467 static int sched_debug_open(struct inode *inode, struct file *filp)
468 {
469         int ret = 0;
470
471         ret = seq_open(filp, &sched_debug_sops);
472
473         return ret;
474 }
475
476 static const struct file_operations sched_debug_fops = {
477         .open           = sched_debug_open,
478         .read           = seq_read,
479         .llseek         = seq_lseek,
480         .release        = sched_debug_release,
481 };
482
483 static int __init init_sched_debug_procfs(void)
484 {
485         struct proc_dir_entry *pe;
486
487         pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
488         if (!pe)
489                 return -ENOMEM;
490         return 0;
491 }
492
493 __initcall(init_sched_debug_procfs);
494
495 #define __P(F) \
496         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
497 #define P(F) \
498         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
499 #define __PN(F) \
500         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
501 #define PN(F) \
502         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
503
504
505 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
506 {
507 #ifdef CONFIG_NUMA_BALANCING
508         struct mempolicy *pol;
509         int node, i;
510
511         if (p->mm)
512                 P(mm->numa_scan_seq);
513
514         task_lock(p);
515         pol = p->mempolicy;
516         if (pol && !(pol->flags & MPOL_F_MORON))
517                 pol = NULL;
518         mpol_get(pol);
519         task_unlock(p);
520
521         SEQ_printf(m, "numa_migrations, %ld\n", xchg(&p->numa_pages_migrated, 0));
522
523         for_each_online_node(node) {
524                 for (i = 0; i < 2; i++) {
525                         unsigned long nr_faults = -1;
526                         int cpu_current, home_node;
527
528                         if (p->numa_faults)
529                                 nr_faults = p->numa_faults[2*node + i];
530
531                         cpu_current = !i ? (task_node(p) == node) :
532                                 (pol && node_isset(node, pol->v.nodes));
533
534                         home_node = (p->numa_preferred_nid == node);
535
536                         SEQ_printf(m, "numa_faults, %d, %d, %d, %d, %ld\n",
537                                 i, node, cpu_current, home_node, nr_faults);
538                 }
539         }
540
541         mpol_put(pol);
542 #endif
543 }
544
545 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
546 {
547         unsigned long nr_switches;
548
549         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
550                                                 get_nr_threads(p));
551         SEQ_printf(m,
552                 "---------------------------------------------------------"
553                 "----------\n");
554 #define __P(F) \
555         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
556 #define P(F) \
557         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
558 #define __PN(F) \
559         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
560 #define PN(F) \
561         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
562
563         PN(se.exec_start);
564         PN(se.vruntime);
565         PN(se.sum_exec_runtime);
566
567         nr_switches = p->nvcsw + p->nivcsw;
568
569 #ifdef CONFIG_SCHEDSTATS
570         PN(se.statistics.wait_start);
571         PN(se.statistics.sleep_start);
572         PN(se.statistics.block_start);
573         PN(se.statistics.sleep_max);
574         PN(se.statistics.block_max);
575         PN(se.statistics.exec_max);
576         PN(se.statistics.slice_max);
577         PN(se.statistics.wait_max);
578         PN(se.statistics.wait_sum);
579         P(se.statistics.wait_count);
580         PN(se.statistics.iowait_sum);
581         P(se.statistics.iowait_count);
582         P(se.nr_migrations);
583         P(se.statistics.nr_migrations_cold);
584         P(se.statistics.nr_failed_migrations_affine);
585         P(se.statistics.nr_failed_migrations_running);
586         P(se.statistics.nr_failed_migrations_hot);
587         P(se.statistics.nr_forced_migrations);
588         P(se.statistics.nr_wakeups);
589         P(se.statistics.nr_wakeups_sync);
590         P(se.statistics.nr_wakeups_migrate);
591         P(se.statistics.nr_wakeups_local);
592         P(se.statistics.nr_wakeups_remote);
593         P(se.statistics.nr_wakeups_affine);
594         P(se.statistics.nr_wakeups_affine_attempts);
595         P(se.statistics.nr_wakeups_passive);
596         P(se.statistics.nr_wakeups_idle);
597
598         {
599                 u64 avg_atom, avg_per_cpu;
600
601                 avg_atom = p->se.sum_exec_runtime;
602                 if (nr_switches)
603                         do_div(avg_atom, nr_switches);
604                 else
605                         avg_atom = -1LL;
606
607                 avg_per_cpu = p->se.sum_exec_runtime;
608                 if (p->se.nr_migrations) {
609                         avg_per_cpu = div64_u64(avg_per_cpu,
610                                                 p->se.nr_migrations);
611                 } else {
612                         avg_per_cpu = -1LL;
613                 }
614
615                 __PN(avg_atom);
616                 __PN(avg_per_cpu);
617         }
618 #endif
619         __P(nr_switches);
620         SEQ_printf(m, "%-45s:%21Ld\n",
621                    "nr_voluntary_switches", (long long)p->nvcsw);
622         SEQ_printf(m, "%-45s:%21Ld\n",
623                    "nr_involuntary_switches", (long long)p->nivcsw);
624
625         P(se.load.weight);
626 #ifdef CONFIG_SMP
627         P(se.avg.runnable_avg_sum);
628         P(se.avg.runnable_avg_period);
629         P(se.avg.load_avg_contrib);
630         P(se.avg.decay_count);
631 #endif
632         P(policy);
633         P(prio);
634 #undef PN
635 #undef __PN
636 #undef P
637 #undef __P
638
639         {
640                 unsigned int this_cpu = raw_smp_processor_id();
641                 u64 t0, t1;
642
643                 t0 = cpu_clock(this_cpu);
644                 t1 = cpu_clock(this_cpu);
645                 SEQ_printf(m, "%-45s:%21Ld\n",
646                            "clock-delta", (long long)(t1-t0));
647         }
648
649         sched_show_numa(p, m);
650 }
651
652 void proc_sched_set_task(struct task_struct *p)
653 {
654 #ifdef CONFIG_SCHEDSTATS
655         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
656 #endif
657 }