]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/sched/rt.c
Merge branch 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14 struct rt_bandwidth def_rt_bandwidth;
15
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18         struct rt_bandwidth *rt_b =
19                 container_of(timer, struct rt_bandwidth, rt_period_timer);
20         ktime_t now;
21         int overrun;
22         int idle = 0;
23
24         for (;;) {
25                 now = hrtimer_cb_get_time(timer);
26                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28                 if (!overrun)
29                         break;
30
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32         }
33
34         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39         rt_b->rt_period = ns_to_ktime(period);
40         rt_b->rt_runtime = runtime;
41
42         raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44         hrtimer_init(&rt_b->rt_period_timer,
45                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46         rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52                 return;
53
54         if (hrtimer_active(&rt_b->rt_period_timer))
55                 return;
56
57         raw_spin_lock(&rt_b->rt_runtime_lock);
58         start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59         raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64         struct rt_prio_array *array;
65         int i;
66
67         array = &rt_rq->active;
68         for (i = 0; i < MAX_RT_PRIO; i++) {
69                 INIT_LIST_HEAD(array->queue + i);
70                 __clear_bit(i, array->bitmap);
71         }
72         /* delimiter for bitsearch: */
73         __set_bit(MAX_RT_PRIO, array->bitmap);
74
75 #if defined CONFIG_SMP
76         rt_rq->highest_prio.curr = MAX_RT_PRIO;
77         rt_rq->highest_prio.next = MAX_RT_PRIO;
78         rt_rq->rt_nr_migratory = 0;
79         rt_rq->overloaded = 0;
80         plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82         /* We start is dequeued state, because no RT tasks are queued */
83         rt_rq->rt_queued = 0;
84
85         rt_rq->rt_time = 0;
86         rt_rq->rt_throttled = 0;
87         rt_rq->rt_runtime = 0;
88         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
89 }
90
91 #ifdef CONFIG_RT_GROUP_SCHED
92 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
93 {
94         hrtimer_cancel(&rt_b->rt_period_timer);
95 }
96
97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
98
99 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
100 {
101 #ifdef CONFIG_SCHED_DEBUG
102         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
103 #endif
104         return container_of(rt_se, struct task_struct, rt);
105 }
106
107 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
108 {
109         return rt_rq->rq;
110 }
111
112 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
113 {
114         return rt_se->rt_rq;
115 }
116
117 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
118 {
119         struct rt_rq *rt_rq = rt_se->rt_rq;
120
121         return rt_rq->rq;
122 }
123
124 void free_rt_sched_group(struct task_group *tg)
125 {
126         int i;
127
128         if (tg->rt_se)
129                 destroy_rt_bandwidth(&tg->rt_bandwidth);
130
131         for_each_possible_cpu(i) {
132                 if (tg->rt_rq)
133                         kfree(tg->rt_rq[i]);
134                 if (tg->rt_se)
135                         kfree(tg->rt_se[i]);
136         }
137
138         kfree(tg->rt_rq);
139         kfree(tg->rt_se);
140 }
141
142 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
143                 struct sched_rt_entity *rt_se, int cpu,
144                 struct sched_rt_entity *parent)
145 {
146         struct rq *rq = cpu_rq(cpu);
147
148         rt_rq->highest_prio.curr = MAX_RT_PRIO;
149         rt_rq->rt_nr_boosted = 0;
150         rt_rq->rq = rq;
151         rt_rq->tg = tg;
152
153         tg->rt_rq[cpu] = rt_rq;
154         tg->rt_se[cpu] = rt_se;
155
156         if (!rt_se)
157                 return;
158
159         if (!parent)
160                 rt_se->rt_rq = &rq->rt;
161         else
162                 rt_se->rt_rq = parent->my_q;
163
164         rt_se->my_q = rt_rq;
165         rt_se->parent = parent;
166         INIT_LIST_HEAD(&rt_se->run_list);
167 }
168
169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
170 {
171         struct rt_rq *rt_rq;
172         struct sched_rt_entity *rt_se;
173         int i;
174
175         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
176         if (!tg->rt_rq)
177                 goto err;
178         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
179         if (!tg->rt_se)
180                 goto err;
181
182         init_rt_bandwidth(&tg->rt_bandwidth,
183                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
184
185         for_each_possible_cpu(i) {
186                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
187                                      GFP_KERNEL, cpu_to_node(i));
188                 if (!rt_rq)
189                         goto err;
190
191                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
192                                      GFP_KERNEL, cpu_to_node(i));
193                 if (!rt_se)
194                         goto err_free_rq;
195
196                 init_rt_rq(rt_rq, cpu_rq(i));
197                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
198                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
199         }
200
201         return 1;
202
203 err_free_rq:
204         kfree(rt_rq);
205 err:
206         return 0;
207 }
208
209 #else /* CONFIG_RT_GROUP_SCHED */
210
211 #define rt_entity_is_task(rt_se) (1)
212
213 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
214 {
215         return container_of(rt_se, struct task_struct, rt);
216 }
217
218 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
219 {
220         return container_of(rt_rq, struct rq, rt);
221 }
222
223 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 {
225         struct task_struct *p = rt_task_of(rt_se);
226
227         return task_rq(p);
228 }
229
230 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
231 {
232         struct rq *rq = rq_of_rt_se(rt_se);
233
234         return &rq->rt;
235 }
236
237 void free_rt_sched_group(struct task_group *tg) { }
238
239 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
240 {
241         return 1;
242 }
243 #endif /* CONFIG_RT_GROUP_SCHED */
244
245 #ifdef CONFIG_SMP
246
247 static int pull_rt_task(struct rq *this_rq);
248
249 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
250 {
251         /* Try to pull RT tasks here if we lower this rq's prio */
252         return rq->rt.highest_prio.curr > prev->prio;
253 }
254
255 static inline int rt_overloaded(struct rq *rq)
256 {
257         return atomic_read(&rq->rd->rto_count);
258 }
259
260 static inline void rt_set_overload(struct rq *rq)
261 {
262         if (!rq->online)
263                 return;
264
265         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
266         /*
267          * Make sure the mask is visible before we set
268          * the overload count. That is checked to determine
269          * if we should look at the mask. It would be a shame
270          * if we looked at the mask, but the mask was not
271          * updated yet.
272          *
273          * Matched by the barrier in pull_rt_task().
274          */
275         smp_wmb();
276         atomic_inc(&rq->rd->rto_count);
277 }
278
279 static inline void rt_clear_overload(struct rq *rq)
280 {
281         if (!rq->online)
282                 return;
283
284         /* the order here really doesn't matter */
285         atomic_dec(&rq->rd->rto_count);
286         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
287 }
288
289 static void update_rt_migration(struct rt_rq *rt_rq)
290 {
291         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292                 if (!rt_rq->overloaded) {
293                         rt_set_overload(rq_of_rt_rq(rt_rq));
294                         rt_rq->overloaded = 1;
295                 }
296         } else if (rt_rq->overloaded) {
297                 rt_clear_overload(rq_of_rt_rq(rt_rq));
298                 rt_rq->overloaded = 0;
299         }
300 }
301
302 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
303 {
304         struct task_struct *p;
305
306         if (!rt_entity_is_task(rt_se))
307                 return;
308
309         p = rt_task_of(rt_se);
310         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
311
312         rt_rq->rt_nr_total++;
313         if (p->nr_cpus_allowed > 1)
314                 rt_rq->rt_nr_migratory++;
315
316         update_rt_migration(rt_rq);
317 }
318
319 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320 {
321         struct task_struct *p;
322
323         if (!rt_entity_is_task(rt_se))
324                 return;
325
326         p = rt_task_of(rt_se);
327         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328
329         rt_rq->rt_nr_total--;
330         if (p->nr_cpus_allowed > 1)
331                 rt_rq->rt_nr_migratory--;
332
333         update_rt_migration(rt_rq);
334 }
335
336 static inline int has_pushable_tasks(struct rq *rq)
337 {
338         return !plist_head_empty(&rq->rt.pushable_tasks);
339 }
340
341 static inline void set_post_schedule(struct rq *rq)
342 {
343         /*
344          * We detect this state here so that we can avoid taking the RQ
345          * lock again later if there is no need to push
346          */
347         rq->post_schedule = has_pushable_tasks(rq);
348 }
349
350 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
351 {
352         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
353         plist_node_init(&p->pushable_tasks, p->prio);
354         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
355
356         /* Update the highest prio pushable task */
357         if (p->prio < rq->rt.highest_prio.next)
358                 rq->rt.highest_prio.next = p->prio;
359 }
360
361 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
362 {
363         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
364
365         /* Update the new highest prio pushable task */
366         if (has_pushable_tasks(rq)) {
367                 p = plist_first_entry(&rq->rt.pushable_tasks,
368                                       struct task_struct, pushable_tasks);
369                 rq->rt.highest_prio.next = p->prio;
370         } else
371                 rq->rt.highest_prio.next = MAX_RT_PRIO;
372 }
373
374 #else
375
376 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378 }
379
380 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381 {
382 }
383
384 static inline
385 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
386 {
387 }
388
389 static inline
390 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
391 {
392 }
393
394 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
395 {
396         return false;
397 }
398
399 static inline int pull_rt_task(struct rq *this_rq)
400 {
401         return 0;
402 }
403
404 static inline void set_post_schedule(struct rq *rq)
405 {
406 }
407 #endif /* CONFIG_SMP */
408
409 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
410 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
411
412 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
413 {
414         return !list_empty(&rt_se->run_list);
415 }
416
417 #ifdef CONFIG_RT_GROUP_SCHED
418
419 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
420 {
421         if (!rt_rq->tg)
422                 return RUNTIME_INF;
423
424         return rt_rq->rt_runtime;
425 }
426
427 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
428 {
429         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
430 }
431
432 typedef struct task_group *rt_rq_iter_t;
433
434 static inline struct task_group *next_task_group(struct task_group *tg)
435 {
436         do {
437                 tg = list_entry_rcu(tg->list.next,
438                         typeof(struct task_group), list);
439         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
440
441         if (&tg->list == &task_groups)
442                 tg = NULL;
443
444         return tg;
445 }
446
447 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
448         for (iter = container_of(&task_groups, typeof(*iter), list);    \
449                 (iter = next_task_group(iter)) &&                       \
450                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
451
452 #define for_each_sched_rt_entity(rt_se) \
453         for (; rt_se; rt_se = rt_se->parent)
454
455 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
456 {
457         return rt_se->my_q;
458 }
459
460 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
461 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
462
463 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
464 {
465         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
466         struct sched_rt_entity *rt_se;
467
468         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
469
470         rt_se = rt_rq->tg->rt_se[cpu];
471
472         if (rt_rq->rt_nr_running) {
473                 if (!rt_se)
474                         enqueue_top_rt_rq(rt_rq);
475                 else if (!on_rt_rq(rt_se))
476                         enqueue_rt_entity(rt_se, false);
477
478                 if (rt_rq->highest_prio.curr < curr->prio)
479                         resched_task(curr);
480         }
481 }
482
483 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
484 {
485         struct sched_rt_entity *rt_se;
486         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
487
488         rt_se = rt_rq->tg->rt_se[cpu];
489
490         if (!rt_se)
491                 dequeue_top_rt_rq(rt_rq);
492         else if (on_rt_rq(rt_se))
493                 dequeue_rt_entity(rt_se);
494 }
495
496 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
497 {
498         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
499 }
500
501 static int rt_se_boosted(struct sched_rt_entity *rt_se)
502 {
503         struct rt_rq *rt_rq = group_rt_rq(rt_se);
504         struct task_struct *p;
505
506         if (rt_rq)
507                 return !!rt_rq->rt_nr_boosted;
508
509         p = rt_task_of(rt_se);
510         return p->prio != p->normal_prio;
511 }
512
513 #ifdef CONFIG_SMP
514 static inline const struct cpumask *sched_rt_period_mask(void)
515 {
516         return this_rq()->rd->span;
517 }
518 #else
519 static inline const struct cpumask *sched_rt_period_mask(void)
520 {
521         return cpu_online_mask;
522 }
523 #endif
524
525 static inline
526 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
527 {
528         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
529 }
530
531 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
532 {
533         return &rt_rq->tg->rt_bandwidth;
534 }
535
536 #else /* !CONFIG_RT_GROUP_SCHED */
537
538 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
539 {
540         return rt_rq->rt_runtime;
541 }
542
543 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
544 {
545         return ktime_to_ns(def_rt_bandwidth.rt_period);
546 }
547
548 typedef struct rt_rq *rt_rq_iter_t;
549
550 #define for_each_rt_rq(rt_rq, iter, rq) \
551         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
552
553 #define for_each_sched_rt_entity(rt_se) \
554         for (; rt_se; rt_se = NULL)
555
556 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
557 {
558         return NULL;
559 }
560
561 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
562 {
563         struct rq *rq = rq_of_rt_rq(rt_rq);
564
565         if (!rt_rq->rt_nr_running)
566                 return;
567
568         enqueue_top_rt_rq(rt_rq);
569         resched_task(rq->curr);
570 }
571
572 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
573 {
574         dequeue_top_rt_rq(rt_rq);
575 }
576
577 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
578 {
579         return rt_rq->rt_throttled;
580 }
581
582 static inline const struct cpumask *sched_rt_period_mask(void)
583 {
584         return cpu_online_mask;
585 }
586
587 static inline
588 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
589 {
590         return &cpu_rq(cpu)->rt;
591 }
592
593 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
594 {
595         return &def_rt_bandwidth;
596 }
597
598 #endif /* CONFIG_RT_GROUP_SCHED */
599
600 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
601 {
602         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
603
604         return (hrtimer_active(&rt_b->rt_period_timer) ||
605                 rt_rq->rt_time < rt_b->rt_runtime);
606 }
607
608 #ifdef CONFIG_SMP
609 /*
610  * We ran out of runtime, see if we can borrow some from our neighbours.
611  */
612 static int do_balance_runtime(struct rt_rq *rt_rq)
613 {
614         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
615         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
616         int i, weight, more = 0;
617         u64 rt_period;
618
619         weight = cpumask_weight(rd->span);
620
621         raw_spin_lock(&rt_b->rt_runtime_lock);
622         rt_period = ktime_to_ns(rt_b->rt_period);
623         for_each_cpu(i, rd->span) {
624                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
625                 s64 diff;
626
627                 if (iter == rt_rq)
628                         continue;
629
630                 raw_spin_lock(&iter->rt_runtime_lock);
631                 /*
632                  * Either all rqs have inf runtime and there's nothing to steal
633                  * or __disable_runtime() below sets a specific rq to inf to
634                  * indicate its been disabled and disalow stealing.
635                  */
636                 if (iter->rt_runtime == RUNTIME_INF)
637                         goto next;
638
639                 /*
640                  * From runqueues with spare time, take 1/n part of their
641                  * spare time, but no more than our period.
642                  */
643                 diff = iter->rt_runtime - iter->rt_time;
644                 if (diff > 0) {
645                         diff = div_u64((u64)diff, weight);
646                         if (rt_rq->rt_runtime + diff > rt_period)
647                                 diff = rt_period - rt_rq->rt_runtime;
648                         iter->rt_runtime -= diff;
649                         rt_rq->rt_runtime += diff;
650                         more = 1;
651                         if (rt_rq->rt_runtime == rt_period) {
652                                 raw_spin_unlock(&iter->rt_runtime_lock);
653                                 break;
654                         }
655                 }
656 next:
657                 raw_spin_unlock(&iter->rt_runtime_lock);
658         }
659         raw_spin_unlock(&rt_b->rt_runtime_lock);
660
661         return more;
662 }
663
664 /*
665  * Ensure this RQ takes back all the runtime it lend to its neighbours.
666  */
667 static void __disable_runtime(struct rq *rq)
668 {
669         struct root_domain *rd = rq->rd;
670         rt_rq_iter_t iter;
671         struct rt_rq *rt_rq;
672
673         if (unlikely(!scheduler_running))
674                 return;
675
676         for_each_rt_rq(rt_rq, iter, rq) {
677                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
678                 s64 want;
679                 int i;
680
681                 raw_spin_lock(&rt_b->rt_runtime_lock);
682                 raw_spin_lock(&rt_rq->rt_runtime_lock);
683                 /*
684                  * Either we're all inf and nobody needs to borrow, or we're
685                  * already disabled and thus have nothing to do, or we have
686                  * exactly the right amount of runtime to take out.
687                  */
688                 if (rt_rq->rt_runtime == RUNTIME_INF ||
689                                 rt_rq->rt_runtime == rt_b->rt_runtime)
690                         goto balanced;
691                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
692
693                 /*
694                  * Calculate the difference between what we started out with
695                  * and what we current have, that's the amount of runtime
696                  * we lend and now have to reclaim.
697                  */
698                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
699
700                 /*
701                  * Greedy reclaim, take back as much as we can.
702                  */
703                 for_each_cpu(i, rd->span) {
704                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
705                         s64 diff;
706
707                         /*
708                          * Can't reclaim from ourselves or disabled runqueues.
709                          */
710                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
711                                 continue;
712
713                         raw_spin_lock(&iter->rt_runtime_lock);
714                         if (want > 0) {
715                                 diff = min_t(s64, iter->rt_runtime, want);
716                                 iter->rt_runtime -= diff;
717                                 want -= diff;
718                         } else {
719                                 iter->rt_runtime -= want;
720                                 want -= want;
721                         }
722                         raw_spin_unlock(&iter->rt_runtime_lock);
723
724                         if (!want)
725                                 break;
726                 }
727
728                 raw_spin_lock(&rt_rq->rt_runtime_lock);
729                 /*
730                  * We cannot be left wanting - that would mean some runtime
731                  * leaked out of the system.
732                  */
733                 BUG_ON(want);
734 balanced:
735                 /*
736                  * Disable all the borrow logic by pretending we have inf
737                  * runtime - in which case borrowing doesn't make sense.
738                  */
739                 rt_rq->rt_runtime = RUNTIME_INF;
740                 rt_rq->rt_throttled = 0;
741                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
742                 raw_spin_unlock(&rt_b->rt_runtime_lock);
743         }
744 }
745
746 static void __enable_runtime(struct rq *rq)
747 {
748         rt_rq_iter_t iter;
749         struct rt_rq *rt_rq;
750
751         if (unlikely(!scheduler_running))
752                 return;
753
754         /*
755          * Reset each runqueue's bandwidth settings
756          */
757         for_each_rt_rq(rt_rq, iter, rq) {
758                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
759
760                 raw_spin_lock(&rt_b->rt_runtime_lock);
761                 raw_spin_lock(&rt_rq->rt_runtime_lock);
762                 rt_rq->rt_runtime = rt_b->rt_runtime;
763                 rt_rq->rt_time = 0;
764                 rt_rq->rt_throttled = 0;
765                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
766                 raw_spin_unlock(&rt_b->rt_runtime_lock);
767         }
768 }
769
770 static int balance_runtime(struct rt_rq *rt_rq)
771 {
772         int more = 0;
773
774         if (!sched_feat(RT_RUNTIME_SHARE))
775                 return more;
776
777         if (rt_rq->rt_time > rt_rq->rt_runtime) {
778                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
779                 more = do_balance_runtime(rt_rq);
780                 raw_spin_lock(&rt_rq->rt_runtime_lock);
781         }
782
783         return more;
784 }
785 #else /* !CONFIG_SMP */
786 static inline int balance_runtime(struct rt_rq *rt_rq)
787 {
788         return 0;
789 }
790 #endif /* CONFIG_SMP */
791
792 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
793 {
794         int i, idle = 1, throttled = 0;
795         const struct cpumask *span;
796
797         span = sched_rt_period_mask();
798 #ifdef CONFIG_RT_GROUP_SCHED
799         /*
800          * FIXME: isolated CPUs should really leave the root task group,
801          * whether they are isolcpus or were isolated via cpusets, lest
802          * the timer run on a CPU which does not service all runqueues,
803          * potentially leaving other CPUs indefinitely throttled.  If
804          * isolation is really required, the user will turn the throttle
805          * off to kill the perturbations it causes anyway.  Meanwhile,
806          * this maintains functionality for boot and/or troubleshooting.
807          */
808         if (rt_b == &root_task_group.rt_bandwidth)
809                 span = cpu_online_mask;
810 #endif
811         for_each_cpu(i, span) {
812                 int enqueue = 0;
813                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
814                 struct rq *rq = rq_of_rt_rq(rt_rq);
815
816                 raw_spin_lock(&rq->lock);
817                 if (rt_rq->rt_time) {
818                         u64 runtime;
819
820                         raw_spin_lock(&rt_rq->rt_runtime_lock);
821                         if (rt_rq->rt_throttled)
822                                 balance_runtime(rt_rq);
823                         runtime = rt_rq->rt_runtime;
824                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
825                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
826                                 rt_rq->rt_throttled = 0;
827                                 enqueue = 1;
828
829                                 /*
830                                  * Force a clock update if the CPU was idle,
831                                  * lest wakeup -> unthrottle time accumulate.
832                                  */
833                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
834                                         rq->skip_clock_update = -1;
835                         }
836                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
837                                 idle = 0;
838                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
839                 } else if (rt_rq->rt_nr_running) {
840                         idle = 0;
841                         if (!rt_rq_throttled(rt_rq))
842                                 enqueue = 1;
843                 }
844                 if (rt_rq->rt_throttled)
845                         throttled = 1;
846
847                 if (enqueue)
848                         sched_rt_rq_enqueue(rt_rq);
849                 raw_spin_unlock(&rq->lock);
850         }
851
852         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
853                 return 1;
854
855         return idle;
856 }
857
858 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
859 {
860 #ifdef CONFIG_RT_GROUP_SCHED
861         struct rt_rq *rt_rq = group_rt_rq(rt_se);
862
863         if (rt_rq)
864                 return rt_rq->highest_prio.curr;
865 #endif
866
867         return rt_task_of(rt_se)->prio;
868 }
869
870 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
871 {
872         u64 runtime = sched_rt_runtime(rt_rq);
873
874         if (rt_rq->rt_throttled)
875                 return rt_rq_throttled(rt_rq);
876
877         if (runtime >= sched_rt_period(rt_rq))
878                 return 0;
879
880         balance_runtime(rt_rq);
881         runtime = sched_rt_runtime(rt_rq);
882         if (runtime == RUNTIME_INF)
883                 return 0;
884
885         if (rt_rq->rt_time > runtime) {
886                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
887
888                 /*
889                  * Don't actually throttle groups that have no runtime assigned
890                  * but accrue some time due to boosting.
891                  */
892                 if (likely(rt_b->rt_runtime)) {
893                         static bool once = false;
894
895                         rt_rq->rt_throttled = 1;
896
897                         if (!once) {
898                                 once = true;
899                                 printk_sched("sched: RT throttling activated\n");
900                         }
901                 } else {
902                         /*
903                          * In case we did anyway, make it go away,
904                          * replenishment is a joke, since it will replenish us
905                          * with exactly 0 ns.
906                          */
907                         rt_rq->rt_time = 0;
908                 }
909
910                 if (rt_rq_throttled(rt_rq)) {
911                         sched_rt_rq_dequeue(rt_rq);
912                         return 1;
913                 }
914         }
915
916         return 0;
917 }
918
919 /*
920  * Update the current task's runtime statistics. Skip current tasks that
921  * are not in our scheduling class.
922  */
923 static void update_curr_rt(struct rq *rq)
924 {
925         struct task_struct *curr = rq->curr;
926         struct sched_rt_entity *rt_se = &curr->rt;
927         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
928         u64 delta_exec;
929
930         if (curr->sched_class != &rt_sched_class)
931                 return;
932
933         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
934         if (unlikely((s64)delta_exec <= 0))
935                 return;
936
937         schedstat_set(curr->se.statistics.exec_max,
938                       max(curr->se.statistics.exec_max, delta_exec));
939
940         curr->se.sum_exec_runtime += delta_exec;
941         account_group_exec_runtime(curr, delta_exec);
942
943         curr->se.exec_start = rq_clock_task(rq);
944         cpuacct_charge(curr, delta_exec);
945
946         sched_rt_avg_update(rq, delta_exec);
947
948         if (!rt_bandwidth_enabled())
949                 return;
950
951         for_each_sched_rt_entity(rt_se) {
952                 rt_rq = rt_rq_of_se(rt_se);
953
954                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
955                         raw_spin_lock(&rt_rq->rt_runtime_lock);
956                         rt_rq->rt_time += delta_exec;
957                         if (sched_rt_runtime_exceeded(rt_rq))
958                                 resched_task(curr);
959                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
960                 }
961         }
962 }
963
964 static void
965 dequeue_top_rt_rq(struct rt_rq *rt_rq)
966 {
967         struct rq *rq = rq_of_rt_rq(rt_rq);
968
969         BUG_ON(&rq->rt != rt_rq);
970
971         if (!rt_rq->rt_queued)
972                 return;
973
974         BUG_ON(!rq->nr_running);
975
976         sub_nr_running(rq, rt_rq->rt_nr_running);
977         rt_rq->rt_queued = 0;
978 }
979
980 static void
981 enqueue_top_rt_rq(struct rt_rq *rt_rq)
982 {
983         struct rq *rq = rq_of_rt_rq(rt_rq);
984
985         BUG_ON(&rq->rt != rt_rq);
986
987         if (rt_rq->rt_queued)
988                 return;
989         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
990                 return;
991
992         add_nr_running(rq, rt_rq->rt_nr_running);
993         rt_rq->rt_queued = 1;
994 }
995
996 #if defined CONFIG_SMP
997
998 static void
999 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1000 {
1001         struct rq *rq = rq_of_rt_rq(rt_rq);
1002
1003 #ifdef CONFIG_RT_GROUP_SCHED
1004         /*
1005          * Change rq's cpupri only if rt_rq is the top queue.
1006          */
1007         if (&rq->rt != rt_rq)
1008                 return;
1009 #endif
1010         if (rq->online && prio < prev_prio)
1011                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1012 }
1013
1014 static void
1015 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1016 {
1017         struct rq *rq = rq_of_rt_rq(rt_rq);
1018
1019 #ifdef CONFIG_RT_GROUP_SCHED
1020         /*
1021          * Change rq's cpupri only if rt_rq is the top queue.
1022          */
1023         if (&rq->rt != rt_rq)
1024                 return;
1025 #endif
1026         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1027                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1028 }
1029
1030 #else /* CONFIG_SMP */
1031
1032 static inline
1033 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1034 static inline
1035 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1036
1037 #endif /* CONFIG_SMP */
1038
1039 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1040 static void
1041 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1042 {
1043         int prev_prio = rt_rq->highest_prio.curr;
1044
1045         if (prio < prev_prio)
1046                 rt_rq->highest_prio.curr = prio;
1047
1048         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1049 }
1050
1051 static void
1052 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1053 {
1054         int prev_prio = rt_rq->highest_prio.curr;
1055
1056         if (rt_rq->rt_nr_running) {
1057
1058                 WARN_ON(prio < prev_prio);
1059
1060                 /*
1061                  * This may have been our highest task, and therefore
1062                  * we may have some recomputation to do
1063                  */
1064                 if (prio == prev_prio) {
1065                         struct rt_prio_array *array = &rt_rq->active;
1066
1067                         rt_rq->highest_prio.curr =
1068                                 sched_find_first_bit(array->bitmap);
1069                 }
1070
1071         } else
1072                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1073
1074         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1075 }
1076
1077 #else
1078
1079 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1080 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1081
1082 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1083
1084 #ifdef CONFIG_RT_GROUP_SCHED
1085
1086 static void
1087 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1088 {
1089         if (rt_se_boosted(rt_se))
1090                 rt_rq->rt_nr_boosted++;
1091
1092         if (rt_rq->tg)
1093                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1094 }
1095
1096 static void
1097 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1098 {
1099         if (rt_se_boosted(rt_se))
1100                 rt_rq->rt_nr_boosted--;
1101
1102         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1103 }
1104
1105 #else /* CONFIG_RT_GROUP_SCHED */
1106
1107 static void
1108 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1109 {
1110         start_rt_bandwidth(&def_rt_bandwidth);
1111 }
1112
1113 static inline
1114 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1115
1116 #endif /* CONFIG_RT_GROUP_SCHED */
1117
1118 static inline
1119 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1120 {
1121         struct rt_rq *group_rq = group_rt_rq(rt_se);
1122
1123         if (group_rq)
1124                 return group_rq->rt_nr_running;
1125         else
1126                 return 1;
1127 }
1128
1129 static inline
1130 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1131 {
1132         int prio = rt_se_prio(rt_se);
1133
1134         WARN_ON(!rt_prio(prio));
1135         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1136
1137         inc_rt_prio(rt_rq, prio);
1138         inc_rt_migration(rt_se, rt_rq);
1139         inc_rt_group(rt_se, rt_rq);
1140 }
1141
1142 static inline
1143 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1144 {
1145         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1146         WARN_ON(!rt_rq->rt_nr_running);
1147         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1148
1149         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1150         dec_rt_migration(rt_se, rt_rq);
1151         dec_rt_group(rt_se, rt_rq);
1152 }
1153
1154 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1155 {
1156         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1157         struct rt_prio_array *array = &rt_rq->active;
1158         struct rt_rq *group_rq = group_rt_rq(rt_se);
1159         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1160
1161         /*
1162          * Don't enqueue the group if its throttled, or when empty.
1163          * The latter is a consequence of the former when a child group
1164          * get throttled and the current group doesn't have any other
1165          * active members.
1166          */
1167         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1168                 return;
1169
1170         if (head)
1171                 list_add(&rt_se->run_list, queue);
1172         else
1173                 list_add_tail(&rt_se->run_list, queue);
1174         __set_bit(rt_se_prio(rt_se), array->bitmap);
1175
1176         inc_rt_tasks(rt_se, rt_rq);
1177 }
1178
1179 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1180 {
1181         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1182         struct rt_prio_array *array = &rt_rq->active;
1183
1184         list_del_init(&rt_se->run_list);
1185         if (list_empty(array->queue + rt_se_prio(rt_se)))
1186                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1187
1188         dec_rt_tasks(rt_se, rt_rq);
1189 }
1190
1191 /*
1192  * Because the prio of an upper entry depends on the lower
1193  * entries, we must remove entries top - down.
1194  */
1195 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1196 {
1197         struct sched_rt_entity *back = NULL;
1198
1199         for_each_sched_rt_entity(rt_se) {
1200                 rt_se->back = back;
1201                 back = rt_se;
1202         }
1203
1204         dequeue_top_rt_rq(rt_rq_of_se(back));
1205
1206         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1207                 if (on_rt_rq(rt_se))
1208                         __dequeue_rt_entity(rt_se);
1209         }
1210 }
1211
1212 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1213 {
1214         struct rq *rq = rq_of_rt_se(rt_se);
1215
1216         dequeue_rt_stack(rt_se);
1217         for_each_sched_rt_entity(rt_se)
1218                 __enqueue_rt_entity(rt_se, head);
1219         enqueue_top_rt_rq(&rq->rt);
1220 }
1221
1222 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1223 {
1224         struct rq *rq = rq_of_rt_se(rt_se);
1225
1226         dequeue_rt_stack(rt_se);
1227
1228         for_each_sched_rt_entity(rt_se) {
1229                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1230
1231                 if (rt_rq && rt_rq->rt_nr_running)
1232                         __enqueue_rt_entity(rt_se, false);
1233         }
1234         enqueue_top_rt_rq(&rq->rt);
1235 }
1236
1237 /*
1238  * Adding/removing a task to/from a priority array:
1239  */
1240 static void
1241 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1242 {
1243         struct sched_rt_entity *rt_se = &p->rt;
1244
1245         if (flags & ENQUEUE_WAKEUP)
1246                 rt_se->timeout = 0;
1247
1248         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1249
1250         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1251                 enqueue_pushable_task(rq, p);
1252 }
1253
1254 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1255 {
1256         struct sched_rt_entity *rt_se = &p->rt;
1257
1258         update_curr_rt(rq);
1259         dequeue_rt_entity(rt_se);
1260
1261         dequeue_pushable_task(rq, p);
1262 }
1263
1264 /*
1265  * Put task to the head or the end of the run list without the overhead of
1266  * dequeue followed by enqueue.
1267  */
1268 static void
1269 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1270 {
1271         if (on_rt_rq(rt_se)) {
1272                 struct rt_prio_array *array = &rt_rq->active;
1273                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1274
1275                 if (head)
1276                         list_move(&rt_se->run_list, queue);
1277                 else
1278                         list_move_tail(&rt_se->run_list, queue);
1279         }
1280 }
1281
1282 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1283 {
1284         struct sched_rt_entity *rt_se = &p->rt;
1285         struct rt_rq *rt_rq;
1286
1287         for_each_sched_rt_entity(rt_se) {
1288                 rt_rq = rt_rq_of_se(rt_se);
1289                 requeue_rt_entity(rt_rq, rt_se, head);
1290         }
1291 }
1292
1293 static void yield_task_rt(struct rq *rq)
1294 {
1295         requeue_task_rt(rq, rq->curr, 0);
1296 }
1297
1298 #ifdef CONFIG_SMP
1299 static int find_lowest_rq(struct task_struct *task);
1300
1301 static int
1302 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1303 {
1304         struct task_struct *curr;
1305         struct rq *rq;
1306
1307         if (p->nr_cpus_allowed == 1)
1308                 goto out;
1309
1310         /* For anything but wake ups, just return the task_cpu */
1311         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1312                 goto out;
1313
1314         rq = cpu_rq(cpu);
1315
1316         rcu_read_lock();
1317         curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1318
1319         /*
1320          * If the current task on @p's runqueue is an RT task, then
1321          * try to see if we can wake this RT task up on another
1322          * runqueue. Otherwise simply start this RT task
1323          * on its current runqueue.
1324          *
1325          * We want to avoid overloading runqueues. If the woken
1326          * task is a higher priority, then it will stay on this CPU
1327          * and the lower prio task should be moved to another CPU.
1328          * Even though this will probably make the lower prio task
1329          * lose its cache, we do not want to bounce a higher task
1330          * around just because it gave up its CPU, perhaps for a
1331          * lock?
1332          *
1333          * For equal prio tasks, we just let the scheduler sort it out.
1334          *
1335          * Otherwise, just let it ride on the affined RQ and the
1336          * post-schedule router will push the preempted task away
1337          *
1338          * This test is optimistic, if we get it wrong the load-balancer
1339          * will have to sort it out.
1340          */
1341         if (curr && unlikely(rt_task(curr)) &&
1342             (curr->nr_cpus_allowed < 2 ||
1343              curr->prio <= p->prio)) {
1344                 int target = find_lowest_rq(p);
1345
1346                 if (target != -1)
1347                         cpu = target;
1348         }
1349         rcu_read_unlock();
1350
1351 out:
1352         return cpu;
1353 }
1354
1355 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1356 {
1357         if (rq->curr->nr_cpus_allowed == 1)
1358                 return;
1359
1360         if (p->nr_cpus_allowed != 1
1361             && cpupri_find(&rq->rd->cpupri, p, NULL))
1362                 return;
1363
1364         if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1365                 return;
1366
1367         /*
1368          * There appears to be other cpus that can accept
1369          * current and none to run 'p', so lets reschedule
1370          * to try and push current away:
1371          */
1372         requeue_task_rt(rq, p, 1);
1373         resched_task(rq->curr);
1374 }
1375
1376 #endif /* CONFIG_SMP */
1377
1378 /*
1379  * Preempt the current task with a newly woken task if needed:
1380  */
1381 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1382 {
1383         if (p->prio < rq->curr->prio) {
1384                 resched_task(rq->curr);
1385                 return;
1386         }
1387
1388 #ifdef CONFIG_SMP
1389         /*
1390          * If:
1391          *
1392          * - the newly woken task is of equal priority to the current task
1393          * - the newly woken task is non-migratable while current is migratable
1394          * - current will be preempted on the next reschedule
1395          *
1396          * we should check to see if current can readily move to a different
1397          * cpu.  If so, we will reschedule to allow the push logic to try
1398          * to move current somewhere else, making room for our non-migratable
1399          * task.
1400          */
1401         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1402                 check_preempt_equal_prio(rq, p);
1403 #endif
1404 }
1405
1406 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1407                                                    struct rt_rq *rt_rq)
1408 {
1409         struct rt_prio_array *array = &rt_rq->active;
1410         struct sched_rt_entity *next = NULL;
1411         struct list_head *queue;
1412         int idx;
1413
1414         idx = sched_find_first_bit(array->bitmap);
1415         BUG_ON(idx >= MAX_RT_PRIO);
1416
1417         queue = array->queue + idx;
1418         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1419
1420         return next;
1421 }
1422
1423 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1424 {
1425         struct sched_rt_entity *rt_se;
1426         struct task_struct *p;
1427         struct rt_rq *rt_rq  = &rq->rt;
1428
1429         do {
1430                 rt_se = pick_next_rt_entity(rq, rt_rq);
1431                 BUG_ON(!rt_se);
1432                 rt_rq = group_rt_rq(rt_se);
1433         } while (rt_rq);
1434
1435         p = rt_task_of(rt_se);
1436         p->se.exec_start = rq_clock_task(rq);
1437
1438         return p;
1439 }
1440
1441 static struct task_struct *
1442 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1443 {
1444         struct task_struct *p;
1445         struct rt_rq *rt_rq = &rq->rt;
1446
1447         if (need_pull_rt_task(rq, prev)) {
1448                 pull_rt_task(rq);
1449                 /*
1450                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1451                  * means a dl or stop task can slip in, in which case we need
1452                  * to re-start task selection.
1453                  */
1454                 if (unlikely((rq->stop && rq->stop->on_rq) ||
1455                              rq->dl.dl_nr_running))
1456                         return RETRY_TASK;
1457         }
1458
1459         /*
1460          * We may dequeue prev's rt_rq in put_prev_task().
1461          * So, we update time before rt_nr_running check.
1462          */
1463         if (prev->sched_class == &rt_sched_class)
1464                 update_curr_rt(rq);
1465
1466         if (!rt_rq->rt_queued)
1467                 return NULL;
1468
1469         put_prev_task(rq, prev);
1470
1471         p = _pick_next_task_rt(rq);
1472
1473         /* The running task is never eligible for pushing */
1474         if (p)
1475                 dequeue_pushable_task(rq, p);
1476
1477         set_post_schedule(rq);
1478
1479         return p;
1480 }
1481
1482 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1483 {
1484         update_curr_rt(rq);
1485
1486         /*
1487          * The previous task needs to be made eligible for pushing
1488          * if it is still active
1489          */
1490         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1491                 enqueue_pushable_task(rq, p);
1492 }
1493
1494 #ifdef CONFIG_SMP
1495
1496 /* Only try algorithms three times */
1497 #define RT_MAX_TRIES 3
1498
1499 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1500 {
1501         if (!task_running(rq, p) &&
1502             cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1503                 return 1;
1504         return 0;
1505 }
1506
1507 /*
1508  * Return the highest pushable rq's task, which is suitable to be executed
1509  * on the cpu, NULL otherwise
1510  */
1511 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1512 {
1513         struct plist_head *head = &rq->rt.pushable_tasks;
1514         struct task_struct *p;
1515
1516         if (!has_pushable_tasks(rq))
1517                 return NULL;
1518
1519         plist_for_each_entry(p, head, pushable_tasks) {
1520                 if (pick_rt_task(rq, p, cpu))
1521                         return p;
1522         }
1523
1524         return NULL;
1525 }
1526
1527 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1528
1529 static int find_lowest_rq(struct task_struct *task)
1530 {
1531         struct sched_domain *sd;
1532         struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1533         int this_cpu = smp_processor_id();
1534         int cpu      = task_cpu(task);
1535
1536         /* Make sure the mask is initialized first */
1537         if (unlikely(!lowest_mask))
1538                 return -1;
1539
1540         if (task->nr_cpus_allowed == 1)
1541                 return -1; /* No other targets possible */
1542
1543         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1544                 return -1; /* No targets found */
1545
1546         /*
1547          * At this point we have built a mask of cpus representing the
1548          * lowest priority tasks in the system.  Now we want to elect
1549          * the best one based on our affinity and topology.
1550          *
1551          * We prioritize the last cpu that the task executed on since
1552          * it is most likely cache-hot in that location.
1553          */
1554         if (cpumask_test_cpu(cpu, lowest_mask))
1555                 return cpu;
1556
1557         /*
1558          * Otherwise, we consult the sched_domains span maps to figure
1559          * out which cpu is logically closest to our hot cache data.
1560          */
1561         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1562                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1563
1564         rcu_read_lock();
1565         for_each_domain(cpu, sd) {
1566                 if (sd->flags & SD_WAKE_AFFINE) {
1567                         int best_cpu;
1568
1569                         /*
1570                          * "this_cpu" is cheaper to preempt than a
1571                          * remote processor.
1572                          */
1573                         if (this_cpu != -1 &&
1574                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1575                                 rcu_read_unlock();
1576                                 return this_cpu;
1577                         }
1578
1579                         best_cpu = cpumask_first_and(lowest_mask,
1580                                                      sched_domain_span(sd));
1581                         if (best_cpu < nr_cpu_ids) {
1582                                 rcu_read_unlock();
1583                                 return best_cpu;
1584                         }
1585                 }
1586         }
1587         rcu_read_unlock();
1588
1589         /*
1590          * And finally, if there were no matches within the domains
1591          * just give the caller *something* to work with from the compatible
1592          * locations.
1593          */
1594         if (this_cpu != -1)
1595                 return this_cpu;
1596
1597         cpu = cpumask_any(lowest_mask);
1598         if (cpu < nr_cpu_ids)
1599                 return cpu;
1600         return -1;
1601 }
1602
1603 /* Will lock the rq it finds */
1604 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1605 {
1606         struct rq *lowest_rq = NULL;
1607         int tries;
1608         int cpu;
1609
1610         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1611                 cpu = find_lowest_rq(task);
1612
1613                 if ((cpu == -1) || (cpu == rq->cpu))
1614                         break;
1615
1616                 lowest_rq = cpu_rq(cpu);
1617
1618                 /* if the prio of this runqueue changed, try again */
1619                 if (double_lock_balance(rq, lowest_rq)) {
1620                         /*
1621                          * We had to unlock the run queue. In
1622                          * the mean time, task could have
1623                          * migrated already or had its affinity changed.
1624                          * Also make sure that it wasn't scheduled on its rq.
1625                          */
1626                         if (unlikely(task_rq(task) != rq ||
1627                                      !cpumask_test_cpu(lowest_rq->cpu,
1628                                                        tsk_cpus_allowed(task)) ||
1629                                      task_running(rq, task) ||
1630                                      !task->on_rq)) {
1631
1632                                 double_unlock_balance(rq, lowest_rq);
1633                                 lowest_rq = NULL;
1634                                 break;
1635                         }
1636                 }
1637
1638                 /* If this rq is still suitable use it. */
1639                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1640                         break;
1641
1642                 /* try again */
1643                 double_unlock_balance(rq, lowest_rq);
1644                 lowest_rq = NULL;
1645         }
1646
1647         return lowest_rq;
1648 }
1649
1650 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1651 {
1652         struct task_struct *p;
1653
1654         if (!has_pushable_tasks(rq))
1655                 return NULL;
1656
1657         p = plist_first_entry(&rq->rt.pushable_tasks,
1658                               struct task_struct, pushable_tasks);
1659
1660         BUG_ON(rq->cpu != task_cpu(p));
1661         BUG_ON(task_current(rq, p));
1662         BUG_ON(p->nr_cpus_allowed <= 1);
1663
1664         BUG_ON(!p->on_rq);
1665         BUG_ON(!rt_task(p));
1666
1667         return p;
1668 }
1669
1670 /*
1671  * If the current CPU has more than one RT task, see if the non
1672  * running task can migrate over to a CPU that is running a task
1673  * of lesser priority.
1674  */
1675 static int push_rt_task(struct rq *rq)
1676 {
1677         struct task_struct *next_task;
1678         struct rq *lowest_rq;
1679         int ret = 0;
1680
1681         if (!rq->rt.overloaded)
1682                 return 0;
1683
1684         next_task = pick_next_pushable_task(rq);
1685         if (!next_task)
1686                 return 0;
1687
1688 retry:
1689         if (unlikely(next_task == rq->curr)) {
1690                 WARN_ON(1);
1691                 return 0;
1692         }
1693
1694         /*
1695          * It's possible that the next_task slipped in of
1696          * higher priority than current. If that's the case
1697          * just reschedule current.
1698          */
1699         if (unlikely(next_task->prio < rq->curr->prio)) {
1700                 resched_task(rq->curr);
1701                 return 0;
1702         }
1703
1704         /* We might release rq lock */
1705         get_task_struct(next_task);
1706
1707         /* find_lock_lowest_rq locks the rq if found */
1708         lowest_rq = find_lock_lowest_rq(next_task, rq);
1709         if (!lowest_rq) {
1710                 struct task_struct *task;
1711                 /*
1712                  * find_lock_lowest_rq releases rq->lock
1713                  * so it is possible that next_task has migrated.
1714                  *
1715                  * We need to make sure that the task is still on the same
1716                  * run-queue and is also still the next task eligible for
1717                  * pushing.
1718                  */
1719                 task = pick_next_pushable_task(rq);
1720                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1721                         /*
1722                          * The task hasn't migrated, and is still the next
1723                          * eligible task, but we failed to find a run-queue
1724                          * to push it to.  Do not retry in this case, since
1725                          * other cpus will pull from us when ready.
1726                          */
1727                         goto out;
1728                 }
1729
1730                 if (!task)
1731                         /* No more tasks, just exit */
1732                         goto out;
1733
1734                 /*
1735                  * Something has shifted, try again.
1736                  */
1737                 put_task_struct(next_task);
1738                 next_task = task;
1739                 goto retry;
1740         }
1741
1742         deactivate_task(rq, next_task, 0);
1743         set_task_cpu(next_task, lowest_rq->cpu);
1744         activate_task(lowest_rq, next_task, 0);
1745         ret = 1;
1746
1747         resched_task(lowest_rq->curr);
1748
1749         double_unlock_balance(rq, lowest_rq);
1750
1751 out:
1752         put_task_struct(next_task);
1753
1754         return ret;
1755 }
1756
1757 static void push_rt_tasks(struct rq *rq)
1758 {
1759         /* push_rt_task will return true if it moved an RT */
1760         while (push_rt_task(rq))
1761                 ;
1762 }
1763
1764 static int pull_rt_task(struct rq *this_rq)
1765 {
1766         int this_cpu = this_rq->cpu, ret = 0, cpu;
1767         struct task_struct *p;
1768         struct rq *src_rq;
1769
1770         if (likely(!rt_overloaded(this_rq)))
1771                 return 0;
1772
1773         /*
1774          * Match the barrier from rt_set_overloaded; this guarantees that if we
1775          * see overloaded we must also see the rto_mask bit.
1776          */
1777         smp_rmb();
1778
1779         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1780                 if (this_cpu == cpu)
1781                         continue;
1782
1783                 src_rq = cpu_rq(cpu);
1784
1785                 /*
1786                  * Don't bother taking the src_rq->lock if the next highest
1787                  * task is known to be lower-priority than our current task.
1788                  * This may look racy, but if this value is about to go
1789                  * logically higher, the src_rq will push this task away.
1790                  * And if its going logically lower, we do not care
1791                  */
1792                 if (src_rq->rt.highest_prio.next >=
1793                     this_rq->rt.highest_prio.curr)
1794                         continue;
1795
1796                 /*
1797                  * We can potentially drop this_rq's lock in
1798                  * double_lock_balance, and another CPU could
1799                  * alter this_rq
1800                  */
1801                 double_lock_balance(this_rq, src_rq);
1802
1803                 /*
1804                  * We can pull only a task, which is pushable
1805                  * on its rq, and no others.
1806                  */
1807                 p = pick_highest_pushable_task(src_rq, this_cpu);
1808
1809                 /*
1810                  * Do we have an RT task that preempts
1811                  * the to-be-scheduled task?
1812                  */
1813                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1814                         WARN_ON(p == src_rq->curr);
1815                         WARN_ON(!p->on_rq);
1816
1817                         /*
1818                          * There's a chance that p is higher in priority
1819                          * than what's currently running on its cpu.
1820                          * This is just that p is wakeing up and hasn't
1821                          * had a chance to schedule. We only pull
1822                          * p if it is lower in priority than the
1823                          * current task on the run queue
1824                          */
1825                         if (p->prio < src_rq->curr->prio)
1826                                 goto skip;
1827
1828                         ret = 1;
1829
1830                         deactivate_task(src_rq, p, 0);
1831                         set_task_cpu(p, this_cpu);
1832                         activate_task(this_rq, p, 0);
1833                         /*
1834                          * We continue with the search, just in
1835                          * case there's an even higher prio task
1836                          * in another runqueue. (low likelihood
1837                          * but possible)
1838                          */
1839                 }
1840 skip:
1841                 double_unlock_balance(this_rq, src_rq);
1842         }
1843
1844         return ret;
1845 }
1846
1847 static void post_schedule_rt(struct rq *rq)
1848 {
1849         push_rt_tasks(rq);
1850 }
1851
1852 /*
1853  * If we are not running and we are not going to reschedule soon, we should
1854  * try to push tasks away now
1855  */
1856 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1857 {
1858         if (!task_running(rq, p) &&
1859             !test_tsk_need_resched(rq->curr) &&
1860             has_pushable_tasks(rq) &&
1861             p->nr_cpus_allowed > 1 &&
1862             (dl_task(rq->curr) || rt_task(rq->curr)) &&
1863             (rq->curr->nr_cpus_allowed < 2 ||
1864              rq->curr->prio <= p->prio))
1865                 push_rt_tasks(rq);
1866 }
1867
1868 static void set_cpus_allowed_rt(struct task_struct *p,
1869                                 const struct cpumask *new_mask)
1870 {
1871         struct rq *rq;
1872         int weight;
1873
1874         BUG_ON(!rt_task(p));
1875
1876         if (!p->on_rq)
1877                 return;
1878
1879         weight = cpumask_weight(new_mask);
1880
1881         /*
1882          * Only update if the process changes its state from whether it
1883          * can migrate or not.
1884          */
1885         if ((p->nr_cpus_allowed > 1) == (weight > 1))
1886                 return;
1887
1888         rq = task_rq(p);
1889
1890         /*
1891          * The process used to be able to migrate OR it can now migrate
1892          */
1893         if (weight <= 1) {
1894                 if (!task_current(rq, p))
1895                         dequeue_pushable_task(rq, p);
1896                 BUG_ON(!rq->rt.rt_nr_migratory);
1897                 rq->rt.rt_nr_migratory--;
1898         } else {
1899                 if (!task_current(rq, p))
1900                         enqueue_pushable_task(rq, p);
1901                 rq->rt.rt_nr_migratory++;
1902         }
1903
1904         update_rt_migration(&rq->rt);
1905 }
1906
1907 /* Assumes rq->lock is held */
1908 static void rq_online_rt(struct rq *rq)
1909 {
1910         if (rq->rt.overloaded)
1911                 rt_set_overload(rq);
1912
1913         __enable_runtime(rq);
1914
1915         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1916 }
1917
1918 /* Assumes rq->lock is held */
1919 static void rq_offline_rt(struct rq *rq)
1920 {
1921         if (rq->rt.overloaded)
1922                 rt_clear_overload(rq);
1923
1924         __disable_runtime(rq);
1925
1926         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1927 }
1928
1929 /*
1930  * When switch from the rt queue, we bring ourselves to a position
1931  * that we might want to pull RT tasks from other runqueues.
1932  */
1933 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1934 {
1935         /*
1936          * If there are other RT tasks then we will reschedule
1937          * and the scheduling of the other RT tasks will handle
1938          * the balancing. But if we are the last RT task
1939          * we may need to handle the pulling of RT tasks
1940          * now.
1941          */
1942         if (!p->on_rq || rq->rt.rt_nr_running)
1943                 return;
1944
1945         if (pull_rt_task(rq))
1946                 resched_task(rq->curr);
1947 }
1948
1949 void __init init_sched_rt_class(void)
1950 {
1951         unsigned int i;
1952
1953         for_each_possible_cpu(i) {
1954                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1955                                         GFP_KERNEL, cpu_to_node(i));
1956         }
1957 }
1958 #endif /* CONFIG_SMP */
1959
1960 /*
1961  * When switching a task to RT, we may overload the runqueue
1962  * with RT tasks. In this case we try to push them off to
1963  * other runqueues.
1964  */
1965 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1966 {
1967         int check_resched = 1;
1968
1969         /*
1970          * If we are already running, then there's nothing
1971          * that needs to be done. But if we are not running
1972          * we may need to preempt the current running task.
1973          * If that current running task is also an RT task
1974          * then see if we can move to another run queue.
1975          */
1976         if (p->on_rq && rq->curr != p) {
1977 #ifdef CONFIG_SMP
1978                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1979                     /* Don't resched if we changed runqueues */
1980                     push_rt_task(rq) && rq != task_rq(p))
1981                         check_resched = 0;
1982 #endif /* CONFIG_SMP */
1983                 if (check_resched && p->prio < rq->curr->prio)
1984                         resched_task(rq->curr);
1985         }
1986 }
1987
1988 /*
1989  * Priority of the task has changed. This may cause
1990  * us to initiate a push or pull.
1991  */
1992 static void
1993 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1994 {
1995         if (!p->on_rq)
1996                 return;
1997
1998         if (rq->curr == p) {
1999 #ifdef CONFIG_SMP
2000                 /*
2001                  * If our priority decreases while running, we
2002                  * may need to pull tasks to this runqueue.
2003                  */
2004                 if (oldprio < p->prio)
2005                         pull_rt_task(rq);
2006                 /*
2007                  * If there's a higher priority task waiting to run
2008                  * then reschedule. Note, the above pull_rt_task
2009                  * can release the rq lock and p could migrate.
2010                  * Only reschedule if p is still on the same runqueue.
2011                  */
2012                 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2013                         resched_task(p);
2014 #else
2015                 /* For UP simply resched on drop of prio */
2016                 if (oldprio < p->prio)
2017                         resched_task(p);
2018 #endif /* CONFIG_SMP */
2019         } else {
2020                 /*
2021                  * This task is not running, but if it is
2022                  * greater than the current running task
2023                  * then reschedule.
2024                  */
2025                 if (p->prio < rq->curr->prio)
2026                         resched_task(rq->curr);
2027         }
2028 }
2029
2030 static void watchdog(struct rq *rq, struct task_struct *p)
2031 {
2032         unsigned long soft, hard;
2033
2034         /* max may change after cur was read, this will be fixed next tick */
2035         soft = task_rlimit(p, RLIMIT_RTTIME);
2036         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2037
2038         if (soft != RLIM_INFINITY) {
2039                 unsigned long next;
2040
2041                 if (p->rt.watchdog_stamp != jiffies) {
2042                         p->rt.timeout++;
2043                         p->rt.watchdog_stamp = jiffies;
2044                 }
2045
2046                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2047                 if (p->rt.timeout > next)
2048                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2049         }
2050 }
2051
2052 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2053 {
2054         struct sched_rt_entity *rt_se = &p->rt;
2055
2056         update_curr_rt(rq);
2057
2058         watchdog(rq, p);
2059
2060         /*
2061          * RR tasks need a special form of timeslice management.
2062          * FIFO tasks have no timeslices.
2063          */
2064         if (p->policy != SCHED_RR)
2065                 return;
2066
2067         if (--p->rt.time_slice)
2068                 return;
2069
2070         p->rt.time_slice = sched_rr_timeslice;
2071
2072         /*
2073          * Requeue to the end of queue if we (and all of our ancestors) are not
2074          * the only element on the queue
2075          */
2076         for_each_sched_rt_entity(rt_se) {
2077                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2078                         requeue_task_rt(rq, p, 0);
2079                         set_tsk_need_resched(p);
2080                         return;
2081                 }
2082         }
2083 }
2084
2085 static void set_curr_task_rt(struct rq *rq)
2086 {
2087         struct task_struct *p = rq->curr;
2088
2089         p->se.exec_start = rq_clock_task(rq);
2090
2091         /* The running task is never eligible for pushing */
2092         dequeue_pushable_task(rq, p);
2093 }
2094
2095 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2096 {
2097         /*
2098          * Time slice is 0 for SCHED_FIFO tasks
2099          */
2100         if (task->policy == SCHED_RR)
2101                 return sched_rr_timeslice;
2102         else
2103                 return 0;
2104 }
2105
2106 const struct sched_class rt_sched_class = {
2107         .next                   = &fair_sched_class,
2108         .enqueue_task           = enqueue_task_rt,
2109         .dequeue_task           = dequeue_task_rt,
2110         .yield_task             = yield_task_rt,
2111
2112         .check_preempt_curr     = check_preempt_curr_rt,
2113
2114         .pick_next_task         = pick_next_task_rt,
2115         .put_prev_task          = put_prev_task_rt,
2116
2117 #ifdef CONFIG_SMP
2118         .select_task_rq         = select_task_rq_rt,
2119
2120         .set_cpus_allowed       = set_cpus_allowed_rt,
2121         .rq_online              = rq_online_rt,
2122         .rq_offline             = rq_offline_rt,
2123         .post_schedule          = post_schedule_rt,
2124         .task_woken             = task_woken_rt,
2125         .switched_from          = switched_from_rt,
2126 #endif
2127
2128         .set_curr_task          = set_curr_task_rt,
2129         .task_tick              = task_tick_rt,
2130
2131         .get_rr_interval        = get_rr_interval_rt,
2132
2133         .prio_changed           = prio_changed_rt,
2134         .switched_to            = switched_to_rt,
2135 };
2136
2137 #ifdef CONFIG_SCHED_DEBUG
2138 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2139
2140 void print_rt_stats(struct seq_file *m, int cpu)
2141 {
2142         rt_rq_iter_t iter;
2143         struct rt_rq *rt_rq;
2144
2145         rcu_read_lock();
2146         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2147                 print_rt_rq(m, cpu, rt_rq);
2148         rcu_read_unlock();
2149 }
2150 #endif /* CONFIG_SCHED_DEBUG */