4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/export.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/stat.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/types.h>
39 #include <linux/wait.h>
41 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
42 #define DMAPOOL_DEBUG 1
45 struct dma_pool { /* the pool */
46 struct list_head page_list;
53 struct list_head pools;
56 struct dma_page { /* cacheable header for 'allocation' bytes */
57 struct list_head page_list;
64 static DEFINE_MUTEX(pools_lock);
67 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
72 struct dma_page *page;
73 struct dma_pool *pool;
78 temp = scnprintf(next, size, "poolinfo - 0.1\n");
82 mutex_lock(&pools_lock);
83 list_for_each_entry(pool, &dev->dma_pools, pools) {
87 spin_lock_irq(&pool->lock);
88 list_for_each_entry(page, &pool->page_list, page_list) {
90 blocks += page->in_use;
92 spin_unlock_irq(&pool->lock);
94 /* per-pool info, no real statistics yet */
95 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
97 pages * (pool->allocation / pool->size),
102 mutex_unlock(&pools_lock);
104 return PAGE_SIZE - size;
107 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
110 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
111 * @name: name of pool, for diagnostics
112 * @dev: device that will be doing the DMA
113 * @size: size of the blocks in this pool.
114 * @align: alignment requirement for blocks; must be a power of two
115 * @boundary: returned blocks won't cross this power of two boundary
116 * Context: !in_interrupt()
118 * Returns a dma allocation pool with the requested characteristics, or
119 * null if one can't be created. Given one of these pools, dma_pool_alloc()
120 * may be used to allocate memory. Such memory will all have "consistent"
121 * DMA mappings, accessible by the device and its driver without using
122 * cache flushing primitives. The actual size of blocks allocated may be
123 * larger than requested because of alignment.
125 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
126 * cross that size boundary. This is useful for devices which have
127 * addressing restrictions on individual DMA transfers, such as not crossing
128 * boundaries of 4KBytes.
130 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131 size_t size, size_t align, size_t boundary)
133 struct dma_pool *retval;
139 } else if (align & (align - 1)) {
145 } else if (size < 4) {
149 if ((size % align) != 0)
150 size = ALIGN(size, align);
152 allocation = max_t(size_t, size, PAGE_SIZE);
155 boundary = allocation;
156 } else if ((boundary < size) || (boundary & (boundary - 1))) {
160 node = WARN_ON(!dev) ? -1 : dev_to_node(dev);
162 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, node);
166 strlcpy(retval->name, name, sizeof(retval->name));
170 INIT_LIST_HEAD(&retval->page_list);
171 spin_lock_init(&retval->lock);
173 retval->boundary = boundary;
174 retval->allocation = allocation;
179 mutex_lock(&pools_lock);
180 if (list_empty(&dev->dma_pools))
181 ret = device_create_file(dev, &dev_attr_pools);
184 /* note: not currently insisting "name" be unique */
186 list_add(&retval->pools, &dev->dma_pools);
191 mutex_unlock(&pools_lock);
193 INIT_LIST_HEAD(&retval->pools);
197 EXPORT_SYMBOL(dma_pool_create);
199 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
201 unsigned int offset = 0;
202 unsigned int next_boundary = pool->boundary;
205 unsigned int next = offset + pool->size;
206 if (unlikely((next + pool->size) >= next_boundary)) {
207 next = next_boundary;
208 next_boundary += pool->boundary;
210 *(int *)(page->vaddr + offset) = next;
212 } while (offset < pool->allocation);
215 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
217 struct dma_page *page;
219 page = kmalloc(sizeof(*page), mem_flags);
222 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
223 &page->dma, mem_flags);
226 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
228 pool_initialise_page(pool, page);
238 static inline int is_page_busy(struct dma_page *page)
240 return page->in_use != 0;
243 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
245 dma_addr_t dma = page->dma;
248 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
250 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
251 list_del(&page->page_list);
256 * dma_pool_destroy - destroys a pool of dma memory blocks.
257 * @pool: dma pool that will be destroyed
258 * Context: !in_interrupt()
260 * Caller guarantees that no more memory from the pool is in use,
261 * and that nothing will try to use the pool after this call.
263 void dma_pool_destroy(struct dma_pool *pool)
265 mutex_lock(&pools_lock);
266 list_del(&pool->pools);
267 if (pool->dev && list_empty(&pool->dev->dma_pools))
268 device_remove_file(pool->dev, &dev_attr_pools);
269 mutex_unlock(&pools_lock);
271 while (!list_empty(&pool->page_list)) {
272 struct dma_page *page;
273 page = list_entry(pool->page_list.next,
274 struct dma_page, page_list);
275 if (is_page_busy(page)) {
278 "dma_pool_destroy %s, %p busy\n",
279 pool->name, page->vaddr);
282 "dma_pool_destroy %s, %p busy\n",
283 pool->name, page->vaddr);
284 /* leak the still-in-use consistent memory */
285 list_del(&page->page_list);
288 pool_free_page(pool, page);
293 EXPORT_SYMBOL(dma_pool_destroy);
296 * dma_pool_alloc - get a block of consistent memory
297 * @pool: dma pool that will produce the block
298 * @mem_flags: GFP_* bitmask
299 * @handle: pointer to dma address of block
301 * This returns the kernel virtual address of a currently unused block,
302 * and reports its dma address through the handle.
303 * If such a memory block can't be allocated, %NULL is returned.
305 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
309 struct dma_page *page;
313 might_sleep_if(mem_flags & __GFP_WAIT);
315 spin_lock_irqsave(&pool->lock, flags);
316 list_for_each_entry(page, &pool->page_list, page_list) {
317 if (page->offset < pool->allocation)
321 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
322 spin_unlock_irqrestore(&pool->lock, flags);
324 page = pool_alloc_page(pool, mem_flags);
328 spin_lock_irqsave(&pool->lock, flags);
330 list_add(&page->page_list, &pool->page_list);
333 offset = page->offset;
334 page->offset = *(int *)(page->vaddr + offset);
335 retval = offset + page->vaddr;
336 *handle = offset + page->dma;
341 /* page->offset is stored in first 4 bytes */
342 for (i = sizeof(page->offset); i < pool->size; i++) {
343 if (data[i] == POOL_POISON_FREED)
347 "dma_pool_alloc %s, %p (corruped)\n",
350 pr_err("dma_pool_alloc %s, %p (corruped)\n",
354 * Dump the first 4 bytes even if they are not
357 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
358 data, pool->size, 1);
362 memset(retval, POOL_POISON_ALLOCATED, pool->size);
364 spin_unlock_irqrestore(&pool->lock, flags);
367 EXPORT_SYMBOL(dma_pool_alloc);
369 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
371 struct dma_page *page;
373 list_for_each_entry(page, &pool->page_list, page_list) {
376 if (dma < (page->dma + pool->allocation))
383 * dma_pool_free - put block back into dma pool
384 * @pool: the dma pool holding the block
385 * @vaddr: virtual address of block
386 * @dma: dma address of block
388 * Caller promises neither device nor driver will again touch this block
389 * unless it is first re-allocated.
391 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
393 struct dma_page *page;
397 spin_lock_irqsave(&pool->lock, flags);
398 page = pool_find_page(pool, dma);
400 spin_unlock_irqrestore(&pool->lock, flags);
403 "dma_pool_free %s, %p/%lx (bad dma)\n",
404 pool->name, vaddr, (unsigned long)dma);
406 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
407 pool->name, vaddr, (unsigned long)dma);
411 offset = vaddr - page->vaddr;
413 if ((dma - page->dma) != offset) {
414 spin_unlock_irqrestore(&pool->lock, flags);
417 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
418 pool->name, vaddr, (unsigned long long)dma);
421 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
422 pool->name, vaddr, (unsigned long long)dma);
426 unsigned int chain = page->offset;
427 while (chain < pool->allocation) {
428 if (chain != offset) {
429 chain = *(int *)(page->vaddr + chain);
432 spin_unlock_irqrestore(&pool->lock, flags);
434 dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
435 "already free\n", pool->name,
436 (unsigned long long)dma);
438 printk(KERN_ERR "dma_pool_free %s, dma %Lx "
439 "already free\n", pool->name,
440 (unsigned long long)dma);
444 memset(vaddr, POOL_POISON_FREED, pool->size);
448 *(int *)vaddr = page->offset;
449 page->offset = offset;
451 * Resist a temptation to do
452 * if (!is_page_busy(page)) pool_free_page(pool, page);
453 * Better have a few empty pages hang around.
455 spin_unlock_irqrestore(&pool->lock, flags);
457 EXPORT_SYMBOL(dma_pool_free);
462 static void dmam_pool_release(struct device *dev, void *res)
464 struct dma_pool *pool = *(struct dma_pool **)res;
466 dma_pool_destroy(pool);
469 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
471 return *(struct dma_pool **)res == match_data;
475 * dmam_pool_create - Managed dma_pool_create()
476 * @name: name of pool, for diagnostics
477 * @dev: device that will be doing the DMA
478 * @size: size of the blocks in this pool.
479 * @align: alignment requirement for blocks; must be a power of two
480 * @allocation: returned blocks won't cross this boundary (or zero)
482 * Managed dma_pool_create(). DMA pool created with this function is
483 * automatically destroyed on driver detach.
485 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
486 size_t size, size_t align, size_t allocation)
488 struct dma_pool **ptr, *pool;
490 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
494 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
496 devres_add(dev, ptr);
502 EXPORT_SYMBOL(dmam_pool_create);
505 * dmam_pool_destroy - Managed dma_pool_destroy()
506 * @pool: dma pool that will be destroyed
508 * Managed dma_pool_destroy().
510 void dmam_pool_destroy(struct dma_pool *pool)
512 struct device *dev = pool->dev;
514 WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
515 dma_pool_destroy(pool);
517 EXPORT_SYMBOL(dmam_pool_destroy);