]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/filemap.c
fuse: verify all ioctl retry iov elements
[karo-tx-linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include <linux/cleancache.h>
38 #include "internal.h"
39
40 /*
41  * FIXME: remove all knowledge of the buffer layer from the core VM
42  */
43 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44
45 #include <asm/mman.h>
46
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_mutex              (truncate_pagecache)
63  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock             (exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_mutex
72  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
73  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page               (access_process_vm)
77  *
78  *  ->i_mutex                   (generic_file_buffered_write)
79  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  inode_wb_list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_mutex
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    inode_wb_list_lock        (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    inode_wb_list_lock        (zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
106  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_mutex
111  */
112
113 /*
114  * Delete a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __delete_from_page_cache(struct page *page)
119 {
120         struct address_space *mapping = page->mapping;
121
122         /*
123          * if we're uptodate, flush out into the cleancache, otherwise
124          * invalidate any existing cleancache entries.  We can't leave
125          * stale data around in the cleancache once our page is gone
126          */
127         if (PageUptodate(page) && PageMappedToDisk(page))
128                 cleancache_put_page(page);
129         else
130                 cleancache_flush_page(mapping, page);
131
132         radix_tree_delete(&mapping->page_tree, page->index);
133         page->mapping = NULL;
134         mapping->nrpages--;
135         __dec_zone_page_state(page, NR_FILE_PAGES);
136         if (PageSwapBacked(page))
137                 __dec_zone_page_state(page, NR_SHMEM);
138         BUG_ON(page_mapped(page));
139
140         /*
141          * Some filesystems seem to re-dirty the page even after
142          * the VM has canceled the dirty bit (eg ext3 journaling).
143          *
144          * Fix it up by doing a final dirty accounting check after
145          * having removed the page entirely.
146          */
147         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
148                 dec_zone_page_state(page, NR_FILE_DIRTY);
149                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
150         }
151 }
152
153 /**
154  * delete_from_page_cache - delete page from page cache
155  * @page: the page which the kernel is trying to remove from page cache
156  *
157  * This must be called only on pages that have been verified to be in the page
158  * cache and locked.  It will never put the page into the free list, the caller
159  * has a reference on the page.
160  */
161 void delete_from_page_cache(struct page *page)
162 {
163         struct address_space *mapping = page->mapping;
164         void (*freepage)(struct page *);
165
166         BUG_ON(!PageLocked(page));
167
168         freepage = mapping->a_ops->freepage;
169         spin_lock_irq(&mapping->tree_lock);
170         __delete_from_page_cache(page);
171         spin_unlock_irq(&mapping->tree_lock);
172         mem_cgroup_uncharge_cache_page(page);
173
174         if (freepage)
175                 freepage(page);
176         page_cache_release(page);
177 }
178 EXPORT_SYMBOL(delete_from_page_cache);
179
180 static int sleep_on_page(void *word)
181 {
182         io_schedule();
183         return 0;
184 }
185
186 static int sleep_on_page_killable(void *word)
187 {
188         sleep_on_page(word);
189         return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191
192 /**
193  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194  * @mapping:    address space structure to write
195  * @start:      offset in bytes where the range starts
196  * @end:        offset in bytes where the range ends (inclusive)
197  * @sync_mode:  enable synchronous operation
198  *
199  * Start writeback against all of a mapping's dirty pages that lie
200  * within the byte offsets <start, end> inclusive.
201  *
202  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203  * opposed to a regular memory cleansing writeback.  The difference between
204  * these two operations is that if a dirty page/buffer is encountered, it must
205  * be waited upon, and not just skipped over.
206  */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208                                 loff_t end, int sync_mode)
209 {
210         int ret;
211         struct writeback_control wbc = {
212                 .sync_mode = sync_mode,
213                 .nr_to_write = LONG_MAX,
214                 .range_start = start,
215                 .range_end = end,
216         };
217
218         if (!mapping_cap_writeback_dirty(mapping))
219                 return 0;
220
221         ret = do_writepages(mapping, &wbc);
222         return ret;
223 }
224
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226         int sync_mode)
227 {
228         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238                                 loff_t end)
239 {
240         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244 /**
245  * filemap_flush - mostly a non-blocking flush
246  * @mapping:    target address_space
247  *
248  * This is a mostly non-blocking flush.  Not suitable for data-integrity
249  * purposes - I/O may not be started against all dirty pages.
250  */
251 int filemap_flush(struct address_space *mapping)
252 {
253         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256
257 /**
258  * filemap_fdatawait_range - wait for writeback to complete
259  * @mapping:            address space structure to wait for
260  * @start_byte:         offset in bytes where the range starts
261  * @end_byte:           offset in bytes where the range ends (inclusive)
262  *
263  * Walk the list of under-writeback pages of the given address space
264  * in the given range and wait for all of them.
265  */
266 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
267                             loff_t end_byte)
268 {
269         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
270         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
271         struct pagevec pvec;
272         int nr_pages;
273         int ret = 0;
274
275         if (end_byte < start_byte)
276                 return 0;
277
278         pagevec_init(&pvec, 0);
279         while ((index <= end) &&
280                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281                         PAGECACHE_TAG_WRITEBACK,
282                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283                 unsigned i;
284
285                 for (i = 0; i < nr_pages; i++) {
286                         struct page *page = pvec.pages[i];
287
288                         /* until radix tree lookup accepts end_index */
289                         if (page->index > end)
290                                 continue;
291
292                         wait_on_page_writeback(page);
293                         if (TestClearPageError(page))
294                                 ret = -EIO;
295                 }
296                 pagevec_release(&pvec);
297                 cond_resched();
298         }
299
300         /* Check for outstanding write errors */
301         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302                 ret = -ENOSPC;
303         if (test_and_clear_bit(AS_EIO, &mapping->flags))
304                 ret = -EIO;
305
306         return ret;
307 }
308 EXPORT_SYMBOL(filemap_fdatawait_range);
309
310 /**
311  * filemap_fdatawait - wait for all under-writeback pages to complete
312  * @mapping: address space structure to wait for
313  *
314  * Walk the list of under-writeback pages of the given address space
315  * and wait for all of them.
316  */
317 int filemap_fdatawait(struct address_space *mapping)
318 {
319         loff_t i_size = i_size_read(mapping->host);
320
321         if (i_size == 0)
322                 return 0;
323
324         return filemap_fdatawait_range(mapping, 0, i_size - 1);
325 }
326 EXPORT_SYMBOL(filemap_fdatawait);
327
328 int filemap_write_and_wait(struct address_space *mapping)
329 {
330         int err = 0;
331
332         if (mapping->nrpages) {
333                 err = filemap_fdatawrite(mapping);
334                 /*
335                  * Even if the above returned error, the pages may be
336                  * written partially (e.g. -ENOSPC), so we wait for it.
337                  * But the -EIO is special case, it may indicate the worst
338                  * thing (e.g. bug) happened, so we avoid waiting for it.
339                  */
340                 if (err != -EIO) {
341                         int err2 = filemap_fdatawait(mapping);
342                         if (!err)
343                                 err = err2;
344                 }
345         }
346         return err;
347 }
348 EXPORT_SYMBOL(filemap_write_and_wait);
349
350 /**
351  * filemap_write_and_wait_range - write out & wait on a file range
352  * @mapping:    the address_space for the pages
353  * @lstart:     offset in bytes where the range starts
354  * @lend:       offset in bytes where the range ends (inclusive)
355  *
356  * Write out and wait upon file offsets lstart->lend, inclusive.
357  *
358  * Note that `lend' is inclusive (describes the last byte to be written) so
359  * that this function can be used to write to the very end-of-file (end = -1).
360  */
361 int filemap_write_and_wait_range(struct address_space *mapping,
362                                  loff_t lstart, loff_t lend)
363 {
364         int err = 0;
365
366         if (mapping->nrpages) {
367                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
368                                                  WB_SYNC_ALL);
369                 /* See comment of filemap_write_and_wait() */
370                 if (err != -EIO) {
371                         int err2 = filemap_fdatawait_range(mapping,
372                                                 lstart, lend);
373                         if (!err)
374                                 err = err2;
375                 }
376         }
377         return err;
378 }
379 EXPORT_SYMBOL(filemap_write_and_wait_range);
380
381 /**
382  * replace_page_cache_page - replace a pagecache page with a new one
383  * @old:        page to be replaced
384  * @new:        page to replace with
385  * @gfp_mask:   allocation mode
386  *
387  * This function replaces a page in the pagecache with a new one.  On
388  * success it acquires the pagecache reference for the new page and
389  * drops it for the old page.  Both the old and new pages must be
390  * locked.  This function does not add the new page to the LRU, the
391  * caller must do that.
392  *
393  * The remove + add is atomic.  The only way this function can fail is
394  * memory allocation failure.
395  */
396 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
397 {
398         int error;
399
400         VM_BUG_ON(!PageLocked(old));
401         VM_BUG_ON(!PageLocked(new));
402         VM_BUG_ON(new->mapping);
403
404         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
405         if (!error) {
406                 struct address_space *mapping = old->mapping;
407                 void (*freepage)(struct page *);
408
409                 pgoff_t offset = old->index;
410                 freepage = mapping->a_ops->freepage;
411
412                 page_cache_get(new);
413                 new->mapping = mapping;
414                 new->index = offset;
415
416                 spin_lock_irq(&mapping->tree_lock);
417                 __delete_from_page_cache(old);
418                 error = radix_tree_insert(&mapping->page_tree, offset, new);
419                 BUG_ON(error);
420                 mapping->nrpages++;
421                 __inc_zone_page_state(new, NR_FILE_PAGES);
422                 if (PageSwapBacked(new))
423                         __inc_zone_page_state(new, NR_SHMEM);
424                 spin_unlock_irq(&mapping->tree_lock);
425                 /* mem_cgroup codes must not be called under tree_lock */
426                 mem_cgroup_replace_page_cache(old, new);
427                 radix_tree_preload_end();
428                 if (freepage)
429                         freepage(old);
430                 page_cache_release(old);
431         }
432
433         return error;
434 }
435 EXPORT_SYMBOL_GPL(replace_page_cache_page);
436
437 /**
438  * add_to_page_cache_locked - add a locked page to the pagecache
439  * @page:       page to add
440  * @mapping:    the page's address_space
441  * @offset:     page index
442  * @gfp_mask:   page allocation mode
443  *
444  * This function is used to add a page to the pagecache. It must be locked.
445  * This function does not add the page to the LRU.  The caller must do that.
446  */
447 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
448                 pgoff_t offset, gfp_t gfp_mask)
449 {
450         int error;
451
452         VM_BUG_ON(!PageLocked(page));
453
454         error = mem_cgroup_cache_charge(page, current->mm,
455                                         gfp_mask & GFP_RECLAIM_MASK);
456         if (error)
457                 goto out;
458
459         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
460         if (error == 0) {
461                 page_cache_get(page);
462                 page->mapping = mapping;
463                 page->index = offset;
464
465                 spin_lock_irq(&mapping->tree_lock);
466                 error = radix_tree_insert(&mapping->page_tree, offset, page);
467                 if (likely(!error)) {
468                         mapping->nrpages++;
469                         __inc_zone_page_state(page, NR_FILE_PAGES);
470                         if (PageSwapBacked(page))
471                                 __inc_zone_page_state(page, NR_SHMEM);
472                         spin_unlock_irq(&mapping->tree_lock);
473                 } else {
474                         page->mapping = NULL;
475                         spin_unlock_irq(&mapping->tree_lock);
476                         mem_cgroup_uncharge_cache_page(page);
477                         page_cache_release(page);
478                 }
479                 radix_tree_preload_end();
480         } else
481                 mem_cgroup_uncharge_cache_page(page);
482 out:
483         return error;
484 }
485 EXPORT_SYMBOL(add_to_page_cache_locked);
486
487 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
488                                 pgoff_t offset, gfp_t gfp_mask)
489 {
490         int ret;
491
492         /*
493          * Splice_read and readahead add shmem/tmpfs pages into the page cache
494          * before shmem_readpage has a chance to mark them as SwapBacked: they
495          * need to go on the anon lru below, and mem_cgroup_cache_charge
496          * (called in add_to_page_cache) needs to know where they're going too.
497          */
498         if (mapping_cap_swap_backed(mapping))
499                 SetPageSwapBacked(page);
500
501         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
502         if (ret == 0) {
503                 if (page_is_file_cache(page))
504                         lru_cache_add_file(page);
505                 else
506                         lru_cache_add_anon(page);
507         }
508         return ret;
509 }
510 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
511
512 #ifdef CONFIG_NUMA
513 struct page *__page_cache_alloc(gfp_t gfp)
514 {
515         int n;
516         struct page *page;
517
518         if (cpuset_do_page_mem_spread()) {
519                 unsigned int cpuset_mems_cookie;
520                 do {
521                         cpuset_mems_cookie = get_mems_allowed();
522                         n = cpuset_mem_spread_node();
523                         page = alloc_pages_exact_node(n, gfp, 0);
524                 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
525
526                 return page;
527         }
528         return alloc_pages(gfp, 0);
529 }
530 EXPORT_SYMBOL(__page_cache_alloc);
531 #endif
532
533 /*
534  * In order to wait for pages to become available there must be
535  * waitqueues associated with pages. By using a hash table of
536  * waitqueues where the bucket discipline is to maintain all
537  * waiters on the same queue and wake all when any of the pages
538  * become available, and for the woken contexts to check to be
539  * sure the appropriate page became available, this saves space
540  * at a cost of "thundering herd" phenomena during rare hash
541  * collisions.
542  */
543 static wait_queue_head_t *page_waitqueue(struct page *page)
544 {
545         const struct zone *zone = page_zone(page);
546
547         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
548 }
549
550 static inline void wake_up_page(struct page *page, int bit)
551 {
552         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
553 }
554
555 void wait_on_page_bit(struct page *page, int bit_nr)
556 {
557         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
558
559         if (test_bit(bit_nr, &page->flags))
560                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
561                                                         TASK_UNINTERRUPTIBLE);
562 }
563 EXPORT_SYMBOL(wait_on_page_bit);
564
565 int wait_on_page_bit_killable(struct page *page, int bit_nr)
566 {
567         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
568
569         if (!test_bit(bit_nr, &page->flags))
570                 return 0;
571
572         return __wait_on_bit(page_waitqueue(page), &wait,
573                              sleep_on_page_killable, TASK_KILLABLE);
574 }
575
576 /**
577  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
578  * @page: Page defining the wait queue of interest
579  * @waiter: Waiter to add to the queue
580  *
581  * Add an arbitrary @waiter to the wait queue for the nominated @page.
582  */
583 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
584 {
585         wait_queue_head_t *q = page_waitqueue(page);
586         unsigned long flags;
587
588         spin_lock_irqsave(&q->lock, flags);
589         __add_wait_queue(q, waiter);
590         spin_unlock_irqrestore(&q->lock, flags);
591 }
592 EXPORT_SYMBOL_GPL(add_page_wait_queue);
593
594 /**
595  * unlock_page - unlock a locked page
596  * @page: the page
597  *
598  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600  * mechananism between PageLocked pages and PageWriteback pages is shared.
601  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
602  *
603  * The mb is necessary to enforce ordering between the clear_bit and the read
604  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
605  */
606 void unlock_page(struct page *page)
607 {
608         VM_BUG_ON(!PageLocked(page));
609         clear_bit_unlock(PG_locked, &page->flags);
610         smp_mb__after_clear_bit();
611         wake_up_page(page, PG_locked);
612 }
613 EXPORT_SYMBOL(unlock_page);
614
615 /**
616  * end_page_writeback - end writeback against a page
617  * @page: the page
618  */
619 void end_page_writeback(struct page *page)
620 {
621         if (TestClearPageReclaim(page))
622                 rotate_reclaimable_page(page);
623
624         if (!test_clear_page_writeback(page))
625                 BUG();
626
627         smp_mb__after_clear_bit();
628         wake_up_page(page, PG_writeback);
629 }
630 EXPORT_SYMBOL(end_page_writeback);
631
632 /**
633  * __lock_page - get a lock on the page, assuming we need to sleep to get it
634  * @page: the page to lock
635  */
636 void __lock_page(struct page *page)
637 {
638         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
639
640         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
641                                                         TASK_UNINTERRUPTIBLE);
642 }
643 EXPORT_SYMBOL(__lock_page);
644
645 int __lock_page_killable(struct page *page)
646 {
647         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
648
649         return __wait_on_bit_lock(page_waitqueue(page), &wait,
650                                         sleep_on_page_killable, TASK_KILLABLE);
651 }
652 EXPORT_SYMBOL_GPL(__lock_page_killable);
653
654 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
655                          unsigned int flags)
656 {
657         if (flags & FAULT_FLAG_ALLOW_RETRY) {
658                 /*
659                  * CAUTION! In this case, mmap_sem is not released
660                  * even though return 0.
661                  */
662                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
663                         return 0;
664
665                 up_read(&mm->mmap_sem);
666                 if (flags & FAULT_FLAG_KILLABLE)
667                         wait_on_page_locked_killable(page);
668                 else
669                         wait_on_page_locked(page);
670                 return 0;
671         } else {
672                 if (flags & FAULT_FLAG_KILLABLE) {
673                         int ret;
674
675                         ret = __lock_page_killable(page);
676                         if (ret) {
677                                 up_read(&mm->mmap_sem);
678                                 return 0;
679                         }
680                 } else
681                         __lock_page(page);
682                 return 1;
683         }
684 }
685
686 /**
687  * find_get_page - find and get a page reference
688  * @mapping: the address_space to search
689  * @offset: the page index
690  *
691  * Is there a pagecache struct page at the given (mapping, offset) tuple?
692  * If yes, increment its refcount and return it; if no, return NULL.
693  */
694 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
695 {
696         void **pagep;
697         struct page *page;
698
699         rcu_read_lock();
700 repeat:
701         page = NULL;
702         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
703         if (pagep) {
704                 page = radix_tree_deref_slot(pagep);
705                 if (unlikely(!page))
706                         goto out;
707                 if (radix_tree_deref_retry(page))
708                         goto repeat;
709
710                 if (!page_cache_get_speculative(page))
711                         goto repeat;
712
713                 /*
714                  * Has the page moved?
715                  * This is part of the lockless pagecache protocol. See
716                  * include/linux/pagemap.h for details.
717                  */
718                 if (unlikely(page != *pagep)) {
719                         page_cache_release(page);
720                         goto repeat;
721                 }
722         }
723 out:
724         rcu_read_unlock();
725
726         return page;
727 }
728 EXPORT_SYMBOL(find_get_page);
729
730 /**
731  * find_lock_page - locate, pin and lock a pagecache page
732  * @mapping: the address_space to search
733  * @offset: the page index
734  *
735  * Locates the desired pagecache page, locks it, increments its reference
736  * count and returns its address.
737  *
738  * Returns zero if the page was not present. find_lock_page() may sleep.
739  */
740 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
741 {
742         struct page *page;
743
744 repeat:
745         page = find_get_page(mapping, offset);
746         if (page) {
747                 lock_page(page);
748                 /* Has the page been truncated? */
749                 if (unlikely(page->mapping != mapping)) {
750                         unlock_page(page);
751                         page_cache_release(page);
752                         goto repeat;
753                 }
754                 VM_BUG_ON(page->index != offset);
755         }
756         return page;
757 }
758 EXPORT_SYMBOL(find_lock_page);
759
760 /**
761  * find_or_create_page - locate or add a pagecache page
762  * @mapping: the page's address_space
763  * @index: the page's index into the mapping
764  * @gfp_mask: page allocation mode
765  *
766  * Locates a page in the pagecache.  If the page is not present, a new page
767  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
768  * LRU list.  The returned page is locked and has its reference count
769  * incremented.
770  *
771  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
772  * allocation!
773  *
774  * find_or_create_page() returns the desired page's address, or zero on
775  * memory exhaustion.
776  */
777 struct page *find_or_create_page(struct address_space *mapping,
778                 pgoff_t index, gfp_t gfp_mask)
779 {
780         struct page *page;
781         int err;
782 repeat:
783         page = find_lock_page(mapping, index);
784         if (!page) {
785                 page = __page_cache_alloc(gfp_mask);
786                 if (!page)
787                         return NULL;
788                 /*
789                  * We want a regular kernel memory (not highmem or DMA etc)
790                  * allocation for the radix tree nodes, but we need to honour
791                  * the context-specific requirements the caller has asked for.
792                  * GFP_RECLAIM_MASK collects those requirements.
793                  */
794                 err = add_to_page_cache_lru(page, mapping, index,
795                         (gfp_mask & GFP_RECLAIM_MASK));
796                 if (unlikely(err)) {
797                         page_cache_release(page);
798                         page = NULL;
799                         if (err == -EEXIST)
800                                 goto repeat;
801                 }
802         }
803         return page;
804 }
805 EXPORT_SYMBOL(find_or_create_page);
806
807 /**
808  * find_get_pages - gang pagecache lookup
809  * @mapping:    The address_space to search
810  * @start:      The starting page index
811  * @nr_pages:   The maximum number of pages
812  * @pages:      Where the resulting pages are placed
813  *
814  * find_get_pages() will search for and return a group of up to
815  * @nr_pages pages in the mapping.  The pages are placed at @pages.
816  * find_get_pages() takes a reference against the returned pages.
817  *
818  * The search returns a group of mapping-contiguous pages with ascending
819  * indexes.  There may be holes in the indices due to not-present pages.
820  *
821  * find_get_pages() returns the number of pages which were found.
822  */
823 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
824                             unsigned int nr_pages, struct page **pages)
825 {
826         unsigned int i;
827         unsigned int ret;
828         unsigned int nr_found;
829
830         rcu_read_lock();
831 restart:
832         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
833                                 (void ***)pages, start, nr_pages);
834         ret = 0;
835         for (i = 0; i < nr_found; i++) {
836                 struct page *page;
837 repeat:
838                 page = radix_tree_deref_slot((void **)pages[i]);
839                 if (unlikely(!page))
840                         continue;
841
842                 /*
843                  * This can only trigger when the entry at index 0 moves out
844                  * of or back to the root: none yet gotten, safe to restart.
845                  */
846                 if (radix_tree_deref_retry(page)) {
847                         WARN_ON(start | i);
848                         goto restart;
849                 }
850
851                 if (!page_cache_get_speculative(page))
852                         goto repeat;
853
854                 /* Has the page moved? */
855                 if (unlikely(page != *((void **)pages[i]))) {
856                         page_cache_release(page);
857                         goto repeat;
858                 }
859
860                 pages[ret] = page;
861                 ret++;
862         }
863
864         /*
865          * If all entries were removed before we could secure them,
866          * try again, because callers stop trying once 0 is returned.
867          */
868         if (unlikely(!ret && nr_found))
869                 goto restart;
870         rcu_read_unlock();
871         return ret;
872 }
873
874 /**
875  * find_get_pages_contig - gang contiguous pagecache lookup
876  * @mapping:    The address_space to search
877  * @index:      The starting page index
878  * @nr_pages:   The maximum number of pages
879  * @pages:      Where the resulting pages are placed
880  *
881  * find_get_pages_contig() works exactly like find_get_pages(), except
882  * that the returned number of pages are guaranteed to be contiguous.
883  *
884  * find_get_pages_contig() returns the number of pages which were found.
885  */
886 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
887                                unsigned int nr_pages, struct page **pages)
888 {
889         unsigned int i;
890         unsigned int ret;
891         unsigned int nr_found;
892
893         rcu_read_lock();
894 restart:
895         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
896                                 (void ***)pages, index, nr_pages);
897         ret = 0;
898         for (i = 0; i < nr_found; i++) {
899                 struct page *page;
900 repeat:
901                 page = radix_tree_deref_slot((void **)pages[i]);
902                 if (unlikely(!page))
903                         continue;
904
905                 /*
906                  * This can only trigger when the entry at index 0 moves out
907                  * of or back to the root: none yet gotten, safe to restart.
908                  */
909                 if (radix_tree_deref_retry(page))
910                         goto restart;
911
912                 if (!page_cache_get_speculative(page))
913                         goto repeat;
914
915                 /* Has the page moved? */
916                 if (unlikely(page != *((void **)pages[i]))) {
917                         page_cache_release(page);
918                         goto repeat;
919                 }
920
921                 /*
922                  * must check mapping and index after taking the ref.
923                  * otherwise we can get both false positives and false
924                  * negatives, which is just confusing to the caller.
925                  */
926                 if (page->mapping == NULL || page->index != index) {
927                         page_cache_release(page);
928                         break;
929                 }
930
931                 pages[ret] = page;
932                 ret++;
933                 index++;
934         }
935         rcu_read_unlock();
936         return ret;
937 }
938 EXPORT_SYMBOL(find_get_pages_contig);
939
940 /**
941  * find_get_pages_tag - find and return pages that match @tag
942  * @mapping:    the address_space to search
943  * @index:      the starting page index
944  * @tag:        the tag index
945  * @nr_pages:   the maximum number of pages
946  * @pages:      where the resulting pages are placed
947  *
948  * Like find_get_pages, except we only return pages which are tagged with
949  * @tag.   We update @index to index the next page for the traversal.
950  */
951 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
952                         int tag, unsigned int nr_pages, struct page **pages)
953 {
954         unsigned int i;
955         unsigned int ret;
956         unsigned int nr_found;
957
958         rcu_read_lock();
959 restart:
960         nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
961                                 (void ***)pages, *index, nr_pages, tag);
962         ret = 0;
963         for (i = 0; i < nr_found; i++) {
964                 struct page *page;
965 repeat:
966                 page = radix_tree_deref_slot((void **)pages[i]);
967                 if (unlikely(!page))
968                         continue;
969
970                 /*
971                  * This can only trigger when the entry at index 0 moves out
972                  * of or back to the root: none yet gotten, safe to restart.
973                  */
974                 if (radix_tree_deref_retry(page))
975                         goto restart;
976
977                 if (!page_cache_get_speculative(page))
978                         goto repeat;
979
980                 /* Has the page moved? */
981                 if (unlikely(page != *((void **)pages[i]))) {
982                         page_cache_release(page);
983                         goto repeat;
984                 }
985
986                 pages[ret] = page;
987                 ret++;
988         }
989
990         /*
991          * If all entries were removed before we could secure them,
992          * try again, because callers stop trying once 0 is returned.
993          */
994         if (unlikely(!ret && nr_found))
995                 goto restart;
996         rcu_read_unlock();
997
998         if (ret)
999                 *index = pages[ret - 1]->index + 1;
1000
1001         return ret;
1002 }
1003 EXPORT_SYMBOL(find_get_pages_tag);
1004
1005 /**
1006  * grab_cache_page_nowait - returns locked page at given index in given cache
1007  * @mapping: target address_space
1008  * @index: the page index
1009  *
1010  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1011  * This is intended for speculative data generators, where the data can
1012  * be regenerated if the page couldn't be grabbed.  This routine should
1013  * be safe to call while holding the lock for another page.
1014  *
1015  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1016  * and deadlock against the caller's locked page.
1017  */
1018 struct page *
1019 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1020 {
1021         struct page *page = find_get_page(mapping, index);
1022
1023         if (page) {
1024                 if (trylock_page(page))
1025                         return page;
1026                 page_cache_release(page);
1027                 return NULL;
1028         }
1029         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1030         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1031                 page_cache_release(page);
1032                 page = NULL;
1033         }
1034         return page;
1035 }
1036 EXPORT_SYMBOL(grab_cache_page_nowait);
1037
1038 /*
1039  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1040  * a _large_ part of the i/o request. Imagine the worst scenario:
1041  *
1042  *      ---R__________________________________________B__________
1043  *         ^ reading here                             ^ bad block(assume 4k)
1044  *
1045  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1046  * => failing the whole request => read(R) => read(R+1) =>
1047  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1048  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1049  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1050  *
1051  * It is going insane. Fix it by quickly scaling down the readahead size.
1052  */
1053 static void shrink_readahead_size_eio(struct file *filp,
1054                                         struct file_ra_state *ra)
1055 {
1056         ra->ra_pages /= 4;
1057 }
1058
1059 /**
1060  * do_generic_file_read - generic file read routine
1061  * @filp:       the file to read
1062  * @ppos:       current file position
1063  * @desc:       read_descriptor
1064  * @actor:      read method
1065  *
1066  * This is a generic file read routine, and uses the
1067  * mapping->a_ops->readpage() function for the actual low-level stuff.
1068  *
1069  * This is really ugly. But the goto's actually try to clarify some
1070  * of the logic when it comes to error handling etc.
1071  */
1072 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1073                 read_descriptor_t *desc, read_actor_t actor)
1074 {
1075         struct address_space *mapping = filp->f_mapping;
1076         struct inode *inode = mapping->host;
1077         struct file_ra_state *ra = &filp->f_ra;
1078         pgoff_t index;
1079         pgoff_t last_index;
1080         pgoff_t prev_index;
1081         unsigned long offset;      /* offset into pagecache page */
1082         unsigned int prev_offset;
1083         int error;
1084
1085         index = *ppos >> PAGE_CACHE_SHIFT;
1086         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1087         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1088         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1089         offset = *ppos & ~PAGE_CACHE_MASK;
1090
1091         for (;;) {
1092                 struct page *page;
1093                 pgoff_t end_index;
1094                 loff_t isize;
1095                 unsigned long nr, ret;
1096
1097                 cond_resched();
1098 find_page:
1099                 page = find_get_page(mapping, index);
1100                 if (!page) {
1101                         page_cache_sync_readahead(mapping,
1102                                         ra, filp,
1103                                         index, last_index - index);
1104                         page = find_get_page(mapping, index);
1105                         if (unlikely(page == NULL))
1106                                 goto no_cached_page;
1107                 }
1108                 if (PageReadahead(page)) {
1109                         page_cache_async_readahead(mapping,
1110                                         ra, filp, page,
1111                                         index, last_index - index);
1112                 }
1113                 if (!PageUptodate(page)) {
1114                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1115                                         !mapping->a_ops->is_partially_uptodate)
1116                                 goto page_not_up_to_date;
1117                         if (!trylock_page(page))
1118                                 goto page_not_up_to_date;
1119                         /* Did it get truncated before we got the lock? */
1120                         if (!page->mapping)
1121                                 goto page_not_up_to_date_locked;
1122                         if (!mapping->a_ops->is_partially_uptodate(page,
1123                                                                 desc, offset))
1124                                 goto page_not_up_to_date_locked;
1125                         unlock_page(page);
1126                 }
1127 page_ok:
1128                 /*
1129                  * i_size must be checked after we know the page is Uptodate.
1130                  *
1131                  * Checking i_size after the check allows us to calculate
1132                  * the correct value for "nr", which means the zero-filled
1133                  * part of the page is not copied back to userspace (unless
1134                  * another truncate extends the file - this is desired though).
1135                  */
1136
1137                 isize = i_size_read(inode);
1138                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1139                 if (unlikely(!isize || index > end_index)) {
1140                         page_cache_release(page);
1141                         goto out;
1142                 }
1143
1144                 /* nr is the maximum number of bytes to copy from this page */
1145                 nr = PAGE_CACHE_SIZE;
1146                 if (index == end_index) {
1147                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1148                         if (nr <= offset) {
1149                                 page_cache_release(page);
1150                                 goto out;
1151                         }
1152                 }
1153                 nr = nr - offset;
1154
1155                 /* If users can be writing to this page using arbitrary
1156                  * virtual addresses, take care about potential aliasing
1157                  * before reading the page on the kernel side.
1158                  */
1159                 if (mapping_writably_mapped(mapping))
1160                         flush_dcache_page(page);
1161
1162                 /*
1163                  * When a sequential read accesses a page several times,
1164                  * only mark it as accessed the first time.
1165                  */
1166                 if (prev_index != index || offset != prev_offset)
1167                         mark_page_accessed(page);
1168                 prev_index = index;
1169
1170                 /*
1171                  * Ok, we have the page, and it's up-to-date, so
1172                  * now we can copy it to user space...
1173                  *
1174                  * The actor routine returns how many bytes were actually used..
1175                  * NOTE! This may not be the same as how much of a user buffer
1176                  * we filled up (we may be padding etc), so we can only update
1177                  * "pos" here (the actor routine has to update the user buffer
1178                  * pointers and the remaining count).
1179                  */
1180                 ret = actor(desc, page, offset, nr);
1181                 offset += ret;
1182                 index += offset >> PAGE_CACHE_SHIFT;
1183                 offset &= ~PAGE_CACHE_MASK;
1184                 prev_offset = offset;
1185
1186                 page_cache_release(page);
1187                 if (ret == nr && desc->count)
1188                         continue;
1189                 goto out;
1190
1191 page_not_up_to_date:
1192                 /* Get exclusive access to the page ... */
1193                 error = lock_page_killable(page);
1194                 if (unlikely(error))
1195                         goto readpage_error;
1196
1197 page_not_up_to_date_locked:
1198                 /* Did it get truncated before we got the lock? */
1199                 if (!page->mapping) {
1200                         unlock_page(page);
1201                         page_cache_release(page);
1202                         continue;
1203                 }
1204
1205                 /* Did somebody else fill it already? */
1206                 if (PageUptodate(page)) {
1207                         unlock_page(page);
1208                         goto page_ok;
1209                 }
1210
1211 readpage:
1212                 /*
1213                  * A previous I/O error may have been due to temporary
1214                  * failures, eg. multipath errors.
1215                  * PG_error will be set again if readpage fails.
1216                  */
1217                 ClearPageError(page);
1218                 /* Start the actual read. The read will unlock the page. */
1219                 error = mapping->a_ops->readpage(filp, page);
1220
1221                 if (unlikely(error)) {
1222                         if (error == AOP_TRUNCATED_PAGE) {
1223                                 page_cache_release(page);
1224                                 goto find_page;
1225                         }
1226                         goto readpage_error;
1227                 }
1228
1229                 if (!PageUptodate(page)) {
1230                         error = lock_page_killable(page);
1231                         if (unlikely(error))
1232                                 goto readpage_error;
1233                         if (!PageUptodate(page)) {
1234                                 if (page->mapping == NULL) {
1235                                         /*
1236                                          * invalidate_mapping_pages got it
1237                                          */
1238                                         unlock_page(page);
1239                                         page_cache_release(page);
1240                                         goto find_page;
1241                                 }
1242                                 unlock_page(page);
1243                                 shrink_readahead_size_eio(filp, ra);
1244                                 error = -EIO;
1245                                 goto readpage_error;
1246                         }
1247                         unlock_page(page);
1248                 }
1249
1250                 goto page_ok;
1251
1252 readpage_error:
1253                 /* UHHUH! A synchronous read error occurred. Report it */
1254                 desc->error = error;
1255                 page_cache_release(page);
1256                 goto out;
1257
1258 no_cached_page:
1259                 /*
1260                  * Ok, it wasn't cached, so we need to create a new
1261                  * page..
1262                  */
1263                 page = page_cache_alloc_cold(mapping);
1264                 if (!page) {
1265                         desc->error = -ENOMEM;
1266                         goto out;
1267                 }
1268                 error = add_to_page_cache_lru(page, mapping,
1269                                                 index, GFP_KERNEL);
1270                 if (error) {
1271                         page_cache_release(page);
1272                         if (error == -EEXIST)
1273                                 goto find_page;
1274                         desc->error = error;
1275                         goto out;
1276                 }
1277                 goto readpage;
1278         }
1279
1280 out:
1281         ra->prev_pos = prev_index;
1282         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1283         ra->prev_pos |= prev_offset;
1284
1285         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1286         file_accessed(filp);
1287 }
1288
1289 int file_read_actor(read_descriptor_t *desc, struct page *page,
1290                         unsigned long offset, unsigned long size)
1291 {
1292         char *kaddr;
1293         unsigned long left, count = desc->count;
1294
1295         if (size > count)
1296                 size = count;
1297
1298         /*
1299          * Faults on the destination of a read are common, so do it before
1300          * taking the kmap.
1301          */
1302         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1303                 kaddr = kmap_atomic(page, KM_USER0);
1304                 left = __copy_to_user_inatomic(desc->arg.buf,
1305                                                 kaddr + offset, size);
1306                 kunmap_atomic(kaddr, KM_USER0);
1307                 if (left == 0)
1308                         goto success;
1309         }
1310
1311         /* Do it the slow way */
1312         kaddr = kmap(page);
1313         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1314         kunmap(page);
1315
1316         if (left) {
1317                 size -= left;
1318                 desc->error = -EFAULT;
1319         }
1320 success:
1321         desc->count = count - size;
1322         desc->written += size;
1323         desc->arg.buf += size;
1324         return size;
1325 }
1326
1327 /*
1328  * Performs necessary checks before doing a write
1329  * @iov:        io vector request
1330  * @nr_segs:    number of segments in the iovec
1331  * @count:      number of bytes to write
1332  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1333  *
1334  * Adjust number of segments and amount of bytes to write (nr_segs should be
1335  * properly initialized first). Returns appropriate error code that caller
1336  * should return or zero in case that write should be allowed.
1337  */
1338 int generic_segment_checks(const struct iovec *iov,
1339                         unsigned long *nr_segs, size_t *count, int access_flags)
1340 {
1341         unsigned long   seg;
1342         size_t cnt = 0;
1343         for (seg = 0; seg < *nr_segs; seg++) {
1344                 const struct iovec *iv = &iov[seg];
1345
1346                 /*
1347                  * If any segment has a negative length, or the cumulative
1348                  * length ever wraps negative then return -EINVAL.
1349                  */
1350                 cnt += iv->iov_len;
1351                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1352                         return -EINVAL;
1353                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1354                         continue;
1355                 if (seg == 0)
1356                         return -EFAULT;
1357                 *nr_segs = seg;
1358                 cnt -= iv->iov_len;     /* This segment is no good */
1359                 break;
1360         }
1361         *count = cnt;
1362         return 0;
1363 }
1364 EXPORT_SYMBOL(generic_segment_checks);
1365
1366 /**
1367  * generic_file_aio_read - generic filesystem read routine
1368  * @iocb:       kernel I/O control block
1369  * @iov:        io vector request
1370  * @nr_segs:    number of segments in the iovec
1371  * @pos:        current file position
1372  *
1373  * This is the "read()" routine for all filesystems
1374  * that can use the page cache directly.
1375  */
1376 ssize_t
1377 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1378                 unsigned long nr_segs, loff_t pos)
1379 {
1380         struct file *filp = iocb->ki_filp;
1381         ssize_t retval;
1382         unsigned long seg = 0;
1383         size_t count;
1384         loff_t *ppos = &iocb->ki_pos;
1385
1386         count = 0;
1387         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1388         if (retval)
1389                 return retval;
1390
1391         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1392         if (filp->f_flags & O_DIRECT) {
1393                 loff_t size;
1394                 struct address_space *mapping;
1395                 struct inode *inode;
1396
1397                 mapping = filp->f_mapping;
1398                 inode = mapping->host;
1399                 if (!count)
1400                         goto out; /* skip atime */
1401                 size = i_size_read(inode);
1402                 if (pos < size) {
1403                         retval = filemap_write_and_wait_range(mapping, pos,
1404                                         pos + iov_length(iov, nr_segs) - 1);
1405                         if (!retval) {
1406                                 struct blk_plug plug;
1407
1408                                 blk_start_plug(&plug);
1409                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1410                                                         iov, pos, nr_segs);
1411                                 blk_finish_plug(&plug);
1412                         }
1413                         if (retval > 0) {
1414                                 *ppos = pos + retval;
1415                                 count -= retval;
1416                         }
1417
1418                         /*
1419                          * Btrfs can have a short DIO read if we encounter
1420                          * compressed extents, so if there was an error, or if
1421                          * we've already read everything we wanted to, or if
1422                          * there was a short read because we hit EOF, go ahead
1423                          * and return.  Otherwise fallthrough to buffered io for
1424                          * the rest of the read.
1425                          */
1426                         if (retval < 0 || !count || *ppos >= size) {
1427                                 file_accessed(filp);
1428                                 goto out;
1429                         }
1430                 }
1431         }
1432
1433         count = retval;
1434         for (seg = 0; seg < nr_segs; seg++) {
1435                 read_descriptor_t desc;
1436                 loff_t offset = 0;
1437
1438                 /*
1439                  * If we did a short DIO read we need to skip the section of the
1440                  * iov that we've already read data into.
1441                  */
1442                 if (count) {
1443                         if (count > iov[seg].iov_len) {
1444                                 count -= iov[seg].iov_len;
1445                                 continue;
1446                         }
1447                         offset = count;
1448                         count = 0;
1449                 }
1450
1451                 desc.written = 0;
1452                 desc.arg.buf = iov[seg].iov_base + offset;
1453                 desc.count = iov[seg].iov_len - offset;
1454                 if (desc.count == 0)
1455                         continue;
1456                 desc.error = 0;
1457                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1458                 retval += desc.written;
1459                 if (desc.error) {
1460                         retval = retval ?: desc.error;
1461                         break;
1462                 }
1463                 if (desc.count > 0)
1464                         break;
1465         }
1466 out:
1467         return retval;
1468 }
1469 EXPORT_SYMBOL(generic_file_aio_read);
1470
1471 static ssize_t
1472 do_readahead(struct address_space *mapping, struct file *filp,
1473              pgoff_t index, unsigned long nr)
1474 {
1475         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1476                 return -EINVAL;
1477
1478         force_page_cache_readahead(mapping, filp, index, nr);
1479         return 0;
1480 }
1481
1482 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1483 {
1484         ssize_t ret;
1485         struct file *file;
1486
1487         ret = -EBADF;
1488         file = fget(fd);
1489         if (file) {
1490                 if (file->f_mode & FMODE_READ) {
1491                         struct address_space *mapping = file->f_mapping;
1492                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1493                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1494                         unsigned long len = end - start + 1;
1495                         ret = do_readahead(mapping, file, start, len);
1496                 }
1497                 fput(file);
1498         }
1499         return ret;
1500 }
1501 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1502 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1503 {
1504         return SYSC_readahead((int) fd, offset, (size_t) count);
1505 }
1506 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1507 #endif
1508
1509 #ifdef CONFIG_MMU
1510 /**
1511  * page_cache_read - adds requested page to the page cache if not already there
1512  * @file:       file to read
1513  * @offset:     page index
1514  *
1515  * This adds the requested page to the page cache if it isn't already there,
1516  * and schedules an I/O to read in its contents from disk.
1517  */
1518 static int page_cache_read(struct file *file, pgoff_t offset)
1519 {
1520         struct address_space *mapping = file->f_mapping;
1521         struct page *page; 
1522         int ret;
1523
1524         do {
1525                 page = page_cache_alloc_cold(mapping);
1526                 if (!page)
1527                         return -ENOMEM;
1528
1529                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1530                 if (ret == 0)
1531                         ret = mapping->a_ops->readpage(file, page);
1532                 else if (ret == -EEXIST)
1533                         ret = 0; /* losing race to add is OK */
1534
1535                 page_cache_release(page);
1536
1537         } while (ret == AOP_TRUNCATED_PAGE);
1538                 
1539         return ret;
1540 }
1541
1542 #define MMAP_LOTSAMISS  (100)
1543
1544 /*
1545  * Synchronous readahead happens when we don't even find
1546  * a page in the page cache at all.
1547  */
1548 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1549                                    struct file_ra_state *ra,
1550                                    struct file *file,
1551                                    pgoff_t offset)
1552 {
1553         unsigned long ra_pages;
1554         struct address_space *mapping = file->f_mapping;
1555
1556         /* If we don't want any read-ahead, don't bother */
1557         if (VM_RandomReadHint(vma))
1558                 return;
1559         if (!ra->ra_pages)
1560                 return;
1561
1562         if (VM_SequentialReadHint(vma)) {
1563                 page_cache_sync_readahead(mapping, ra, file, offset,
1564                                           ra->ra_pages);
1565                 return;
1566         }
1567
1568         /* Avoid banging the cache line if not needed */
1569         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1570                 ra->mmap_miss++;
1571
1572         /*
1573          * Do we miss much more than hit in this file? If so,
1574          * stop bothering with read-ahead. It will only hurt.
1575          */
1576         if (ra->mmap_miss > MMAP_LOTSAMISS)
1577                 return;
1578
1579         /*
1580          * mmap read-around
1581          */
1582         ra_pages = max_sane_readahead(ra->ra_pages);
1583         ra->start = max_t(long, 0, offset - ra_pages / 2);
1584         ra->size = ra_pages;
1585         ra->async_size = ra_pages / 4;
1586         ra_submit(ra, mapping, file);
1587 }
1588
1589 /*
1590  * Asynchronous readahead happens when we find the page and PG_readahead,
1591  * so we want to possibly extend the readahead further..
1592  */
1593 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1594                                     struct file_ra_state *ra,
1595                                     struct file *file,
1596                                     struct page *page,
1597                                     pgoff_t offset)
1598 {
1599         struct address_space *mapping = file->f_mapping;
1600
1601         /* If we don't want any read-ahead, don't bother */
1602         if (VM_RandomReadHint(vma))
1603                 return;
1604         if (ra->mmap_miss > 0)
1605                 ra->mmap_miss--;
1606         if (PageReadahead(page))
1607                 page_cache_async_readahead(mapping, ra, file,
1608                                            page, offset, ra->ra_pages);
1609 }
1610
1611 /**
1612  * filemap_fault - read in file data for page fault handling
1613  * @vma:        vma in which the fault was taken
1614  * @vmf:        struct vm_fault containing details of the fault
1615  *
1616  * filemap_fault() is invoked via the vma operations vector for a
1617  * mapped memory region to read in file data during a page fault.
1618  *
1619  * The goto's are kind of ugly, but this streamlines the normal case of having
1620  * it in the page cache, and handles the special cases reasonably without
1621  * having a lot of duplicated code.
1622  */
1623 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1624 {
1625         int error;
1626         struct file *file = vma->vm_file;
1627         struct address_space *mapping = file->f_mapping;
1628         struct file_ra_state *ra = &file->f_ra;
1629         struct inode *inode = mapping->host;
1630         pgoff_t offset = vmf->pgoff;
1631         struct page *page;
1632         pgoff_t size;
1633         int ret = 0;
1634
1635         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1636         if (offset >= size)
1637                 return VM_FAULT_SIGBUS;
1638
1639         /*
1640          * Do we have something in the page cache already?
1641          */
1642         page = find_get_page(mapping, offset);
1643         if (likely(page)) {
1644                 /*
1645                  * We found the page, so try async readahead before
1646                  * waiting for the lock.
1647                  */
1648                 do_async_mmap_readahead(vma, ra, file, page, offset);
1649         } else {
1650                 /* No page in the page cache at all */
1651                 do_sync_mmap_readahead(vma, ra, file, offset);
1652                 count_vm_event(PGMAJFAULT);
1653                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1654                 ret = VM_FAULT_MAJOR;
1655 retry_find:
1656                 page = find_get_page(mapping, offset);
1657                 if (!page)
1658                         goto no_cached_page;
1659         }
1660
1661         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1662                 page_cache_release(page);
1663                 return ret | VM_FAULT_RETRY;
1664         }
1665
1666         /* Did it get truncated? */
1667         if (unlikely(page->mapping != mapping)) {
1668                 unlock_page(page);
1669                 put_page(page);
1670                 goto retry_find;
1671         }
1672         VM_BUG_ON(page->index != offset);
1673
1674         /*
1675          * We have a locked page in the page cache, now we need to check
1676          * that it's up-to-date. If not, it is going to be due to an error.
1677          */
1678         if (unlikely(!PageUptodate(page)))
1679                 goto page_not_uptodate;
1680
1681         /*
1682          * Found the page and have a reference on it.
1683          * We must recheck i_size under page lock.
1684          */
1685         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1686         if (unlikely(offset >= size)) {
1687                 unlock_page(page);
1688                 page_cache_release(page);
1689                 return VM_FAULT_SIGBUS;
1690         }
1691
1692         vmf->page = page;
1693         return ret | VM_FAULT_LOCKED;
1694
1695 no_cached_page:
1696         /*
1697          * We're only likely to ever get here if MADV_RANDOM is in
1698          * effect.
1699          */
1700         error = page_cache_read(file, offset);
1701
1702         /*
1703          * The page we want has now been added to the page cache.
1704          * In the unlikely event that someone removed it in the
1705          * meantime, we'll just come back here and read it again.
1706          */
1707         if (error >= 0)
1708                 goto retry_find;
1709
1710         /*
1711          * An error return from page_cache_read can result if the
1712          * system is low on memory, or a problem occurs while trying
1713          * to schedule I/O.
1714          */
1715         if (error == -ENOMEM)
1716                 return VM_FAULT_OOM;
1717         return VM_FAULT_SIGBUS;
1718
1719 page_not_uptodate:
1720         /*
1721          * Umm, take care of errors if the page isn't up-to-date.
1722          * Try to re-read it _once_. We do this synchronously,
1723          * because there really aren't any performance issues here
1724          * and we need to check for errors.
1725          */
1726         ClearPageError(page);
1727         error = mapping->a_ops->readpage(file, page);
1728         if (!error) {
1729                 wait_on_page_locked(page);
1730                 if (!PageUptodate(page))
1731                         error = -EIO;
1732         }
1733         page_cache_release(page);
1734
1735         if (!error || error == AOP_TRUNCATED_PAGE)
1736                 goto retry_find;
1737
1738         /* Things didn't work out. Return zero to tell the mm layer so. */
1739         shrink_readahead_size_eio(file, ra);
1740         return VM_FAULT_SIGBUS;
1741 }
1742 EXPORT_SYMBOL(filemap_fault);
1743
1744 const struct vm_operations_struct generic_file_vm_ops = {
1745         .fault          = filemap_fault,
1746 };
1747
1748 /* This is used for a general mmap of a disk file */
1749
1750 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1751 {
1752         struct address_space *mapping = file->f_mapping;
1753
1754         if (!mapping->a_ops->readpage)
1755                 return -ENOEXEC;
1756         file_accessed(file);
1757         vma->vm_ops = &generic_file_vm_ops;
1758         vma->vm_flags |= VM_CAN_NONLINEAR;
1759         return 0;
1760 }
1761
1762 /*
1763  * This is for filesystems which do not implement ->writepage.
1764  */
1765 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1766 {
1767         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1768                 return -EINVAL;
1769         return generic_file_mmap(file, vma);
1770 }
1771 #else
1772 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1773 {
1774         return -ENOSYS;
1775 }
1776 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1777 {
1778         return -ENOSYS;
1779 }
1780 #endif /* CONFIG_MMU */
1781
1782 EXPORT_SYMBOL(generic_file_mmap);
1783 EXPORT_SYMBOL(generic_file_readonly_mmap);
1784
1785 static struct page *__read_cache_page(struct address_space *mapping,
1786                                 pgoff_t index,
1787                                 int (*filler)(void *,struct page*),
1788                                 void *data,
1789                                 gfp_t gfp)
1790 {
1791         struct page *page;
1792         int err;
1793 repeat:
1794         page = find_get_page(mapping, index);
1795         if (!page) {
1796                 page = __page_cache_alloc(gfp | __GFP_COLD);
1797                 if (!page)
1798                         return ERR_PTR(-ENOMEM);
1799                 err = add_to_page_cache_lru(page, mapping, index, gfp);
1800                 if (unlikely(err)) {
1801                         page_cache_release(page);
1802                         if (err == -EEXIST)
1803                                 goto repeat;
1804                         /* Presumably ENOMEM for radix tree node */
1805                         return ERR_PTR(err);
1806                 }
1807                 err = filler(data, page);
1808                 if (err < 0) {
1809                         page_cache_release(page);
1810                         page = ERR_PTR(err);
1811                 }
1812         }
1813         return page;
1814 }
1815
1816 static struct page *do_read_cache_page(struct address_space *mapping,
1817                                 pgoff_t index,
1818                                 int (*filler)(void *,struct page*),
1819                                 void *data,
1820                                 gfp_t gfp)
1821
1822 {
1823         struct page *page;
1824         int err;
1825
1826 retry:
1827         page = __read_cache_page(mapping, index, filler, data, gfp);
1828         if (IS_ERR(page))
1829                 return page;
1830         if (PageUptodate(page))
1831                 goto out;
1832
1833         lock_page(page);
1834         if (!page->mapping) {
1835                 unlock_page(page);
1836                 page_cache_release(page);
1837                 goto retry;
1838         }
1839         if (PageUptodate(page)) {
1840                 unlock_page(page);
1841                 goto out;
1842         }
1843         err = filler(data, page);
1844         if (err < 0) {
1845                 page_cache_release(page);
1846                 return ERR_PTR(err);
1847         }
1848 out:
1849         mark_page_accessed(page);
1850         return page;
1851 }
1852
1853 /**
1854  * read_cache_page_async - read into page cache, fill it if needed
1855  * @mapping:    the page's address_space
1856  * @index:      the page index
1857  * @filler:     function to perform the read
1858  * @data:       destination for read data
1859  *
1860  * Same as read_cache_page, but don't wait for page to become unlocked
1861  * after submitting it to the filler.
1862  *
1863  * Read into the page cache. If a page already exists, and PageUptodate() is
1864  * not set, try to fill the page but don't wait for it to become unlocked.
1865  *
1866  * If the page does not get brought uptodate, return -EIO.
1867  */
1868 struct page *read_cache_page_async(struct address_space *mapping,
1869                                 pgoff_t index,
1870                                 int (*filler)(void *,struct page*),
1871                                 void *data)
1872 {
1873         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1874 }
1875 EXPORT_SYMBOL(read_cache_page_async);
1876
1877 static struct page *wait_on_page_read(struct page *page)
1878 {
1879         if (!IS_ERR(page)) {
1880                 wait_on_page_locked(page);
1881                 if (!PageUptodate(page)) {
1882                         page_cache_release(page);
1883                         page = ERR_PTR(-EIO);
1884                 }
1885         }
1886         return page;
1887 }
1888
1889 /**
1890  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1891  * @mapping:    the page's address_space
1892  * @index:      the page index
1893  * @gfp:        the page allocator flags to use if allocating
1894  *
1895  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1896  * any new page allocations done using the specified allocation flags.
1897  *
1898  * If the page does not get brought uptodate, return -EIO.
1899  */
1900 struct page *read_cache_page_gfp(struct address_space *mapping,
1901                                 pgoff_t index,
1902                                 gfp_t gfp)
1903 {
1904         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1905
1906         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1907 }
1908 EXPORT_SYMBOL(read_cache_page_gfp);
1909
1910 /**
1911  * read_cache_page - read into page cache, fill it if needed
1912  * @mapping:    the page's address_space
1913  * @index:      the page index
1914  * @filler:     function to perform the read
1915  * @data:       destination for read data
1916  *
1917  * Read into the page cache. If a page already exists, and PageUptodate() is
1918  * not set, try to fill the page then wait for it to become unlocked.
1919  *
1920  * If the page does not get brought uptodate, return -EIO.
1921  */
1922 struct page *read_cache_page(struct address_space *mapping,
1923                                 pgoff_t index,
1924                                 int (*filler)(void *,struct page*),
1925                                 void *data)
1926 {
1927         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1928 }
1929 EXPORT_SYMBOL(read_cache_page);
1930
1931 /*
1932  * The logic we want is
1933  *
1934  *      if suid or (sgid and xgrp)
1935  *              remove privs
1936  */
1937 int should_remove_suid(struct dentry *dentry)
1938 {
1939         mode_t mode = dentry->d_inode->i_mode;
1940         int kill = 0;
1941
1942         /* suid always must be killed */
1943         if (unlikely(mode & S_ISUID))
1944                 kill = ATTR_KILL_SUID;
1945
1946         /*
1947          * sgid without any exec bits is just a mandatory locking mark; leave
1948          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1949          */
1950         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1951                 kill |= ATTR_KILL_SGID;
1952
1953         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1954                 return kill;
1955
1956         return 0;
1957 }
1958 EXPORT_SYMBOL(should_remove_suid);
1959
1960 static int __remove_suid(struct dentry *dentry, int kill)
1961 {
1962         struct iattr newattrs;
1963
1964         newattrs.ia_valid = ATTR_FORCE | kill;
1965         return notify_change(dentry, &newattrs);
1966 }
1967
1968 int file_remove_suid(struct file *file)
1969 {
1970         struct dentry *dentry = file->f_path.dentry;
1971         struct inode *inode = dentry->d_inode;
1972         int killsuid;
1973         int killpriv;
1974         int error = 0;
1975
1976         /* Fast path for nothing security related */
1977         if (IS_NOSEC(inode))
1978                 return 0;
1979
1980         killsuid = should_remove_suid(dentry);
1981         killpriv = security_inode_need_killpriv(dentry);
1982
1983         if (killpriv < 0)
1984                 return killpriv;
1985         if (killpriv)
1986                 error = security_inode_killpriv(dentry);
1987         if (!error && killsuid)
1988                 error = __remove_suid(dentry, killsuid);
1989         if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1990                 inode->i_flags |= S_NOSEC;
1991
1992         return error;
1993 }
1994 EXPORT_SYMBOL(file_remove_suid);
1995
1996 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1997                         const struct iovec *iov, size_t base, size_t bytes)
1998 {
1999         size_t copied = 0, left = 0;
2000
2001         while (bytes) {
2002                 char __user *buf = iov->iov_base + base;
2003                 int copy = min(bytes, iov->iov_len - base);
2004
2005                 base = 0;
2006                 left = __copy_from_user_inatomic(vaddr, buf, copy);
2007                 copied += copy;
2008                 bytes -= copy;
2009                 vaddr += copy;
2010                 iov++;
2011
2012                 if (unlikely(left))
2013                         break;
2014         }
2015         return copied - left;
2016 }
2017
2018 /*
2019  * Copy as much as we can into the page and return the number of bytes which
2020  * were successfully copied.  If a fault is encountered then return the number of
2021  * bytes which were copied.
2022  */
2023 size_t iov_iter_copy_from_user_atomic(struct page *page,
2024                 struct iov_iter *i, unsigned long offset, size_t bytes)
2025 {
2026         char *kaddr;
2027         size_t copied;
2028
2029         BUG_ON(!in_atomic());
2030         kaddr = kmap_atomic(page, KM_USER0);
2031         if (likely(i->nr_segs == 1)) {
2032                 int left;
2033                 char __user *buf = i->iov->iov_base + i->iov_offset;
2034                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2035                 copied = bytes - left;
2036         } else {
2037                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2038                                                 i->iov, i->iov_offset, bytes);
2039         }
2040         kunmap_atomic(kaddr, KM_USER0);
2041
2042         return copied;
2043 }
2044 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2045
2046 /*
2047  * This has the same sideeffects and return value as
2048  * iov_iter_copy_from_user_atomic().
2049  * The difference is that it attempts to resolve faults.
2050  * Page must not be locked.
2051  */
2052 size_t iov_iter_copy_from_user(struct page *page,
2053                 struct iov_iter *i, unsigned long offset, size_t bytes)
2054 {
2055         char *kaddr;
2056         size_t copied;
2057
2058         kaddr = kmap(page);
2059         if (likely(i->nr_segs == 1)) {
2060                 int left;
2061                 char __user *buf = i->iov->iov_base + i->iov_offset;
2062                 left = __copy_from_user(kaddr + offset, buf, bytes);
2063                 copied = bytes - left;
2064         } else {
2065                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2066                                                 i->iov, i->iov_offset, bytes);
2067         }
2068         kunmap(page);
2069         return copied;
2070 }
2071 EXPORT_SYMBOL(iov_iter_copy_from_user);
2072
2073 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2074 {
2075         BUG_ON(i->count < bytes);
2076
2077         if (likely(i->nr_segs == 1)) {
2078                 i->iov_offset += bytes;
2079                 i->count -= bytes;
2080         } else {
2081                 const struct iovec *iov = i->iov;
2082                 size_t base = i->iov_offset;
2083
2084                 /*
2085                  * The !iov->iov_len check ensures we skip over unlikely
2086                  * zero-length segments (without overruning the iovec).
2087                  */
2088                 while (bytes || unlikely(i->count && !iov->iov_len)) {
2089                         int copy;
2090
2091                         copy = min(bytes, iov->iov_len - base);
2092                         BUG_ON(!i->count || i->count < copy);
2093                         i->count -= copy;
2094                         bytes -= copy;
2095                         base += copy;
2096                         if (iov->iov_len == base) {
2097                                 iov++;
2098                                 base = 0;
2099                         }
2100                 }
2101                 i->iov = iov;
2102                 i->iov_offset = base;
2103         }
2104 }
2105 EXPORT_SYMBOL(iov_iter_advance);
2106
2107 /*
2108  * Fault in the first iovec of the given iov_iter, to a maximum length
2109  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2110  * accessed (ie. because it is an invalid address).
2111  *
2112  * writev-intensive code may want this to prefault several iovecs -- that
2113  * would be possible (callers must not rely on the fact that _only_ the
2114  * first iovec will be faulted with the current implementation).
2115  */
2116 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2117 {
2118         char __user *buf = i->iov->iov_base + i->iov_offset;
2119         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2120         return fault_in_pages_readable(buf, bytes);
2121 }
2122 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2123
2124 /*
2125  * Return the count of just the current iov_iter segment.
2126  */
2127 size_t iov_iter_single_seg_count(struct iov_iter *i)
2128 {
2129         const struct iovec *iov = i->iov;
2130         if (i->nr_segs == 1)
2131                 return i->count;
2132         else
2133                 return min(i->count, iov->iov_len - i->iov_offset);
2134 }
2135 EXPORT_SYMBOL(iov_iter_single_seg_count);
2136
2137 /*
2138  * Performs necessary checks before doing a write
2139  *
2140  * Can adjust writing position or amount of bytes to write.
2141  * Returns appropriate error code that caller should return or
2142  * zero in case that write should be allowed.
2143  */
2144 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2145 {
2146         struct inode *inode = file->f_mapping->host;
2147         unsigned long limit = rlimit(RLIMIT_FSIZE);
2148
2149         if (unlikely(*pos < 0))
2150                 return -EINVAL;
2151
2152         if (!isblk) {
2153                 /* FIXME: this is for backwards compatibility with 2.4 */
2154                 if (file->f_flags & O_APPEND)
2155                         *pos = i_size_read(inode);
2156
2157                 if (limit != RLIM_INFINITY) {
2158                         if (*pos >= limit) {
2159                                 send_sig(SIGXFSZ, current, 0);
2160                                 return -EFBIG;
2161                         }
2162                         if (*count > limit - (typeof(limit))*pos) {
2163                                 *count = limit - (typeof(limit))*pos;
2164                         }
2165                 }
2166         }
2167
2168         /*
2169          * LFS rule
2170          */
2171         if (unlikely(*pos + *count > MAX_NON_LFS &&
2172                                 !(file->f_flags & O_LARGEFILE))) {
2173                 if (*pos >= MAX_NON_LFS) {
2174                         return -EFBIG;
2175                 }
2176                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2177                         *count = MAX_NON_LFS - (unsigned long)*pos;
2178                 }
2179         }
2180
2181         /*
2182          * Are we about to exceed the fs block limit ?
2183          *
2184          * If we have written data it becomes a short write.  If we have
2185          * exceeded without writing data we send a signal and return EFBIG.
2186          * Linus frestrict idea will clean these up nicely..
2187          */
2188         if (likely(!isblk)) {
2189                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2190                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2191                                 return -EFBIG;
2192                         }
2193                         /* zero-length writes at ->s_maxbytes are OK */
2194                 }
2195
2196                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2197                         *count = inode->i_sb->s_maxbytes - *pos;
2198         } else {
2199 #ifdef CONFIG_BLOCK
2200                 loff_t isize;
2201                 if (bdev_read_only(I_BDEV(inode)))
2202                         return -EPERM;
2203                 isize = i_size_read(inode);
2204                 if (*pos >= isize) {
2205                         if (*count || *pos > isize)
2206                                 return -ENOSPC;
2207                 }
2208
2209                 if (*pos + *count > isize)
2210                         *count = isize - *pos;
2211 #else
2212                 return -EPERM;
2213 #endif
2214         }
2215         return 0;
2216 }
2217 EXPORT_SYMBOL(generic_write_checks);
2218
2219 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2220                                 loff_t pos, unsigned len, unsigned flags,
2221                                 struct page **pagep, void **fsdata)
2222 {
2223         const struct address_space_operations *aops = mapping->a_ops;
2224
2225         return aops->write_begin(file, mapping, pos, len, flags,
2226                                                         pagep, fsdata);
2227 }
2228 EXPORT_SYMBOL(pagecache_write_begin);
2229
2230 int pagecache_write_end(struct file *file, struct address_space *mapping,
2231                                 loff_t pos, unsigned len, unsigned copied,
2232                                 struct page *page, void *fsdata)
2233 {
2234         const struct address_space_operations *aops = mapping->a_ops;
2235
2236         mark_page_accessed(page);
2237         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2238 }
2239 EXPORT_SYMBOL(pagecache_write_end);
2240
2241 ssize_t
2242 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2243                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2244                 size_t count, size_t ocount)
2245 {
2246         struct file     *file = iocb->ki_filp;
2247         struct address_space *mapping = file->f_mapping;
2248         struct inode    *inode = mapping->host;
2249         ssize_t         written;
2250         size_t          write_len;
2251         pgoff_t         end;
2252
2253         if (count != ocount)
2254                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2255
2256         write_len = iov_length(iov, *nr_segs);
2257         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2258
2259         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2260         if (written)
2261                 goto out;
2262
2263         /*
2264          * After a write we want buffered reads to be sure to go to disk to get
2265          * the new data.  We invalidate clean cached page from the region we're
2266          * about to write.  We do this *before* the write so that we can return
2267          * without clobbering -EIOCBQUEUED from ->direct_IO().
2268          */
2269         if (mapping->nrpages) {
2270                 written = invalidate_inode_pages2_range(mapping,
2271                                         pos >> PAGE_CACHE_SHIFT, end);
2272                 /*
2273                  * If a page can not be invalidated, return 0 to fall back
2274                  * to buffered write.
2275                  */
2276                 if (written) {
2277                         if (written == -EBUSY)
2278                                 return 0;
2279                         goto out;
2280                 }
2281         }
2282
2283         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2284
2285         /*
2286          * Finally, try again to invalidate clean pages which might have been
2287          * cached by non-direct readahead, or faulted in by get_user_pages()
2288          * if the source of the write was an mmap'ed region of the file
2289          * we're writing.  Either one is a pretty crazy thing to do,
2290          * so we don't support it 100%.  If this invalidation
2291          * fails, tough, the write still worked...
2292          */
2293         if (mapping->nrpages) {
2294                 invalidate_inode_pages2_range(mapping,
2295                                               pos >> PAGE_CACHE_SHIFT, end);
2296         }
2297
2298         if (written > 0) {
2299                 pos += written;
2300                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2301                         i_size_write(inode, pos);
2302                         mark_inode_dirty(inode);
2303                 }
2304                 *ppos = pos;
2305         }
2306 out:
2307         return written;
2308 }
2309 EXPORT_SYMBOL(generic_file_direct_write);
2310
2311 /*
2312  * Find or create a page at the given pagecache position. Return the locked
2313  * page. This function is specifically for buffered writes.
2314  */
2315 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2316                                         pgoff_t index, unsigned flags)
2317 {
2318         int status;
2319         struct page *page;
2320         gfp_t gfp_notmask = 0;
2321         if (flags & AOP_FLAG_NOFS)
2322                 gfp_notmask = __GFP_FS;
2323 repeat:
2324         page = find_lock_page(mapping, index);
2325         if (page)
2326                 goto found;
2327
2328         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2329         if (!page)
2330                 return NULL;
2331         status = add_to_page_cache_lru(page, mapping, index,
2332                                                 GFP_KERNEL & ~gfp_notmask);
2333         if (unlikely(status)) {
2334                 page_cache_release(page);
2335                 if (status == -EEXIST)
2336                         goto repeat;
2337                 return NULL;
2338         }
2339 found:
2340         wait_on_page_writeback(page);
2341         return page;
2342 }
2343 EXPORT_SYMBOL(grab_cache_page_write_begin);
2344
2345 static ssize_t generic_perform_write(struct file *file,
2346                                 struct iov_iter *i, loff_t pos)
2347 {
2348         struct address_space *mapping = file->f_mapping;
2349         const struct address_space_operations *a_ops = mapping->a_ops;
2350         long status = 0;
2351         ssize_t written = 0;
2352         unsigned int flags = 0;
2353
2354         /*
2355          * Copies from kernel address space cannot fail (NFSD is a big user).
2356          */
2357         if (segment_eq(get_fs(), KERNEL_DS))
2358                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2359
2360         do {
2361                 struct page *page;
2362                 unsigned long offset;   /* Offset into pagecache page */
2363                 unsigned long bytes;    /* Bytes to write to page */
2364                 size_t copied;          /* Bytes copied from user */
2365                 void *fsdata;
2366
2367                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2368                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2369                                                 iov_iter_count(i));
2370
2371 again:
2372
2373                 /*
2374                  * Bring in the user page that we will copy from _first_.
2375                  * Otherwise there's a nasty deadlock on copying from the
2376                  * same page as we're writing to, without it being marked
2377                  * up-to-date.
2378                  *
2379                  * Not only is this an optimisation, but it is also required
2380                  * to check that the address is actually valid, when atomic
2381                  * usercopies are used, below.
2382                  */
2383                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2384                         status = -EFAULT;
2385                         break;
2386                 }
2387
2388                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2389                                                 &page, &fsdata);
2390                 if (unlikely(status))
2391                         break;
2392
2393                 if (mapping_writably_mapped(mapping))
2394                         flush_dcache_page(page);
2395
2396                 pagefault_disable();
2397                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2398                 pagefault_enable();
2399                 flush_dcache_page(page);
2400
2401                 mark_page_accessed(page);
2402                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2403                                                 page, fsdata);
2404                 if (unlikely(status < 0))
2405                         break;
2406                 copied = status;
2407
2408                 cond_resched();
2409
2410                 iov_iter_advance(i, copied);
2411                 if (unlikely(copied == 0)) {
2412                         /*
2413                          * If we were unable to copy any data at all, we must
2414                          * fall back to a single segment length write.
2415                          *
2416                          * If we didn't fallback here, we could livelock
2417                          * because not all segments in the iov can be copied at
2418                          * once without a pagefault.
2419                          */
2420                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2421                                                 iov_iter_single_seg_count(i));
2422                         goto again;
2423                 }
2424                 pos += copied;
2425                 written += copied;
2426
2427                 balance_dirty_pages_ratelimited(mapping);
2428
2429         } while (iov_iter_count(i));
2430
2431         return written ? written : status;
2432 }
2433
2434 ssize_t
2435 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2436                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2437                 size_t count, ssize_t written)
2438 {
2439         struct file *file = iocb->ki_filp;
2440         ssize_t status;
2441         struct iov_iter i;
2442
2443         iov_iter_init(&i, iov, nr_segs, count, written);
2444         status = generic_perform_write(file, &i, pos);
2445
2446         if (likely(status >= 0)) {
2447                 written += status;
2448                 *ppos = pos + status;
2449         }
2450         
2451         return written ? written : status;
2452 }
2453 EXPORT_SYMBOL(generic_file_buffered_write);
2454
2455 /**
2456  * __generic_file_aio_write - write data to a file
2457  * @iocb:       IO state structure (file, offset, etc.)
2458  * @iov:        vector with data to write
2459  * @nr_segs:    number of segments in the vector
2460  * @ppos:       position where to write
2461  *
2462  * This function does all the work needed for actually writing data to a
2463  * file. It does all basic checks, removes SUID from the file, updates
2464  * modification times and calls proper subroutines depending on whether we
2465  * do direct IO or a standard buffered write.
2466  *
2467  * It expects i_mutex to be grabbed unless we work on a block device or similar
2468  * object which does not need locking at all.
2469  *
2470  * This function does *not* take care of syncing data in case of O_SYNC write.
2471  * A caller has to handle it. This is mainly due to the fact that we want to
2472  * avoid syncing under i_mutex.
2473  */
2474 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2475                                  unsigned long nr_segs, loff_t *ppos)
2476 {
2477         struct file *file = iocb->ki_filp;
2478         struct address_space * mapping = file->f_mapping;
2479         size_t ocount;          /* original count */
2480         size_t count;           /* after file limit checks */
2481         struct inode    *inode = mapping->host;
2482         loff_t          pos;
2483         ssize_t         written;
2484         ssize_t         err;
2485
2486         ocount = 0;
2487         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2488         if (err)
2489                 return err;
2490
2491         count = ocount;
2492         pos = *ppos;
2493
2494         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2495
2496         /* We can write back this queue in page reclaim */
2497         current->backing_dev_info = mapping->backing_dev_info;
2498         written = 0;
2499
2500         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2501         if (err)
2502                 goto out;
2503
2504         if (count == 0)
2505                 goto out;
2506
2507         err = file_remove_suid(file);
2508         if (err)
2509                 goto out;
2510
2511         file_update_time(file);
2512
2513         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2514         if (unlikely(file->f_flags & O_DIRECT)) {
2515                 loff_t endbyte;
2516                 ssize_t written_buffered;
2517
2518                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2519                                                         ppos, count, ocount);
2520                 if (written < 0 || written == count)
2521                         goto out;
2522                 /*
2523                  * direct-io write to a hole: fall through to buffered I/O
2524                  * for completing the rest of the request.
2525                  */
2526                 pos += written;
2527                 count -= written;
2528                 written_buffered = generic_file_buffered_write(iocb, iov,
2529                                                 nr_segs, pos, ppos, count,
2530                                                 written);
2531                 /*
2532                  * If generic_file_buffered_write() retuned a synchronous error
2533                  * then we want to return the number of bytes which were
2534                  * direct-written, or the error code if that was zero.  Note
2535                  * that this differs from normal direct-io semantics, which
2536                  * will return -EFOO even if some bytes were written.
2537                  */
2538                 if (written_buffered < 0) {
2539                         err = written_buffered;
2540                         goto out;
2541                 }
2542
2543                 /*
2544                  * We need to ensure that the page cache pages are written to
2545                  * disk and invalidated to preserve the expected O_DIRECT
2546                  * semantics.
2547                  */
2548                 endbyte = pos + written_buffered - written - 1;
2549                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2550                 if (err == 0) {
2551                         written = written_buffered;
2552                         invalidate_mapping_pages(mapping,
2553                                                  pos >> PAGE_CACHE_SHIFT,
2554                                                  endbyte >> PAGE_CACHE_SHIFT);
2555                 } else {
2556                         /*
2557                          * We don't know how much we wrote, so just return
2558                          * the number of bytes which were direct-written
2559                          */
2560                 }
2561         } else {
2562                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2563                                 pos, ppos, count, written);
2564         }
2565 out:
2566         current->backing_dev_info = NULL;
2567         return written ? written : err;
2568 }
2569 EXPORT_SYMBOL(__generic_file_aio_write);
2570
2571 /**
2572  * generic_file_aio_write - write data to a file
2573  * @iocb:       IO state structure
2574  * @iov:        vector with data to write
2575  * @nr_segs:    number of segments in the vector
2576  * @pos:        position in file where to write
2577  *
2578  * This is a wrapper around __generic_file_aio_write() to be used by most
2579  * filesystems. It takes care of syncing the file in case of O_SYNC file
2580  * and acquires i_mutex as needed.
2581  */
2582 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2583                 unsigned long nr_segs, loff_t pos)
2584 {
2585         struct file *file = iocb->ki_filp;
2586         struct inode *inode = file->f_mapping->host;
2587         struct blk_plug plug;
2588         ssize_t ret;
2589
2590         BUG_ON(iocb->ki_pos != pos);
2591
2592         mutex_lock(&inode->i_mutex);
2593         blk_start_plug(&plug);
2594         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2595         mutex_unlock(&inode->i_mutex);
2596
2597         if (ret > 0 || ret == -EIOCBQUEUED) {
2598                 ssize_t err;
2599
2600                 err = generic_write_sync(file, pos, ret);
2601                 if (err < 0 && ret > 0)
2602                         ret = err;
2603         }
2604         blk_finish_plug(&plug);
2605         return ret;
2606 }
2607 EXPORT_SYMBOL(generic_file_aio_write);
2608
2609 /**
2610  * try_to_release_page() - release old fs-specific metadata on a page
2611  *
2612  * @page: the page which the kernel is trying to free
2613  * @gfp_mask: memory allocation flags (and I/O mode)
2614  *
2615  * The address_space is to try to release any data against the page
2616  * (presumably at page->private).  If the release was successful, return `1'.
2617  * Otherwise return zero.
2618  *
2619  * This may also be called if PG_fscache is set on a page, indicating that the
2620  * page is known to the local caching routines.
2621  *
2622  * The @gfp_mask argument specifies whether I/O may be performed to release
2623  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2624  *
2625  */
2626 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2627 {
2628         struct address_space * const mapping = page->mapping;
2629
2630         BUG_ON(!PageLocked(page));
2631         if (PageWriteback(page))
2632                 return 0;
2633
2634         if (mapping && mapping->a_ops->releasepage)
2635                 return mapping->a_ops->releasepage(page, gfp_mask);
2636         return try_to_free_buffers(page);
2637 }
2638
2639 EXPORT_SYMBOL(try_to_release_page);