]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/filemap.c
Merge tag 'mac80211-for-davem-2017-07-07' of git://git.kernel.org/pub/scm/linux/kerne...
[karo-tx-linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem              (truncate_pagecache)
67  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock             (exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
77  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page               (access_process_vm)
81  *
82  *  ->i_mutex                   (generic_perform_write)
83  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock                   (fs/fs-writeback.c)
87  *    ->mapping->tree_lock      (__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->tree_lock               (try_to_unmap_one)
99  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
108  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115                                   struct page *page, void **shadowp)
116 {
117         struct radix_tree_node *node;
118         void **slot;
119         int error;
120
121         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122                                     &node, &slot);
123         if (error)
124                 return error;
125         if (*slot) {
126                 void *p;
127
128                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129                 if (!radix_tree_exceptional_entry(p))
130                         return -EEXIST;
131
132                 mapping->nrexceptional--;
133                 if (!dax_mapping(mapping)) {
134                         if (shadowp)
135                                 *shadowp = p;
136                 } else {
137                         /* DAX can replace empty locked entry with a hole */
138                         WARN_ON_ONCE(p !=
139                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140                         /* Wakeup waiters for exceptional entry lock */
141                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
142                                                       true);
143                 }
144         }
145         __radix_tree_replace(&mapping->page_tree, node, slot, page,
146                              workingset_update_node, mapping);
147         mapping->nrpages++;
148         return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152                                    struct page *page, void *shadow)
153 {
154         int i, nr;
155
156         /* hugetlb pages are represented by one entry in the radix tree */
157         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159         VM_BUG_ON_PAGE(!PageLocked(page), page);
160         VM_BUG_ON_PAGE(PageTail(page), page);
161         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163         for (i = 0; i < nr; i++) {
164                 struct radix_tree_node *node;
165                 void **slot;
166
167                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168                                     &node, &slot);
169
170                 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174                                      workingset_update_node, mapping);
175         }
176
177         if (shadow) {
178                 mapping->nrexceptional += nr;
179                 /*
180                  * Make sure the nrexceptional update is committed before
181                  * the nrpages update so that final truncate racing
182                  * with reclaim does not see both counters 0 at the
183                  * same time and miss a shadow entry.
184                  */
185                 smp_wmb();
186         }
187         mapping->nrpages -= nr;
188 }
189
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197         struct address_space *mapping = page->mapping;
198         int nr = hpage_nr_pages(page);
199
200         trace_mm_filemap_delete_from_page_cache(page);
201         /*
202          * if we're uptodate, flush out into the cleancache, otherwise
203          * invalidate any existing cleancache entries.  We can't leave
204          * stale data around in the cleancache once our page is gone
205          */
206         if (PageUptodate(page) && PageMappedToDisk(page))
207                 cleancache_put_page(page);
208         else
209                 cleancache_invalidate_page(mapping, page);
210
211         VM_BUG_ON_PAGE(PageTail(page), page);
212         VM_BUG_ON_PAGE(page_mapped(page), page);
213         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214                 int mapcount;
215
216                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217                          current->comm, page_to_pfn(page));
218                 dump_page(page, "still mapped when deleted");
219                 dump_stack();
220                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222                 mapcount = page_mapcount(page);
223                 if (mapping_exiting(mapping) &&
224                     page_count(page) >= mapcount + 2) {
225                         /*
226                          * All vmas have already been torn down, so it's
227                          * a good bet that actually the page is unmapped,
228                          * and we'd prefer not to leak it: if we're wrong,
229                          * some other bad page check should catch it later.
230                          */
231                         page_mapcount_reset(page);
232                         page_ref_sub(page, mapcount);
233                 }
234         }
235
236         page_cache_tree_delete(mapping, page, shadow);
237
238         page->mapping = NULL;
239         /* Leave page->index set: truncation lookup relies upon it */
240
241         /* hugetlb pages do not participate in page cache accounting. */
242         if (!PageHuge(page))
243                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
244         if (PageSwapBacked(page)) {
245                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
246                 if (PageTransHuge(page))
247                         __dec_node_page_state(page, NR_SHMEM_THPS);
248         } else {
249                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250         }
251
252         /*
253          * At this point page must be either written or cleaned by truncate.
254          * Dirty page here signals a bug and loss of unwritten data.
255          *
256          * This fixes dirty accounting after removing the page entirely but
257          * leaves PageDirty set: it has no effect for truncated page and
258          * anyway will be cleared before returning page into buddy allocator.
259          */
260         if (WARN_ON_ONCE(PageDirty(page)))
261                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
262 }
263
264 /**
265  * delete_from_page_cache - delete page from page cache
266  * @page: the page which the kernel is trying to remove from page cache
267  *
268  * This must be called only on pages that have been verified to be in the page
269  * cache and locked.  It will never put the page into the free list, the caller
270  * has a reference on the page.
271  */
272 void delete_from_page_cache(struct page *page)
273 {
274         struct address_space *mapping = page_mapping(page);
275         unsigned long flags;
276         void (*freepage)(struct page *);
277
278         BUG_ON(!PageLocked(page));
279
280         freepage = mapping->a_ops->freepage;
281
282         spin_lock_irqsave(&mapping->tree_lock, flags);
283         __delete_from_page_cache(page, NULL);
284         spin_unlock_irqrestore(&mapping->tree_lock, flags);
285
286         if (freepage)
287                 freepage(page);
288
289         if (PageTransHuge(page) && !PageHuge(page)) {
290                 page_ref_sub(page, HPAGE_PMD_NR);
291                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292         } else {
293                 put_page(page);
294         }
295 }
296 EXPORT_SYMBOL(delete_from_page_cache);
297
298 int filemap_check_errors(struct address_space *mapping)
299 {
300         int ret = 0;
301         /* Check for outstanding write errors */
302         if (test_bit(AS_ENOSPC, &mapping->flags) &&
303             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304                 ret = -ENOSPC;
305         if (test_bit(AS_EIO, &mapping->flags) &&
306             test_and_clear_bit(AS_EIO, &mapping->flags))
307                 ret = -EIO;
308         return ret;
309 }
310 EXPORT_SYMBOL(filemap_check_errors);
311
312 /**
313  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
314  * @mapping:    address space structure to write
315  * @start:      offset in bytes where the range starts
316  * @end:        offset in bytes where the range ends (inclusive)
317  * @sync_mode:  enable synchronous operation
318  *
319  * Start writeback against all of a mapping's dirty pages that lie
320  * within the byte offsets <start, end> inclusive.
321  *
322  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
323  * opposed to a regular memory cleansing writeback.  The difference between
324  * these two operations is that if a dirty page/buffer is encountered, it must
325  * be waited upon, and not just skipped over.
326  */
327 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
328                                 loff_t end, int sync_mode)
329 {
330         int ret;
331         struct writeback_control wbc = {
332                 .sync_mode = sync_mode,
333                 .nr_to_write = LONG_MAX,
334                 .range_start = start,
335                 .range_end = end,
336         };
337
338         if (!mapping_cap_writeback_dirty(mapping))
339                 return 0;
340
341         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
342         ret = do_writepages(mapping, &wbc);
343         wbc_detach_inode(&wbc);
344         return ret;
345 }
346
347 static inline int __filemap_fdatawrite(struct address_space *mapping,
348         int sync_mode)
349 {
350         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
351 }
352
353 int filemap_fdatawrite(struct address_space *mapping)
354 {
355         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
356 }
357 EXPORT_SYMBOL(filemap_fdatawrite);
358
359 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
360                                 loff_t end)
361 {
362         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
363 }
364 EXPORT_SYMBOL(filemap_fdatawrite_range);
365
366 /**
367  * filemap_flush - mostly a non-blocking flush
368  * @mapping:    target address_space
369  *
370  * This is a mostly non-blocking flush.  Not suitable for data-integrity
371  * purposes - I/O may not be started against all dirty pages.
372  */
373 int filemap_flush(struct address_space *mapping)
374 {
375         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
376 }
377 EXPORT_SYMBOL(filemap_flush);
378
379 /**
380  * filemap_range_has_page - check if a page exists in range.
381  * @mapping:           address space within which to check
382  * @start_byte:        offset in bytes where the range starts
383  * @end_byte:          offset in bytes where the range ends (inclusive)
384  *
385  * Find at least one page in the range supplied, usually used to check if
386  * direct writing in this range will trigger a writeback.
387  */
388 bool filemap_range_has_page(struct address_space *mapping,
389                            loff_t start_byte, loff_t end_byte)
390 {
391         pgoff_t index = start_byte >> PAGE_SHIFT;
392         pgoff_t end = end_byte >> PAGE_SHIFT;
393         struct pagevec pvec;
394         bool ret;
395
396         if (end_byte < start_byte)
397                 return false;
398
399         if (mapping->nrpages == 0)
400                 return false;
401
402         pagevec_init(&pvec, 0);
403         if (!pagevec_lookup(&pvec, mapping, index, 1))
404                 return false;
405         ret = (pvec.pages[0]->index <= end);
406         pagevec_release(&pvec);
407         return ret;
408 }
409 EXPORT_SYMBOL(filemap_range_has_page);
410
411 static int __filemap_fdatawait_range(struct address_space *mapping,
412                                      loff_t start_byte, loff_t end_byte)
413 {
414         pgoff_t index = start_byte >> PAGE_SHIFT;
415         pgoff_t end = end_byte >> PAGE_SHIFT;
416         struct pagevec pvec;
417         int nr_pages;
418         int ret = 0;
419
420         if (end_byte < start_byte)
421                 goto out;
422
423         pagevec_init(&pvec, 0);
424         while ((index <= end) &&
425                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
426                         PAGECACHE_TAG_WRITEBACK,
427                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
428                 unsigned i;
429
430                 for (i = 0; i < nr_pages; i++) {
431                         struct page *page = pvec.pages[i];
432
433                         /* until radix tree lookup accepts end_index */
434                         if (page->index > end)
435                                 continue;
436
437                         wait_on_page_writeback(page);
438                         if (TestClearPageError(page))
439                                 ret = -EIO;
440                 }
441                 pagevec_release(&pvec);
442                 cond_resched();
443         }
444 out:
445         return ret;
446 }
447
448 /**
449  * filemap_fdatawait_range - wait for writeback to complete
450  * @mapping:            address space structure to wait for
451  * @start_byte:         offset in bytes where the range starts
452  * @end_byte:           offset in bytes where the range ends (inclusive)
453  *
454  * Walk the list of under-writeback pages of the given address space
455  * in the given range and wait for all of them.  Check error status of
456  * the address space and return it.
457  *
458  * Since the error status of the address space is cleared by this function,
459  * callers are responsible for checking the return value and handling and/or
460  * reporting the error.
461  */
462 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
463                             loff_t end_byte)
464 {
465         int ret, ret2;
466
467         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
468         ret2 = filemap_check_errors(mapping);
469         if (!ret)
470                 ret = ret2;
471
472         return ret;
473 }
474 EXPORT_SYMBOL(filemap_fdatawait_range);
475
476 /**
477  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
478  * @mapping: address space structure to wait for
479  *
480  * Walk the list of under-writeback pages of the given address space
481  * and wait for all of them.  Unlike filemap_fdatawait(), this function
482  * does not clear error status of the address space.
483  *
484  * Use this function if callers don't handle errors themselves.  Expected
485  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
486  * fsfreeze(8)
487  */
488 void filemap_fdatawait_keep_errors(struct address_space *mapping)
489 {
490         loff_t i_size = i_size_read(mapping->host);
491
492         if (i_size == 0)
493                 return;
494
495         __filemap_fdatawait_range(mapping, 0, i_size - 1);
496 }
497
498 /**
499  * filemap_fdatawait - wait for all under-writeback pages to complete
500  * @mapping: address space structure to wait for
501  *
502  * Walk the list of under-writeback pages of the given address space
503  * and wait for all of them.  Check error status of the address space
504  * and return it.
505  *
506  * Since the error status of the address space is cleared by this function,
507  * callers are responsible for checking the return value and handling and/or
508  * reporting the error.
509  */
510 int filemap_fdatawait(struct address_space *mapping)
511 {
512         loff_t i_size = i_size_read(mapping->host);
513
514         if (i_size == 0)
515                 return 0;
516
517         return filemap_fdatawait_range(mapping, 0, i_size - 1);
518 }
519 EXPORT_SYMBOL(filemap_fdatawait);
520
521 int filemap_write_and_wait(struct address_space *mapping)
522 {
523         int err = 0;
524
525         if ((!dax_mapping(mapping) && mapping->nrpages) ||
526             (dax_mapping(mapping) && mapping->nrexceptional)) {
527                 err = filemap_fdatawrite(mapping);
528                 /*
529                  * Even if the above returned error, the pages may be
530                  * written partially (e.g. -ENOSPC), so we wait for it.
531                  * But the -EIO is special case, it may indicate the worst
532                  * thing (e.g. bug) happened, so we avoid waiting for it.
533                  */
534                 if (err != -EIO) {
535                         int err2 = filemap_fdatawait(mapping);
536                         if (!err)
537                                 err = err2;
538                 }
539         } else {
540                 err = filemap_check_errors(mapping);
541         }
542         return err;
543 }
544 EXPORT_SYMBOL(filemap_write_and_wait);
545
546 /**
547  * filemap_write_and_wait_range - write out & wait on a file range
548  * @mapping:    the address_space for the pages
549  * @lstart:     offset in bytes where the range starts
550  * @lend:       offset in bytes where the range ends (inclusive)
551  *
552  * Write out and wait upon file offsets lstart->lend, inclusive.
553  *
554  * Note that @lend is inclusive (describes the last byte to be written) so
555  * that this function can be used to write to the very end-of-file (end = -1).
556  */
557 int filemap_write_and_wait_range(struct address_space *mapping,
558                                  loff_t lstart, loff_t lend)
559 {
560         int err = 0;
561
562         if ((!dax_mapping(mapping) && mapping->nrpages) ||
563             (dax_mapping(mapping) && mapping->nrexceptional)) {
564                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
565                                                  WB_SYNC_ALL);
566                 /* See comment of filemap_write_and_wait() */
567                 if (err != -EIO) {
568                         int err2 = filemap_fdatawait_range(mapping,
569                                                 lstart, lend);
570                         if (!err)
571                                 err = err2;
572                 }
573         } else {
574                 err = filemap_check_errors(mapping);
575         }
576         return err;
577 }
578 EXPORT_SYMBOL(filemap_write_and_wait_range);
579
580 /**
581  * replace_page_cache_page - replace a pagecache page with a new one
582  * @old:        page to be replaced
583  * @new:        page to replace with
584  * @gfp_mask:   allocation mode
585  *
586  * This function replaces a page in the pagecache with a new one.  On
587  * success it acquires the pagecache reference for the new page and
588  * drops it for the old page.  Both the old and new pages must be
589  * locked.  This function does not add the new page to the LRU, the
590  * caller must do that.
591  *
592  * The remove + add is atomic.  The only way this function can fail is
593  * memory allocation failure.
594  */
595 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
596 {
597         int error;
598
599         VM_BUG_ON_PAGE(!PageLocked(old), old);
600         VM_BUG_ON_PAGE(!PageLocked(new), new);
601         VM_BUG_ON_PAGE(new->mapping, new);
602
603         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
604         if (!error) {
605                 struct address_space *mapping = old->mapping;
606                 void (*freepage)(struct page *);
607                 unsigned long flags;
608
609                 pgoff_t offset = old->index;
610                 freepage = mapping->a_ops->freepage;
611
612                 get_page(new);
613                 new->mapping = mapping;
614                 new->index = offset;
615
616                 spin_lock_irqsave(&mapping->tree_lock, flags);
617                 __delete_from_page_cache(old, NULL);
618                 error = page_cache_tree_insert(mapping, new, NULL);
619                 BUG_ON(error);
620
621                 /*
622                  * hugetlb pages do not participate in page cache accounting.
623                  */
624                 if (!PageHuge(new))
625                         __inc_node_page_state(new, NR_FILE_PAGES);
626                 if (PageSwapBacked(new))
627                         __inc_node_page_state(new, NR_SHMEM);
628                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
629                 mem_cgroup_migrate(old, new);
630                 radix_tree_preload_end();
631                 if (freepage)
632                         freepage(old);
633                 put_page(old);
634         }
635
636         return error;
637 }
638 EXPORT_SYMBOL_GPL(replace_page_cache_page);
639
640 static int __add_to_page_cache_locked(struct page *page,
641                                       struct address_space *mapping,
642                                       pgoff_t offset, gfp_t gfp_mask,
643                                       void **shadowp)
644 {
645         int huge = PageHuge(page);
646         struct mem_cgroup *memcg;
647         int error;
648
649         VM_BUG_ON_PAGE(!PageLocked(page), page);
650         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
651
652         if (!huge) {
653                 error = mem_cgroup_try_charge(page, current->mm,
654                                               gfp_mask, &memcg, false);
655                 if (error)
656                         return error;
657         }
658
659         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
660         if (error) {
661                 if (!huge)
662                         mem_cgroup_cancel_charge(page, memcg, false);
663                 return error;
664         }
665
666         get_page(page);
667         page->mapping = mapping;
668         page->index = offset;
669
670         spin_lock_irq(&mapping->tree_lock);
671         error = page_cache_tree_insert(mapping, page, shadowp);
672         radix_tree_preload_end();
673         if (unlikely(error))
674                 goto err_insert;
675
676         /* hugetlb pages do not participate in page cache accounting. */
677         if (!huge)
678                 __inc_node_page_state(page, NR_FILE_PAGES);
679         spin_unlock_irq(&mapping->tree_lock);
680         if (!huge)
681                 mem_cgroup_commit_charge(page, memcg, false, false);
682         trace_mm_filemap_add_to_page_cache(page);
683         return 0;
684 err_insert:
685         page->mapping = NULL;
686         /* Leave page->index set: truncation relies upon it */
687         spin_unlock_irq(&mapping->tree_lock);
688         if (!huge)
689                 mem_cgroup_cancel_charge(page, memcg, false);
690         put_page(page);
691         return error;
692 }
693
694 /**
695  * add_to_page_cache_locked - add a locked page to the pagecache
696  * @page:       page to add
697  * @mapping:    the page's address_space
698  * @offset:     page index
699  * @gfp_mask:   page allocation mode
700  *
701  * This function is used to add a page to the pagecache. It must be locked.
702  * This function does not add the page to the LRU.  The caller must do that.
703  */
704 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
705                 pgoff_t offset, gfp_t gfp_mask)
706 {
707         return __add_to_page_cache_locked(page, mapping, offset,
708                                           gfp_mask, NULL);
709 }
710 EXPORT_SYMBOL(add_to_page_cache_locked);
711
712 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
713                                 pgoff_t offset, gfp_t gfp_mask)
714 {
715         void *shadow = NULL;
716         int ret;
717
718         __SetPageLocked(page);
719         ret = __add_to_page_cache_locked(page, mapping, offset,
720                                          gfp_mask, &shadow);
721         if (unlikely(ret))
722                 __ClearPageLocked(page);
723         else {
724                 /*
725                  * The page might have been evicted from cache only
726                  * recently, in which case it should be activated like
727                  * any other repeatedly accessed page.
728                  * The exception is pages getting rewritten; evicting other
729                  * data from the working set, only to cache data that will
730                  * get overwritten with something else, is a waste of memory.
731                  */
732                 if (!(gfp_mask & __GFP_WRITE) &&
733                     shadow && workingset_refault(shadow)) {
734                         SetPageActive(page);
735                         workingset_activation(page);
736                 } else
737                         ClearPageActive(page);
738                 lru_cache_add(page);
739         }
740         return ret;
741 }
742 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
743
744 #ifdef CONFIG_NUMA
745 struct page *__page_cache_alloc(gfp_t gfp)
746 {
747         int n;
748         struct page *page;
749
750         if (cpuset_do_page_mem_spread()) {
751                 unsigned int cpuset_mems_cookie;
752                 do {
753                         cpuset_mems_cookie = read_mems_allowed_begin();
754                         n = cpuset_mem_spread_node();
755                         page = __alloc_pages_node(n, gfp, 0);
756                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
757
758                 return page;
759         }
760         return alloc_pages(gfp, 0);
761 }
762 EXPORT_SYMBOL(__page_cache_alloc);
763 #endif
764
765 /*
766  * In order to wait for pages to become available there must be
767  * waitqueues associated with pages. By using a hash table of
768  * waitqueues where the bucket discipline is to maintain all
769  * waiters on the same queue and wake all when any of the pages
770  * become available, and for the woken contexts to check to be
771  * sure the appropriate page became available, this saves space
772  * at a cost of "thundering herd" phenomena during rare hash
773  * collisions.
774  */
775 #define PAGE_WAIT_TABLE_BITS 8
776 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
777 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
778
779 static wait_queue_head_t *page_waitqueue(struct page *page)
780 {
781         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
782 }
783
784 void __init pagecache_init(void)
785 {
786         int i;
787
788         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
789                 init_waitqueue_head(&page_wait_table[i]);
790
791         page_writeback_init();
792 }
793
794 struct wait_page_key {
795         struct page *page;
796         int bit_nr;
797         int page_match;
798 };
799
800 struct wait_page_queue {
801         struct page *page;
802         int bit_nr;
803         wait_queue_entry_t wait;
804 };
805
806 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
807 {
808         struct wait_page_key *key = arg;
809         struct wait_page_queue *wait_page
810                 = container_of(wait, struct wait_page_queue, wait);
811
812         if (wait_page->page != key->page)
813                return 0;
814         key->page_match = 1;
815
816         if (wait_page->bit_nr != key->bit_nr)
817                 return 0;
818         if (test_bit(key->bit_nr, &key->page->flags))
819                 return 0;
820
821         return autoremove_wake_function(wait, mode, sync, key);
822 }
823
824 static void wake_up_page_bit(struct page *page, int bit_nr)
825 {
826         wait_queue_head_t *q = page_waitqueue(page);
827         struct wait_page_key key;
828         unsigned long flags;
829
830         key.page = page;
831         key.bit_nr = bit_nr;
832         key.page_match = 0;
833
834         spin_lock_irqsave(&q->lock, flags);
835         __wake_up_locked_key(q, TASK_NORMAL, &key);
836         /*
837          * It is possible for other pages to have collided on the waitqueue
838          * hash, so in that case check for a page match. That prevents a long-
839          * term waiter
840          *
841          * It is still possible to miss a case here, when we woke page waiters
842          * and removed them from the waitqueue, but there are still other
843          * page waiters.
844          */
845         if (!waitqueue_active(q) || !key.page_match) {
846                 ClearPageWaiters(page);
847                 /*
848                  * It's possible to miss clearing Waiters here, when we woke
849                  * our page waiters, but the hashed waitqueue has waiters for
850                  * other pages on it.
851                  *
852                  * That's okay, it's a rare case. The next waker will clear it.
853                  */
854         }
855         spin_unlock_irqrestore(&q->lock, flags);
856 }
857
858 static void wake_up_page(struct page *page, int bit)
859 {
860         if (!PageWaiters(page))
861                 return;
862         wake_up_page_bit(page, bit);
863 }
864
865 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
866                 struct page *page, int bit_nr, int state, bool lock)
867 {
868         struct wait_page_queue wait_page;
869         wait_queue_entry_t *wait = &wait_page.wait;
870         int ret = 0;
871
872         init_wait(wait);
873         wait->func = wake_page_function;
874         wait_page.page = page;
875         wait_page.bit_nr = bit_nr;
876
877         for (;;) {
878                 spin_lock_irq(&q->lock);
879
880                 if (likely(list_empty(&wait->entry))) {
881                         if (lock)
882                                 __add_wait_queue_entry_tail_exclusive(q, wait);
883                         else
884                                 __add_wait_queue(q, wait);
885                         SetPageWaiters(page);
886                 }
887
888                 set_current_state(state);
889
890                 spin_unlock_irq(&q->lock);
891
892                 if (likely(test_bit(bit_nr, &page->flags))) {
893                         io_schedule();
894                         if (unlikely(signal_pending_state(state, current))) {
895                                 ret = -EINTR;
896                                 break;
897                         }
898                 }
899
900                 if (lock) {
901                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
902                                 break;
903                 } else {
904                         if (!test_bit(bit_nr, &page->flags))
905                                 break;
906                 }
907         }
908
909         finish_wait(q, wait);
910
911         /*
912          * A signal could leave PageWaiters set. Clearing it here if
913          * !waitqueue_active would be possible (by open-coding finish_wait),
914          * but still fail to catch it in the case of wait hash collision. We
915          * already can fail to clear wait hash collision cases, so don't
916          * bother with signals either.
917          */
918
919         return ret;
920 }
921
922 void wait_on_page_bit(struct page *page, int bit_nr)
923 {
924         wait_queue_head_t *q = page_waitqueue(page);
925         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
926 }
927 EXPORT_SYMBOL(wait_on_page_bit);
928
929 int wait_on_page_bit_killable(struct page *page, int bit_nr)
930 {
931         wait_queue_head_t *q = page_waitqueue(page);
932         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
933 }
934
935 /**
936  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
937  * @page: Page defining the wait queue of interest
938  * @waiter: Waiter to add to the queue
939  *
940  * Add an arbitrary @waiter to the wait queue for the nominated @page.
941  */
942 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
943 {
944         wait_queue_head_t *q = page_waitqueue(page);
945         unsigned long flags;
946
947         spin_lock_irqsave(&q->lock, flags);
948         __add_wait_queue(q, waiter);
949         SetPageWaiters(page);
950         spin_unlock_irqrestore(&q->lock, flags);
951 }
952 EXPORT_SYMBOL_GPL(add_page_wait_queue);
953
954 #ifndef clear_bit_unlock_is_negative_byte
955
956 /*
957  * PG_waiters is the high bit in the same byte as PG_lock.
958  *
959  * On x86 (and on many other architectures), we can clear PG_lock and
960  * test the sign bit at the same time. But if the architecture does
961  * not support that special operation, we just do this all by hand
962  * instead.
963  *
964  * The read of PG_waiters has to be after (or concurrently with) PG_locked
965  * being cleared, but a memory barrier should be unneccssary since it is
966  * in the same byte as PG_locked.
967  */
968 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
969 {
970         clear_bit_unlock(nr, mem);
971         /* smp_mb__after_atomic(); */
972         return test_bit(PG_waiters, mem);
973 }
974
975 #endif
976
977 /**
978  * unlock_page - unlock a locked page
979  * @page: the page
980  *
981  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
982  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
983  * mechanism between PageLocked pages and PageWriteback pages is shared.
984  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
985  *
986  * Note that this depends on PG_waiters being the sign bit in the byte
987  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
988  * clear the PG_locked bit and test PG_waiters at the same time fairly
989  * portably (architectures that do LL/SC can test any bit, while x86 can
990  * test the sign bit).
991  */
992 void unlock_page(struct page *page)
993 {
994         BUILD_BUG_ON(PG_waiters != 7);
995         page = compound_head(page);
996         VM_BUG_ON_PAGE(!PageLocked(page), page);
997         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
998                 wake_up_page_bit(page, PG_locked);
999 }
1000 EXPORT_SYMBOL(unlock_page);
1001
1002 /**
1003  * end_page_writeback - end writeback against a page
1004  * @page: the page
1005  */
1006 void end_page_writeback(struct page *page)
1007 {
1008         /*
1009          * TestClearPageReclaim could be used here but it is an atomic
1010          * operation and overkill in this particular case. Failing to
1011          * shuffle a page marked for immediate reclaim is too mild to
1012          * justify taking an atomic operation penalty at the end of
1013          * ever page writeback.
1014          */
1015         if (PageReclaim(page)) {
1016                 ClearPageReclaim(page);
1017                 rotate_reclaimable_page(page);
1018         }
1019
1020         if (!test_clear_page_writeback(page))
1021                 BUG();
1022
1023         smp_mb__after_atomic();
1024         wake_up_page(page, PG_writeback);
1025 }
1026 EXPORT_SYMBOL(end_page_writeback);
1027
1028 /*
1029  * After completing I/O on a page, call this routine to update the page
1030  * flags appropriately
1031  */
1032 void page_endio(struct page *page, bool is_write, int err)
1033 {
1034         if (!is_write) {
1035                 if (!err) {
1036                         SetPageUptodate(page);
1037                 } else {
1038                         ClearPageUptodate(page);
1039                         SetPageError(page);
1040                 }
1041                 unlock_page(page);
1042         } else {
1043                 if (err) {
1044                         struct address_space *mapping;
1045
1046                         SetPageError(page);
1047                         mapping = page_mapping(page);
1048                         if (mapping)
1049                                 mapping_set_error(mapping, err);
1050                 }
1051                 end_page_writeback(page);
1052         }
1053 }
1054 EXPORT_SYMBOL_GPL(page_endio);
1055
1056 /**
1057  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1058  * @__page: the page to lock
1059  */
1060 void __lock_page(struct page *__page)
1061 {
1062         struct page *page = compound_head(__page);
1063         wait_queue_head_t *q = page_waitqueue(page);
1064         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1065 }
1066 EXPORT_SYMBOL(__lock_page);
1067
1068 int __lock_page_killable(struct page *__page)
1069 {
1070         struct page *page = compound_head(__page);
1071         wait_queue_head_t *q = page_waitqueue(page);
1072         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1073 }
1074 EXPORT_SYMBOL_GPL(__lock_page_killable);
1075
1076 /*
1077  * Return values:
1078  * 1 - page is locked; mmap_sem is still held.
1079  * 0 - page is not locked.
1080  *     mmap_sem has been released (up_read()), unless flags had both
1081  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1082  *     which case mmap_sem is still held.
1083  *
1084  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1085  * with the page locked and the mmap_sem unperturbed.
1086  */
1087 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1088                          unsigned int flags)
1089 {
1090         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1091                 /*
1092                  * CAUTION! In this case, mmap_sem is not released
1093                  * even though return 0.
1094                  */
1095                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1096                         return 0;
1097
1098                 up_read(&mm->mmap_sem);
1099                 if (flags & FAULT_FLAG_KILLABLE)
1100                         wait_on_page_locked_killable(page);
1101                 else
1102                         wait_on_page_locked(page);
1103                 return 0;
1104         } else {
1105                 if (flags & FAULT_FLAG_KILLABLE) {
1106                         int ret;
1107
1108                         ret = __lock_page_killable(page);
1109                         if (ret) {
1110                                 up_read(&mm->mmap_sem);
1111                                 return 0;
1112                         }
1113                 } else
1114                         __lock_page(page);
1115                 return 1;
1116         }
1117 }
1118
1119 /**
1120  * page_cache_next_hole - find the next hole (not-present entry)
1121  * @mapping: mapping
1122  * @index: index
1123  * @max_scan: maximum range to search
1124  *
1125  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1126  * lowest indexed hole.
1127  *
1128  * Returns: the index of the hole if found, otherwise returns an index
1129  * outside of the set specified (in which case 'return - index >=
1130  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1131  * be returned.
1132  *
1133  * page_cache_next_hole may be called under rcu_read_lock. However,
1134  * like radix_tree_gang_lookup, this will not atomically search a
1135  * snapshot of the tree at a single point in time. For example, if a
1136  * hole is created at index 5, then subsequently a hole is created at
1137  * index 10, page_cache_next_hole covering both indexes may return 10
1138  * if called under rcu_read_lock.
1139  */
1140 pgoff_t page_cache_next_hole(struct address_space *mapping,
1141                              pgoff_t index, unsigned long max_scan)
1142 {
1143         unsigned long i;
1144
1145         for (i = 0; i < max_scan; i++) {
1146                 struct page *page;
1147
1148                 page = radix_tree_lookup(&mapping->page_tree, index);
1149                 if (!page || radix_tree_exceptional_entry(page))
1150                         break;
1151                 index++;
1152                 if (index == 0)
1153                         break;
1154         }
1155
1156         return index;
1157 }
1158 EXPORT_SYMBOL(page_cache_next_hole);
1159
1160 /**
1161  * page_cache_prev_hole - find the prev hole (not-present entry)
1162  * @mapping: mapping
1163  * @index: index
1164  * @max_scan: maximum range to search
1165  *
1166  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1167  * the first hole.
1168  *
1169  * Returns: the index of the hole if found, otherwise returns an index
1170  * outside of the set specified (in which case 'index - return >=
1171  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1172  * will be returned.
1173  *
1174  * page_cache_prev_hole may be called under rcu_read_lock. However,
1175  * like radix_tree_gang_lookup, this will not atomically search a
1176  * snapshot of the tree at a single point in time. For example, if a
1177  * hole is created at index 10, then subsequently a hole is created at
1178  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1179  * called under rcu_read_lock.
1180  */
1181 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1182                              pgoff_t index, unsigned long max_scan)
1183 {
1184         unsigned long i;
1185
1186         for (i = 0; i < max_scan; i++) {
1187                 struct page *page;
1188
1189                 page = radix_tree_lookup(&mapping->page_tree, index);
1190                 if (!page || radix_tree_exceptional_entry(page))
1191                         break;
1192                 index--;
1193                 if (index == ULONG_MAX)
1194                         break;
1195         }
1196
1197         return index;
1198 }
1199 EXPORT_SYMBOL(page_cache_prev_hole);
1200
1201 /**
1202  * find_get_entry - find and get a page cache entry
1203  * @mapping: the address_space to search
1204  * @offset: the page cache index
1205  *
1206  * Looks up the page cache slot at @mapping & @offset.  If there is a
1207  * page cache page, it is returned with an increased refcount.
1208  *
1209  * If the slot holds a shadow entry of a previously evicted page, or a
1210  * swap entry from shmem/tmpfs, it is returned.
1211  *
1212  * Otherwise, %NULL is returned.
1213  */
1214 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1215 {
1216         void **pagep;
1217         struct page *head, *page;
1218
1219         rcu_read_lock();
1220 repeat:
1221         page = NULL;
1222         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1223         if (pagep) {
1224                 page = radix_tree_deref_slot(pagep);
1225                 if (unlikely(!page))
1226                         goto out;
1227                 if (radix_tree_exception(page)) {
1228                         if (radix_tree_deref_retry(page))
1229                                 goto repeat;
1230                         /*
1231                          * A shadow entry of a recently evicted page,
1232                          * or a swap entry from shmem/tmpfs.  Return
1233                          * it without attempting to raise page count.
1234                          */
1235                         goto out;
1236                 }
1237
1238                 head = compound_head(page);
1239                 if (!page_cache_get_speculative(head))
1240                         goto repeat;
1241
1242                 /* The page was split under us? */
1243                 if (compound_head(page) != head) {
1244                         put_page(head);
1245                         goto repeat;
1246                 }
1247
1248                 /*
1249                  * Has the page moved?
1250                  * This is part of the lockless pagecache protocol. See
1251                  * include/linux/pagemap.h for details.
1252                  */
1253                 if (unlikely(page != *pagep)) {
1254                         put_page(head);
1255                         goto repeat;
1256                 }
1257         }
1258 out:
1259         rcu_read_unlock();
1260
1261         return page;
1262 }
1263 EXPORT_SYMBOL(find_get_entry);
1264
1265 /**
1266  * find_lock_entry - locate, pin and lock a page cache entry
1267  * @mapping: the address_space to search
1268  * @offset: the page cache index
1269  *
1270  * Looks up the page cache slot at @mapping & @offset.  If there is a
1271  * page cache page, it is returned locked and with an increased
1272  * refcount.
1273  *
1274  * If the slot holds a shadow entry of a previously evicted page, or a
1275  * swap entry from shmem/tmpfs, it is returned.
1276  *
1277  * Otherwise, %NULL is returned.
1278  *
1279  * find_lock_entry() may sleep.
1280  */
1281 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1282 {
1283         struct page *page;
1284
1285 repeat:
1286         page = find_get_entry(mapping, offset);
1287         if (page && !radix_tree_exception(page)) {
1288                 lock_page(page);
1289                 /* Has the page been truncated? */
1290                 if (unlikely(page_mapping(page) != mapping)) {
1291                         unlock_page(page);
1292                         put_page(page);
1293                         goto repeat;
1294                 }
1295                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1296         }
1297         return page;
1298 }
1299 EXPORT_SYMBOL(find_lock_entry);
1300
1301 /**
1302  * pagecache_get_page - find and get a page reference
1303  * @mapping: the address_space to search
1304  * @offset: the page index
1305  * @fgp_flags: PCG flags
1306  * @gfp_mask: gfp mask to use for the page cache data page allocation
1307  *
1308  * Looks up the page cache slot at @mapping & @offset.
1309  *
1310  * PCG flags modify how the page is returned.
1311  *
1312  * @fgp_flags can be:
1313  *
1314  * - FGP_ACCESSED: the page will be marked accessed
1315  * - FGP_LOCK: Page is return locked
1316  * - FGP_CREAT: If page is not present then a new page is allocated using
1317  *   @gfp_mask and added to the page cache and the VM's LRU
1318  *   list. The page is returned locked and with an increased
1319  *   refcount. Otherwise, NULL is returned.
1320  *
1321  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1322  * if the GFP flags specified for FGP_CREAT are atomic.
1323  *
1324  * If there is a page cache page, it is returned with an increased refcount.
1325  */
1326 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1327         int fgp_flags, gfp_t gfp_mask)
1328 {
1329         struct page *page;
1330
1331 repeat:
1332         page = find_get_entry(mapping, offset);
1333         if (radix_tree_exceptional_entry(page))
1334                 page = NULL;
1335         if (!page)
1336                 goto no_page;
1337
1338         if (fgp_flags & FGP_LOCK) {
1339                 if (fgp_flags & FGP_NOWAIT) {
1340                         if (!trylock_page(page)) {
1341                                 put_page(page);
1342                                 return NULL;
1343                         }
1344                 } else {
1345                         lock_page(page);
1346                 }
1347
1348                 /* Has the page been truncated? */
1349                 if (unlikely(page->mapping != mapping)) {
1350                         unlock_page(page);
1351                         put_page(page);
1352                         goto repeat;
1353                 }
1354                 VM_BUG_ON_PAGE(page->index != offset, page);
1355         }
1356
1357         if (page && (fgp_flags & FGP_ACCESSED))
1358                 mark_page_accessed(page);
1359
1360 no_page:
1361         if (!page && (fgp_flags & FGP_CREAT)) {
1362                 int err;
1363                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1364                         gfp_mask |= __GFP_WRITE;
1365                 if (fgp_flags & FGP_NOFS)
1366                         gfp_mask &= ~__GFP_FS;
1367
1368                 page = __page_cache_alloc(gfp_mask);
1369                 if (!page)
1370                         return NULL;
1371
1372                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1373                         fgp_flags |= FGP_LOCK;
1374
1375                 /* Init accessed so avoid atomic mark_page_accessed later */
1376                 if (fgp_flags & FGP_ACCESSED)
1377                         __SetPageReferenced(page);
1378
1379                 err = add_to_page_cache_lru(page, mapping, offset,
1380                                 gfp_mask & GFP_RECLAIM_MASK);
1381                 if (unlikely(err)) {
1382                         put_page(page);
1383                         page = NULL;
1384                         if (err == -EEXIST)
1385                                 goto repeat;
1386                 }
1387         }
1388
1389         return page;
1390 }
1391 EXPORT_SYMBOL(pagecache_get_page);
1392
1393 /**
1394  * find_get_entries - gang pagecache lookup
1395  * @mapping:    The address_space to search
1396  * @start:      The starting page cache index
1397  * @nr_entries: The maximum number of entries
1398  * @entries:    Where the resulting entries are placed
1399  * @indices:    The cache indices corresponding to the entries in @entries
1400  *
1401  * find_get_entries() will search for and return a group of up to
1402  * @nr_entries entries in the mapping.  The entries are placed at
1403  * @entries.  find_get_entries() takes a reference against any actual
1404  * pages it returns.
1405  *
1406  * The search returns a group of mapping-contiguous page cache entries
1407  * with ascending indexes.  There may be holes in the indices due to
1408  * not-present pages.
1409  *
1410  * Any shadow entries of evicted pages, or swap entries from
1411  * shmem/tmpfs, are included in the returned array.
1412  *
1413  * find_get_entries() returns the number of pages and shadow entries
1414  * which were found.
1415  */
1416 unsigned find_get_entries(struct address_space *mapping,
1417                           pgoff_t start, unsigned int nr_entries,
1418                           struct page **entries, pgoff_t *indices)
1419 {
1420         void **slot;
1421         unsigned int ret = 0;
1422         struct radix_tree_iter iter;
1423
1424         if (!nr_entries)
1425                 return 0;
1426
1427         rcu_read_lock();
1428         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1429                 struct page *head, *page;
1430 repeat:
1431                 page = radix_tree_deref_slot(slot);
1432                 if (unlikely(!page))
1433                         continue;
1434                 if (radix_tree_exception(page)) {
1435                         if (radix_tree_deref_retry(page)) {
1436                                 slot = radix_tree_iter_retry(&iter);
1437                                 continue;
1438                         }
1439                         /*
1440                          * A shadow entry of a recently evicted page, a swap
1441                          * entry from shmem/tmpfs or a DAX entry.  Return it
1442                          * without attempting to raise page count.
1443                          */
1444                         goto export;
1445                 }
1446
1447                 head = compound_head(page);
1448                 if (!page_cache_get_speculative(head))
1449                         goto repeat;
1450
1451                 /* The page was split under us? */
1452                 if (compound_head(page) != head) {
1453                         put_page(head);
1454                         goto repeat;
1455                 }
1456
1457                 /* Has the page moved? */
1458                 if (unlikely(page != *slot)) {
1459                         put_page(head);
1460                         goto repeat;
1461                 }
1462 export:
1463                 indices[ret] = iter.index;
1464                 entries[ret] = page;
1465                 if (++ret == nr_entries)
1466                         break;
1467         }
1468         rcu_read_unlock();
1469         return ret;
1470 }
1471
1472 /**
1473  * find_get_pages - gang pagecache lookup
1474  * @mapping:    The address_space to search
1475  * @start:      The starting page index
1476  * @nr_pages:   The maximum number of pages
1477  * @pages:      Where the resulting pages are placed
1478  *
1479  * find_get_pages() will search for and return a group of up to
1480  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1481  * find_get_pages() takes a reference against the returned pages.
1482  *
1483  * The search returns a group of mapping-contiguous pages with ascending
1484  * indexes.  There may be holes in the indices due to not-present pages.
1485  *
1486  * find_get_pages() returns the number of pages which were found.
1487  */
1488 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1489                             unsigned int nr_pages, struct page **pages)
1490 {
1491         struct radix_tree_iter iter;
1492         void **slot;
1493         unsigned ret = 0;
1494
1495         if (unlikely(!nr_pages))
1496                 return 0;
1497
1498         rcu_read_lock();
1499         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1500                 struct page *head, *page;
1501 repeat:
1502                 page = radix_tree_deref_slot(slot);
1503                 if (unlikely(!page))
1504                         continue;
1505
1506                 if (radix_tree_exception(page)) {
1507                         if (radix_tree_deref_retry(page)) {
1508                                 slot = radix_tree_iter_retry(&iter);
1509                                 continue;
1510                         }
1511                         /*
1512                          * A shadow entry of a recently evicted page,
1513                          * or a swap entry from shmem/tmpfs.  Skip
1514                          * over it.
1515                          */
1516                         continue;
1517                 }
1518
1519                 head = compound_head(page);
1520                 if (!page_cache_get_speculative(head))
1521                         goto repeat;
1522
1523                 /* The page was split under us? */
1524                 if (compound_head(page) != head) {
1525                         put_page(head);
1526                         goto repeat;
1527                 }
1528
1529                 /* Has the page moved? */
1530                 if (unlikely(page != *slot)) {
1531                         put_page(head);
1532                         goto repeat;
1533                 }
1534
1535                 pages[ret] = page;
1536                 if (++ret == nr_pages)
1537                         break;
1538         }
1539
1540         rcu_read_unlock();
1541         return ret;
1542 }
1543
1544 /**
1545  * find_get_pages_contig - gang contiguous pagecache lookup
1546  * @mapping:    The address_space to search
1547  * @index:      The starting page index
1548  * @nr_pages:   The maximum number of pages
1549  * @pages:      Where the resulting pages are placed
1550  *
1551  * find_get_pages_contig() works exactly like find_get_pages(), except
1552  * that the returned number of pages are guaranteed to be contiguous.
1553  *
1554  * find_get_pages_contig() returns the number of pages which were found.
1555  */
1556 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1557                                unsigned int nr_pages, struct page **pages)
1558 {
1559         struct radix_tree_iter iter;
1560         void **slot;
1561         unsigned int ret = 0;
1562
1563         if (unlikely(!nr_pages))
1564                 return 0;
1565
1566         rcu_read_lock();
1567         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1568                 struct page *head, *page;
1569 repeat:
1570                 page = radix_tree_deref_slot(slot);
1571                 /* The hole, there no reason to continue */
1572                 if (unlikely(!page))
1573                         break;
1574
1575                 if (radix_tree_exception(page)) {
1576                         if (radix_tree_deref_retry(page)) {
1577                                 slot = radix_tree_iter_retry(&iter);
1578                                 continue;
1579                         }
1580                         /*
1581                          * A shadow entry of a recently evicted page,
1582                          * or a swap entry from shmem/tmpfs.  Stop
1583                          * looking for contiguous pages.
1584                          */
1585                         break;
1586                 }
1587
1588                 head = compound_head(page);
1589                 if (!page_cache_get_speculative(head))
1590                         goto repeat;
1591
1592                 /* The page was split under us? */
1593                 if (compound_head(page) != head) {
1594                         put_page(head);
1595                         goto repeat;
1596                 }
1597
1598                 /* Has the page moved? */
1599                 if (unlikely(page != *slot)) {
1600                         put_page(head);
1601                         goto repeat;
1602                 }
1603
1604                 /*
1605                  * must check mapping and index after taking the ref.
1606                  * otherwise we can get both false positives and false
1607                  * negatives, which is just confusing to the caller.
1608                  */
1609                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1610                         put_page(page);
1611                         break;
1612                 }
1613
1614                 pages[ret] = page;
1615                 if (++ret == nr_pages)
1616                         break;
1617         }
1618         rcu_read_unlock();
1619         return ret;
1620 }
1621 EXPORT_SYMBOL(find_get_pages_contig);
1622
1623 /**
1624  * find_get_pages_tag - find and return pages that match @tag
1625  * @mapping:    the address_space to search
1626  * @index:      the starting page index
1627  * @tag:        the tag index
1628  * @nr_pages:   the maximum number of pages
1629  * @pages:      where the resulting pages are placed
1630  *
1631  * Like find_get_pages, except we only return pages which are tagged with
1632  * @tag.   We update @index to index the next page for the traversal.
1633  */
1634 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1635                         int tag, unsigned int nr_pages, struct page **pages)
1636 {
1637         struct radix_tree_iter iter;
1638         void **slot;
1639         unsigned ret = 0;
1640
1641         if (unlikely(!nr_pages))
1642                 return 0;
1643
1644         rcu_read_lock();
1645         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1646                                    &iter, *index, tag) {
1647                 struct page *head, *page;
1648 repeat:
1649                 page = radix_tree_deref_slot(slot);
1650                 if (unlikely(!page))
1651                         continue;
1652
1653                 if (radix_tree_exception(page)) {
1654                         if (radix_tree_deref_retry(page)) {
1655                                 slot = radix_tree_iter_retry(&iter);
1656                                 continue;
1657                         }
1658                         /*
1659                          * A shadow entry of a recently evicted page.
1660                          *
1661                          * Those entries should never be tagged, but
1662                          * this tree walk is lockless and the tags are
1663                          * looked up in bulk, one radix tree node at a
1664                          * time, so there is a sizable window for page
1665                          * reclaim to evict a page we saw tagged.
1666                          *
1667                          * Skip over it.
1668                          */
1669                         continue;
1670                 }
1671
1672                 head = compound_head(page);
1673                 if (!page_cache_get_speculative(head))
1674                         goto repeat;
1675
1676                 /* The page was split under us? */
1677                 if (compound_head(page) != head) {
1678                         put_page(head);
1679                         goto repeat;
1680                 }
1681
1682                 /* Has the page moved? */
1683                 if (unlikely(page != *slot)) {
1684                         put_page(head);
1685                         goto repeat;
1686                 }
1687
1688                 pages[ret] = page;
1689                 if (++ret == nr_pages)
1690                         break;
1691         }
1692
1693         rcu_read_unlock();
1694
1695         if (ret)
1696                 *index = pages[ret - 1]->index + 1;
1697
1698         return ret;
1699 }
1700 EXPORT_SYMBOL(find_get_pages_tag);
1701
1702 /**
1703  * find_get_entries_tag - find and return entries that match @tag
1704  * @mapping:    the address_space to search
1705  * @start:      the starting page cache index
1706  * @tag:        the tag index
1707  * @nr_entries: the maximum number of entries
1708  * @entries:    where the resulting entries are placed
1709  * @indices:    the cache indices corresponding to the entries in @entries
1710  *
1711  * Like find_get_entries, except we only return entries which are tagged with
1712  * @tag.
1713  */
1714 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1715                         int tag, unsigned int nr_entries,
1716                         struct page **entries, pgoff_t *indices)
1717 {
1718         void **slot;
1719         unsigned int ret = 0;
1720         struct radix_tree_iter iter;
1721
1722         if (!nr_entries)
1723                 return 0;
1724
1725         rcu_read_lock();
1726         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1727                                    &iter, start, tag) {
1728                 struct page *head, *page;
1729 repeat:
1730                 page = radix_tree_deref_slot(slot);
1731                 if (unlikely(!page))
1732                         continue;
1733                 if (radix_tree_exception(page)) {
1734                         if (radix_tree_deref_retry(page)) {
1735                                 slot = radix_tree_iter_retry(&iter);
1736                                 continue;
1737                         }
1738
1739                         /*
1740                          * A shadow entry of a recently evicted page, a swap
1741                          * entry from shmem/tmpfs or a DAX entry.  Return it
1742                          * without attempting to raise page count.
1743                          */
1744                         goto export;
1745                 }
1746
1747                 head = compound_head(page);
1748                 if (!page_cache_get_speculative(head))
1749                         goto repeat;
1750
1751                 /* The page was split under us? */
1752                 if (compound_head(page) != head) {
1753                         put_page(head);
1754                         goto repeat;
1755                 }
1756
1757                 /* Has the page moved? */
1758                 if (unlikely(page != *slot)) {
1759                         put_page(head);
1760                         goto repeat;
1761                 }
1762 export:
1763                 indices[ret] = iter.index;
1764                 entries[ret] = page;
1765                 if (++ret == nr_entries)
1766                         break;
1767         }
1768         rcu_read_unlock();
1769         return ret;
1770 }
1771 EXPORT_SYMBOL(find_get_entries_tag);
1772
1773 /*
1774  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1775  * a _large_ part of the i/o request. Imagine the worst scenario:
1776  *
1777  *      ---R__________________________________________B__________
1778  *         ^ reading here                             ^ bad block(assume 4k)
1779  *
1780  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1781  * => failing the whole request => read(R) => read(R+1) =>
1782  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1783  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1784  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1785  *
1786  * It is going insane. Fix it by quickly scaling down the readahead size.
1787  */
1788 static void shrink_readahead_size_eio(struct file *filp,
1789                                         struct file_ra_state *ra)
1790 {
1791         ra->ra_pages /= 4;
1792 }
1793
1794 /**
1795  * do_generic_file_read - generic file read routine
1796  * @filp:       the file to read
1797  * @ppos:       current file position
1798  * @iter:       data destination
1799  * @written:    already copied
1800  *
1801  * This is a generic file read routine, and uses the
1802  * mapping->a_ops->readpage() function for the actual low-level stuff.
1803  *
1804  * This is really ugly. But the goto's actually try to clarify some
1805  * of the logic when it comes to error handling etc.
1806  */
1807 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1808                 struct iov_iter *iter, ssize_t written)
1809 {
1810         struct address_space *mapping = filp->f_mapping;
1811         struct inode *inode = mapping->host;
1812         struct file_ra_state *ra = &filp->f_ra;
1813         pgoff_t index;
1814         pgoff_t last_index;
1815         pgoff_t prev_index;
1816         unsigned long offset;      /* offset into pagecache page */
1817         unsigned int prev_offset;
1818         int error = 0;
1819
1820         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1821                 return 0;
1822         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1823
1824         index = *ppos >> PAGE_SHIFT;
1825         prev_index = ra->prev_pos >> PAGE_SHIFT;
1826         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1827         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1828         offset = *ppos & ~PAGE_MASK;
1829
1830         for (;;) {
1831                 struct page *page;
1832                 pgoff_t end_index;
1833                 loff_t isize;
1834                 unsigned long nr, ret;
1835
1836                 cond_resched();
1837 find_page:
1838                 if (fatal_signal_pending(current)) {
1839                         error = -EINTR;
1840                         goto out;
1841                 }
1842
1843                 page = find_get_page(mapping, index);
1844                 if (!page) {
1845                         page_cache_sync_readahead(mapping,
1846                                         ra, filp,
1847                                         index, last_index - index);
1848                         page = find_get_page(mapping, index);
1849                         if (unlikely(page == NULL))
1850                                 goto no_cached_page;
1851                 }
1852                 if (PageReadahead(page)) {
1853                         page_cache_async_readahead(mapping,
1854                                         ra, filp, page,
1855                                         index, last_index - index);
1856                 }
1857                 if (!PageUptodate(page)) {
1858                         /*
1859                          * See comment in do_read_cache_page on why
1860                          * wait_on_page_locked is used to avoid unnecessarily
1861                          * serialisations and why it's safe.
1862                          */
1863                         error = wait_on_page_locked_killable(page);
1864                         if (unlikely(error))
1865                                 goto readpage_error;
1866                         if (PageUptodate(page))
1867                                 goto page_ok;
1868
1869                         if (inode->i_blkbits == PAGE_SHIFT ||
1870                                         !mapping->a_ops->is_partially_uptodate)
1871                                 goto page_not_up_to_date;
1872                         /* pipes can't handle partially uptodate pages */
1873                         if (unlikely(iter->type & ITER_PIPE))
1874                                 goto page_not_up_to_date;
1875                         if (!trylock_page(page))
1876                                 goto page_not_up_to_date;
1877                         /* Did it get truncated before we got the lock? */
1878                         if (!page->mapping)
1879                                 goto page_not_up_to_date_locked;
1880                         if (!mapping->a_ops->is_partially_uptodate(page,
1881                                                         offset, iter->count))
1882                                 goto page_not_up_to_date_locked;
1883                         unlock_page(page);
1884                 }
1885 page_ok:
1886                 /*
1887                  * i_size must be checked after we know the page is Uptodate.
1888                  *
1889                  * Checking i_size after the check allows us to calculate
1890                  * the correct value for "nr", which means the zero-filled
1891                  * part of the page is not copied back to userspace (unless
1892                  * another truncate extends the file - this is desired though).
1893                  */
1894
1895                 isize = i_size_read(inode);
1896                 end_index = (isize - 1) >> PAGE_SHIFT;
1897                 if (unlikely(!isize || index > end_index)) {
1898                         put_page(page);
1899                         goto out;
1900                 }
1901
1902                 /* nr is the maximum number of bytes to copy from this page */
1903                 nr = PAGE_SIZE;
1904                 if (index == end_index) {
1905                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1906                         if (nr <= offset) {
1907                                 put_page(page);
1908                                 goto out;
1909                         }
1910                 }
1911                 nr = nr - offset;
1912
1913                 /* If users can be writing to this page using arbitrary
1914                  * virtual addresses, take care about potential aliasing
1915                  * before reading the page on the kernel side.
1916                  */
1917                 if (mapping_writably_mapped(mapping))
1918                         flush_dcache_page(page);
1919
1920                 /*
1921                  * When a sequential read accesses a page several times,
1922                  * only mark it as accessed the first time.
1923                  */
1924                 if (prev_index != index || offset != prev_offset)
1925                         mark_page_accessed(page);
1926                 prev_index = index;
1927
1928                 /*
1929                  * Ok, we have the page, and it's up-to-date, so
1930                  * now we can copy it to user space...
1931                  */
1932
1933                 ret = copy_page_to_iter(page, offset, nr, iter);
1934                 offset += ret;
1935                 index += offset >> PAGE_SHIFT;
1936                 offset &= ~PAGE_MASK;
1937                 prev_offset = offset;
1938
1939                 put_page(page);
1940                 written += ret;
1941                 if (!iov_iter_count(iter))
1942                         goto out;
1943                 if (ret < nr) {
1944                         error = -EFAULT;
1945                         goto out;
1946                 }
1947                 continue;
1948
1949 page_not_up_to_date:
1950                 /* Get exclusive access to the page ... */
1951                 error = lock_page_killable(page);
1952                 if (unlikely(error))
1953                         goto readpage_error;
1954
1955 page_not_up_to_date_locked:
1956                 /* Did it get truncated before we got the lock? */
1957                 if (!page->mapping) {
1958                         unlock_page(page);
1959                         put_page(page);
1960                         continue;
1961                 }
1962
1963                 /* Did somebody else fill it already? */
1964                 if (PageUptodate(page)) {
1965                         unlock_page(page);
1966                         goto page_ok;
1967                 }
1968
1969 readpage:
1970                 /*
1971                  * A previous I/O error may have been due to temporary
1972                  * failures, eg. multipath errors.
1973                  * PG_error will be set again if readpage fails.
1974                  */
1975                 ClearPageError(page);
1976                 /* Start the actual read. The read will unlock the page. */
1977                 error = mapping->a_ops->readpage(filp, page);
1978
1979                 if (unlikely(error)) {
1980                         if (error == AOP_TRUNCATED_PAGE) {
1981                                 put_page(page);
1982                                 error = 0;
1983                                 goto find_page;
1984                         }
1985                         goto readpage_error;
1986                 }
1987
1988                 if (!PageUptodate(page)) {
1989                         error = lock_page_killable(page);
1990                         if (unlikely(error))
1991                                 goto readpage_error;
1992                         if (!PageUptodate(page)) {
1993                                 if (page->mapping == NULL) {
1994                                         /*
1995                                          * invalidate_mapping_pages got it
1996                                          */
1997                                         unlock_page(page);
1998                                         put_page(page);
1999                                         goto find_page;
2000                                 }
2001                                 unlock_page(page);
2002                                 shrink_readahead_size_eio(filp, ra);
2003                                 error = -EIO;
2004                                 goto readpage_error;
2005                         }
2006                         unlock_page(page);
2007                 }
2008
2009                 goto page_ok;
2010
2011 readpage_error:
2012                 /* UHHUH! A synchronous read error occurred. Report it */
2013                 put_page(page);
2014                 goto out;
2015
2016 no_cached_page:
2017                 /*
2018                  * Ok, it wasn't cached, so we need to create a new
2019                  * page..
2020                  */
2021                 page = page_cache_alloc_cold(mapping);
2022                 if (!page) {
2023                         error = -ENOMEM;
2024                         goto out;
2025                 }
2026                 error = add_to_page_cache_lru(page, mapping, index,
2027                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2028                 if (error) {
2029                         put_page(page);
2030                         if (error == -EEXIST) {
2031                                 error = 0;
2032                                 goto find_page;
2033                         }
2034                         goto out;
2035                 }
2036                 goto readpage;
2037         }
2038
2039 out:
2040         ra->prev_pos = prev_index;
2041         ra->prev_pos <<= PAGE_SHIFT;
2042         ra->prev_pos |= prev_offset;
2043
2044         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2045         file_accessed(filp);
2046         return written ? written : error;
2047 }
2048
2049 /**
2050  * generic_file_read_iter - generic filesystem read routine
2051  * @iocb:       kernel I/O control block
2052  * @iter:       destination for the data read
2053  *
2054  * This is the "read_iter()" routine for all filesystems
2055  * that can use the page cache directly.
2056  */
2057 ssize_t
2058 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2059 {
2060         struct file *file = iocb->ki_filp;
2061         ssize_t retval = 0;
2062         size_t count = iov_iter_count(iter);
2063
2064         if (!count)
2065                 goto out; /* skip atime */
2066
2067         if (iocb->ki_flags & IOCB_DIRECT) {
2068                 struct address_space *mapping = file->f_mapping;
2069                 struct inode *inode = mapping->host;
2070                 loff_t size;
2071
2072                 size = i_size_read(inode);
2073                 if (iocb->ki_flags & IOCB_NOWAIT) {
2074                         if (filemap_range_has_page(mapping, iocb->ki_pos,
2075                                                    iocb->ki_pos + count - 1))
2076                                 return -EAGAIN;
2077                 } else {
2078                         retval = filemap_write_and_wait_range(mapping,
2079                                                 iocb->ki_pos,
2080                                                 iocb->ki_pos + count - 1);
2081                         if (retval < 0)
2082                                 goto out;
2083                 }
2084
2085                 file_accessed(file);
2086
2087                 retval = mapping->a_ops->direct_IO(iocb, iter);
2088                 if (retval >= 0) {
2089                         iocb->ki_pos += retval;
2090                         count -= retval;
2091                 }
2092                 iov_iter_revert(iter, count - iov_iter_count(iter));
2093
2094                 /*
2095                  * Btrfs can have a short DIO read if we encounter
2096                  * compressed extents, so if there was an error, or if
2097                  * we've already read everything we wanted to, or if
2098                  * there was a short read because we hit EOF, go ahead
2099                  * and return.  Otherwise fallthrough to buffered io for
2100                  * the rest of the read.  Buffered reads will not work for
2101                  * DAX files, so don't bother trying.
2102                  */
2103                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2104                     IS_DAX(inode))
2105                         goto out;
2106         }
2107
2108         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2109 out:
2110         return retval;
2111 }
2112 EXPORT_SYMBOL(generic_file_read_iter);
2113
2114 #ifdef CONFIG_MMU
2115 /**
2116  * page_cache_read - adds requested page to the page cache if not already there
2117  * @file:       file to read
2118  * @offset:     page index
2119  * @gfp_mask:   memory allocation flags
2120  *
2121  * This adds the requested page to the page cache if it isn't already there,
2122  * and schedules an I/O to read in its contents from disk.
2123  */
2124 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2125 {
2126         struct address_space *mapping = file->f_mapping;
2127         struct page *page;
2128         int ret;
2129
2130         do {
2131                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2132                 if (!page)
2133                         return -ENOMEM;
2134
2135                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2136                 if (ret == 0)
2137                         ret = mapping->a_ops->readpage(file, page);
2138                 else if (ret == -EEXIST)
2139                         ret = 0; /* losing race to add is OK */
2140
2141                 put_page(page);
2142
2143         } while (ret == AOP_TRUNCATED_PAGE);
2144
2145         return ret;
2146 }
2147
2148 #define MMAP_LOTSAMISS  (100)
2149
2150 /*
2151  * Synchronous readahead happens when we don't even find
2152  * a page in the page cache at all.
2153  */
2154 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2155                                    struct file_ra_state *ra,
2156                                    struct file *file,
2157                                    pgoff_t offset)
2158 {
2159         struct address_space *mapping = file->f_mapping;
2160
2161         /* If we don't want any read-ahead, don't bother */
2162         if (vma->vm_flags & VM_RAND_READ)
2163                 return;
2164         if (!ra->ra_pages)
2165                 return;
2166
2167         if (vma->vm_flags & VM_SEQ_READ) {
2168                 page_cache_sync_readahead(mapping, ra, file, offset,
2169                                           ra->ra_pages);
2170                 return;
2171         }
2172
2173         /* Avoid banging the cache line if not needed */
2174         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2175                 ra->mmap_miss++;
2176
2177         /*
2178          * Do we miss much more than hit in this file? If so,
2179          * stop bothering with read-ahead. It will only hurt.
2180          */
2181         if (ra->mmap_miss > MMAP_LOTSAMISS)
2182                 return;
2183
2184         /*
2185          * mmap read-around
2186          */
2187         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2188         ra->size = ra->ra_pages;
2189         ra->async_size = ra->ra_pages / 4;
2190         ra_submit(ra, mapping, file);
2191 }
2192
2193 /*
2194  * Asynchronous readahead happens when we find the page and PG_readahead,
2195  * so we want to possibly extend the readahead further..
2196  */
2197 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2198                                     struct file_ra_state *ra,
2199                                     struct file *file,
2200                                     struct page *page,
2201                                     pgoff_t offset)
2202 {
2203         struct address_space *mapping = file->f_mapping;
2204
2205         /* If we don't want any read-ahead, don't bother */
2206         if (vma->vm_flags & VM_RAND_READ)
2207                 return;
2208         if (ra->mmap_miss > 0)
2209                 ra->mmap_miss--;
2210         if (PageReadahead(page))
2211                 page_cache_async_readahead(mapping, ra, file,
2212                                            page, offset, ra->ra_pages);
2213 }
2214
2215 /**
2216  * filemap_fault - read in file data for page fault handling
2217  * @vmf:        struct vm_fault containing details of the fault
2218  *
2219  * filemap_fault() is invoked via the vma operations vector for a
2220  * mapped memory region to read in file data during a page fault.
2221  *
2222  * The goto's are kind of ugly, but this streamlines the normal case of having
2223  * it in the page cache, and handles the special cases reasonably without
2224  * having a lot of duplicated code.
2225  *
2226  * vma->vm_mm->mmap_sem must be held on entry.
2227  *
2228  * If our return value has VM_FAULT_RETRY set, it's because
2229  * lock_page_or_retry() returned 0.
2230  * The mmap_sem has usually been released in this case.
2231  * See __lock_page_or_retry() for the exception.
2232  *
2233  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2234  * has not been released.
2235  *
2236  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2237  */
2238 int filemap_fault(struct vm_fault *vmf)
2239 {
2240         int error;
2241         struct file *file = vmf->vma->vm_file;
2242         struct address_space *mapping = file->f_mapping;
2243         struct file_ra_state *ra = &file->f_ra;
2244         struct inode *inode = mapping->host;
2245         pgoff_t offset = vmf->pgoff;
2246         pgoff_t max_off;
2247         struct page *page;
2248         int ret = 0;
2249
2250         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2251         if (unlikely(offset >= max_off))
2252                 return VM_FAULT_SIGBUS;
2253
2254         /*
2255          * Do we have something in the page cache already?
2256          */
2257         page = find_get_page(mapping, offset);
2258         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2259                 /*
2260                  * We found the page, so try async readahead before
2261                  * waiting for the lock.
2262                  */
2263                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2264         } else if (!page) {
2265                 /* No page in the page cache at all */
2266                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2267                 count_vm_event(PGMAJFAULT);
2268                 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
2269                 ret = VM_FAULT_MAJOR;
2270 retry_find:
2271                 page = find_get_page(mapping, offset);
2272                 if (!page)
2273                         goto no_cached_page;
2274         }
2275
2276         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2277                 put_page(page);
2278                 return ret | VM_FAULT_RETRY;
2279         }
2280
2281         /* Did it get truncated? */
2282         if (unlikely(page->mapping != mapping)) {
2283                 unlock_page(page);
2284                 put_page(page);
2285                 goto retry_find;
2286         }
2287         VM_BUG_ON_PAGE(page->index != offset, page);
2288
2289         /*
2290          * We have a locked page in the page cache, now we need to check
2291          * that it's up-to-date. If not, it is going to be due to an error.
2292          */
2293         if (unlikely(!PageUptodate(page)))
2294                 goto page_not_uptodate;
2295
2296         /*
2297          * Found the page and have a reference on it.
2298          * We must recheck i_size under page lock.
2299          */
2300         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2301         if (unlikely(offset >= max_off)) {
2302                 unlock_page(page);
2303                 put_page(page);
2304                 return VM_FAULT_SIGBUS;
2305         }
2306
2307         vmf->page = page;
2308         return ret | VM_FAULT_LOCKED;
2309
2310 no_cached_page:
2311         /*
2312          * We're only likely to ever get here if MADV_RANDOM is in
2313          * effect.
2314          */
2315         error = page_cache_read(file, offset, vmf->gfp_mask);
2316
2317         /*
2318          * The page we want has now been added to the page cache.
2319          * In the unlikely event that someone removed it in the
2320          * meantime, we'll just come back here and read it again.
2321          */
2322         if (error >= 0)
2323                 goto retry_find;
2324
2325         /*
2326          * An error return from page_cache_read can result if the
2327          * system is low on memory, or a problem occurs while trying
2328          * to schedule I/O.
2329          */
2330         if (error == -ENOMEM)
2331                 return VM_FAULT_OOM;
2332         return VM_FAULT_SIGBUS;
2333
2334 page_not_uptodate:
2335         /*
2336          * Umm, take care of errors if the page isn't up-to-date.
2337          * Try to re-read it _once_. We do this synchronously,
2338          * because there really aren't any performance issues here
2339          * and we need to check for errors.
2340          */
2341         ClearPageError(page);
2342         error = mapping->a_ops->readpage(file, page);
2343         if (!error) {
2344                 wait_on_page_locked(page);
2345                 if (!PageUptodate(page))
2346                         error = -EIO;
2347         }
2348         put_page(page);
2349
2350         if (!error || error == AOP_TRUNCATED_PAGE)
2351                 goto retry_find;
2352
2353         /* Things didn't work out. Return zero to tell the mm layer so. */
2354         shrink_readahead_size_eio(file, ra);
2355         return VM_FAULT_SIGBUS;
2356 }
2357 EXPORT_SYMBOL(filemap_fault);
2358
2359 void filemap_map_pages(struct vm_fault *vmf,
2360                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2361 {
2362         struct radix_tree_iter iter;
2363         void **slot;
2364         struct file *file = vmf->vma->vm_file;
2365         struct address_space *mapping = file->f_mapping;
2366         pgoff_t last_pgoff = start_pgoff;
2367         unsigned long max_idx;
2368         struct page *head, *page;
2369
2370         rcu_read_lock();
2371         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2372                         start_pgoff) {
2373                 if (iter.index > end_pgoff)
2374                         break;
2375 repeat:
2376                 page = radix_tree_deref_slot(slot);
2377                 if (unlikely(!page))
2378                         goto next;
2379                 if (radix_tree_exception(page)) {
2380                         if (radix_tree_deref_retry(page)) {
2381                                 slot = radix_tree_iter_retry(&iter);
2382                                 continue;
2383                         }
2384                         goto next;
2385                 }
2386
2387                 head = compound_head(page);
2388                 if (!page_cache_get_speculative(head))
2389                         goto repeat;
2390
2391                 /* The page was split under us? */
2392                 if (compound_head(page) != head) {
2393                         put_page(head);
2394                         goto repeat;
2395                 }
2396
2397                 /* Has the page moved? */
2398                 if (unlikely(page != *slot)) {
2399                         put_page(head);
2400                         goto repeat;
2401                 }
2402
2403                 if (!PageUptodate(page) ||
2404                                 PageReadahead(page) ||
2405                                 PageHWPoison(page))
2406                         goto skip;
2407                 if (!trylock_page(page))
2408                         goto skip;
2409
2410                 if (page->mapping != mapping || !PageUptodate(page))
2411                         goto unlock;
2412
2413                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2414                 if (page->index >= max_idx)
2415                         goto unlock;
2416
2417                 if (file->f_ra.mmap_miss > 0)
2418                         file->f_ra.mmap_miss--;
2419
2420                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2421                 if (vmf->pte)
2422                         vmf->pte += iter.index - last_pgoff;
2423                 last_pgoff = iter.index;
2424                 if (alloc_set_pte(vmf, NULL, page))
2425                         goto unlock;
2426                 unlock_page(page);
2427                 goto next;
2428 unlock:
2429                 unlock_page(page);
2430 skip:
2431                 put_page(page);
2432 next:
2433                 /* Huge page is mapped? No need to proceed. */
2434                 if (pmd_trans_huge(*vmf->pmd))
2435                         break;
2436                 if (iter.index == end_pgoff)
2437                         break;
2438         }
2439         rcu_read_unlock();
2440 }
2441 EXPORT_SYMBOL(filemap_map_pages);
2442
2443 int filemap_page_mkwrite(struct vm_fault *vmf)
2444 {
2445         struct page *page = vmf->page;
2446         struct inode *inode = file_inode(vmf->vma->vm_file);
2447         int ret = VM_FAULT_LOCKED;
2448
2449         sb_start_pagefault(inode->i_sb);
2450         file_update_time(vmf->vma->vm_file);
2451         lock_page(page);
2452         if (page->mapping != inode->i_mapping) {
2453                 unlock_page(page);
2454                 ret = VM_FAULT_NOPAGE;
2455                 goto out;
2456         }
2457         /*
2458          * We mark the page dirty already here so that when freeze is in
2459          * progress, we are guaranteed that writeback during freezing will
2460          * see the dirty page and writeprotect it again.
2461          */
2462         set_page_dirty(page);
2463         wait_for_stable_page(page);
2464 out:
2465         sb_end_pagefault(inode->i_sb);
2466         return ret;
2467 }
2468 EXPORT_SYMBOL(filemap_page_mkwrite);
2469
2470 const struct vm_operations_struct generic_file_vm_ops = {
2471         .fault          = filemap_fault,
2472         .map_pages      = filemap_map_pages,
2473         .page_mkwrite   = filemap_page_mkwrite,
2474 };
2475
2476 /* This is used for a general mmap of a disk file */
2477
2478 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2479 {
2480         struct address_space *mapping = file->f_mapping;
2481
2482         if (!mapping->a_ops->readpage)
2483                 return -ENOEXEC;
2484         file_accessed(file);
2485         vma->vm_ops = &generic_file_vm_ops;
2486         return 0;
2487 }
2488
2489 /*
2490  * This is for filesystems which do not implement ->writepage.
2491  */
2492 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2493 {
2494         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2495                 return -EINVAL;
2496         return generic_file_mmap(file, vma);
2497 }
2498 #else
2499 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2500 {
2501         return -ENOSYS;
2502 }
2503 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2504 {
2505         return -ENOSYS;
2506 }
2507 #endif /* CONFIG_MMU */
2508
2509 EXPORT_SYMBOL(generic_file_mmap);
2510 EXPORT_SYMBOL(generic_file_readonly_mmap);
2511
2512 static struct page *wait_on_page_read(struct page *page)
2513 {
2514         if (!IS_ERR(page)) {
2515                 wait_on_page_locked(page);
2516                 if (!PageUptodate(page)) {
2517                         put_page(page);
2518                         page = ERR_PTR(-EIO);
2519                 }
2520         }
2521         return page;
2522 }
2523
2524 static struct page *do_read_cache_page(struct address_space *mapping,
2525                                 pgoff_t index,
2526                                 int (*filler)(void *, struct page *),
2527                                 void *data,
2528                                 gfp_t gfp)
2529 {
2530         struct page *page;
2531         int err;
2532 repeat:
2533         page = find_get_page(mapping, index);
2534         if (!page) {
2535                 page = __page_cache_alloc(gfp | __GFP_COLD);
2536                 if (!page)
2537                         return ERR_PTR(-ENOMEM);
2538                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2539                 if (unlikely(err)) {
2540                         put_page(page);
2541                         if (err == -EEXIST)
2542                                 goto repeat;
2543                         /* Presumably ENOMEM for radix tree node */
2544                         return ERR_PTR(err);
2545                 }
2546
2547 filler:
2548                 err = filler(data, page);
2549                 if (err < 0) {
2550                         put_page(page);
2551                         return ERR_PTR(err);
2552                 }
2553
2554                 page = wait_on_page_read(page);
2555                 if (IS_ERR(page))
2556                         return page;
2557                 goto out;
2558         }
2559         if (PageUptodate(page))
2560                 goto out;
2561
2562         /*
2563          * Page is not up to date and may be locked due one of the following
2564          * case a: Page is being filled and the page lock is held
2565          * case b: Read/write error clearing the page uptodate status
2566          * case c: Truncation in progress (page locked)
2567          * case d: Reclaim in progress
2568          *
2569          * Case a, the page will be up to date when the page is unlocked.
2570          *    There is no need to serialise on the page lock here as the page
2571          *    is pinned so the lock gives no additional protection. Even if the
2572          *    the page is truncated, the data is still valid if PageUptodate as
2573          *    it's a race vs truncate race.
2574          * Case b, the page will not be up to date
2575          * Case c, the page may be truncated but in itself, the data may still
2576          *    be valid after IO completes as it's a read vs truncate race. The
2577          *    operation must restart if the page is not uptodate on unlock but
2578          *    otherwise serialising on page lock to stabilise the mapping gives
2579          *    no additional guarantees to the caller as the page lock is
2580          *    released before return.
2581          * Case d, similar to truncation. If reclaim holds the page lock, it
2582          *    will be a race with remove_mapping that determines if the mapping
2583          *    is valid on unlock but otherwise the data is valid and there is
2584          *    no need to serialise with page lock.
2585          *
2586          * As the page lock gives no additional guarantee, we optimistically
2587          * wait on the page to be unlocked and check if it's up to date and
2588          * use the page if it is. Otherwise, the page lock is required to
2589          * distinguish between the different cases. The motivation is that we
2590          * avoid spurious serialisations and wakeups when multiple processes
2591          * wait on the same page for IO to complete.
2592          */
2593         wait_on_page_locked(page);
2594         if (PageUptodate(page))
2595                 goto out;
2596
2597         /* Distinguish between all the cases under the safety of the lock */
2598         lock_page(page);
2599
2600         /* Case c or d, restart the operation */
2601         if (!page->mapping) {
2602                 unlock_page(page);
2603                 put_page(page);
2604                 goto repeat;
2605         }
2606
2607         /* Someone else locked and filled the page in a very small window */
2608         if (PageUptodate(page)) {
2609                 unlock_page(page);
2610                 goto out;
2611         }
2612         goto filler;
2613
2614 out:
2615         mark_page_accessed(page);
2616         return page;
2617 }
2618
2619 /**
2620  * read_cache_page - read into page cache, fill it if needed
2621  * @mapping:    the page's address_space
2622  * @index:      the page index
2623  * @filler:     function to perform the read
2624  * @data:       first arg to filler(data, page) function, often left as NULL
2625  *
2626  * Read into the page cache. If a page already exists, and PageUptodate() is
2627  * not set, try to fill the page and wait for it to become unlocked.
2628  *
2629  * If the page does not get brought uptodate, return -EIO.
2630  */
2631 struct page *read_cache_page(struct address_space *mapping,
2632                                 pgoff_t index,
2633                                 int (*filler)(void *, struct page *),
2634                                 void *data)
2635 {
2636         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2637 }
2638 EXPORT_SYMBOL(read_cache_page);
2639
2640 /**
2641  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2642  * @mapping:    the page's address_space
2643  * @index:      the page index
2644  * @gfp:        the page allocator flags to use if allocating
2645  *
2646  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2647  * any new page allocations done using the specified allocation flags.
2648  *
2649  * If the page does not get brought uptodate, return -EIO.
2650  */
2651 struct page *read_cache_page_gfp(struct address_space *mapping,
2652                                 pgoff_t index,
2653                                 gfp_t gfp)
2654 {
2655         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2656
2657         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2658 }
2659 EXPORT_SYMBOL(read_cache_page_gfp);
2660
2661 /*
2662  * Performs necessary checks before doing a write
2663  *
2664  * Can adjust writing position or amount of bytes to write.
2665  * Returns appropriate error code that caller should return or
2666  * zero in case that write should be allowed.
2667  */
2668 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2669 {
2670         struct file *file = iocb->ki_filp;
2671         struct inode *inode = file->f_mapping->host;
2672         unsigned long limit = rlimit(RLIMIT_FSIZE);
2673         loff_t pos;
2674
2675         if (!iov_iter_count(from))
2676                 return 0;
2677
2678         /* FIXME: this is for backwards compatibility with 2.4 */
2679         if (iocb->ki_flags & IOCB_APPEND)
2680                 iocb->ki_pos = i_size_read(inode);
2681
2682         pos = iocb->ki_pos;
2683
2684         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2685                 return -EINVAL;
2686
2687         if (limit != RLIM_INFINITY) {
2688                 if (iocb->ki_pos >= limit) {
2689                         send_sig(SIGXFSZ, current, 0);
2690                         return -EFBIG;
2691                 }
2692                 iov_iter_truncate(from, limit - (unsigned long)pos);
2693         }
2694
2695         /*
2696          * LFS rule
2697          */
2698         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2699                                 !(file->f_flags & O_LARGEFILE))) {
2700                 if (pos >= MAX_NON_LFS)
2701                         return -EFBIG;
2702                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2703         }
2704
2705         /*
2706          * Are we about to exceed the fs block limit ?
2707          *
2708          * If we have written data it becomes a short write.  If we have
2709          * exceeded without writing data we send a signal and return EFBIG.
2710          * Linus frestrict idea will clean these up nicely..
2711          */
2712         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2713                 return -EFBIG;
2714
2715         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2716         return iov_iter_count(from);
2717 }
2718 EXPORT_SYMBOL(generic_write_checks);
2719
2720 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2721                                 loff_t pos, unsigned len, unsigned flags,
2722                                 struct page **pagep, void **fsdata)
2723 {
2724         const struct address_space_operations *aops = mapping->a_ops;
2725
2726         return aops->write_begin(file, mapping, pos, len, flags,
2727                                                         pagep, fsdata);
2728 }
2729 EXPORT_SYMBOL(pagecache_write_begin);
2730
2731 int pagecache_write_end(struct file *file, struct address_space *mapping,
2732                                 loff_t pos, unsigned len, unsigned copied,
2733                                 struct page *page, void *fsdata)
2734 {
2735         const struct address_space_operations *aops = mapping->a_ops;
2736
2737         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2738 }
2739 EXPORT_SYMBOL(pagecache_write_end);
2740
2741 ssize_t
2742 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2743 {
2744         struct file     *file = iocb->ki_filp;
2745         struct address_space *mapping = file->f_mapping;
2746         struct inode    *inode = mapping->host;
2747         loff_t          pos = iocb->ki_pos;
2748         ssize_t         written;
2749         size_t          write_len;
2750         pgoff_t         end;
2751
2752         write_len = iov_iter_count(from);
2753         end = (pos + write_len - 1) >> PAGE_SHIFT;
2754
2755         if (iocb->ki_flags & IOCB_NOWAIT) {
2756                 /* If there are pages to writeback, return */
2757                 if (filemap_range_has_page(inode->i_mapping, pos,
2758                                            pos + iov_iter_count(from)))
2759                         return -EAGAIN;
2760         } else {
2761                 written = filemap_write_and_wait_range(mapping, pos,
2762                                                         pos + write_len - 1);
2763                 if (written)
2764                         goto out;
2765         }
2766
2767         /*
2768          * After a write we want buffered reads to be sure to go to disk to get
2769          * the new data.  We invalidate clean cached page from the region we're
2770          * about to write.  We do this *before* the write so that we can return
2771          * without clobbering -EIOCBQUEUED from ->direct_IO().
2772          */
2773         written = invalidate_inode_pages2_range(mapping,
2774                                         pos >> PAGE_SHIFT, end);
2775         /*
2776          * If a page can not be invalidated, return 0 to fall back
2777          * to buffered write.
2778          */
2779         if (written) {
2780                 if (written == -EBUSY)
2781                         return 0;
2782                 goto out;
2783         }
2784
2785         written = mapping->a_ops->direct_IO(iocb, from);
2786
2787         /*
2788          * Finally, try again to invalidate clean pages which might have been
2789          * cached by non-direct readahead, or faulted in by get_user_pages()
2790          * if the source of the write was an mmap'ed region of the file
2791          * we're writing.  Either one is a pretty crazy thing to do,
2792          * so we don't support it 100%.  If this invalidation
2793          * fails, tough, the write still worked...
2794          */
2795         invalidate_inode_pages2_range(mapping,
2796                                 pos >> PAGE_SHIFT, end);
2797
2798         if (written > 0) {
2799                 pos += written;
2800                 write_len -= written;
2801                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2802                         i_size_write(inode, pos);
2803                         mark_inode_dirty(inode);
2804                 }
2805                 iocb->ki_pos = pos;
2806         }
2807         iov_iter_revert(from, write_len - iov_iter_count(from));
2808 out:
2809         return written;
2810 }
2811 EXPORT_SYMBOL(generic_file_direct_write);
2812
2813 /*
2814  * Find or create a page at the given pagecache position. Return the locked
2815  * page. This function is specifically for buffered writes.
2816  */
2817 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2818                                         pgoff_t index, unsigned flags)
2819 {
2820         struct page *page;
2821         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2822
2823         if (flags & AOP_FLAG_NOFS)
2824                 fgp_flags |= FGP_NOFS;
2825
2826         page = pagecache_get_page(mapping, index, fgp_flags,
2827                         mapping_gfp_mask(mapping));
2828         if (page)
2829                 wait_for_stable_page(page);
2830
2831         return page;
2832 }
2833 EXPORT_SYMBOL(grab_cache_page_write_begin);
2834
2835 ssize_t generic_perform_write(struct file *file,
2836                                 struct iov_iter *i, loff_t pos)
2837 {
2838         struct address_space *mapping = file->f_mapping;
2839         const struct address_space_operations *a_ops = mapping->a_ops;
2840         long status = 0;
2841         ssize_t written = 0;
2842         unsigned int flags = 0;
2843
2844         do {
2845                 struct page *page;
2846                 unsigned long offset;   /* Offset into pagecache page */
2847                 unsigned long bytes;    /* Bytes to write to page */
2848                 size_t copied;          /* Bytes copied from user */
2849                 void *fsdata;
2850
2851                 offset = (pos & (PAGE_SIZE - 1));
2852                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2853                                                 iov_iter_count(i));
2854
2855 again:
2856                 /*
2857                  * Bring in the user page that we will copy from _first_.
2858                  * Otherwise there's a nasty deadlock on copying from the
2859                  * same page as we're writing to, without it being marked
2860                  * up-to-date.
2861                  *
2862                  * Not only is this an optimisation, but it is also required
2863                  * to check that the address is actually valid, when atomic
2864                  * usercopies are used, below.
2865                  */
2866                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2867                         status = -EFAULT;
2868                         break;
2869                 }
2870
2871                 if (fatal_signal_pending(current)) {
2872                         status = -EINTR;
2873                         break;
2874                 }
2875
2876                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2877                                                 &page, &fsdata);
2878                 if (unlikely(status < 0))
2879                         break;
2880
2881                 if (mapping_writably_mapped(mapping))
2882                         flush_dcache_page(page);
2883
2884                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2885                 flush_dcache_page(page);
2886
2887                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2888                                                 page, fsdata);
2889                 if (unlikely(status < 0))
2890                         break;
2891                 copied = status;
2892
2893                 cond_resched();
2894
2895                 iov_iter_advance(i, copied);
2896                 if (unlikely(copied == 0)) {
2897                         /*
2898                          * If we were unable to copy any data at all, we must
2899                          * fall back to a single segment length write.
2900                          *
2901                          * If we didn't fallback here, we could livelock
2902                          * because not all segments in the iov can be copied at
2903                          * once without a pagefault.
2904                          */
2905                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2906                                                 iov_iter_single_seg_count(i));
2907                         goto again;
2908                 }
2909                 pos += copied;
2910                 written += copied;
2911
2912                 balance_dirty_pages_ratelimited(mapping);
2913         } while (iov_iter_count(i));
2914
2915         return written ? written : status;
2916 }
2917 EXPORT_SYMBOL(generic_perform_write);
2918
2919 /**
2920  * __generic_file_write_iter - write data to a file
2921  * @iocb:       IO state structure (file, offset, etc.)
2922  * @from:       iov_iter with data to write
2923  *
2924  * This function does all the work needed for actually writing data to a
2925  * file. It does all basic checks, removes SUID from the file, updates
2926  * modification times and calls proper subroutines depending on whether we
2927  * do direct IO or a standard buffered write.
2928  *
2929  * It expects i_mutex to be grabbed unless we work on a block device or similar
2930  * object which does not need locking at all.
2931  *
2932  * This function does *not* take care of syncing data in case of O_SYNC write.
2933  * A caller has to handle it. This is mainly due to the fact that we want to
2934  * avoid syncing under i_mutex.
2935  */
2936 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2937 {
2938         struct file *file = iocb->ki_filp;
2939         struct address_space * mapping = file->f_mapping;
2940         struct inode    *inode = mapping->host;
2941         ssize_t         written = 0;
2942         ssize_t         err;
2943         ssize_t         status;
2944
2945         /* We can write back this queue in page reclaim */
2946         current->backing_dev_info = inode_to_bdi(inode);
2947         err = file_remove_privs(file);
2948         if (err)
2949                 goto out;
2950
2951         err = file_update_time(file);
2952         if (err)
2953                 goto out;
2954
2955         if (iocb->ki_flags & IOCB_DIRECT) {
2956                 loff_t pos, endbyte;
2957
2958                 written = generic_file_direct_write(iocb, from);
2959                 /*
2960                  * If the write stopped short of completing, fall back to
2961                  * buffered writes.  Some filesystems do this for writes to
2962                  * holes, for example.  For DAX files, a buffered write will
2963                  * not succeed (even if it did, DAX does not handle dirty
2964                  * page-cache pages correctly).
2965                  */
2966                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2967                         goto out;
2968
2969                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2970                 /*
2971                  * If generic_perform_write() returned a synchronous error
2972                  * then we want to return the number of bytes which were
2973                  * direct-written, or the error code if that was zero.  Note
2974                  * that this differs from normal direct-io semantics, which
2975                  * will return -EFOO even if some bytes were written.
2976                  */
2977                 if (unlikely(status < 0)) {
2978                         err = status;
2979                         goto out;
2980                 }
2981                 /*
2982                  * We need to ensure that the page cache pages are written to
2983                  * disk and invalidated to preserve the expected O_DIRECT
2984                  * semantics.
2985                  */
2986                 endbyte = pos + status - 1;
2987                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2988                 if (err == 0) {
2989                         iocb->ki_pos = endbyte + 1;
2990                         written += status;
2991                         invalidate_mapping_pages(mapping,
2992                                                  pos >> PAGE_SHIFT,
2993                                                  endbyte >> PAGE_SHIFT);
2994                 } else {
2995                         /*
2996                          * We don't know how much we wrote, so just return
2997                          * the number of bytes which were direct-written
2998                          */
2999                 }
3000         } else {
3001                 written = generic_perform_write(file, from, iocb->ki_pos);
3002                 if (likely(written > 0))
3003                         iocb->ki_pos += written;
3004         }
3005 out:
3006         current->backing_dev_info = NULL;
3007         return written ? written : err;
3008 }
3009 EXPORT_SYMBOL(__generic_file_write_iter);
3010
3011 /**
3012  * generic_file_write_iter - write data to a file
3013  * @iocb:       IO state structure
3014  * @from:       iov_iter with data to write
3015  *
3016  * This is a wrapper around __generic_file_write_iter() to be used by most
3017  * filesystems. It takes care of syncing the file in case of O_SYNC file
3018  * and acquires i_mutex as needed.
3019  */
3020 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3021 {
3022         struct file *file = iocb->ki_filp;
3023         struct inode *inode = file->f_mapping->host;
3024         ssize_t ret;
3025
3026         inode_lock(inode);
3027         ret = generic_write_checks(iocb, from);
3028         if (ret > 0)
3029                 ret = __generic_file_write_iter(iocb, from);
3030         inode_unlock(inode);
3031
3032         if (ret > 0)
3033                 ret = generic_write_sync(iocb, ret);
3034         return ret;
3035 }
3036 EXPORT_SYMBOL(generic_file_write_iter);
3037
3038 /**
3039  * try_to_release_page() - release old fs-specific metadata on a page
3040  *
3041  * @page: the page which the kernel is trying to free
3042  * @gfp_mask: memory allocation flags (and I/O mode)
3043  *
3044  * The address_space is to try to release any data against the page
3045  * (presumably at page->private).  If the release was successful, return '1'.
3046  * Otherwise return zero.
3047  *
3048  * This may also be called if PG_fscache is set on a page, indicating that the
3049  * page is known to the local caching routines.
3050  *
3051  * The @gfp_mask argument specifies whether I/O may be performed to release
3052  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3053  *
3054  */
3055 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3056 {
3057         struct address_space * const mapping = page->mapping;
3058
3059         BUG_ON(!PageLocked(page));
3060         if (PageWriteback(page))
3061                 return 0;
3062
3063         if (mapping && mapping->a_ops->releasepage)
3064                 return mapping->a_ops->releasepage(page, gfp_mask);
3065         return try_to_free_buffers(page);
3066 }
3067
3068 EXPORT_SYMBOL(try_to_release_page);