]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/filemap.c
Merge tag 'pwm/for-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[karo-tx-linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114                                   struct page *page, void **shadowp)
115 {
116         struct radix_tree_node *node;
117         void **slot;
118         int error;
119
120         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121                                     &node, &slot);
122         if (error)
123                 return error;
124         if (*slot) {
125                 void *p;
126
127                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128                 if (!radix_tree_exceptional_entry(p))
129                         return -EEXIST;
130
131                 mapping->nrexceptional--;
132                 if (!dax_mapping(mapping)) {
133                         if (shadowp)
134                                 *shadowp = p;
135                 } else {
136                         /* DAX can replace empty locked entry with a hole */
137                         WARN_ON_ONCE(p !=
138                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
139                         /* Wakeup waiters for exceptional entry lock */
140                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
141                                                       true);
142                 }
143         }
144         __radix_tree_replace(&mapping->page_tree, node, slot, page,
145                              workingset_update_node, mapping);
146         mapping->nrpages++;
147         return 0;
148 }
149
150 static void page_cache_tree_delete(struct address_space *mapping,
151                                    struct page *page, void *shadow)
152 {
153         int i, nr;
154
155         /* hugetlb pages are represented by one entry in the radix tree */
156         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
157
158         VM_BUG_ON_PAGE(!PageLocked(page), page);
159         VM_BUG_ON_PAGE(PageTail(page), page);
160         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
161
162         for (i = 0; i < nr; i++) {
163                 struct radix_tree_node *node;
164                 void **slot;
165
166                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
167                                     &node, &slot);
168
169                 VM_BUG_ON_PAGE(!node && nr != 1, page);
170
171                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
172                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173                                      workingset_update_node, mapping);
174         }
175
176         if (shadow) {
177                 mapping->nrexceptional += nr;
178                 /*
179                  * Make sure the nrexceptional update is committed before
180                  * the nrpages update so that final truncate racing
181                  * with reclaim does not see both counters 0 at the
182                  * same time and miss a shadow entry.
183                  */
184                 smp_wmb();
185         }
186         mapping->nrpages -= nr;
187 }
188
189 /*
190  * Delete a page from the page cache and free it. Caller has to make
191  * sure the page is locked and that nobody else uses it - or that usage
192  * is safe.  The caller must hold the mapping's tree_lock.
193  */
194 void __delete_from_page_cache(struct page *page, void *shadow)
195 {
196         struct address_space *mapping = page->mapping;
197         int nr = hpage_nr_pages(page);
198
199         trace_mm_filemap_delete_from_page_cache(page);
200         /*
201          * if we're uptodate, flush out into the cleancache, otherwise
202          * invalidate any existing cleancache entries.  We can't leave
203          * stale data around in the cleancache once our page is gone
204          */
205         if (PageUptodate(page) && PageMappedToDisk(page))
206                 cleancache_put_page(page);
207         else
208                 cleancache_invalidate_page(mapping, page);
209
210         VM_BUG_ON_PAGE(PageTail(page), page);
211         VM_BUG_ON_PAGE(page_mapped(page), page);
212         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213                 int mapcount;
214
215                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
216                          current->comm, page_to_pfn(page));
217                 dump_page(page, "still mapped when deleted");
218                 dump_stack();
219                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
220
221                 mapcount = page_mapcount(page);
222                 if (mapping_exiting(mapping) &&
223                     page_count(page) >= mapcount + 2) {
224                         /*
225                          * All vmas have already been torn down, so it's
226                          * a good bet that actually the page is unmapped,
227                          * and we'd prefer not to leak it: if we're wrong,
228                          * some other bad page check should catch it later.
229                          */
230                         page_mapcount_reset(page);
231                         page_ref_sub(page, mapcount);
232                 }
233         }
234
235         page_cache_tree_delete(mapping, page, shadow);
236
237         page->mapping = NULL;
238         /* Leave page->index set: truncation lookup relies upon it */
239
240         /* hugetlb pages do not participate in page cache accounting. */
241         if (!PageHuge(page))
242                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
243         if (PageSwapBacked(page)) {
244                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
245                 if (PageTransHuge(page))
246                         __dec_node_page_state(page, NR_SHMEM_THPS);
247         } else {
248                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
249         }
250
251         /*
252          * At this point page must be either written or cleaned by truncate.
253          * Dirty page here signals a bug and loss of unwritten data.
254          *
255          * This fixes dirty accounting after removing the page entirely but
256          * leaves PageDirty set: it has no effect for truncated page and
257          * anyway will be cleared before returning page into buddy allocator.
258          */
259         if (WARN_ON_ONCE(PageDirty(page)))
260                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
261 }
262
263 /**
264  * delete_from_page_cache - delete page from page cache
265  * @page: the page which the kernel is trying to remove from page cache
266  *
267  * This must be called only on pages that have been verified to be in the page
268  * cache and locked.  It will never put the page into the free list, the caller
269  * has a reference on the page.
270  */
271 void delete_from_page_cache(struct page *page)
272 {
273         struct address_space *mapping = page_mapping(page);
274         unsigned long flags;
275         void (*freepage)(struct page *);
276
277         BUG_ON(!PageLocked(page));
278
279         freepage = mapping->a_ops->freepage;
280
281         spin_lock_irqsave(&mapping->tree_lock, flags);
282         __delete_from_page_cache(page, NULL);
283         spin_unlock_irqrestore(&mapping->tree_lock, flags);
284
285         if (freepage)
286                 freepage(page);
287
288         if (PageTransHuge(page) && !PageHuge(page)) {
289                 page_ref_sub(page, HPAGE_PMD_NR);
290                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291         } else {
292                 put_page(page);
293         }
294 }
295 EXPORT_SYMBOL(delete_from_page_cache);
296
297 int filemap_check_errors(struct address_space *mapping)
298 {
299         int ret = 0;
300         /* Check for outstanding write errors */
301         if (test_bit(AS_ENOSPC, &mapping->flags) &&
302             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303                 ret = -ENOSPC;
304         if (test_bit(AS_EIO, &mapping->flags) &&
305             test_and_clear_bit(AS_EIO, &mapping->flags))
306                 ret = -EIO;
307         return ret;
308 }
309 EXPORT_SYMBOL(filemap_check_errors);
310
311 /**
312  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
313  * @mapping:    address space structure to write
314  * @start:      offset in bytes where the range starts
315  * @end:        offset in bytes where the range ends (inclusive)
316  * @sync_mode:  enable synchronous operation
317  *
318  * Start writeback against all of a mapping's dirty pages that lie
319  * within the byte offsets <start, end> inclusive.
320  *
321  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
322  * opposed to a regular memory cleansing writeback.  The difference between
323  * these two operations is that if a dirty page/buffer is encountered, it must
324  * be waited upon, and not just skipped over.
325  */
326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327                                 loff_t end, int sync_mode)
328 {
329         int ret;
330         struct writeback_control wbc = {
331                 .sync_mode = sync_mode,
332                 .nr_to_write = LONG_MAX,
333                 .range_start = start,
334                 .range_end = end,
335         };
336
337         if (!mapping_cap_writeback_dirty(mapping))
338                 return 0;
339
340         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
341         ret = do_writepages(mapping, &wbc);
342         wbc_detach_inode(&wbc);
343         return ret;
344 }
345
346 static inline int __filemap_fdatawrite(struct address_space *mapping,
347         int sync_mode)
348 {
349         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
350 }
351
352 int filemap_fdatawrite(struct address_space *mapping)
353 {
354         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
355 }
356 EXPORT_SYMBOL(filemap_fdatawrite);
357
358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
359                                 loff_t end)
360 {
361         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
362 }
363 EXPORT_SYMBOL(filemap_fdatawrite_range);
364
365 /**
366  * filemap_flush - mostly a non-blocking flush
367  * @mapping:    target address_space
368  *
369  * This is a mostly non-blocking flush.  Not suitable for data-integrity
370  * purposes - I/O may not be started against all dirty pages.
371  */
372 int filemap_flush(struct address_space *mapping)
373 {
374         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
375 }
376 EXPORT_SYMBOL(filemap_flush);
377
378 static int __filemap_fdatawait_range(struct address_space *mapping,
379                                      loff_t start_byte, loff_t end_byte)
380 {
381         pgoff_t index = start_byte >> PAGE_SHIFT;
382         pgoff_t end = end_byte >> PAGE_SHIFT;
383         struct pagevec pvec;
384         int nr_pages;
385         int ret = 0;
386
387         if (end_byte < start_byte)
388                 goto out;
389
390         pagevec_init(&pvec, 0);
391         while ((index <= end) &&
392                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393                         PAGECACHE_TAG_WRITEBACK,
394                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395                 unsigned i;
396
397                 for (i = 0; i < nr_pages; i++) {
398                         struct page *page = pvec.pages[i];
399
400                         /* until radix tree lookup accepts end_index */
401                         if (page->index > end)
402                                 continue;
403
404                         wait_on_page_writeback(page);
405                         if (TestClearPageError(page))
406                                 ret = -EIO;
407                 }
408                 pagevec_release(&pvec);
409                 cond_resched();
410         }
411 out:
412         return ret;
413 }
414
415 /**
416  * filemap_fdatawait_range - wait for writeback to complete
417  * @mapping:            address space structure to wait for
418  * @start_byte:         offset in bytes where the range starts
419  * @end_byte:           offset in bytes where the range ends (inclusive)
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * in the given range and wait for all of them.  Check error status of
423  * the address space and return it.
424  *
425  * Since the error status of the address space is cleared by this function,
426  * callers are responsible for checking the return value and handling and/or
427  * reporting the error.
428  */
429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430                             loff_t end_byte)
431 {
432         int ret, ret2;
433
434         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
435         ret2 = filemap_check_errors(mapping);
436         if (!ret)
437                 ret = ret2;
438
439         return ret;
440 }
441 EXPORT_SYMBOL(filemap_fdatawait_range);
442
443 /**
444  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445  * @mapping: address space structure to wait for
446  *
447  * Walk the list of under-writeback pages of the given address space
448  * and wait for all of them.  Unlike filemap_fdatawait(), this function
449  * does not clear error status of the address space.
450  *
451  * Use this function if callers don't handle errors themselves.  Expected
452  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453  * fsfreeze(8)
454  */
455 void filemap_fdatawait_keep_errors(struct address_space *mapping)
456 {
457         loff_t i_size = i_size_read(mapping->host);
458
459         if (i_size == 0)
460                 return;
461
462         __filemap_fdatawait_range(mapping, 0, i_size - 1);
463 }
464
465 /**
466  * filemap_fdatawait - wait for all under-writeback pages to complete
467  * @mapping: address space structure to wait for
468  *
469  * Walk the list of under-writeback pages of the given address space
470  * and wait for all of them.  Check error status of the address space
471  * and return it.
472  *
473  * Since the error status of the address space is cleared by this function,
474  * callers are responsible for checking the return value and handling and/or
475  * reporting the error.
476  */
477 int filemap_fdatawait(struct address_space *mapping)
478 {
479         loff_t i_size = i_size_read(mapping->host);
480
481         if (i_size == 0)
482                 return 0;
483
484         return filemap_fdatawait_range(mapping, 0, i_size - 1);
485 }
486 EXPORT_SYMBOL(filemap_fdatawait);
487
488 int filemap_write_and_wait(struct address_space *mapping)
489 {
490         int err = 0;
491
492         if ((!dax_mapping(mapping) && mapping->nrpages) ||
493             (dax_mapping(mapping) && mapping->nrexceptional)) {
494                 err = filemap_fdatawrite(mapping);
495                 /*
496                  * Even if the above returned error, the pages may be
497                  * written partially (e.g. -ENOSPC), so we wait for it.
498                  * But the -EIO is special case, it may indicate the worst
499                  * thing (e.g. bug) happened, so we avoid waiting for it.
500                  */
501                 if (err != -EIO) {
502                         int err2 = filemap_fdatawait(mapping);
503                         if (!err)
504                                 err = err2;
505                 }
506         } else {
507                 err = filemap_check_errors(mapping);
508         }
509         return err;
510 }
511 EXPORT_SYMBOL(filemap_write_and_wait);
512
513 /**
514  * filemap_write_and_wait_range - write out & wait on a file range
515  * @mapping:    the address_space for the pages
516  * @lstart:     offset in bytes where the range starts
517  * @lend:       offset in bytes where the range ends (inclusive)
518  *
519  * Write out and wait upon file offsets lstart->lend, inclusive.
520  *
521  * Note that `lend' is inclusive (describes the last byte to be written) so
522  * that this function can be used to write to the very end-of-file (end = -1).
523  */
524 int filemap_write_and_wait_range(struct address_space *mapping,
525                                  loff_t lstart, loff_t lend)
526 {
527         int err = 0;
528
529         if ((!dax_mapping(mapping) && mapping->nrpages) ||
530             (dax_mapping(mapping) && mapping->nrexceptional)) {
531                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
532                                                  WB_SYNC_ALL);
533                 /* See comment of filemap_write_and_wait() */
534                 if (err != -EIO) {
535                         int err2 = filemap_fdatawait_range(mapping,
536                                                 lstart, lend);
537                         if (!err)
538                                 err = err2;
539                 }
540         } else {
541                 err = filemap_check_errors(mapping);
542         }
543         return err;
544 }
545 EXPORT_SYMBOL(filemap_write_and_wait_range);
546
547 /**
548  * replace_page_cache_page - replace a pagecache page with a new one
549  * @old:        page to be replaced
550  * @new:        page to replace with
551  * @gfp_mask:   allocation mode
552  *
553  * This function replaces a page in the pagecache with a new one.  On
554  * success it acquires the pagecache reference for the new page and
555  * drops it for the old page.  Both the old and new pages must be
556  * locked.  This function does not add the new page to the LRU, the
557  * caller must do that.
558  *
559  * The remove + add is atomic.  The only way this function can fail is
560  * memory allocation failure.
561  */
562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
563 {
564         int error;
565
566         VM_BUG_ON_PAGE(!PageLocked(old), old);
567         VM_BUG_ON_PAGE(!PageLocked(new), new);
568         VM_BUG_ON_PAGE(new->mapping, new);
569
570         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571         if (!error) {
572                 struct address_space *mapping = old->mapping;
573                 void (*freepage)(struct page *);
574                 unsigned long flags;
575
576                 pgoff_t offset = old->index;
577                 freepage = mapping->a_ops->freepage;
578
579                 get_page(new);
580                 new->mapping = mapping;
581                 new->index = offset;
582
583                 spin_lock_irqsave(&mapping->tree_lock, flags);
584                 __delete_from_page_cache(old, NULL);
585                 error = page_cache_tree_insert(mapping, new, NULL);
586                 BUG_ON(error);
587
588                 /*
589                  * hugetlb pages do not participate in page cache accounting.
590                  */
591                 if (!PageHuge(new))
592                         __inc_node_page_state(new, NR_FILE_PAGES);
593                 if (PageSwapBacked(new))
594                         __inc_node_page_state(new, NR_SHMEM);
595                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
596                 mem_cgroup_migrate(old, new);
597                 radix_tree_preload_end();
598                 if (freepage)
599                         freepage(old);
600                 put_page(old);
601         }
602
603         return error;
604 }
605 EXPORT_SYMBOL_GPL(replace_page_cache_page);
606
607 static int __add_to_page_cache_locked(struct page *page,
608                                       struct address_space *mapping,
609                                       pgoff_t offset, gfp_t gfp_mask,
610                                       void **shadowp)
611 {
612         int huge = PageHuge(page);
613         struct mem_cgroup *memcg;
614         int error;
615
616         VM_BUG_ON_PAGE(!PageLocked(page), page);
617         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
618
619         if (!huge) {
620                 error = mem_cgroup_try_charge(page, current->mm,
621                                               gfp_mask, &memcg, false);
622                 if (error)
623                         return error;
624         }
625
626         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627         if (error) {
628                 if (!huge)
629                         mem_cgroup_cancel_charge(page, memcg, false);
630                 return error;
631         }
632
633         get_page(page);
634         page->mapping = mapping;
635         page->index = offset;
636
637         spin_lock_irq(&mapping->tree_lock);
638         error = page_cache_tree_insert(mapping, page, shadowp);
639         radix_tree_preload_end();
640         if (unlikely(error))
641                 goto err_insert;
642
643         /* hugetlb pages do not participate in page cache accounting. */
644         if (!huge)
645                 __inc_node_page_state(page, NR_FILE_PAGES);
646         spin_unlock_irq(&mapping->tree_lock);
647         if (!huge)
648                 mem_cgroup_commit_charge(page, memcg, false, false);
649         trace_mm_filemap_add_to_page_cache(page);
650         return 0;
651 err_insert:
652         page->mapping = NULL;
653         /* Leave page->index set: truncation relies upon it */
654         spin_unlock_irq(&mapping->tree_lock);
655         if (!huge)
656                 mem_cgroup_cancel_charge(page, memcg, false);
657         put_page(page);
658         return error;
659 }
660
661 /**
662  * add_to_page_cache_locked - add a locked page to the pagecache
663  * @page:       page to add
664  * @mapping:    the page's address_space
665  * @offset:     page index
666  * @gfp_mask:   page allocation mode
667  *
668  * This function is used to add a page to the pagecache. It must be locked.
669  * This function does not add the page to the LRU.  The caller must do that.
670  */
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672                 pgoff_t offset, gfp_t gfp_mask)
673 {
674         return __add_to_page_cache_locked(page, mapping, offset,
675                                           gfp_mask, NULL);
676 }
677 EXPORT_SYMBOL(add_to_page_cache_locked);
678
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680                                 pgoff_t offset, gfp_t gfp_mask)
681 {
682         void *shadow = NULL;
683         int ret;
684
685         __SetPageLocked(page);
686         ret = __add_to_page_cache_locked(page, mapping, offset,
687                                          gfp_mask, &shadow);
688         if (unlikely(ret))
689                 __ClearPageLocked(page);
690         else {
691                 /*
692                  * The page might have been evicted from cache only
693                  * recently, in which case it should be activated like
694                  * any other repeatedly accessed page.
695                  * The exception is pages getting rewritten; evicting other
696                  * data from the working set, only to cache data that will
697                  * get overwritten with something else, is a waste of memory.
698                  */
699                 if (!(gfp_mask & __GFP_WRITE) &&
700                     shadow && workingset_refault(shadow)) {
701                         SetPageActive(page);
702                         workingset_activation(page);
703                 } else
704                         ClearPageActive(page);
705                 lru_cache_add(page);
706         }
707         return ret;
708 }
709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
710
711 #ifdef CONFIG_NUMA
712 struct page *__page_cache_alloc(gfp_t gfp)
713 {
714         int n;
715         struct page *page;
716
717         if (cpuset_do_page_mem_spread()) {
718                 unsigned int cpuset_mems_cookie;
719                 do {
720                         cpuset_mems_cookie = read_mems_allowed_begin();
721                         n = cpuset_mem_spread_node();
722                         page = __alloc_pages_node(n, gfp, 0);
723                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
724
725                 return page;
726         }
727         return alloc_pages(gfp, 0);
728 }
729 EXPORT_SYMBOL(__page_cache_alloc);
730 #endif
731
732 /*
733  * In order to wait for pages to become available there must be
734  * waitqueues associated with pages. By using a hash table of
735  * waitqueues where the bucket discipline is to maintain all
736  * waiters on the same queue and wake all when any of the pages
737  * become available, and for the woken contexts to check to be
738  * sure the appropriate page became available, this saves space
739  * at a cost of "thundering herd" phenomena during rare hash
740  * collisions.
741  */
742 #define PAGE_WAIT_TABLE_BITS 8
743 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
744 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
745
746 static wait_queue_head_t *page_waitqueue(struct page *page)
747 {
748         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
749 }
750
751 void __init pagecache_init(void)
752 {
753         int i;
754
755         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
756                 init_waitqueue_head(&page_wait_table[i]);
757
758         page_writeback_init();
759 }
760
761 struct wait_page_key {
762         struct page *page;
763         int bit_nr;
764         int page_match;
765 };
766
767 struct wait_page_queue {
768         struct page *page;
769         int bit_nr;
770         wait_queue_t wait;
771 };
772
773 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
774 {
775         struct wait_page_key *key = arg;
776         struct wait_page_queue *wait_page
777                 = container_of(wait, struct wait_page_queue, wait);
778
779         if (wait_page->page != key->page)
780                return 0;
781         key->page_match = 1;
782
783         if (wait_page->bit_nr != key->bit_nr)
784                 return 0;
785         if (test_bit(key->bit_nr, &key->page->flags))
786                 return 0;
787
788         return autoremove_wake_function(wait, mode, sync, key);
789 }
790
791 static void wake_up_page_bit(struct page *page, int bit_nr)
792 {
793         wait_queue_head_t *q = page_waitqueue(page);
794         struct wait_page_key key;
795         unsigned long flags;
796
797         key.page = page;
798         key.bit_nr = bit_nr;
799         key.page_match = 0;
800
801         spin_lock_irqsave(&q->lock, flags);
802         __wake_up_locked_key(q, TASK_NORMAL, &key);
803         /*
804          * It is possible for other pages to have collided on the waitqueue
805          * hash, so in that case check for a page match. That prevents a long-
806          * term waiter
807          *
808          * It is still possible to miss a case here, when we woke page waiters
809          * and removed them from the waitqueue, but there are still other
810          * page waiters.
811          */
812         if (!waitqueue_active(q) || !key.page_match) {
813                 ClearPageWaiters(page);
814                 /*
815                  * It's possible to miss clearing Waiters here, when we woke
816                  * our page waiters, but the hashed waitqueue has waiters for
817                  * other pages on it.
818                  *
819                  * That's okay, it's a rare case. The next waker will clear it.
820                  */
821         }
822         spin_unlock_irqrestore(&q->lock, flags);
823 }
824
825 static void wake_up_page(struct page *page, int bit)
826 {
827         if (!PageWaiters(page))
828                 return;
829         wake_up_page_bit(page, bit);
830 }
831
832 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
833                 struct page *page, int bit_nr, int state, bool lock)
834 {
835         struct wait_page_queue wait_page;
836         wait_queue_t *wait = &wait_page.wait;
837         int ret = 0;
838
839         init_wait(wait);
840         wait->func = wake_page_function;
841         wait_page.page = page;
842         wait_page.bit_nr = bit_nr;
843
844         for (;;) {
845                 spin_lock_irq(&q->lock);
846
847                 if (likely(list_empty(&wait->task_list))) {
848                         if (lock)
849                                 __add_wait_queue_tail_exclusive(q, wait);
850                         else
851                                 __add_wait_queue(q, wait);
852                         SetPageWaiters(page);
853                 }
854
855                 set_current_state(state);
856
857                 spin_unlock_irq(&q->lock);
858
859                 if (likely(test_bit(bit_nr, &page->flags))) {
860                         io_schedule();
861                         if (unlikely(signal_pending_state(state, current))) {
862                                 ret = -EINTR;
863                                 break;
864                         }
865                 }
866
867                 if (lock) {
868                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
869                                 break;
870                 } else {
871                         if (!test_bit(bit_nr, &page->flags))
872                                 break;
873                 }
874         }
875
876         finish_wait(q, wait);
877
878         /*
879          * A signal could leave PageWaiters set. Clearing it here if
880          * !waitqueue_active would be possible (by open-coding finish_wait),
881          * but still fail to catch it in the case of wait hash collision. We
882          * already can fail to clear wait hash collision cases, so don't
883          * bother with signals either.
884          */
885
886         return ret;
887 }
888
889 void wait_on_page_bit(struct page *page, int bit_nr)
890 {
891         wait_queue_head_t *q = page_waitqueue(page);
892         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
893 }
894 EXPORT_SYMBOL(wait_on_page_bit);
895
896 int wait_on_page_bit_killable(struct page *page, int bit_nr)
897 {
898         wait_queue_head_t *q = page_waitqueue(page);
899         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
900 }
901
902 /**
903  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
904  * @page: Page defining the wait queue of interest
905  * @waiter: Waiter to add to the queue
906  *
907  * Add an arbitrary @waiter to the wait queue for the nominated @page.
908  */
909 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
910 {
911         wait_queue_head_t *q = page_waitqueue(page);
912         unsigned long flags;
913
914         spin_lock_irqsave(&q->lock, flags);
915         __add_wait_queue(q, waiter);
916         SetPageWaiters(page);
917         spin_unlock_irqrestore(&q->lock, flags);
918 }
919 EXPORT_SYMBOL_GPL(add_page_wait_queue);
920
921 #ifndef clear_bit_unlock_is_negative_byte
922
923 /*
924  * PG_waiters is the high bit in the same byte as PG_lock.
925  *
926  * On x86 (and on many other architectures), we can clear PG_lock and
927  * test the sign bit at the same time. But if the architecture does
928  * not support that special operation, we just do this all by hand
929  * instead.
930  *
931  * The read of PG_waiters has to be after (or concurrently with) PG_locked
932  * being cleared, but a memory barrier should be unneccssary since it is
933  * in the same byte as PG_locked.
934  */
935 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
936 {
937         clear_bit_unlock(nr, mem);
938         /* smp_mb__after_atomic(); */
939         return test_bit(PG_waiters, mem);
940 }
941
942 #endif
943
944 /**
945  * unlock_page - unlock a locked page
946  * @page: the page
947  *
948  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
949  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
950  * mechanism between PageLocked pages and PageWriteback pages is shared.
951  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
952  *
953  * Note that this depends on PG_waiters being the sign bit in the byte
954  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
955  * clear the PG_locked bit and test PG_waiters at the same time fairly
956  * portably (architectures that do LL/SC can test any bit, while x86 can
957  * test the sign bit).
958  */
959 void unlock_page(struct page *page)
960 {
961         BUILD_BUG_ON(PG_waiters != 7);
962         page = compound_head(page);
963         VM_BUG_ON_PAGE(!PageLocked(page), page);
964         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
965                 wake_up_page_bit(page, PG_locked);
966 }
967 EXPORT_SYMBOL(unlock_page);
968
969 /**
970  * end_page_writeback - end writeback against a page
971  * @page: the page
972  */
973 void end_page_writeback(struct page *page)
974 {
975         /*
976          * TestClearPageReclaim could be used here but it is an atomic
977          * operation and overkill in this particular case. Failing to
978          * shuffle a page marked for immediate reclaim is too mild to
979          * justify taking an atomic operation penalty at the end of
980          * ever page writeback.
981          */
982         if (PageReclaim(page)) {
983                 ClearPageReclaim(page);
984                 rotate_reclaimable_page(page);
985         }
986
987         if (!test_clear_page_writeback(page))
988                 BUG();
989
990         smp_mb__after_atomic();
991         wake_up_page(page, PG_writeback);
992 }
993 EXPORT_SYMBOL(end_page_writeback);
994
995 /*
996  * After completing I/O on a page, call this routine to update the page
997  * flags appropriately
998  */
999 void page_endio(struct page *page, bool is_write, int err)
1000 {
1001         if (!is_write) {
1002                 if (!err) {
1003                         SetPageUptodate(page);
1004                 } else {
1005                         ClearPageUptodate(page);
1006                         SetPageError(page);
1007                 }
1008                 unlock_page(page);
1009         } else {
1010                 if (err) {
1011                         struct address_space *mapping;
1012
1013                         SetPageError(page);
1014                         mapping = page_mapping(page);
1015                         if (mapping)
1016                                 mapping_set_error(mapping, err);
1017                 }
1018                 end_page_writeback(page);
1019         }
1020 }
1021 EXPORT_SYMBOL_GPL(page_endio);
1022
1023 /**
1024  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1025  * @__page: the page to lock
1026  */
1027 void __lock_page(struct page *__page)
1028 {
1029         struct page *page = compound_head(__page);
1030         wait_queue_head_t *q = page_waitqueue(page);
1031         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1032 }
1033 EXPORT_SYMBOL(__lock_page);
1034
1035 int __lock_page_killable(struct page *__page)
1036 {
1037         struct page *page = compound_head(__page);
1038         wait_queue_head_t *q = page_waitqueue(page);
1039         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1040 }
1041 EXPORT_SYMBOL_GPL(__lock_page_killable);
1042
1043 /*
1044  * Return values:
1045  * 1 - page is locked; mmap_sem is still held.
1046  * 0 - page is not locked.
1047  *     mmap_sem has been released (up_read()), unless flags had both
1048  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1049  *     which case mmap_sem is still held.
1050  *
1051  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1052  * with the page locked and the mmap_sem unperturbed.
1053  */
1054 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1055                          unsigned int flags)
1056 {
1057         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1058                 /*
1059                  * CAUTION! In this case, mmap_sem is not released
1060                  * even though return 0.
1061                  */
1062                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1063                         return 0;
1064
1065                 up_read(&mm->mmap_sem);
1066                 if (flags & FAULT_FLAG_KILLABLE)
1067                         wait_on_page_locked_killable(page);
1068                 else
1069                         wait_on_page_locked(page);
1070                 return 0;
1071         } else {
1072                 if (flags & FAULT_FLAG_KILLABLE) {
1073                         int ret;
1074
1075                         ret = __lock_page_killable(page);
1076                         if (ret) {
1077                                 up_read(&mm->mmap_sem);
1078                                 return 0;
1079                         }
1080                 } else
1081                         __lock_page(page);
1082                 return 1;
1083         }
1084 }
1085
1086 /**
1087  * page_cache_next_hole - find the next hole (not-present entry)
1088  * @mapping: mapping
1089  * @index: index
1090  * @max_scan: maximum range to search
1091  *
1092  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1093  * lowest indexed hole.
1094  *
1095  * Returns: the index of the hole if found, otherwise returns an index
1096  * outside of the set specified (in which case 'return - index >=
1097  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1098  * be returned.
1099  *
1100  * page_cache_next_hole may be called under rcu_read_lock. However,
1101  * like radix_tree_gang_lookup, this will not atomically search a
1102  * snapshot of the tree at a single point in time. For example, if a
1103  * hole is created at index 5, then subsequently a hole is created at
1104  * index 10, page_cache_next_hole covering both indexes may return 10
1105  * if called under rcu_read_lock.
1106  */
1107 pgoff_t page_cache_next_hole(struct address_space *mapping,
1108                              pgoff_t index, unsigned long max_scan)
1109 {
1110         unsigned long i;
1111
1112         for (i = 0; i < max_scan; i++) {
1113                 struct page *page;
1114
1115                 page = radix_tree_lookup(&mapping->page_tree, index);
1116                 if (!page || radix_tree_exceptional_entry(page))
1117                         break;
1118                 index++;
1119                 if (index == 0)
1120                         break;
1121         }
1122
1123         return index;
1124 }
1125 EXPORT_SYMBOL(page_cache_next_hole);
1126
1127 /**
1128  * page_cache_prev_hole - find the prev hole (not-present entry)
1129  * @mapping: mapping
1130  * @index: index
1131  * @max_scan: maximum range to search
1132  *
1133  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1134  * the first hole.
1135  *
1136  * Returns: the index of the hole if found, otherwise returns an index
1137  * outside of the set specified (in which case 'index - return >=
1138  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1139  * will be returned.
1140  *
1141  * page_cache_prev_hole may be called under rcu_read_lock. However,
1142  * like radix_tree_gang_lookup, this will not atomically search a
1143  * snapshot of the tree at a single point in time. For example, if a
1144  * hole is created at index 10, then subsequently a hole is created at
1145  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1146  * called under rcu_read_lock.
1147  */
1148 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1149                              pgoff_t index, unsigned long max_scan)
1150 {
1151         unsigned long i;
1152
1153         for (i = 0; i < max_scan; i++) {
1154                 struct page *page;
1155
1156                 page = radix_tree_lookup(&mapping->page_tree, index);
1157                 if (!page || radix_tree_exceptional_entry(page))
1158                         break;
1159                 index--;
1160                 if (index == ULONG_MAX)
1161                         break;
1162         }
1163
1164         return index;
1165 }
1166 EXPORT_SYMBOL(page_cache_prev_hole);
1167
1168 /**
1169  * find_get_entry - find and get a page cache entry
1170  * @mapping: the address_space to search
1171  * @offset: the page cache index
1172  *
1173  * Looks up the page cache slot at @mapping & @offset.  If there is a
1174  * page cache page, it is returned with an increased refcount.
1175  *
1176  * If the slot holds a shadow entry of a previously evicted page, or a
1177  * swap entry from shmem/tmpfs, it is returned.
1178  *
1179  * Otherwise, %NULL is returned.
1180  */
1181 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1182 {
1183         void **pagep;
1184         struct page *head, *page;
1185
1186         rcu_read_lock();
1187 repeat:
1188         page = NULL;
1189         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1190         if (pagep) {
1191                 page = radix_tree_deref_slot(pagep);
1192                 if (unlikely(!page))
1193                         goto out;
1194                 if (radix_tree_exception(page)) {
1195                         if (radix_tree_deref_retry(page))
1196                                 goto repeat;
1197                         /*
1198                          * A shadow entry of a recently evicted page,
1199                          * or a swap entry from shmem/tmpfs.  Return
1200                          * it without attempting to raise page count.
1201                          */
1202                         goto out;
1203                 }
1204
1205                 head = compound_head(page);
1206                 if (!page_cache_get_speculative(head))
1207                         goto repeat;
1208
1209                 /* The page was split under us? */
1210                 if (compound_head(page) != head) {
1211                         put_page(head);
1212                         goto repeat;
1213                 }
1214
1215                 /*
1216                  * Has the page moved?
1217                  * This is part of the lockless pagecache protocol. See
1218                  * include/linux/pagemap.h for details.
1219                  */
1220                 if (unlikely(page != *pagep)) {
1221                         put_page(head);
1222                         goto repeat;
1223                 }
1224         }
1225 out:
1226         rcu_read_unlock();
1227
1228         return page;
1229 }
1230 EXPORT_SYMBOL(find_get_entry);
1231
1232 /**
1233  * find_lock_entry - locate, pin and lock a page cache entry
1234  * @mapping: the address_space to search
1235  * @offset: the page cache index
1236  *
1237  * Looks up the page cache slot at @mapping & @offset.  If there is a
1238  * page cache page, it is returned locked and with an increased
1239  * refcount.
1240  *
1241  * If the slot holds a shadow entry of a previously evicted page, or a
1242  * swap entry from shmem/tmpfs, it is returned.
1243  *
1244  * Otherwise, %NULL is returned.
1245  *
1246  * find_lock_entry() may sleep.
1247  */
1248 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1249 {
1250         struct page *page;
1251
1252 repeat:
1253         page = find_get_entry(mapping, offset);
1254         if (page && !radix_tree_exception(page)) {
1255                 lock_page(page);
1256                 /* Has the page been truncated? */
1257                 if (unlikely(page_mapping(page) != mapping)) {
1258                         unlock_page(page);
1259                         put_page(page);
1260                         goto repeat;
1261                 }
1262                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1263         }
1264         return page;
1265 }
1266 EXPORT_SYMBOL(find_lock_entry);
1267
1268 /**
1269  * pagecache_get_page - find and get a page reference
1270  * @mapping: the address_space to search
1271  * @offset: the page index
1272  * @fgp_flags: PCG flags
1273  * @gfp_mask: gfp mask to use for the page cache data page allocation
1274  *
1275  * Looks up the page cache slot at @mapping & @offset.
1276  *
1277  * PCG flags modify how the page is returned.
1278  *
1279  * FGP_ACCESSED: the page will be marked accessed
1280  * FGP_LOCK: Page is return locked
1281  * FGP_CREAT: If page is not present then a new page is allocated using
1282  *              @gfp_mask and added to the page cache and the VM's LRU
1283  *              list. The page is returned locked and with an increased
1284  *              refcount. Otherwise, %NULL is returned.
1285  *
1286  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1287  * if the GFP flags specified for FGP_CREAT are atomic.
1288  *
1289  * If there is a page cache page, it is returned with an increased refcount.
1290  */
1291 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1292         int fgp_flags, gfp_t gfp_mask)
1293 {
1294         struct page *page;
1295
1296 repeat:
1297         page = find_get_entry(mapping, offset);
1298         if (radix_tree_exceptional_entry(page))
1299                 page = NULL;
1300         if (!page)
1301                 goto no_page;
1302
1303         if (fgp_flags & FGP_LOCK) {
1304                 if (fgp_flags & FGP_NOWAIT) {
1305                         if (!trylock_page(page)) {
1306                                 put_page(page);
1307                                 return NULL;
1308                         }
1309                 } else {
1310                         lock_page(page);
1311                 }
1312
1313                 /* Has the page been truncated? */
1314                 if (unlikely(page->mapping != mapping)) {
1315                         unlock_page(page);
1316                         put_page(page);
1317                         goto repeat;
1318                 }
1319                 VM_BUG_ON_PAGE(page->index != offset, page);
1320         }
1321
1322         if (page && (fgp_flags & FGP_ACCESSED))
1323                 mark_page_accessed(page);
1324
1325 no_page:
1326         if (!page && (fgp_flags & FGP_CREAT)) {
1327                 int err;
1328                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1329                         gfp_mask |= __GFP_WRITE;
1330                 if (fgp_flags & FGP_NOFS)
1331                         gfp_mask &= ~__GFP_FS;
1332
1333                 page = __page_cache_alloc(gfp_mask);
1334                 if (!page)
1335                         return NULL;
1336
1337                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1338                         fgp_flags |= FGP_LOCK;
1339
1340                 /* Init accessed so avoid atomic mark_page_accessed later */
1341                 if (fgp_flags & FGP_ACCESSED)
1342                         __SetPageReferenced(page);
1343
1344                 err = add_to_page_cache_lru(page, mapping, offset,
1345                                 gfp_mask & GFP_RECLAIM_MASK);
1346                 if (unlikely(err)) {
1347                         put_page(page);
1348                         page = NULL;
1349                         if (err == -EEXIST)
1350                                 goto repeat;
1351                 }
1352         }
1353
1354         return page;
1355 }
1356 EXPORT_SYMBOL(pagecache_get_page);
1357
1358 /**
1359  * find_get_entries - gang pagecache lookup
1360  * @mapping:    The address_space to search
1361  * @start:      The starting page cache index
1362  * @nr_entries: The maximum number of entries
1363  * @entries:    Where the resulting entries are placed
1364  * @indices:    The cache indices corresponding to the entries in @entries
1365  *
1366  * find_get_entries() will search for and return a group of up to
1367  * @nr_entries entries in the mapping.  The entries are placed at
1368  * @entries.  find_get_entries() takes a reference against any actual
1369  * pages it returns.
1370  *
1371  * The search returns a group of mapping-contiguous page cache entries
1372  * with ascending indexes.  There may be holes in the indices due to
1373  * not-present pages.
1374  *
1375  * Any shadow entries of evicted pages, or swap entries from
1376  * shmem/tmpfs, are included in the returned array.
1377  *
1378  * find_get_entries() returns the number of pages and shadow entries
1379  * which were found.
1380  */
1381 unsigned find_get_entries(struct address_space *mapping,
1382                           pgoff_t start, unsigned int nr_entries,
1383                           struct page **entries, pgoff_t *indices)
1384 {
1385         void **slot;
1386         unsigned int ret = 0;
1387         struct radix_tree_iter iter;
1388
1389         if (!nr_entries)
1390                 return 0;
1391
1392         rcu_read_lock();
1393         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1394                 struct page *head, *page;
1395 repeat:
1396                 page = radix_tree_deref_slot(slot);
1397                 if (unlikely(!page))
1398                         continue;
1399                 if (radix_tree_exception(page)) {
1400                         if (radix_tree_deref_retry(page)) {
1401                                 slot = radix_tree_iter_retry(&iter);
1402                                 continue;
1403                         }
1404                         /*
1405                          * A shadow entry of a recently evicted page, a swap
1406                          * entry from shmem/tmpfs or a DAX entry.  Return it
1407                          * without attempting to raise page count.
1408                          */
1409                         goto export;
1410                 }
1411
1412                 head = compound_head(page);
1413                 if (!page_cache_get_speculative(head))
1414                         goto repeat;
1415
1416                 /* The page was split under us? */
1417                 if (compound_head(page) != head) {
1418                         put_page(head);
1419                         goto repeat;
1420                 }
1421
1422                 /* Has the page moved? */
1423                 if (unlikely(page != *slot)) {
1424                         put_page(head);
1425                         goto repeat;
1426                 }
1427 export:
1428                 indices[ret] = iter.index;
1429                 entries[ret] = page;
1430                 if (++ret == nr_entries)
1431                         break;
1432         }
1433         rcu_read_unlock();
1434         return ret;
1435 }
1436
1437 /**
1438  * find_get_pages - gang pagecache lookup
1439  * @mapping:    The address_space to search
1440  * @start:      The starting page index
1441  * @nr_pages:   The maximum number of pages
1442  * @pages:      Where the resulting pages are placed
1443  *
1444  * find_get_pages() will search for and return a group of up to
1445  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1446  * find_get_pages() takes a reference against the returned pages.
1447  *
1448  * The search returns a group of mapping-contiguous pages with ascending
1449  * indexes.  There may be holes in the indices due to not-present pages.
1450  *
1451  * find_get_pages() returns the number of pages which were found.
1452  */
1453 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1454                             unsigned int nr_pages, struct page **pages)
1455 {
1456         struct radix_tree_iter iter;
1457         void **slot;
1458         unsigned ret = 0;
1459
1460         if (unlikely(!nr_pages))
1461                 return 0;
1462
1463         rcu_read_lock();
1464         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1465                 struct page *head, *page;
1466 repeat:
1467                 page = radix_tree_deref_slot(slot);
1468                 if (unlikely(!page))
1469                         continue;
1470
1471                 if (radix_tree_exception(page)) {
1472                         if (radix_tree_deref_retry(page)) {
1473                                 slot = radix_tree_iter_retry(&iter);
1474                                 continue;
1475                         }
1476                         /*
1477                          * A shadow entry of a recently evicted page,
1478                          * or a swap entry from shmem/tmpfs.  Skip
1479                          * over it.
1480                          */
1481                         continue;
1482                 }
1483
1484                 head = compound_head(page);
1485                 if (!page_cache_get_speculative(head))
1486                         goto repeat;
1487
1488                 /* The page was split under us? */
1489                 if (compound_head(page) != head) {
1490                         put_page(head);
1491                         goto repeat;
1492                 }
1493
1494                 /* Has the page moved? */
1495                 if (unlikely(page != *slot)) {
1496                         put_page(head);
1497                         goto repeat;
1498                 }
1499
1500                 pages[ret] = page;
1501                 if (++ret == nr_pages)
1502                         break;
1503         }
1504
1505         rcu_read_unlock();
1506         return ret;
1507 }
1508
1509 /**
1510  * find_get_pages_contig - gang contiguous pagecache lookup
1511  * @mapping:    The address_space to search
1512  * @index:      The starting page index
1513  * @nr_pages:   The maximum number of pages
1514  * @pages:      Where the resulting pages are placed
1515  *
1516  * find_get_pages_contig() works exactly like find_get_pages(), except
1517  * that the returned number of pages are guaranteed to be contiguous.
1518  *
1519  * find_get_pages_contig() returns the number of pages which were found.
1520  */
1521 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1522                                unsigned int nr_pages, struct page **pages)
1523 {
1524         struct radix_tree_iter iter;
1525         void **slot;
1526         unsigned int ret = 0;
1527
1528         if (unlikely(!nr_pages))
1529                 return 0;
1530
1531         rcu_read_lock();
1532         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1533                 struct page *head, *page;
1534 repeat:
1535                 page = radix_tree_deref_slot(slot);
1536                 /* The hole, there no reason to continue */
1537                 if (unlikely(!page))
1538                         break;
1539
1540                 if (radix_tree_exception(page)) {
1541                         if (radix_tree_deref_retry(page)) {
1542                                 slot = radix_tree_iter_retry(&iter);
1543                                 continue;
1544                         }
1545                         /*
1546                          * A shadow entry of a recently evicted page,
1547                          * or a swap entry from shmem/tmpfs.  Stop
1548                          * looking for contiguous pages.
1549                          */
1550                         break;
1551                 }
1552
1553                 head = compound_head(page);
1554                 if (!page_cache_get_speculative(head))
1555                         goto repeat;
1556
1557                 /* The page was split under us? */
1558                 if (compound_head(page) != head) {
1559                         put_page(head);
1560                         goto repeat;
1561                 }
1562
1563                 /* Has the page moved? */
1564                 if (unlikely(page != *slot)) {
1565                         put_page(head);
1566                         goto repeat;
1567                 }
1568
1569                 /*
1570                  * must check mapping and index after taking the ref.
1571                  * otherwise we can get both false positives and false
1572                  * negatives, which is just confusing to the caller.
1573                  */
1574                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1575                         put_page(page);
1576                         break;
1577                 }
1578
1579                 pages[ret] = page;
1580                 if (++ret == nr_pages)
1581                         break;
1582         }
1583         rcu_read_unlock();
1584         return ret;
1585 }
1586 EXPORT_SYMBOL(find_get_pages_contig);
1587
1588 /**
1589  * find_get_pages_tag - find and return pages that match @tag
1590  * @mapping:    the address_space to search
1591  * @index:      the starting page index
1592  * @tag:        the tag index
1593  * @nr_pages:   the maximum number of pages
1594  * @pages:      where the resulting pages are placed
1595  *
1596  * Like find_get_pages, except we only return pages which are tagged with
1597  * @tag.   We update @index to index the next page for the traversal.
1598  */
1599 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1600                         int tag, unsigned int nr_pages, struct page **pages)
1601 {
1602         struct radix_tree_iter iter;
1603         void **slot;
1604         unsigned ret = 0;
1605
1606         if (unlikely(!nr_pages))
1607                 return 0;
1608
1609         rcu_read_lock();
1610         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1611                                    &iter, *index, tag) {
1612                 struct page *head, *page;
1613 repeat:
1614                 page = radix_tree_deref_slot(slot);
1615                 if (unlikely(!page))
1616                         continue;
1617
1618                 if (radix_tree_exception(page)) {
1619                         if (radix_tree_deref_retry(page)) {
1620                                 slot = radix_tree_iter_retry(&iter);
1621                                 continue;
1622                         }
1623                         /*
1624                          * A shadow entry of a recently evicted page.
1625                          *
1626                          * Those entries should never be tagged, but
1627                          * this tree walk is lockless and the tags are
1628                          * looked up in bulk, one radix tree node at a
1629                          * time, so there is a sizable window for page
1630                          * reclaim to evict a page we saw tagged.
1631                          *
1632                          * Skip over it.
1633                          */
1634                         continue;
1635                 }
1636
1637                 head = compound_head(page);
1638                 if (!page_cache_get_speculative(head))
1639                         goto repeat;
1640
1641                 /* The page was split under us? */
1642                 if (compound_head(page) != head) {
1643                         put_page(head);
1644                         goto repeat;
1645                 }
1646
1647                 /* Has the page moved? */
1648                 if (unlikely(page != *slot)) {
1649                         put_page(head);
1650                         goto repeat;
1651                 }
1652
1653                 pages[ret] = page;
1654                 if (++ret == nr_pages)
1655                         break;
1656         }
1657
1658         rcu_read_unlock();
1659
1660         if (ret)
1661                 *index = pages[ret - 1]->index + 1;
1662
1663         return ret;
1664 }
1665 EXPORT_SYMBOL(find_get_pages_tag);
1666
1667 /**
1668  * find_get_entries_tag - find and return entries that match @tag
1669  * @mapping:    the address_space to search
1670  * @start:      the starting page cache index
1671  * @tag:        the tag index
1672  * @nr_entries: the maximum number of entries
1673  * @entries:    where the resulting entries are placed
1674  * @indices:    the cache indices corresponding to the entries in @entries
1675  *
1676  * Like find_get_entries, except we only return entries which are tagged with
1677  * @tag.
1678  */
1679 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1680                         int tag, unsigned int nr_entries,
1681                         struct page **entries, pgoff_t *indices)
1682 {
1683         void **slot;
1684         unsigned int ret = 0;
1685         struct radix_tree_iter iter;
1686
1687         if (!nr_entries)
1688                 return 0;
1689
1690         rcu_read_lock();
1691         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1692                                    &iter, start, tag) {
1693                 struct page *head, *page;
1694 repeat:
1695                 page = radix_tree_deref_slot(slot);
1696                 if (unlikely(!page))
1697                         continue;
1698                 if (radix_tree_exception(page)) {
1699                         if (radix_tree_deref_retry(page)) {
1700                                 slot = radix_tree_iter_retry(&iter);
1701                                 continue;
1702                         }
1703
1704                         /*
1705                          * A shadow entry of a recently evicted page, a swap
1706                          * entry from shmem/tmpfs or a DAX entry.  Return it
1707                          * without attempting to raise page count.
1708                          */
1709                         goto export;
1710                 }
1711
1712                 head = compound_head(page);
1713                 if (!page_cache_get_speculative(head))
1714                         goto repeat;
1715
1716                 /* The page was split under us? */
1717                 if (compound_head(page) != head) {
1718                         put_page(head);
1719                         goto repeat;
1720                 }
1721
1722                 /* Has the page moved? */
1723                 if (unlikely(page != *slot)) {
1724                         put_page(head);
1725                         goto repeat;
1726                 }
1727 export:
1728                 indices[ret] = iter.index;
1729                 entries[ret] = page;
1730                 if (++ret == nr_entries)
1731                         break;
1732         }
1733         rcu_read_unlock();
1734         return ret;
1735 }
1736 EXPORT_SYMBOL(find_get_entries_tag);
1737
1738 /*
1739  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1740  * a _large_ part of the i/o request. Imagine the worst scenario:
1741  *
1742  *      ---R__________________________________________B__________
1743  *         ^ reading here                             ^ bad block(assume 4k)
1744  *
1745  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1746  * => failing the whole request => read(R) => read(R+1) =>
1747  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1748  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1749  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1750  *
1751  * It is going insane. Fix it by quickly scaling down the readahead size.
1752  */
1753 static void shrink_readahead_size_eio(struct file *filp,
1754                                         struct file_ra_state *ra)
1755 {
1756         ra->ra_pages /= 4;
1757 }
1758
1759 /**
1760  * do_generic_file_read - generic file read routine
1761  * @filp:       the file to read
1762  * @ppos:       current file position
1763  * @iter:       data destination
1764  * @written:    already copied
1765  *
1766  * This is a generic file read routine, and uses the
1767  * mapping->a_ops->readpage() function for the actual low-level stuff.
1768  *
1769  * This is really ugly. But the goto's actually try to clarify some
1770  * of the logic when it comes to error handling etc.
1771  */
1772 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1773                 struct iov_iter *iter, ssize_t written)
1774 {
1775         struct address_space *mapping = filp->f_mapping;
1776         struct inode *inode = mapping->host;
1777         struct file_ra_state *ra = &filp->f_ra;
1778         pgoff_t index;
1779         pgoff_t last_index;
1780         pgoff_t prev_index;
1781         unsigned long offset;      /* offset into pagecache page */
1782         unsigned int prev_offset;
1783         int error = 0;
1784
1785         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1786                 return 0;
1787         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1788
1789         index = *ppos >> PAGE_SHIFT;
1790         prev_index = ra->prev_pos >> PAGE_SHIFT;
1791         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1792         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1793         offset = *ppos & ~PAGE_MASK;
1794
1795         for (;;) {
1796                 struct page *page;
1797                 pgoff_t end_index;
1798                 loff_t isize;
1799                 unsigned long nr, ret;
1800
1801                 cond_resched();
1802 find_page:
1803                 if (fatal_signal_pending(current)) {
1804                         error = -EINTR;
1805                         goto out;
1806                 }
1807
1808                 page = find_get_page(mapping, index);
1809                 if (!page) {
1810                         page_cache_sync_readahead(mapping,
1811                                         ra, filp,
1812                                         index, last_index - index);
1813                         page = find_get_page(mapping, index);
1814                         if (unlikely(page == NULL))
1815                                 goto no_cached_page;
1816                 }
1817                 if (PageReadahead(page)) {
1818                         page_cache_async_readahead(mapping,
1819                                         ra, filp, page,
1820                                         index, last_index - index);
1821                 }
1822                 if (!PageUptodate(page)) {
1823                         /*
1824                          * See comment in do_read_cache_page on why
1825                          * wait_on_page_locked is used to avoid unnecessarily
1826                          * serialisations and why it's safe.
1827                          */
1828                         error = wait_on_page_locked_killable(page);
1829                         if (unlikely(error))
1830                                 goto readpage_error;
1831                         if (PageUptodate(page))
1832                                 goto page_ok;
1833
1834                         if (inode->i_blkbits == PAGE_SHIFT ||
1835                                         !mapping->a_ops->is_partially_uptodate)
1836                                 goto page_not_up_to_date;
1837                         /* pipes can't handle partially uptodate pages */
1838                         if (unlikely(iter->type & ITER_PIPE))
1839                                 goto page_not_up_to_date;
1840                         if (!trylock_page(page))
1841                                 goto page_not_up_to_date;
1842                         /* Did it get truncated before we got the lock? */
1843                         if (!page->mapping)
1844                                 goto page_not_up_to_date_locked;
1845                         if (!mapping->a_ops->is_partially_uptodate(page,
1846                                                         offset, iter->count))
1847                                 goto page_not_up_to_date_locked;
1848                         unlock_page(page);
1849                 }
1850 page_ok:
1851                 /*
1852                  * i_size must be checked after we know the page is Uptodate.
1853                  *
1854                  * Checking i_size after the check allows us to calculate
1855                  * the correct value for "nr", which means the zero-filled
1856                  * part of the page is not copied back to userspace (unless
1857                  * another truncate extends the file - this is desired though).
1858                  */
1859
1860                 isize = i_size_read(inode);
1861                 end_index = (isize - 1) >> PAGE_SHIFT;
1862                 if (unlikely(!isize || index > end_index)) {
1863                         put_page(page);
1864                         goto out;
1865                 }
1866
1867                 /* nr is the maximum number of bytes to copy from this page */
1868                 nr = PAGE_SIZE;
1869                 if (index == end_index) {
1870                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1871                         if (nr <= offset) {
1872                                 put_page(page);
1873                                 goto out;
1874                         }
1875                 }
1876                 nr = nr - offset;
1877
1878                 /* If users can be writing to this page using arbitrary
1879                  * virtual addresses, take care about potential aliasing
1880                  * before reading the page on the kernel side.
1881                  */
1882                 if (mapping_writably_mapped(mapping))
1883                         flush_dcache_page(page);
1884
1885                 /*
1886                  * When a sequential read accesses a page several times,
1887                  * only mark it as accessed the first time.
1888                  */
1889                 if (prev_index != index || offset != prev_offset)
1890                         mark_page_accessed(page);
1891                 prev_index = index;
1892
1893                 /*
1894                  * Ok, we have the page, and it's up-to-date, so
1895                  * now we can copy it to user space...
1896                  */
1897
1898                 ret = copy_page_to_iter(page, offset, nr, iter);
1899                 offset += ret;
1900                 index += offset >> PAGE_SHIFT;
1901                 offset &= ~PAGE_MASK;
1902                 prev_offset = offset;
1903
1904                 put_page(page);
1905                 written += ret;
1906                 if (!iov_iter_count(iter))
1907                         goto out;
1908                 if (ret < nr) {
1909                         error = -EFAULT;
1910                         goto out;
1911                 }
1912                 continue;
1913
1914 page_not_up_to_date:
1915                 /* Get exclusive access to the page ... */
1916                 error = lock_page_killable(page);
1917                 if (unlikely(error))
1918                         goto readpage_error;
1919
1920 page_not_up_to_date_locked:
1921                 /* Did it get truncated before we got the lock? */
1922                 if (!page->mapping) {
1923                         unlock_page(page);
1924                         put_page(page);
1925                         continue;
1926                 }
1927
1928                 /* Did somebody else fill it already? */
1929                 if (PageUptodate(page)) {
1930                         unlock_page(page);
1931                         goto page_ok;
1932                 }
1933
1934 readpage:
1935                 /*
1936                  * A previous I/O error may have been due to temporary
1937                  * failures, eg. multipath errors.
1938                  * PG_error will be set again if readpage fails.
1939                  */
1940                 ClearPageError(page);
1941                 /* Start the actual read. The read will unlock the page. */
1942                 error = mapping->a_ops->readpage(filp, page);
1943
1944                 if (unlikely(error)) {
1945                         if (error == AOP_TRUNCATED_PAGE) {
1946                                 put_page(page);
1947                                 error = 0;
1948                                 goto find_page;
1949                         }
1950                         goto readpage_error;
1951                 }
1952
1953                 if (!PageUptodate(page)) {
1954                         error = lock_page_killable(page);
1955                         if (unlikely(error))
1956                                 goto readpage_error;
1957                         if (!PageUptodate(page)) {
1958                                 if (page->mapping == NULL) {
1959                                         /*
1960                                          * invalidate_mapping_pages got it
1961                                          */
1962                                         unlock_page(page);
1963                                         put_page(page);
1964                                         goto find_page;
1965                                 }
1966                                 unlock_page(page);
1967                                 shrink_readahead_size_eio(filp, ra);
1968                                 error = -EIO;
1969                                 goto readpage_error;
1970                         }
1971                         unlock_page(page);
1972                 }
1973
1974                 goto page_ok;
1975
1976 readpage_error:
1977                 /* UHHUH! A synchronous read error occurred. Report it */
1978                 put_page(page);
1979                 goto out;
1980
1981 no_cached_page:
1982                 /*
1983                  * Ok, it wasn't cached, so we need to create a new
1984                  * page..
1985                  */
1986                 page = page_cache_alloc_cold(mapping);
1987                 if (!page) {
1988                         error = -ENOMEM;
1989                         goto out;
1990                 }
1991                 error = add_to_page_cache_lru(page, mapping, index,
1992                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1993                 if (error) {
1994                         put_page(page);
1995                         if (error == -EEXIST) {
1996                                 error = 0;
1997                                 goto find_page;
1998                         }
1999                         goto out;
2000                 }
2001                 goto readpage;
2002         }
2003
2004 out:
2005         ra->prev_pos = prev_index;
2006         ra->prev_pos <<= PAGE_SHIFT;
2007         ra->prev_pos |= prev_offset;
2008
2009         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2010         file_accessed(filp);
2011         return written ? written : error;
2012 }
2013
2014 /**
2015  * generic_file_read_iter - generic filesystem read routine
2016  * @iocb:       kernel I/O control block
2017  * @iter:       destination for the data read
2018  *
2019  * This is the "read_iter()" routine for all filesystems
2020  * that can use the page cache directly.
2021  */
2022 ssize_t
2023 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2024 {
2025         struct file *file = iocb->ki_filp;
2026         ssize_t retval = 0;
2027         size_t count = iov_iter_count(iter);
2028
2029         if (!count)
2030                 goto out; /* skip atime */
2031
2032         if (iocb->ki_flags & IOCB_DIRECT) {
2033                 struct address_space *mapping = file->f_mapping;
2034                 struct inode *inode = mapping->host;
2035                 struct iov_iter data = *iter;
2036                 loff_t size;
2037
2038                 size = i_size_read(inode);
2039                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2040                                         iocb->ki_pos + count - 1);
2041                 if (retval < 0)
2042                         goto out;
2043
2044                 file_accessed(file);
2045
2046                 retval = mapping->a_ops->direct_IO(iocb, &data);
2047                 if (retval >= 0) {
2048                         iocb->ki_pos += retval;
2049                         iov_iter_advance(iter, retval);
2050                 }
2051
2052                 /*
2053                  * Btrfs can have a short DIO read if we encounter
2054                  * compressed extents, so if there was an error, or if
2055                  * we've already read everything we wanted to, or if
2056                  * there was a short read because we hit EOF, go ahead
2057                  * and return.  Otherwise fallthrough to buffered io for
2058                  * the rest of the read.  Buffered reads will not work for
2059                  * DAX files, so don't bother trying.
2060                  */
2061                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2062                     IS_DAX(inode))
2063                         goto out;
2064         }
2065
2066         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2067 out:
2068         return retval;
2069 }
2070 EXPORT_SYMBOL(generic_file_read_iter);
2071
2072 #ifdef CONFIG_MMU
2073 /**
2074  * page_cache_read - adds requested page to the page cache if not already there
2075  * @file:       file to read
2076  * @offset:     page index
2077  * @gfp_mask:   memory allocation flags
2078  *
2079  * This adds the requested page to the page cache if it isn't already there,
2080  * and schedules an I/O to read in its contents from disk.
2081  */
2082 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2083 {
2084         struct address_space *mapping = file->f_mapping;
2085         struct page *page;
2086         int ret;
2087
2088         do {
2089                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2090                 if (!page)
2091                         return -ENOMEM;
2092
2093                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2094                 if (ret == 0)
2095                         ret = mapping->a_ops->readpage(file, page);
2096                 else if (ret == -EEXIST)
2097                         ret = 0; /* losing race to add is OK */
2098
2099                 put_page(page);
2100
2101         } while (ret == AOP_TRUNCATED_PAGE);
2102
2103         return ret;
2104 }
2105
2106 #define MMAP_LOTSAMISS  (100)
2107
2108 /*
2109  * Synchronous readahead happens when we don't even find
2110  * a page in the page cache at all.
2111  */
2112 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2113                                    struct file_ra_state *ra,
2114                                    struct file *file,
2115                                    pgoff_t offset)
2116 {
2117         struct address_space *mapping = file->f_mapping;
2118
2119         /* If we don't want any read-ahead, don't bother */
2120         if (vma->vm_flags & VM_RAND_READ)
2121                 return;
2122         if (!ra->ra_pages)
2123                 return;
2124
2125         if (vma->vm_flags & VM_SEQ_READ) {
2126                 page_cache_sync_readahead(mapping, ra, file, offset,
2127                                           ra->ra_pages);
2128                 return;
2129         }
2130
2131         /* Avoid banging the cache line if not needed */
2132         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2133                 ra->mmap_miss++;
2134
2135         /*
2136          * Do we miss much more than hit in this file? If so,
2137          * stop bothering with read-ahead. It will only hurt.
2138          */
2139         if (ra->mmap_miss > MMAP_LOTSAMISS)
2140                 return;
2141
2142         /*
2143          * mmap read-around
2144          */
2145         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2146         ra->size = ra->ra_pages;
2147         ra->async_size = ra->ra_pages / 4;
2148         ra_submit(ra, mapping, file);
2149 }
2150
2151 /*
2152  * Asynchronous readahead happens when we find the page and PG_readahead,
2153  * so we want to possibly extend the readahead further..
2154  */
2155 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2156                                     struct file_ra_state *ra,
2157                                     struct file *file,
2158                                     struct page *page,
2159                                     pgoff_t offset)
2160 {
2161         struct address_space *mapping = file->f_mapping;
2162
2163         /* If we don't want any read-ahead, don't bother */
2164         if (vma->vm_flags & VM_RAND_READ)
2165                 return;
2166         if (ra->mmap_miss > 0)
2167                 ra->mmap_miss--;
2168         if (PageReadahead(page))
2169                 page_cache_async_readahead(mapping, ra, file,
2170                                            page, offset, ra->ra_pages);
2171 }
2172
2173 /**
2174  * filemap_fault - read in file data for page fault handling
2175  * @vmf:        struct vm_fault containing details of the fault
2176  *
2177  * filemap_fault() is invoked via the vma operations vector for a
2178  * mapped memory region to read in file data during a page fault.
2179  *
2180  * The goto's are kind of ugly, but this streamlines the normal case of having
2181  * it in the page cache, and handles the special cases reasonably without
2182  * having a lot of duplicated code.
2183  *
2184  * vma->vm_mm->mmap_sem must be held on entry.
2185  *
2186  * If our return value has VM_FAULT_RETRY set, it's because
2187  * lock_page_or_retry() returned 0.
2188  * The mmap_sem has usually been released in this case.
2189  * See __lock_page_or_retry() for the exception.
2190  *
2191  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2192  * has not been released.
2193  *
2194  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2195  */
2196 int filemap_fault(struct vm_fault *vmf)
2197 {
2198         int error;
2199         struct file *file = vmf->vma->vm_file;
2200         struct address_space *mapping = file->f_mapping;
2201         struct file_ra_state *ra = &file->f_ra;
2202         struct inode *inode = mapping->host;
2203         pgoff_t offset = vmf->pgoff;
2204         struct page *page;
2205         loff_t size;
2206         int ret = 0;
2207
2208         size = round_up(i_size_read(inode), PAGE_SIZE);
2209         if (offset >= size >> PAGE_SHIFT)
2210                 return VM_FAULT_SIGBUS;
2211
2212         /*
2213          * Do we have something in the page cache already?
2214          */
2215         page = find_get_page(mapping, offset);
2216         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2217                 /*
2218                  * We found the page, so try async readahead before
2219                  * waiting for the lock.
2220                  */
2221                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2222         } else if (!page) {
2223                 /* No page in the page cache at all */
2224                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2225                 count_vm_event(PGMAJFAULT);
2226                 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
2227                 ret = VM_FAULT_MAJOR;
2228 retry_find:
2229                 page = find_get_page(mapping, offset);
2230                 if (!page)
2231                         goto no_cached_page;
2232         }
2233
2234         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2235                 put_page(page);
2236                 return ret | VM_FAULT_RETRY;
2237         }
2238
2239         /* Did it get truncated? */
2240         if (unlikely(page->mapping != mapping)) {
2241                 unlock_page(page);
2242                 put_page(page);
2243                 goto retry_find;
2244         }
2245         VM_BUG_ON_PAGE(page->index != offset, page);
2246
2247         /*
2248          * We have a locked page in the page cache, now we need to check
2249          * that it's up-to-date. If not, it is going to be due to an error.
2250          */
2251         if (unlikely(!PageUptodate(page)))
2252                 goto page_not_uptodate;
2253
2254         /*
2255          * Found the page and have a reference on it.
2256          * We must recheck i_size under page lock.
2257          */
2258         size = round_up(i_size_read(inode), PAGE_SIZE);
2259         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2260                 unlock_page(page);
2261                 put_page(page);
2262                 return VM_FAULT_SIGBUS;
2263         }
2264
2265         vmf->page = page;
2266         return ret | VM_FAULT_LOCKED;
2267
2268 no_cached_page:
2269         /*
2270          * We're only likely to ever get here if MADV_RANDOM is in
2271          * effect.
2272          */
2273         error = page_cache_read(file, offset, vmf->gfp_mask);
2274
2275         /*
2276          * The page we want has now been added to the page cache.
2277          * In the unlikely event that someone removed it in the
2278          * meantime, we'll just come back here and read it again.
2279          */
2280         if (error >= 0)
2281                 goto retry_find;
2282
2283         /*
2284          * An error return from page_cache_read can result if the
2285          * system is low on memory, or a problem occurs while trying
2286          * to schedule I/O.
2287          */
2288         if (error == -ENOMEM)
2289                 return VM_FAULT_OOM;
2290         return VM_FAULT_SIGBUS;
2291
2292 page_not_uptodate:
2293         /*
2294          * Umm, take care of errors if the page isn't up-to-date.
2295          * Try to re-read it _once_. We do this synchronously,
2296          * because there really aren't any performance issues here
2297          * and we need to check for errors.
2298          */
2299         ClearPageError(page);
2300         error = mapping->a_ops->readpage(file, page);
2301         if (!error) {
2302                 wait_on_page_locked(page);
2303                 if (!PageUptodate(page))
2304                         error = -EIO;
2305         }
2306         put_page(page);
2307
2308         if (!error || error == AOP_TRUNCATED_PAGE)
2309                 goto retry_find;
2310
2311         /* Things didn't work out. Return zero to tell the mm layer so. */
2312         shrink_readahead_size_eio(file, ra);
2313         return VM_FAULT_SIGBUS;
2314 }
2315 EXPORT_SYMBOL(filemap_fault);
2316
2317 void filemap_map_pages(struct vm_fault *vmf,
2318                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2319 {
2320         struct radix_tree_iter iter;
2321         void **slot;
2322         struct file *file = vmf->vma->vm_file;
2323         struct address_space *mapping = file->f_mapping;
2324         pgoff_t last_pgoff = start_pgoff;
2325         loff_t size;
2326         struct page *head, *page;
2327
2328         rcu_read_lock();
2329         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2330                         start_pgoff) {
2331                 if (iter.index > end_pgoff)
2332                         break;
2333 repeat:
2334                 page = radix_tree_deref_slot(slot);
2335                 if (unlikely(!page))
2336                         goto next;
2337                 if (radix_tree_exception(page)) {
2338                         if (radix_tree_deref_retry(page)) {
2339                                 slot = radix_tree_iter_retry(&iter);
2340                                 continue;
2341                         }
2342                         goto next;
2343                 }
2344
2345                 head = compound_head(page);
2346                 if (!page_cache_get_speculative(head))
2347                         goto repeat;
2348
2349                 /* The page was split under us? */
2350                 if (compound_head(page) != head) {
2351                         put_page(head);
2352                         goto repeat;
2353                 }
2354
2355                 /* Has the page moved? */
2356                 if (unlikely(page != *slot)) {
2357                         put_page(head);
2358                         goto repeat;
2359                 }
2360
2361                 if (!PageUptodate(page) ||
2362                                 PageReadahead(page) ||
2363                                 PageHWPoison(page))
2364                         goto skip;
2365                 if (!trylock_page(page))
2366                         goto skip;
2367
2368                 if (page->mapping != mapping || !PageUptodate(page))
2369                         goto unlock;
2370
2371                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2372                 if (page->index >= size >> PAGE_SHIFT)
2373                         goto unlock;
2374
2375                 if (file->f_ra.mmap_miss > 0)
2376                         file->f_ra.mmap_miss--;
2377
2378                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2379                 if (vmf->pte)
2380                         vmf->pte += iter.index - last_pgoff;
2381                 last_pgoff = iter.index;
2382                 if (alloc_set_pte(vmf, NULL, page))
2383                         goto unlock;
2384                 unlock_page(page);
2385                 goto next;
2386 unlock:
2387                 unlock_page(page);
2388 skip:
2389                 put_page(page);
2390 next:
2391                 /* Huge page is mapped? No need to proceed. */
2392                 if (pmd_trans_huge(*vmf->pmd))
2393                         break;
2394                 if (iter.index == end_pgoff)
2395                         break;
2396         }
2397         rcu_read_unlock();
2398 }
2399 EXPORT_SYMBOL(filemap_map_pages);
2400
2401 int filemap_page_mkwrite(struct vm_fault *vmf)
2402 {
2403         struct page *page = vmf->page;
2404         struct inode *inode = file_inode(vmf->vma->vm_file);
2405         int ret = VM_FAULT_LOCKED;
2406
2407         sb_start_pagefault(inode->i_sb);
2408         file_update_time(vmf->vma->vm_file);
2409         lock_page(page);
2410         if (page->mapping != inode->i_mapping) {
2411                 unlock_page(page);
2412                 ret = VM_FAULT_NOPAGE;
2413                 goto out;
2414         }
2415         /*
2416          * We mark the page dirty already here so that when freeze is in
2417          * progress, we are guaranteed that writeback during freezing will
2418          * see the dirty page and writeprotect it again.
2419          */
2420         set_page_dirty(page);
2421         wait_for_stable_page(page);
2422 out:
2423         sb_end_pagefault(inode->i_sb);
2424         return ret;
2425 }
2426 EXPORT_SYMBOL(filemap_page_mkwrite);
2427
2428 const struct vm_operations_struct generic_file_vm_ops = {
2429         .fault          = filemap_fault,
2430         .map_pages      = filemap_map_pages,
2431         .page_mkwrite   = filemap_page_mkwrite,
2432 };
2433
2434 /* This is used for a general mmap of a disk file */
2435
2436 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2437 {
2438         struct address_space *mapping = file->f_mapping;
2439
2440         if (!mapping->a_ops->readpage)
2441                 return -ENOEXEC;
2442         file_accessed(file);
2443         vma->vm_ops = &generic_file_vm_ops;
2444         return 0;
2445 }
2446
2447 /*
2448  * This is for filesystems which do not implement ->writepage.
2449  */
2450 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2451 {
2452         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2453                 return -EINVAL;
2454         return generic_file_mmap(file, vma);
2455 }
2456 #else
2457 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2458 {
2459         return -ENOSYS;
2460 }
2461 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2462 {
2463         return -ENOSYS;
2464 }
2465 #endif /* CONFIG_MMU */
2466
2467 EXPORT_SYMBOL(generic_file_mmap);
2468 EXPORT_SYMBOL(generic_file_readonly_mmap);
2469
2470 static struct page *wait_on_page_read(struct page *page)
2471 {
2472         if (!IS_ERR(page)) {
2473                 wait_on_page_locked(page);
2474                 if (!PageUptodate(page)) {
2475                         put_page(page);
2476                         page = ERR_PTR(-EIO);
2477                 }
2478         }
2479         return page;
2480 }
2481
2482 static struct page *do_read_cache_page(struct address_space *mapping,
2483                                 pgoff_t index,
2484                                 int (*filler)(void *, struct page *),
2485                                 void *data,
2486                                 gfp_t gfp)
2487 {
2488         struct page *page;
2489         int err;
2490 repeat:
2491         page = find_get_page(mapping, index);
2492         if (!page) {
2493                 page = __page_cache_alloc(gfp | __GFP_COLD);
2494                 if (!page)
2495                         return ERR_PTR(-ENOMEM);
2496                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2497                 if (unlikely(err)) {
2498                         put_page(page);
2499                         if (err == -EEXIST)
2500                                 goto repeat;
2501                         /* Presumably ENOMEM for radix tree node */
2502                         return ERR_PTR(err);
2503                 }
2504
2505 filler:
2506                 err = filler(data, page);
2507                 if (err < 0) {
2508                         put_page(page);
2509                         return ERR_PTR(err);
2510                 }
2511
2512                 page = wait_on_page_read(page);
2513                 if (IS_ERR(page))
2514                         return page;
2515                 goto out;
2516         }
2517         if (PageUptodate(page))
2518                 goto out;
2519
2520         /*
2521          * Page is not up to date and may be locked due one of the following
2522          * case a: Page is being filled and the page lock is held
2523          * case b: Read/write error clearing the page uptodate status
2524          * case c: Truncation in progress (page locked)
2525          * case d: Reclaim in progress
2526          *
2527          * Case a, the page will be up to date when the page is unlocked.
2528          *    There is no need to serialise on the page lock here as the page
2529          *    is pinned so the lock gives no additional protection. Even if the
2530          *    the page is truncated, the data is still valid if PageUptodate as
2531          *    it's a race vs truncate race.
2532          * Case b, the page will not be up to date
2533          * Case c, the page may be truncated but in itself, the data may still
2534          *    be valid after IO completes as it's a read vs truncate race. The
2535          *    operation must restart if the page is not uptodate on unlock but
2536          *    otherwise serialising on page lock to stabilise the mapping gives
2537          *    no additional guarantees to the caller as the page lock is
2538          *    released before return.
2539          * Case d, similar to truncation. If reclaim holds the page lock, it
2540          *    will be a race with remove_mapping that determines if the mapping
2541          *    is valid on unlock but otherwise the data is valid and there is
2542          *    no need to serialise with page lock.
2543          *
2544          * As the page lock gives no additional guarantee, we optimistically
2545          * wait on the page to be unlocked and check if it's up to date and
2546          * use the page if it is. Otherwise, the page lock is required to
2547          * distinguish between the different cases. The motivation is that we
2548          * avoid spurious serialisations and wakeups when multiple processes
2549          * wait on the same page for IO to complete.
2550          */
2551         wait_on_page_locked(page);
2552         if (PageUptodate(page))
2553                 goto out;
2554
2555         /* Distinguish between all the cases under the safety of the lock */
2556         lock_page(page);
2557
2558         /* Case c or d, restart the operation */
2559         if (!page->mapping) {
2560                 unlock_page(page);
2561                 put_page(page);
2562                 goto repeat;
2563         }
2564
2565         /* Someone else locked and filled the page in a very small window */
2566         if (PageUptodate(page)) {
2567                 unlock_page(page);
2568                 goto out;
2569         }
2570         goto filler;
2571
2572 out:
2573         mark_page_accessed(page);
2574         return page;
2575 }
2576
2577 /**
2578  * read_cache_page - read into page cache, fill it if needed
2579  * @mapping:    the page's address_space
2580  * @index:      the page index
2581  * @filler:     function to perform the read
2582  * @data:       first arg to filler(data, page) function, often left as NULL
2583  *
2584  * Read into the page cache. If a page already exists, and PageUptodate() is
2585  * not set, try to fill the page and wait for it to become unlocked.
2586  *
2587  * If the page does not get brought uptodate, return -EIO.
2588  */
2589 struct page *read_cache_page(struct address_space *mapping,
2590                                 pgoff_t index,
2591                                 int (*filler)(void *, struct page *),
2592                                 void *data)
2593 {
2594         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2595 }
2596 EXPORT_SYMBOL(read_cache_page);
2597
2598 /**
2599  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2600  * @mapping:    the page's address_space
2601  * @index:      the page index
2602  * @gfp:        the page allocator flags to use if allocating
2603  *
2604  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2605  * any new page allocations done using the specified allocation flags.
2606  *
2607  * If the page does not get brought uptodate, return -EIO.
2608  */
2609 struct page *read_cache_page_gfp(struct address_space *mapping,
2610                                 pgoff_t index,
2611                                 gfp_t gfp)
2612 {
2613         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2614
2615         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2616 }
2617 EXPORT_SYMBOL(read_cache_page_gfp);
2618
2619 /*
2620  * Performs necessary checks before doing a write
2621  *
2622  * Can adjust writing position or amount of bytes to write.
2623  * Returns appropriate error code that caller should return or
2624  * zero in case that write should be allowed.
2625  */
2626 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2627 {
2628         struct file *file = iocb->ki_filp;
2629         struct inode *inode = file->f_mapping->host;
2630         unsigned long limit = rlimit(RLIMIT_FSIZE);
2631         loff_t pos;
2632
2633         if (!iov_iter_count(from))
2634                 return 0;
2635
2636         /* FIXME: this is for backwards compatibility with 2.4 */
2637         if (iocb->ki_flags & IOCB_APPEND)
2638                 iocb->ki_pos = i_size_read(inode);
2639
2640         pos = iocb->ki_pos;
2641
2642         if (limit != RLIM_INFINITY) {
2643                 if (iocb->ki_pos >= limit) {
2644                         send_sig(SIGXFSZ, current, 0);
2645                         return -EFBIG;
2646                 }
2647                 iov_iter_truncate(from, limit - (unsigned long)pos);
2648         }
2649
2650         /*
2651          * LFS rule
2652          */
2653         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2654                                 !(file->f_flags & O_LARGEFILE))) {
2655                 if (pos >= MAX_NON_LFS)
2656                         return -EFBIG;
2657                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2658         }
2659
2660         /*
2661          * Are we about to exceed the fs block limit ?
2662          *
2663          * If we have written data it becomes a short write.  If we have
2664          * exceeded without writing data we send a signal and return EFBIG.
2665          * Linus frestrict idea will clean these up nicely..
2666          */
2667         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2668                 return -EFBIG;
2669
2670         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2671         return iov_iter_count(from);
2672 }
2673 EXPORT_SYMBOL(generic_write_checks);
2674
2675 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2676                                 loff_t pos, unsigned len, unsigned flags,
2677                                 struct page **pagep, void **fsdata)
2678 {
2679         const struct address_space_operations *aops = mapping->a_ops;
2680
2681         return aops->write_begin(file, mapping, pos, len, flags,
2682                                                         pagep, fsdata);
2683 }
2684 EXPORT_SYMBOL(pagecache_write_begin);
2685
2686 int pagecache_write_end(struct file *file, struct address_space *mapping,
2687                                 loff_t pos, unsigned len, unsigned copied,
2688                                 struct page *page, void *fsdata)
2689 {
2690         const struct address_space_operations *aops = mapping->a_ops;
2691
2692         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2693 }
2694 EXPORT_SYMBOL(pagecache_write_end);
2695
2696 ssize_t
2697 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2698 {
2699         struct file     *file = iocb->ki_filp;
2700         struct address_space *mapping = file->f_mapping;
2701         struct inode    *inode = mapping->host;
2702         loff_t          pos = iocb->ki_pos;
2703         ssize_t         written;
2704         size_t          write_len;
2705         pgoff_t         end;
2706         struct iov_iter data;
2707
2708         write_len = iov_iter_count(from);
2709         end = (pos + write_len - 1) >> PAGE_SHIFT;
2710
2711         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2712         if (written)
2713                 goto out;
2714
2715         /*
2716          * After a write we want buffered reads to be sure to go to disk to get
2717          * the new data.  We invalidate clean cached page from the region we're
2718          * about to write.  We do this *before* the write so that we can return
2719          * without clobbering -EIOCBQUEUED from ->direct_IO().
2720          */
2721         if (mapping->nrpages) {
2722                 written = invalidate_inode_pages2_range(mapping,
2723                                         pos >> PAGE_SHIFT, end);
2724                 /*
2725                  * If a page can not be invalidated, return 0 to fall back
2726                  * to buffered write.
2727                  */
2728                 if (written) {
2729                         if (written == -EBUSY)
2730                                 return 0;
2731                         goto out;
2732                 }
2733         }
2734
2735         data = *from;
2736         written = mapping->a_ops->direct_IO(iocb, &data);
2737
2738         /*
2739          * Finally, try again to invalidate clean pages which might have been
2740          * cached by non-direct readahead, or faulted in by get_user_pages()
2741          * if the source of the write was an mmap'ed region of the file
2742          * we're writing.  Either one is a pretty crazy thing to do,
2743          * so we don't support it 100%.  If this invalidation
2744          * fails, tough, the write still worked...
2745          */
2746         if (mapping->nrpages) {
2747                 invalidate_inode_pages2_range(mapping,
2748                                               pos >> PAGE_SHIFT, end);
2749         }
2750
2751         if (written > 0) {
2752                 pos += written;
2753                 iov_iter_advance(from, written);
2754                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2755                         i_size_write(inode, pos);
2756                         mark_inode_dirty(inode);
2757                 }
2758                 iocb->ki_pos = pos;
2759         }
2760 out:
2761         return written;
2762 }
2763 EXPORT_SYMBOL(generic_file_direct_write);
2764
2765 /*
2766  * Find or create a page at the given pagecache position. Return the locked
2767  * page. This function is specifically for buffered writes.
2768  */
2769 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2770                                         pgoff_t index, unsigned flags)
2771 {
2772         struct page *page;
2773         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2774
2775         if (flags & AOP_FLAG_NOFS)
2776                 fgp_flags |= FGP_NOFS;
2777
2778         page = pagecache_get_page(mapping, index, fgp_flags,
2779                         mapping_gfp_mask(mapping));
2780         if (page)
2781                 wait_for_stable_page(page);
2782
2783         return page;
2784 }
2785 EXPORT_SYMBOL(grab_cache_page_write_begin);
2786
2787 ssize_t generic_perform_write(struct file *file,
2788                                 struct iov_iter *i, loff_t pos)
2789 {
2790         struct address_space *mapping = file->f_mapping;
2791         const struct address_space_operations *a_ops = mapping->a_ops;
2792         long status = 0;
2793         ssize_t written = 0;
2794         unsigned int flags = 0;
2795
2796         /*
2797          * Copies from kernel address space cannot fail (NFSD is a big user).
2798          */
2799         if (!iter_is_iovec(i))
2800                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2801
2802         do {
2803                 struct page *page;
2804                 unsigned long offset;   /* Offset into pagecache page */
2805                 unsigned long bytes;    /* Bytes to write to page */
2806                 size_t copied;          /* Bytes copied from user */
2807                 void *fsdata;
2808
2809                 offset = (pos & (PAGE_SIZE - 1));
2810                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2811                                                 iov_iter_count(i));
2812
2813 again:
2814                 /*
2815                  * Bring in the user page that we will copy from _first_.
2816                  * Otherwise there's a nasty deadlock on copying from the
2817                  * same page as we're writing to, without it being marked
2818                  * up-to-date.
2819                  *
2820                  * Not only is this an optimisation, but it is also required
2821                  * to check that the address is actually valid, when atomic
2822                  * usercopies are used, below.
2823                  */
2824                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2825                         status = -EFAULT;
2826                         break;
2827                 }
2828
2829                 if (fatal_signal_pending(current)) {
2830                         status = -EINTR;
2831                         break;
2832                 }
2833
2834                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2835                                                 &page, &fsdata);
2836                 if (unlikely(status < 0))
2837                         break;
2838
2839                 if (mapping_writably_mapped(mapping))
2840                         flush_dcache_page(page);
2841
2842                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2843                 flush_dcache_page(page);
2844
2845                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2846                                                 page, fsdata);
2847                 if (unlikely(status < 0))
2848                         break;
2849                 copied = status;
2850
2851                 cond_resched();
2852
2853                 iov_iter_advance(i, copied);
2854                 if (unlikely(copied == 0)) {
2855                         /*
2856                          * If we were unable to copy any data at all, we must
2857                          * fall back to a single segment length write.
2858                          *
2859                          * If we didn't fallback here, we could livelock
2860                          * because not all segments in the iov can be copied at
2861                          * once without a pagefault.
2862                          */
2863                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2864                                                 iov_iter_single_seg_count(i));
2865                         goto again;
2866                 }
2867                 pos += copied;
2868                 written += copied;
2869
2870                 balance_dirty_pages_ratelimited(mapping);
2871         } while (iov_iter_count(i));
2872
2873         return written ? written : status;
2874 }
2875 EXPORT_SYMBOL(generic_perform_write);
2876
2877 /**
2878  * __generic_file_write_iter - write data to a file
2879  * @iocb:       IO state structure (file, offset, etc.)
2880  * @from:       iov_iter with data to write
2881  *
2882  * This function does all the work needed for actually writing data to a
2883  * file. It does all basic checks, removes SUID from the file, updates
2884  * modification times and calls proper subroutines depending on whether we
2885  * do direct IO or a standard buffered write.
2886  *
2887  * It expects i_mutex to be grabbed unless we work on a block device or similar
2888  * object which does not need locking at all.
2889  *
2890  * This function does *not* take care of syncing data in case of O_SYNC write.
2891  * A caller has to handle it. This is mainly due to the fact that we want to
2892  * avoid syncing under i_mutex.
2893  */
2894 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2895 {
2896         struct file *file = iocb->ki_filp;
2897         struct address_space * mapping = file->f_mapping;
2898         struct inode    *inode = mapping->host;
2899         ssize_t         written = 0;
2900         ssize_t         err;
2901         ssize_t         status;
2902
2903         /* We can write back this queue in page reclaim */
2904         current->backing_dev_info = inode_to_bdi(inode);
2905         err = file_remove_privs(file);
2906         if (err)
2907                 goto out;
2908
2909         err = file_update_time(file);
2910         if (err)
2911                 goto out;
2912
2913         if (iocb->ki_flags & IOCB_DIRECT) {
2914                 loff_t pos, endbyte;
2915
2916                 written = generic_file_direct_write(iocb, from);
2917                 /*
2918                  * If the write stopped short of completing, fall back to
2919                  * buffered writes.  Some filesystems do this for writes to
2920                  * holes, for example.  For DAX files, a buffered write will
2921                  * not succeed (even if it did, DAX does not handle dirty
2922                  * page-cache pages correctly).
2923                  */
2924                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2925                         goto out;
2926
2927                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2928                 /*
2929                  * If generic_perform_write() returned a synchronous error
2930                  * then we want to return the number of bytes which were
2931                  * direct-written, or the error code if that was zero.  Note
2932                  * that this differs from normal direct-io semantics, which
2933                  * will return -EFOO even if some bytes were written.
2934                  */
2935                 if (unlikely(status < 0)) {
2936                         err = status;
2937                         goto out;
2938                 }
2939                 /*
2940                  * We need to ensure that the page cache pages are written to
2941                  * disk and invalidated to preserve the expected O_DIRECT
2942                  * semantics.
2943                  */
2944                 endbyte = pos + status - 1;
2945                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2946                 if (err == 0) {
2947                         iocb->ki_pos = endbyte + 1;
2948                         written += status;
2949                         invalidate_mapping_pages(mapping,
2950                                                  pos >> PAGE_SHIFT,
2951                                                  endbyte >> PAGE_SHIFT);
2952                 } else {
2953                         /*
2954                          * We don't know how much we wrote, so just return
2955                          * the number of bytes which were direct-written
2956                          */
2957                 }
2958         } else {
2959                 written = generic_perform_write(file, from, iocb->ki_pos);
2960                 if (likely(written > 0))
2961                         iocb->ki_pos += written;
2962         }
2963 out:
2964         current->backing_dev_info = NULL;
2965         return written ? written : err;
2966 }
2967 EXPORT_SYMBOL(__generic_file_write_iter);
2968
2969 /**
2970  * generic_file_write_iter - write data to a file
2971  * @iocb:       IO state structure
2972  * @from:       iov_iter with data to write
2973  *
2974  * This is a wrapper around __generic_file_write_iter() to be used by most
2975  * filesystems. It takes care of syncing the file in case of O_SYNC file
2976  * and acquires i_mutex as needed.
2977  */
2978 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2979 {
2980         struct file *file = iocb->ki_filp;
2981         struct inode *inode = file->f_mapping->host;
2982         ssize_t ret;
2983
2984         inode_lock(inode);
2985         ret = generic_write_checks(iocb, from);
2986         if (ret > 0)
2987                 ret = __generic_file_write_iter(iocb, from);
2988         inode_unlock(inode);
2989
2990         if (ret > 0)
2991                 ret = generic_write_sync(iocb, ret);
2992         return ret;
2993 }
2994 EXPORT_SYMBOL(generic_file_write_iter);
2995
2996 /**
2997  * try_to_release_page() - release old fs-specific metadata on a page
2998  *
2999  * @page: the page which the kernel is trying to free
3000  * @gfp_mask: memory allocation flags (and I/O mode)
3001  *
3002  * The address_space is to try to release any data against the page
3003  * (presumably at page->private).  If the release was successful, return `1'.
3004  * Otherwise return zero.
3005  *
3006  * This may also be called if PG_fscache is set on a page, indicating that the
3007  * page is known to the local caching routines.
3008  *
3009  * The @gfp_mask argument specifies whether I/O may be performed to release
3010  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3011  *
3012  */
3013 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3014 {
3015         struct address_space * const mapping = page->mapping;
3016
3017         BUG_ON(!PageLocked(page));
3018         if (PageWriteback(page))
3019                 return 0;
3020
3021         if (mapping && mapping->a_ops->releasepage)
3022                 return mapping->a_ops->releasepage(page, gfp_mask);
3023         return try_to_free_buffers(page);
3024 }
3025
3026 EXPORT_SYMBOL(try_to_release_page);