]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/huge_memory.c
thp: clean up __collapse_huge_page_isolate
[karo-tx-linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/migrate.h>
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 /*
27  * By default transparent hugepage support is enabled for all mappings
28  * and khugepaged scans all mappings. Defrag is only invoked by
29  * khugepaged hugepage allocations and by page faults inside
30  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
31  * allocations.
32  */
33 unsigned long transparent_hugepage_flags __read_mostly =
34 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
35         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
36 #endif
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
38         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
39 #endif
40         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
41         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
42
43 /* default scan 8*512 pte (or vmas) every 30 second */
44 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
45 static unsigned int khugepaged_pages_collapsed;
46 static unsigned int khugepaged_full_scans;
47 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
48 /* during fragmentation poll the hugepage allocator once every minute */
49 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
50 static struct task_struct *khugepaged_thread __read_mostly;
51 static DEFINE_MUTEX(khugepaged_mutex);
52 static DEFINE_SPINLOCK(khugepaged_mm_lock);
53 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
54 /*
55  * default collapse hugepages if there is at least one pte mapped like
56  * it would have happened if the vma was large enough during page
57  * fault.
58  */
59 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
60
61 static int khugepaged(void *none);
62 static int mm_slots_hash_init(void);
63 static int khugepaged_slab_init(void);
64 static void khugepaged_slab_free(void);
65
66 #define MM_SLOTS_HASH_HEADS 1024
67 static struct hlist_head *mm_slots_hash __read_mostly;
68 static struct kmem_cache *mm_slot_cache __read_mostly;
69
70 /**
71  * struct mm_slot - hash lookup from mm to mm_slot
72  * @hash: hash collision list
73  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
74  * @mm: the mm that this information is valid for
75  */
76 struct mm_slot {
77         struct hlist_node hash;
78         struct list_head mm_node;
79         struct mm_struct *mm;
80 };
81
82 /**
83  * struct khugepaged_scan - cursor for scanning
84  * @mm_head: the head of the mm list to scan
85  * @mm_slot: the current mm_slot we are scanning
86  * @address: the next address inside that to be scanned
87  *
88  * There is only the one khugepaged_scan instance of this cursor structure.
89  */
90 struct khugepaged_scan {
91         struct list_head mm_head;
92         struct mm_slot *mm_slot;
93         unsigned long address;
94 };
95 static struct khugepaged_scan khugepaged_scan = {
96         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
97 };
98
99
100 static int set_recommended_min_free_kbytes(void)
101 {
102         struct zone *zone;
103         int nr_zones = 0;
104         unsigned long recommended_min;
105         extern int min_free_kbytes;
106
107         if (!khugepaged_enabled())
108                 return 0;
109
110         for_each_populated_zone(zone)
111                 nr_zones++;
112
113         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114         recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116         /*
117          * Make sure that on average at least two pageblocks are almost free
118          * of another type, one for a migratetype to fall back to and a
119          * second to avoid subsequent fallbacks of other types There are 3
120          * MIGRATE_TYPES we care about.
121          */
122         recommended_min += pageblock_nr_pages * nr_zones *
123                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125         /* don't ever allow to reserve more than 5% of the lowmem */
126         recommended_min = min(recommended_min,
127                               (unsigned long) nr_free_buffer_pages() / 20);
128         recommended_min <<= (PAGE_SHIFT-10);
129
130         if (recommended_min > min_free_kbytes)
131                 min_free_kbytes = recommended_min;
132         setup_per_zone_wmarks();
133         return 0;
134 }
135 late_initcall(set_recommended_min_free_kbytes);
136
137 static int start_khugepaged(void)
138 {
139         int err = 0;
140         if (khugepaged_enabled()) {
141                 if (!khugepaged_thread)
142                         khugepaged_thread = kthread_run(khugepaged, NULL,
143                                                         "khugepaged");
144                 if (unlikely(IS_ERR(khugepaged_thread))) {
145                         printk(KERN_ERR
146                                "khugepaged: kthread_run(khugepaged) failed\n");
147                         err = PTR_ERR(khugepaged_thread);
148                         khugepaged_thread = NULL;
149                 }
150
151                 if (!list_empty(&khugepaged_scan.mm_head))
152                         wake_up_interruptible(&khugepaged_wait);
153
154                 set_recommended_min_free_kbytes();
155         } else if (khugepaged_thread) {
156                 kthread_stop(khugepaged_thread);
157                 khugepaged_thread = NULL;
158         }
159
160         return err;
161 }
162
163 #ifdef CONFIG_SYSFS
164
165 static ssize_t double_flag_show(struct kobject *kobj,
166                                 struct kobj_attribute *attr, char *buf,
167                                 enum transparent_hugepage_flag enabled,
168                                 enum transparent_hugepage_flag req_madv)
169 {
170         if (test_bit(enabled, &transparent_hugepage_flags)) {
171                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
172                 return sprintf(buf, "[always] madvise never\n");
173         } else if (test_bit(req_madv, &transparent_hugepage_flags))
174                 return sprintf(buf, "always [madvise] never\n");
175         else
176                 return sprintf(buf, "always madvise [never]\n");
177 }
178 static ssize_t double_flag_store(struct kobject *kobj,
179                                  struct kobj_attribute *attr,
180                                  const char *buf, size_t count,
181                                  enum transparent_hugepage_flag enabled,
182                                  enum transparent_hugepage_flag req_madv)
183 {
184         if (!memcmp("always", buf,
185                     min(sizeof("always")-1, count))) {
186                 set_bit(enabled, &transparent_hugepage_flags);
187                 clear_bit(req_madv, &transparent_hugepage_flags);
188         } else if (!memcmp("madvise", buf,
189                            min(sizeof("madvise")-1, count))) {
190                 clear_bit(enabled, &transparent_hugepage_flags);
191                 set_bit(req_madv, &transparent_hugepage_flags);
192         } else if (!memcmp("never", buf,
193                            min(sizeof("never")-1, count))) {
194                 clear_bit(enabled, &transparent_hugepage_flags);
195                 clear_bit(req_madv, &transparent_hugepage_flags);
196         } else
197                 return -EINVAL;
198
199         return count;
200 }
201
202 static ssize_t enabled_show(struct kobject *kobj,
203                             struct kobj_attribute *attr, char *buf)
204 {
205         return double_flag_show(kobj, attr, buf,
206                                 TRANSPARENT_HUGEPAGE_FLAG,
207                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
208 }
209 static ssize_t enabled_store(struct kobject *kobj,
210                              struct kobj_attribute *attr,
211                              const char *buf, size_t count)
212 {
213         ssize_t ret;
214
215         ret = double_flag_store(kobj, attr, buf, count,
216                                 TRANSPARENT_HUGEPAGE_FLAG,
217                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
218
219         if (ret > 0) {
220                 int err;
221
222                 mutex_lock(&khugepaged_mutex);
223                 err = start_khugepaged();
224                 mutex_unlock(&khugepaged_mutex);
225
226                 if (err)
227                         ret = err;
228         }
229
230         return ret;
231 }
232 static struct kobj_attribute enabled_attr =
233         __ATTR(enabled, 0644, enabled_show, enabled_store);
234
235 static ssize_t single_flag_show(struct kobject *kobj,
236                                 struct kobj_attribute *attr, char *buf,
237                                 enum transparent_hugepage_flag flag)
238 {
239         return sprintf(buf, "%d\n",
240                        !!test_bit(flag, &transparent_hugepage_flags));
241 }
242
243 static ssize_t single_flag_store(struct kobject *kobj,
244                                  struct kobj_attribute *attr,
245                                  const char *buf, size_t count,
246                                  enum transparent_hugepage_flag flag)
247 {
248         unsigned long value;
249         int ret;
250
251         ret = kstrtoul(buf, 10, &value);
252         if (ret < 0)
253                 return ret;
254         if (value > 1)
255                 return -EINVAL;
256
257         if (value)
258                 set_bit(flag, &transparent_hugepage_flags);
259         else
260                 clear_bit(flag, &transparent_hugepage_flags);
261
262         return count;
263 }
264
265 /*
266  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
267  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
268  * memory just to allocate one more hugepage.
269  */
270 static ssize_t defrag_show(struct kobject *kobj,
271                            struct kobj_attribute *attr, char *buf)
272 {
273         return double_flag_show(kobj, attr, buf,
274                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
275                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
276 }
277 static ssize_t defrag_store(struct kobject *kobj,
278                             struct kobj_attribute *attr,
279                             const char *buf, size_t count)
280 {
281         return double_flag_store(kobj, attr, buf, count,
282                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284 }
285 static struct kobj_attribute defrag_attr =
286         __ATTR(defrag, 0644, defrag_show, defrag_store);
287
288 #ifdef CONFIG_DEBUG_VM
289 static ssize_t debug_cow_show(struct kobject *kobj,
290                                 struct kobj_attribute *attr, char *buf)
291 {
292         return single_flag_show(kobj, attr, buf,
293                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
294 }
295 static ssize_t debug_cow_store(struct kobject *kobj,
296                                struct kobj_attribute *attr,
297                                const char *buf, size_t count)
298 {
299         return single_flag_store(kobj, attr, buf, count,
300                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
301 }
302 static struct kobj_attribute debug_cow_attr =
303         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
304 #endif /* CONFIG_DEBUG_VM */
305
306 static struct attribute *hugepage_attr[] = {
307         &enabled_attr.attr,
308         &defrag_attr.attr,
309 #ifdef CONFIG_DEBUG_VM
310         &debug_cow_attr.attr,
311 #endif
312         NULL,
313 };
314
315 static struct attribute_group hugepage_attr_group = {
316         .attrs = hugepage_attr,
317 };
318
319 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
320                                          struct kobj_attribute *attr,
321                                          char *buf)
322 {
323         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
324 }
325
326 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
327                                           struct kobj_attribute *attr,
328                                           const char *buf, size_t count)
329 {
330         unsigned long msecs;
331         int err;
332
333         err = strict_strtoul(buf, 10, &msecs);
334         if (err || msecs > UINT_MAX)
335                 return -EINVAL;
336
337         khugepaged_scan_sleep_millisecs = msecs;
338         wake_up_interruptible(&khugepaged_wait);
339
340         return count;
341 }
342 static struct kobj_attribute scan_sleep_millisecs_attr =
343         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
344                scan_sleep_millisecs_store);
345
346 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
347                                           struct kobj_attribute *attr,
348                                           char *buf)
349 {
350         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
351 }
352
353 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
354                                            struct kobj_attribute *attr,
355                                            const char *buf, size_t count)
356 {
357         unsigned long msecs;
358         int err;
359
360         err = strict_strtoul(buf, 10, &msecs);
361         if (err || msecs > UINT_MAX)
362                 return -EINVAL;
363
364         khugepaged_alloc_sleep_millisecs = msecs;
365         wake_up_interruptible(&khugepaged_wait);
366
367         return count;
368 }
369 static struct kobj_attribute alloc_sleep_millisecs_attr =
370         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
371                alloc_sleep_millisecs_store);
372
373 static ssize_t pages_to_scan_show(struct kobject *kobj,
374                                   struct kobj_attribute *attr,
375                                   char *buf)
376 {
377         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
378 }
379 static ssize_t pages_to_scan_store(struct kobject *kobj,
380                                    struct kobj_attribute *attr,
381                                    const char *buf, size_t count)
382 {
383         int err;
384         unsigned long pages;
385
386         err = strict_strtoul(buf, 10, &pages);
387         if (err || !pages || pages > UINT_MAX)
388                 return -EINVAL;
389
390         khugepaged_pages_to_scan = pages;
391
392         return count;
393 }
394 static struct kobj_attribute pages_to_scan_attr =
395         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
396                pages_to_scan_store);
397
398 static ssize_t pages_collapsed_show(struct kobject *kobj,
399                                     struct kobj_attribute *attr,
400                                     char *buf)
401 {
402         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
403 }
404 static struct kobj_attribute pages_collapsed_attr =
405         __ATTR_RO(pages_collapsed);
406
407 static ssize_t full_scans_show(struct kobject *kobj,
408                                struct kobj_attribute *attr,
409                                char *buf)
410 {
411         return sprintf(buf, "%u\n", khugepaged_full_scans);
412 }
413 static struct kobj_attribute full_scans_attr =
414         __ATTR_RO(full_scans);
415
416 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
417                                       struct kobj_attribute *attr, char *buf)
418 {
419         return single_flag_show(kobj, attr, buf,
420                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
421 }
422 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
423                                        struct kobj_attribute *attr,
424                                        const char *buf, size_t count)
425 {
426         return single_flag_store(kobj, attr, buf, count,
427                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
428 }
429 static struct kobj_attribute khugepaged_defrag_attr =
430         __ATTR(defrag, 0644, khugepaged_defrag_show,
431                khugepaged_defrag_store);
432
433 /*
434  * max_ptes_none controls if khugepaged should collapse hugepages over
435  * any unmapped ptes in turn potentially increasing the memory
436  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
437  * reduce the available free memory in the system as it
438  * runs. Increasing max_ptes_none will instead potentially reduce the
439  * free memory in the system during the khugepaged scan.
440  */
441 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
442                                              struct kobj_attribute *attr,
443                                              char *buf)
444 {
445         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
446 }
447 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
448                                               struct kobj_attribute *attr,
449                                               const char *buf, size_t count)
450 {
451         int err;
452         unsigned long max_ptes_none;
453
454         err = strict_strtoul(buf, 10, &max_ptes_none);
455         if (err || max_ptes_none > HPAGE_PMD_NR-1)
456                 return -EINVAL;
457
458         khugepaged_max_ptes_none = max_ptes_none;
459
460         return count;
461 }
462 static struct kobj_attribute khugepaged_max_ptes_none_attr =
463         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
464                khugepaged_max_ptes_none_store);
465
466 static struct attribute *khugepaged_attr[] = {
467         &khugepaged_defrag_attr.attr,
468         &khugepaged_max_ptes_none_attr.attr,
469         &pages_to_scan_attr.attr,
470         &pages_collapsed_attr.attr,
471         &full_scans_attr.attr,
472         &scan_sleep_millisecs_attr.attr,
473         &alloc_sleep_millisecs_attr.attr,
474         NULL,
475 };
476
477 static struct attribute_group khugepaged_attr_group = {
478         .attrs = khugepaged_attr,
479         .name = "khugepaged",
480 };
481
482 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
483 {
484         int err;
485
486         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
487         if (unlikely(!*hugepage_kobj)) {
488                 printk(KERN_ERR "hugepage: failed kobject create\n");
489                 return -ENOMEM;
490         }
491
492         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
493         if (err) {
494                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
495                 goto delete_obj;
496         }
497
498         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
499         if (err) {
500                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
501                 goto remove_hp_group;
502         }
503
504         return 0;
505
506 remove_hp_group:
507         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
508 delete_obj:
509         kobject_put(*hugepage_kobj);
510         return err;
511 }
512
513 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
514 {
515         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
516         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
517         kobject_put(hugepage_kobj);
518 }
519 #else
520 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
521 {
522         return 0;
523 }
524
525 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
526 {
527 }
528 #endif /* CONFIG_SYSFS */
529
530 static int __init hugepage_init(void)
531 {
532         int err;
533         struct kobject *hugepage_kobj;
534
535         if (!has_transparent_hugepage()) {
536                 transparent_hugepage_flags = 0;
537                 return -EINVAL;
538         }
539
540         err = hugepage_init_sysfs(&hugepage_kobj);
541         if (err)
542                 return err;
543
544         err = khugepaged_slab_init();
545         if (err)
546                 goto out;
547
548         err = mm_slots_hash_init();
549         if (err) {
550                 khugepaged_slab_free();
551                 goto out;
552         }
553
554         /*
555          * By default disable transparent hugepages on smaller systems,
556          * where the extra memory used could hurt more than TLB overhead
557          * is likely to save.  The admin can still enable it through /sys.
558          */
559         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
560                 transparent_hugepage_flags = 0;
561
562         start_khugepaged();
563
564         return 0;
565 out:
566         hugepage_exit_sysfs(hugepage_kobj);
567         return err;
568 }
569 module_init(hugepage_init)
570
571 static int __init setup_transparent_hugepage(char *str)
572 {
573         int ret = 0;
574         if (!str)
575                 goto out;
576         if (!strcmp(str, "always")) {
577                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
578                         &transparent_hugepage_flags);
579                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
580                           &transparent_hugepage_flags);
581                 ret = 1;
582         } else if (!strcmp(str, "madvise")) {
583                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
584                           &transparent_hugepage_flags);
585                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
586                         &transparent_hugepage_flags);
587                 ret = 1;
588         } else if (!strcmp(str, "never")) {
589                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
590                           &transparent_hugepage_flags);
591                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
592                           &transparent_hugepage_flags);
593                 ret = 1;
594         }
595 out:
596         if (!ret)
597                 printk(KERN_WARNING
598                        "transparent_hugepage= cannot parse, ignored\n");
599         return ret;
600 }
601 __setup("transparent_hugepage=", setup_transparent_hugepage);
602
603 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
604 {
605         if (likely(vma->vm_flags & VM_WRITE))
606                 pmd = pmd_mkwrite(pmd);
607         return pmd;
608 }
609
610 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
611                                         struct vm_area_struct *vma,
612                                         unsigned long haddr, pmd_t *pmd,
613                                         struct page *page)
614 {
615         pgtable_t pgtable;
616
617         VM_BUG_ON(!PageCompound(page));
618         pgtable = pte_alloc_one(mm, haddr);
619         if (unlikely(!pgtable))
620                 return VM_FAULT_OOM;
621
622         clear_huge_page(page, haddr, HPAGE_PMD_NR);
623         __SetPageUptodate(page);
624
625         spin_lock(&mm->page_table_lock);
626         if (unlikely(!pmd_none(*pmd))) {
627                 spin_unlock(&mm->page_table_lock);
628                 mem_cgroup_uncharge_page(page);
629                 put_page(page);
630                 pte_free(mm, pgtable);
631         } else {
632                 pmd_t entry;
633                 entry = mk_pmd(page, vma->vm_page_prot);
634                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
635                 entry = pmd_mkhuge(entry);
636                 /*
637                  * The spinlocking to take the lru_lock inside
638                  * page_add_new_anon_rmap() acts as a full memory
639                  * barrier to be sure clear_huge_page writes become
640                  * visible after the set_pmd_at() write.
641                  */
642                 page_add_new_anon_rmap(page, vma, haddr);
643                 set_pmd_at(mm, haddr, pmd, entry);
644                 pgtable_trans_huge_deposit(mm, pgtable);
645                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
646                 mm->nr_ptes++;
647                 spin_unlock(&mm->page_table_lock);
648         }
649
650         return 0;
651 }
652
653 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
654 {
655         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
656 }
657
658 static inline struct page *alloc_hugepage_vma(int defrag,
659                                               struct vm_area_struct *vma,
660                                               unsigned long haddr, int nd,
661                                               gfp_t extra_gfp)
662 {
663         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
664                                HPAGE_PMD_ORDER, vma, haddr, nd);
665 }
666
667 #ifndef CONFIG_NUMA
668 static inline struct page *alloc_hugepage(int defrag)
669 {
670         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
671                            HPAGE_PMD_ORDER);
672 }
673 #endif
674
675 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
676                                unsigned long address, pmd_t *pmd,
677                                unsigned int flags)
678 {
679         struct page *page;
680         unsigned long haddr = address & HPAGE_PMD_MASK;
681         pte_t *pte;
682
683         if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
684                 if (unlikely(anon_vma_prepare(vma)))
685                         return VM_FAULT_OOM;
686                 if (unlikely(khugepaged_enter(vma)))
687                         return VM_FAULT_OOM;
688                 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
689                                           vma, haddr, numa_node_id(), 0);
690                 if (unlikely(!page)) {
691                         count_vm_event(THP_FAULT_FALLBACK);
692                         goto out;
693                 }
694                 count_vm_event(THP_FAULT_ALLOC);
695                 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
696                         put_page(page);
697                         goto out;
698                 }
699                 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
700                                                           page))) {
701                         mem_cgroup_uncharge_page(page);
702                         put_page(page);
703                         goto out;
704                 }
705
706                 return 0;
707         }
708 out:
709         /*
710          * Use __pte_alloc instead of pte_alloc_map, because we can't
711          * run pte_offset_map on the pmd, if an huge pmd could
712          * materialize from under us from a different thread.
713          */
714         if (unlikely(pmd_none(*pmd)) &&
715             unlikely(__pte_alloc(mm, vma, pmd, address)))
716                 return VM_FAULT_OOM;
717         /* if an huge pmd materialized from under us just retry later */
718         if (unlikely(pmd_trans_huge(*pmd)))
719                 return 0;
720         /*
721          * A regular pmd is established and it can't morph into a huge pmd
722          * from under us anymore at this point because we hold the mmap_sem
723          * read mode and khugepaged takes it in write mode. So now it's
724          * safe to run pte_offset_map().
725          */
726         pte = pte_offset_map(pmd, address);
727         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
728 }
729
730 bool pmd_numa(struct vm_area_struct *vma, pmd_t pmd)
731 {
732         /*
733          * See pte_numa().
734          */
735         if (pmd_same(pmd, pmd_modify(pmd, vma->vm_page_prot)))
736                 return false;
737
738         return pmd_same(pmd, pmd_modify(pmd, vma_prot_none(vma)));
739 }
740
741 void do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
742                            unsigned long address, pmd_t *pmd,
743                            unsigned int flags, pmd_t entry)
744 {
745         unsigned long haddr = address & HPAGE_PMD_MASK;
746         struct page *new_page = NULL;
747         struct page *page = NULL;
748         int node, lru;
749
750         spin_lock(&mm->page_table_lock);
751         if (unlikely(!pmd_same(*pmd, entry)))
752                 goto unlock;
753
754         if (unlikely(pmd_trans_splitting(entry))) {
755                 spin_unlock(&mm->page_table_lock);
756                 wait_split_huge_page(vma->anon_vma, pmd);
757                 return;
758         }
759
760         page = pmd_page(entry);
761         if (page) {
762                 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
763
764                 get_page(page);
765                 node = mpol_misplaced(page, vma, haddr);
766                 if (node != -1)
767                         goto migrate;
768         }
769
770 fixup:
771         /* change back to regular protection */
772         entry = pmd_modify(entry, vma->vm_page_prot);
773         set_pmd_at(mm, haddr, pmd, entry);
774         update_mmu_cache_pmd(vma, address, entry);
775
776 unlock:
777         spin_unlock(&mm->page_table_lock);
778         if (page) {
779                 task_numa_fault(page_to_nid(page), HPAGE_PMD_NR);
780                 put_page(page);
781         }
782         return;
783
784 migrate:
785         spin_unlock(&mm->page_table_lock);
786
787         lock_page(page);
788         spin_lock(&mm->page_table_lock);
789         if (unlikely(!pmd_same(*pmd, entry))) {
790                 spin_unlock(&mm->page_table_lock);
791                 unlock_page(page);
792                 put_page(page);
793                 return;
794         }
795         spin_unlock(&mm->page_table_lock);
796
797         new_page = alloc_pages_node(node,
798             (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT,
799             HPAGE_PMD_ORDER);
800
801         if (!new_page)
802                 goto alloc_fail;
803
804         lru = PageLRU(page);
805
806         if (lru && isolate_lru_page(page)) /* does an implicit get_page() */
807                 goto alloc_fail;
808
809         if (!trylock_page(new_page))
810                 BUG();
811
812         /* anon mapping, we can simply copy page->mapping to the new page: */
813         new_page->mapping = page->mapping;
814         new_page->index = page->index;
815
816         migrate_page_copy(new_page, page);
817
818         WARN_ON(PageLRU(new_page));
819
820         spin_lock(&mm->page_table_lock);
821         if (unlikely(!pmd_same(*pmd, entry))) {
822                 spin_unlock(&mm->page_table_lock);
823                 if (lru)
824                         putback_lru_page(page);
825
826                 unlock_page(new_page);
827                 ClearPageActive(new_page);      /* Set by migrate_page_copy() */
828                 new_page->mapping = NULL;
829                 put_page(new_page);             /* Free it */
830
831                 unlock_page(page);
832                 put_page(page);                 /* Drop the local reference */
833
834                 return;
835         }
836
837         entry = mk_pmd(new_page, vma->vm_page_prot);
838         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
839         entry = pmd_mkhuge(entry);
840
841         page_add_new_anon_rmap(new_page, vma, haddr);
842
843         set_pmd_at(mm, haddr, pmd, entry);
844         update_mmu_cache_pmd(vma, address, entry);
845         page_remove_rmap(page);
846         spin_unlock(&mm->page_table_lock);
847
848         put_page(page);                 /* Drop the rmap reference */
849
850         task_numa_fault(node, HPAGE_PMD_NR);
851
852         if (lru)
853                 put_page(page);         /* drop the LRU isolation reference */
854
855         unlock_page(new_page);
856         unlock_page(page);
857         put_page(page);                 /* Drop the local reference */
858
859         return;
860
861 alloc_fail:
862         if (new_page)
863                 put_page(new_page);
864
865         unlock_page(page);
866
867         spin_lock(&mm->page_table_lock);
868         if (unlikely(!pmd_same(*pmd, entry))) {
869                 put_page(page);
870                 page = NULL;
871                 goto unlock;
872         }
873         goto fixup;
874 }
875
876 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
877                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
878                   struct vm_area_struct *vma)
879 {
880         struct page *src_page;
881         pmd_t pmd;
882         pgtable_t pgtable;
883         int ret;
884
885         ret = -ENOMEM;
886         pgtable = pte_alloc_one(dst_mm, addr);
887         if (unlikely(!pgtable))
888                 goto out;
889
890         spin_lock(&dst_mm->page_table_lock);
891         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
892
893         ret = -EAGAIN;
894         pmd = *src_pmd;
895         if (unlikely(!pmd_trans_huge(pmd))) {
896                 pte_free(dst_mm, pgtable);
897                 goto out_unlock;
898         }
899         if (unlikely(pmd_trans_splitting(pmd))) {
900                 /* split huge page running from under us */
901                 spin_unlock(&src_mm->page_table_lock);
902                 spin_unlock(&dst_mm->page_table_lock);
903                 pte_free(dst_mm, pgtable);
904
905                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
906                 goto out;
907         }
908         src_page = pmd_page(pmd);
909         VM_BUG_ON(!PageHead(src_page));
910         get_page(src_page);
911         page_dup_rmap(src_page);
912         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
913
914         pmdp_set_wrprotect(src_mm, addr, src_pmd);
915         pmd = pmd_mkold(pmd_wrprotect(pmd));
916         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
917         pgtable_trans_huge_deposit(dst_mm, pgtable);
918         dst_mm->nr_ptes++;
919
920         ret = 0;
921 out_unlock:
922         spin_unlock(&src_mm->page_table_lock);
923         spin_unlock(&dst_mm->page_table_lock);
924 out:
925         return ret;
926 }
927
928 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
929                                         struct vm_area_struct *vma,
930                                         unsigned long address,
931                                         pmd_t *pmd, pmd_t orig_pmd,
932                                         struct page *page,
933                                         unsigned long haddr)
934 {
935         pgtable_t pgtable;
936         pmd_t _pmd;
937         int ret = 0, i;
938         struct page **pages;
939         unsigned long mmun_start;       /* For mmu_notifiers */
940         unsigned long mmun_end;         /* For mmu_notifiers */
941
942         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
943                         GFP_KERNEL);
944         if (unlikely(!pages)) {
945                 ret |= VM_FAULT_OOM;
946                 goto out;
947         }
948
949         for (i = 0; i < HPAGE_PMD_NR; i++) {
950                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
951                                                __GFP_OTHER_NODE,
952                                                vma, address, page_to_nid(page));
953                 if (unlikely(!pages[i] ||
954                              mem_cgroup_newpage_charge(pages[i], mm,
955                                                        GFP_KERNEL))) {
956                         if (pages[i])
957                                 put_page(pages[i]);
958                         mem_cgroup_uncharge_start();
959                         while (--i >= 0) {
960                                 mem_cgroup_uncharge_page(pages[i]);
961                                 put_page(pages[i]);
962                         }
963                         mem_cgroup_uncharge_end();
964                         kfree(pages);
965                         ret |= VM_FAULT_OOM;
966                         goto out;
967                 }
968         }
969
970         for (i = 0; i < HPAGE_PMD_NR; i++) {
971                 copy_user_highpage(pages[i], page + i,
972                                    haddr + PAGE_SIZE * i, vma);
973                 __SetPageUptodate(pages[i]);
974                 cond_resched();
975         }
976
977         mmun_start = haddr;
978         mmun_end   = haddr + HPAGE_PMD_SIZE;
979         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
980
981         spin_lock(&mm->page_table_lock);
982         if (unlikely(!pmd_same(*pmd, orig_pmd)))
983                 goto out_free_pages;
984         VM_BUG_ON(!PageHead(page));
985
986         pmdp_clear_flush(vma, haddr, pmd);
987         /* leave pmd empty until pte is filled */
988
989         pgtable = pgtable_trans_huge_withdraw(mm);
990         pmd_populate(mm, &_pmd, pgtable);
991
992         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
993                 pte_t *pte, entry;
994                 entry = mk_pte(pages[i], vma->vm_page_prot);
995                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
996                 page_add_new_anon_rmap(pages[i], vma, haddr);
997                 pte = pte_offset_map(&_pmd, haddr);
998                 VM_BUG_ON(!pte_none(*pte));
999                 set_pte_at(mm, haddr, pte, entry);
1000                 pte_unmap(pte);
1001         }
1002         kfree(pages);
1003
1004         smp_wmb(); /* make pte visible before pmd */
1005         pmd_populate(mm, pmd, pgtable);
1006         page_remove_rmap(page);
1007         spin_unlock(&mm->page_table_lock);
1008
1009         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1010
1011         ret |= VM_FAULT_WRITE;
1012         put_page(page);
1013
1014 out:
1015         return ret;
1016
1017 out_free_pages:
1018         spin_unlock(&mm->page_table_lock);
1019         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1020         mem_cgroup_uncharge_start();
1021         for (i = 0; i < HPAGE_PMD_NR; i++) {
1022                 mem_cgroup_uncharge_page(pages[i]);
1023                 put_page(pages[i]);
1024         }
1025         mem_cgroup_uncharge_end();
1026         kfree(pages);
1027         goto out;
1028 }
1029
1030 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1031                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1032 {
1033         int ret = 0;
1034         struct page *page, *new_page;
1035         unsigned long haddr;
1036         unsigned long mmun_start;       /* For mmu_notifiers */
1037         unsigned long mmun_end;         /* For mmu_notifiers */
1038
1039         VM_BUG_ON(!vma->anon_vma);
1040         spin_lock(&mm->page_table_lock);
1041         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1042                 goto out_unlock;
1043
1044         page = pmd_page(orig_pmd);
1045         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1046         haddr = address & HPAGE_PMD_MASK;
1047         if (page_mapcount(page) == 1) {
1048                 pmd_t entry;
1049                 entry = pmd_mkyoung(orig_pmd);
1050                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1051                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1052                         update_mmu_cache_pmd(vma, address, pmd);
1053                 ret |= VM_FAULT_WRITE;
1054                 goto out_unlock;
1055         }
1056         get_page(page);
1057         spin_unlock(&mm->page_table_lock);
1058
1059         if (transparent_hugepage_enabled(vma) &&
1060             !transparent_hugepage_debug_cow())
1061                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1062                                               vma, haddr, numa_node_id(), 0);
1063         else
1064                 new_page = NULL;
1065
1066         if (unlikely(!new_page)) {
1067                 count_vm_event(THP_FAULT_FALLBACK);
1068                 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1069                                                    pmd, orig_pmd, page, haddr);
1070                 if (ret & VM_FAULT_OOM)
1071                         split_huge_page(page);
1072                 put_page(page);
1073                 goto out;
1074         }
1075         count_vm_event(THP_FAULT_ALLOC);
1076
1077         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1078                 put_page(new_page);
1079                 split_huge_page(page);
1080                 put_page(page);
1081                 ret |= VM_FAULT_OOM;
1082                 goto out;
1083         }
1084
1085         copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1086         __SetPageUptodate(new_page);
1087
1088         mmun_start = haddr;
1089         mmun_end   = haddr + HPAGE_PMD_SIZE;
1090         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1091
1092         spin_lock(&mm->page_table_lock);
1093         put_page(page);
1094         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1095                 spin_unlock(&mm->page_table_lock);
1096                 mem_cgroup_uncharge_page(new_page);
1097                 put_page(new_page);
1098                 goto out_mn;
1099         } else {
1100                 pmd_t entry;
1101                 VM_BUG_ON(!PageHead(page));
1102                 entry = mk_pmd(new_page, vma->vm_page_prot);
1103                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1104                 entry = pmd_mkhuge(entry);
1105                 pmdp_clear_flush(vma, haddr, pmd);
1106                 page_add_new_anon_rmap(new_page, vma, haddr);
1107                 set_pmd_at(mm, haddr, pmd, entry);
1108                 update_mmu_cache_pmd(vma, address, pmd);
1109                 page_remove_rmap(page);
1110                 put_page(page);
1111                 ret |= VM_FAULT_WRITE;
1112         }
1113         spin_unlock(&mm->page_table_lock);
1114 out_mn:
1115         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1116 out:
1117         return ret;
1118 out_unlock:
1119         spin_unlock(&mm->page_table_lock);
1120         return ret;
1121 }
1122
1123 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1124                                    unsigned long addr,
1125                                    pmd_t *pmd,
1126                                    unsigned int flags)
1127 {
1128         struct mm_struct *mm = vma->vm_mm;
1129         struct page *page = NULL;
1130
1131         assert_spin_locked(&mm->page_table_lock);
1132
1133         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1134                 goto out;
1135
1136         page = pmd_page(*pmd);
1137         VM_BUG_ON(!PageHead(page));
1138         if (flags & FOLL_TOUCH) {
1139                 pmd_t _pmd;
1140                 /*
1141                  * We should set the dirty bit only for FOLL_WRITE but
1142                  * for now the dirty bit in the pmd is meaningless.
1143                  * And if the dirty bit will become meaningful and
1144                  * we'll only set it with FOLL_WRITE, an atomic
1145                  * set_bit will be required on the pmd to set the
1146                  * young bit, instead of the current set_pmd_at.
1147                  */
1148                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1149                 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1150         }
1151         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1152                 if (page->mapping && trylock_page(page)) {
1153                         lru_add_drain();
1154                         if (page->mapping)
1155                                 mlock_vma_page(page);
1156                         unlock_page(page);
1157                 }
1158         }
1159         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1160         VM_BUG_ON(!PageCompound(page));
1161         if (flags & FOLL_GET)
1162                 get_page_foll(page);
1163
1164 out:
1165         return page;
1166 }
1167
1168 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1169                  pmd_t *pmd, unsigned long addr)
1170 {
1171         int ret = 0;
1172
1173         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1174                 struct page *page;
1175                 pgtable_t pgtable;
1176                 pmd_t orig_pmd;
1177                 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1178                 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1179                 page = pmd_page(orig_pmd);
1180                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1181                 page_remove_rmap(page);
1182                 VM_BUG_ON(page_mapcount(page) < 0);
1183                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1184                 VM_BUG_ON(!PageHead(page));
1185                 tlb->mm->nr_ptes--;
1186                 spin_unlock(&tlb->mm->page_table_lock);
1187                 tlb_remove_page(tlb, page);
1188                 pte_free(tlb->mm, pgtable);
1189                 ret = 1;
1190         }
1191         return ret;
1192 }
1193
1194 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1195                 unsigned long addr, unsigned long end,
1196                 unsigned char *vec)
1197 {
1198         int ret = 0;
1199
1200         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1201                 /*
1202                  * All logical pages in the range are present
1203                  * if backed by a huge page.
1204                  */
1205                 spin_unlock(&vma->vm_mm->page_table_lock);
1206                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1207                 ret = 1;
1208         }
1209
1210         return ret;
1211 }
1212
1213 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1214                   unsigned long old_addr,
1215                   unsigned long new_addr, unsigned long old_end,
1216                   pmd_t *old_pmd, pmd_t *new_pmd)
1217 {
1218         int ret = 0;
1219         pmd_t pmd;
1220
1221         struct mm_struct *mm = vma->vm_mm;
1222
1223         if ((old_addr & ~HPAGE_PMD_MASK) ||
1224             (new_addr & ~HPAGE_PMD_MASK) ||
1225             old_end - old_addr < HPAGE_PMD_SIZE ||
1226             (new_vma->vm_flags & VM_NOHUGEPAGE))
1227                 goto out;
1228
1229         /*
1230          * The destination pmd shouldn't be established, free_pgtables()
1231          * should have release it.
1232          */
1233         if (WARN_ON(!pmd_none(*new_pmd))) {
1234                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1235                 goto out;
1236         }
1237
1238         ret = __pmd_trans_huge_lock(old_pmd, vma);
1239         if (ret == 1) {
1240                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1241                 VM_BUG_ON(!pmd_none(*new_pmd));
1242                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1243                 spin_unlock(&mm->page_table_lock);
1244         }
1245 out:
1246         return ret;
1247 }
1248
1249 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1250                 unsigned long addr, pgprot_t newprot)
1251 {
1252         struct mm_struct *mm = vma->vm_mm;
1253         int ret = 0;
1254
1255         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1256                 pmd_t entry;
1257                 entry = pmdp_get_and_clear(mm, addr, pmd);
1258                 entry = pmd_modify(entry, newprot);
1259                 set_pmd_at(mm, addr, pmd, entry);
1260                 spin_unlock(&vma->vm_mm->page_table_lock);
1261                 ret = 1;
1262         }
1263
1264         return ret;
1265 }
1266
1267 /*
1268  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1269  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1270  *
1271  * Note that if it returns 1, this routine returns without unlocking page
1272  * table locks. So callers must unlock them.
1273  */
1274 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1275 {
1276         spin_lock(&vma->vm_mm->page_table_lock);
1277         if (likely(pmd_trans_huge(*pmd))) {
1278                 if (unlikely(pmd_trans_splitting(*pmd))) {
1279                         spin_unlock(&vma->vm_mm->page_table_lock);
1280                         wait_split_huge_page(vma->anon_vma, pmd);
1281                         return -1;
1282                 } else {
1283                         /* Thp mapped by 'pmd' is stable, so we can
1284                          * handle it as it is. */
1285                         return 1;
1286                 }
1287         }
1288         spin_unlock(&vma->vm_mm->page_table_lock);
1289         return 0;
1290 }
1291
1292 pmd_t *page_check_address_pmd(struct page *page,
1293                               struct mm_struct *mm,
1294                               unsigned long address,
1295                               enum page_check_address_pmd_flag flag)
1296 {
1297         pgd_t *pgd;
1298         pud_t *pud;
1299         pmd_t *pmd, *ret = NULL;
1300
1301         if (address & ~HPAGE_PMD_MASK)
1302                 goto out;
1303
1304         pgd = pgd_offset(mm, address);
1305         if (!pgd_present(*pgd))
1306                 goto out;
1307
1308         pud = pud_offset(pgd, address);
1309         if (!pud_present(*pud))
1310                 goto out;
1311
1312         pmd = pmd_offset(pud, address);
1313         if (pmd_none(*pmd))
1314                 goto out;
1315         if (pmd_page(*pmd) != page)
1316                 goto out;
1317         /*
1318          * split_vma() may create temporary aliased mappings. There is
1319          * no risk as long as all huge pmd are found and have their
1320          * splitting bit set before __split_huge_page_refcount
1321          * runs. Finding the same huge pmd more than once during the
1322          * same rmap walk is not a problem.
1323          */
1324         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1325             pmd_trans_splitting(*pmd))
1326                 goto out;
1327         if (pmd_trans_huge(*pmd)) {
1328                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1329                           !pmd_trans_splitting(*pmd));
1330                 ret = pmd;
1331         }
1332 out:
1333         return ret;
1334 }
1335
1336 static int __split_huge_page_splitting(struct page *page,
1337                                        struct vm_area_struct *vma,
1338                                        unsigned long address)
1339 {
1340         struct mm_struct *mm = vma->vm_mm;
1341         pmd_t *pmd;
1342         int ret = 0;
1343         /* For mmu_notifiers */
1344         const unsigned long mmun_start = address;
1345         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1346
1347         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1348         spin_lock(&mm->page_table_lock);
1349         pmd = page_check_address_pmd(page, mm, address,
1350                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1351         if (pmd) {
1352                 /*
1353                  * We can't temporarily set the pmd to null in order
1354                  * to split it, the pmd must remain marked huge at all
1355                  * times or the VM won't take the pmd_trans_huge paths
1356                  * and it won't wait on the anon_vma->root->mutex to
1357                  * serialize against split_huge_page*.
1358                  */
1359                 pmdp_splitting_flush(vma, address, pmd);
1360                 ret = 1;
1361         }
1362         spin_unlock(&mm->page_table_lock);
1363         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1364
1365         return ret;
1366 }
1367
1368 static void __split_huge_page_refcount(struct page *page)
1369 {
1370         int i;
1371         struct zone *zone = page_zone(page);
1372         struct lruvec *lruvec;
1373         int tail_count = 0;
1374
1375         /* prevent PageLRU to go away from under us, and freeze lru stats */
1376         spin_lock_irq(&zone->lru_lock);
1377         lruvec = mem_cgroup_page_lruvec(page, zone);
1378
1379         compound_lock(page);
1380         /* complete memcg works before add pages to LRU */
1381         mem_cgroup_split_huge_fixup(page);
1382
1383         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1384                 struct page *page_tail = page + i;
1385
1386                 /* tail_page->_mapcount cannot change */
1387                 BUG_ON(page_mapcount(page_tail) < 0);
1388                 tail_count += page_mapcount(page_tail);
1389                 /* check for overflow */
1390                 BUG_ON(tail_count < 0);
1391                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1392                 /*
1393                  * tail_page->_count is zero and not changing from
1394                  * under us. But get_page_unless_zero() may be running
1395                  * from under us on the tail_page. If we used
1396                  * atomic_set() below instead of atomic_add(), we
1397                  * would then run atomic_set() concurrently with
1398                  * get_page_unless_zero(), and atomic_set() is
1399                  * implemented in C not using locked ops. spin_unlock
1400                  * on x86 sometime uses locked ops because of PPro
1401                  * errata 66, 92, so unless somebody can guarantee
1402                  * atomic_set() here would be safe on all archs (and
1403                  * not only on x86), it's safer to use atomic_add().
1404                  */
1405                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1406                            &page_tail->_count);
1407
1408                 /* after clearing PageTail the gup refcount can be released */
1409                 smp_mb();
1410
1411                 /*
1412                  * retain hwpoison flag of the poisoned tail page:
1413                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1414                  *   by the memory-failure.
1415                  */
1416                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1417                 page_tail->flags |= (page->flags &
1418                                      ((1L << PG_referenced) |
1419                                       (1L << PG_swapbacked) |
1420                                       (1L << PG_mlocked) |
1421                                       (1L << PG_uptodate)));
1422                 page_tail->flags |= (1L << PG_dirty);
1423
1424                 /* clear PageTail before overwriting first_page */
1425                 smp_wmb();
1426
1427                 /*
1428                  * __split_huge_page_splitting() already set the
1429                  * splitting bit in all pmd that could map this
1430                  * hugepage, that will ensure no CPU can alter the
1431                  * mapcount on the head page. The mapcount is only
1432                  * accounted in the head page and it has to be
1433                  * transferred to all tail pages in the below code. So
1434                  * for this code to be safe, the split the mapcount
1435                  * can't change. But that doesn't mean userland can't
1436                  * keep changing and reading the page contents while
1437                  * we transfer the mapcount, so the pmd splitting
1438                  * status is achieved setting a reserved bit in the
1439                  * pmd, not by clearing the present bit.
1440                 */
1441                 page_tail->_mapcount = page->_mapcount;
1442
1443                 BUG_ON(page_tail->mapping);
1444                 page_tail->mapping = page->mapping;
1445
1446                 page_tail->index = page->index + i;
1447                 page_xchg_last_nid(page, page_last_nid(page_tail));
1448
1449                 BUG_ON(!PageAnon(page_tail));
1450                 BUG_ON(!PageUptodate(page_tail));
1451                 BUG_ON(!PageDirty(page_tail));
1452                 BUG_ON(!PageSwapBacked(page_tail));
1453
1454                 lru_add_page_tail(page, page_tail, lruvec);
1455         }
1456         atomic_sub(tail_count, &page->_count);
1457         BUG_ON(atomic_read(&page->_count) <= 0);
1458
1459         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1460         __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1461
1462         ClearPageCompound(page);
1463         compound_unlock(page);
1464         spin_unlock_irq(&zone->lru_lock);
1465
1466         for (i = 1; i < HPAGE_PMD_NR; i++) {
1467                 struct page *page_tail = page + i;
1468                 BUG_ON(page_count(page_tail) <= 0);
1469                 /*
1470                  * Tail pages may be freed if there wasn't any mapping
1471                  * like if add_to_swap() is running on a lru page that
1472                  * had its mapping zapped. And freeing these pages
1473                  * requires taking the lru_lock so we do the put_page
1474                  * of the tail pages after the split is complete.
1475                  */
1476                 put_page(page_tail);
1477         }
1478
1479         /*
1480          * Only the head page (now become a regular page) is required
1481          * to be pinned by the caller.
1482          */
1483         BUG_ON(page_count(page) <= 0);
1484 }
1485
1486 static int __split_huge_page_map(struct page *page,
1487                                  struct vm_area_struct *vma,
1488                                  unsigned long address)
1489 {
1490         struct mm_struct *mm = vma->vm_mm;
1491         pmd_t *pmd, _pmd;
1492         int ret = 0, i;
1493         pgtable_t pgtable;
1494         unsigned long haddr;
1495         pgprot_t prot;
1496
1497         spin_lock(&mm->page_table_lock);
1498         pmd = page_check_address_pmd(page, mm, address,
1499                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1500         if (!pmd)
1501                 goto unlock;
1502
1503         prot = pmd_pgprot(*pmd);
1504         pgtable = pgtable_trans_huge_withdraw(mm);
1505         pmd_populate(mm, &_pmd, pgtable);
1506
1507         for (i = 0, haddr = address; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1508                 pte_t *pte, entry;
1509
1510                 BUG_ON(PageCompound(page+i));
1511                 entry = mk_pte(page + i, prot);
1512                 entry = pte_mkdirty(entry);
1513                 if (!pmd_young(*pmd))
1514                         entry = pte_mkold(entry);
1515                 pte = pte_offset_map(&_pmd, haddr);
1516                 BUG_ON(!pte_none(*pte));
1517                 set_pte_at(mm, haddr, pte, entry);
1518                 pte_unmap(pte);
1519         }
1520
1521         smp_wmb(); /* make ptes visible before pmd, see __pte_alloc */
1522         /*
1523          * Up to this point the pmd is present and huge.
1524          *
1525          * If we overwrite the pmd with the not-huge version, we could trigger
1526          * a small page size TLB miss on the small sized TLB while the hugepage
1527          * TLB entry is still established in the huge TLB.
1528          *
1529          * Some CPUs don't like that. See
1530          * http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 383
1531          * on page 93.
1532          *
1533          * Thus it is generally safer to never allow small and huge TLB entries
1534          * for overlapping virtual addresses to be loaded. So we first mark the
1535          * current pmd not present, then we flush the TLB and finally we write
1536          * the non-huge version of the pmd entry with pmd_populate.
1537          *
1538          * The above needs to be done under the ptl because pmd_trans_huge and
1539          * pmd_trans_splitting must remain set on the pmd until the split is
1540          * complete. The ptl also protects against concurrent faults due to
1541          * making the pmd not-present.
1542          */
1543         set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1544         flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1545         pmd_populate(mm, pmd, pgtable);
1546         ret = 1;
1547
1548 unlock:
1549         spin_unlock(&mm->page_table_lock);
1550
1551         return ret;
1552 }
1553
1554 /* must be called with anon_vma->root->mutex hold */
1555 static void __split_huge_page(struct page *page,
1556                               struct anon_vma *anon_vma)
1557 {
1558         int mapcount, mapcount2;
1559         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1560         struct anon_vma_chain *avc;
1561
1562         BUG_ON(!PageHead(page));
1563         BUG_ON(PageTail(page));
1564
1565         mapcount = 0;
1566         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1567                 struct vm_area_struct *vma = avc->vma;
1568                 unsigned long addr = vma_address(page, vma);
1569                 BUG_ON(is_vma_temporary_stack(vma));
1570                 mapcount += __split_huge_page_splitting(page, vma, addr);
1571         }
1572         /*
1573          * It is critical that new vmas are added to the tail of the
1574          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1575          * and establishes a child pmd before
1576          * __split_huge_page_splitting() freezes the parent pmd (so if
1577          * we fail to prevent copy_huge_pmd() from running until the
1578          * whole __split_huge_page() is complete), we will still see
1579          * the newly established pmd of the child later during the
1580          * walk, to be able to set it as pmd_trans_splitting too.
1581          */
1582         if (mapcount != page_mapcount(page))
1583                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1584                        mapcount, page_mapcount(page));
1585         BUG_ON(mapcount != page_mapcount(page));
1586
1587         __split_huge_page_refcount(page);
1588
1589         mapcount2 = 0;
1590         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1591                 struct vm_area_struct *vma = avc->vma;
1592                 unsigned long addr = vma_address(page, vma);
1593                 BUG_ON(is_vma_temporary_stack(vma));
1594                 mapcount2 += __split_huge_page_map(page, vma, addr);
1595         }
1596         if (mapcount != mapcount2)
1597                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1598                        mapcount, mapcount2, page_mapcount(page));
1599         BUG_ON(mapcount != mapcount2);
1600 }
1601
1602 int split_huge_page(struct page *page)
1603 {
1604         struct anon_vma *anon_vma;
1605         int ret = 1;
1606
1607         BUG_ON(!PageAnon(page));
1608         anon_vma = page_lock_anon_vma(page);
1609         if (!anon_vma)
1610                 goto out;
1611         ret = 0;
1612         if (!PageCompound(page))
1613                 goto out_unlock;
1614
1615         BUG_ON(!PageSwapBacked(page));
1616         __split_huge_page(page, anon_vma);
1617         count_vm_event(THP_SPLIT);
1618
1619         BUG_ON(PageCompound(page));
1620 out_unlock:
1621         page_unlock_anon_vma(anon_vma);
1622 out:
1623         return ret;
1624 }
1625
1626 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1627
1628 int hugepage_madvise(struct vm_area_struct *vma,
1629                      unsigned long *vm_flags, int advice)
1630 {
1631         struct mm_struct *mm = vma->vm_mm;
1632
1633         switch (advice) {
1634         case MADV_HUGEPAGE:
1635                 /*
1636                  * Be somewhat over-protective like KSM for now!
1637                  */
1638                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1639                         return -EINVAL;
1640                 if (mm->def_flags & VM_NOHUGEPAGE)
1641                         return -EINVAL;
1642                 *vm_flags &= ~VM_NOHUGEPAGE;
1643                 *vm_flags |= VM_HUGEPAGE;
1644                 /*
1645                  * If the vma become good for khugepaged to scan,
1646                  * register it here without waiting a page fault that
1647                  * may not happen any time soon.
1648                  */
1649                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1650                         return -ENOMEM;
1651                 break;
1652         case MADV_NOHUGEPAGE:
1653                 /*
1654                  * Be somewhat over-protective like KSM for now!
1655                  */
1656                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1657                         return -EINVAL;
1658                 *vm_flags &= ~VM_HUGEPAGE;
1659                 *vm_flags |= VM_NOHUGEPAGE;
1660                 /*
1661                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1662                  * this vma even if we leave the mm registered in khugepaged if
1663                  * it got registered before VM_NOHUGEPAGE was set.
1664                  */
1665                 break;
1666         }
1667
1668         return 0;
1669 }
1670
1671 static int __init khugepaged_slab_init(void)
1672 {
1673         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1674                                           sizeof(struct mm_slot),
1675                                           __alignof__(struct mm_slot), 0, NULL);
1676         if (!mm_slot_cache)
1677                 return -ENOMEM;
1678
1679         return 0;
1680 }
1681
1682 static void __init khugepaged_slab_free(void)
1683 {
1684         kmem_cache_destroy(mm_slot_cache);
1685         mm_slot_cache = NULL;
1686 }
1687
1688 static inline struct mm_slot *alloc_mm_slot(void)
1689 {
1690         if (!mm_slot_cache)     /* initialization failed */
1691                 return NULL;
1692         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1693 }
1694
1695 static inline void free_mm_slot(struct mm_slot *mm_slot)
1696 {
1697         kmem_cache_free(mm_slot_cache, mm_slot);
1698 }
1699
1700 static int __init mm_slots_hash_init(void)
1701 {
1702         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1703                                 GFP_KERNEL);
1704         if (!mm_slots_hash)
1705                 return -ENOMEM;
1706         return 0;
1707 }
1708
1709 #if 0
1710 static void __init mm_slots_hash_free(void)
1711 {
1712         kfree(mm_slots_hash);
1713         mm_slots_hash = NULL;
1714 }
1715 #endif
1716
1717 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1718 {
1719         struct mm_slot *mm_slot;
1720         struct hlist_head *bucket;
1721         struct hlist_node *node;
1722
1723         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1724                                 % MM_SLOTS_HASH_HEADS];
1725         hlist_for_each_entry(mm_slot, node, bucket, hash) {
1726                 if (mm == mm_slot->mm)
1727                         return mm_slot;
1728         }
1729         return NULL;
1730 }
1731
1732 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1733                                     struct mm_slot *mm_slot)
1734 {
1735         struct hlist_head *bucket;
1736
1737         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1738                                 % MM_SLOTS_HASH_HEADS];
1739         mm_slot->mm = mm;
1740         hlist_add_head(&mm_slot->hash, bucket);
1741 }
1742
1743 static inline int khugepaged_test_exit(struct mm_struct *mm)
1744 {
1745         return atomic_read(&mm->mm_users) == 0;
1746 }
1747
1748 int __khugepaged_enter(struct mm_struct *mm)
1749 {
1750         struct mm_slot *mm_slot;
1751         int wakeup;
1752
1753         mm_slot = alloc_mm_slot();
1754         if (!mm_slot)
1755                 return -ENOMEM;
1756
1757         /* __khugepaged_exit() must not run from under us */
1758         VM_BUG_ON(khugepaged_test_exit(mm));
1759         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1760                 free_mm_slot(mm_slot);
1761                 return 0;
1762         }
1763
1764         spin_lock(&khugepaged_mm_lock);
1765         insert_to_mm_slots_hash(mm, mm_slot);
1766         /*
1767          * Insert just behind the scanning cursor, to let the area settle
1768          * down a little.
1769          */
1770         wakeup = list_empty(&khugepaged_scan.mm_head);
1771         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1772         spin_unlock(&khugepaged_mm_lock);
1773
1774         atomic_inc(&mm->mm_count);
1775         if (wakeup)
1776                 wake_up_interruptible(&khugepaged_wait);
1777
1778         return 0;
1779 }
1780
1781 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1782 {
1783         unsigned long hstart, hend;
1784         if (!vma->anon_vma)
1785                 /*
1786                  * Not yet faulted in so we will register later in the
1787                  * page fault if needed.
1788                  */
1789                 return 0;
1790         if (vma->vm_ops)
1791                 /* khugepaged not yet working on file or special mappings */
1792                 return 0;
1793         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1794         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1795         hend = vma->vm_end & HPAGE_PMD_MASK;
1796         if (hstart < hend)
1797                 return khugepaged_enter(vma);
1798         return 0;
1799 }
1800
1801 void __khugepaged_exit(struct mm_struct *mm)
1802 {
1803         struct mm_slot *mm_slot;
1804         int free = 0;
1805
1806         spin_lock(&khugepaged_mm_lock);
1807         mm_slot = get_mm_slot(mm);
1808         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1809                 hlist_del(&mm_slot->hash);
1810                 list_del(&mm_slot->mm_node);
1811                 free = 1;
1812         }
1813         spin_unlock(&khugepaged_mm_lock);
1814
1815         if (free) {
1816                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1817                 free_mm_slot(mm_slot);
1818                 mmdrop(mm);
1819         } else if (mm_slot) {
1820                 /*
1821                  * This is required to serialize against
1822                  * khugepaged_test_exit() (which is guaranteed to run
1823                  * under mmap sem read mode). Stop here (after we
1824                  * return all pagetables will be destroyed) until
1825                  * khugepaged has finished working on the pagetables
1826                  * under the mmap_sem.
1827                  */
1828                 down_write(&mm->mmap_sem);
1829                 up_write(&mm->mmap_sem);
1830         }
1831 }
1832
1833 static void release_pte_page(struct page *page)
1834 {
1835         /* 0 stands for page_is_file_cache(page) == false */
1836         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1837         unlock_page(page);
1838         putback_lru_page(page);
1839 }
1840
1841 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1842 {
1843         while (--_pte >= pte) {
1844                 pte_t pteval = *_pte;
1845                 if (!pte_none(pteval))
1846                         release_pte_page(pte_page(pteval));
1847         }
1848 }
1849
1850 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1851                                         unsigned long address,
1852                                         pte_t *pte)
1853 {
1854         struct page *page;
1855         pte_t *_pte;
1856         int referenced = 0, isolated = 1, none = 0;
1857         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1858              _pte++, address += PAGE_SIZE) {
1859                 pte_t pteval = *_pte;
1860                 if (pte_none(pteval)) {
1861                         if (++none <= khugepaged_max_ptes_none)
1862                                 continue;
1863                         else
1864                                 goto out;
1865                 }
1866                 if (!pte_present(pteval) || !pte_write(pteval))
1867                         goto out;
1868                 page = vm_normal_page(vma, address, pteval);
1869                 if (unlikely(!page))
1870                         goto out;
1871
1872                 VM_BUG_ON(PageCompound(page));
1873                 BUG_ON(!PageAnon(page));
1874                 VM_BUG_ON(!PageSwapBacked(page));
1875
1876                 /* cannot use mapcount: can't collapse if there's a gup pin */
1877                 if (page_count(page) != 1)
1878                         goto out;
1879                 /*
1880                  * We can do it before isolate_lru_page because the
1881                  * page can't be freed from under us. NOTE: PG_lock
1882                  * is needed to serialize against split_huge_page
1883                  * when invoked from the VM.
1884                  */
1885                 if (!trylock_page(page))
1886                         goto out;
1887                 /*
1888                  * Isolate the page to avoid collapsing an hugepage
1889                  * currently in use by the VM.
1890                  */
1891                 if (isolate_lru_page(page)) {
1892                         unlock_page(page);
1893                         goto out;
1894                 }
1895                 /* 0 stands for page_is_file_cache(page) == false */
1896                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1897                 VM_BUG_ON(!PageLocked(page));
1898                 VM_BUG_ON(PageLRU(page));
1899
1900                 /* If there is no mapped pte young don't collapse the page */
1901                 if (pte_young(pteval) || PageReferenced(page) ||
1902                     mmu_notifier_test_young(vma->vm_mm, address))
1903                         referenced = 1;
1904         }
1905         if (unlikely(!referenced)) {
1906 out:
1907                 release_pte_pages(pte, _pte);
1908                 isolated = 0;
1909         }
1910         return isolated;
1911 }
1912
1913 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1914                                       struct vm_area_struct *vma,
1915                                       unsigned long address,
1916                                       spinlock_t *ptl)
1917 {
1918         pte_t *_pte;
1919         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1920                 pte_t pteval = *_pte;
1921                 struct page *src_page;
1922
1923                 if (pte_none(pteval)) {
1924                         clear_user_highpage(page, address);
1925                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1926                 } else {
1927                         src_page = pte_page(pteval);
1928                         copy_user_highpage(page, src_page, address, vma);
1929                         VM_BUG_ON(page_mapcount(src_page) != 1);
1930                         release_pte_page(src_page);
1931                         /*
1932                          * ptl mostly unnecessary, but preempt has to
1933                          * be disabled to update the per-cpu stats
1934                          * inside page_remove_rmap().
1935                          */
1936                         spin_lock(ptl);
1937                         /*
1938                          * paravirt calls inside pte_clear here are
1939                          * superfluous.
1940                          */
1941                         pte_clear(vma->vm_mm, address, _pte);
1942                         page_remove_rmap(src_page);
1943                         spin_unlock(ptl);
1944                         free_page_and_swap_cache(src_page);
1945                 }
1946
1947                 address += PAGE_SIZE;
1948                 page++;
1949         }
1950 }
1951
1952 static void khugepaged_alloc_sleep(void)
1953 {
1954         wait_event_freezable_timeout(khugepaged_wait, false,
1955                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1956 }
1957
1958 #ifdef CONFIG_NUMA
1959 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1960 {
1961         if (IS_ERR(*hpage)) {
1962                 if (!*wait)
1963                         return false;
1964
1965                 *wait = false;
1966                 *hpage = NULL;
1967                 khugepaged_alloc_sleep();
1968         } else if (*hpage) {
1969                 put_page(*hpage);
1970                 *hpage = NULL;
1971         }
1972
1973         return true;
1974 }
1975
1976 static struct page
1977 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1978                        struct vm_area_struct *vma, unsigned long address,
1979                        int node)
1980 {
1981         VM_BUG_ON(*hpage);
1982         /*
1983          * Allocate the page while the vma is still valid and under
1984          * the mmap_sem read mode so there is no memory allocation
1985          * later when we take the mmap_sem in write mode. This is more
1986          * friendly behavior (OTOH it may actually hide bugs) to
1987          * filesystems in userland with daemons allocating memory in
1988          * the userland I/O paths.  Allocating memory with the
1989          * mmap_sem in read mode is good idea also to allow greater
1990          * scalability.
1991          */
1992         *hpage  = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1993                                       node, __GFP_OTHER_NODE);
1994
1995         /*
1996          * After allocating the hugepage, release the mmap_sem read lock in
1997          * preparation for taking it in write mode.
1998          */
1999         up_read(&mm->mmap_sem);
2000         if (unlikely(!*hpage)) {
2001                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2002                 *hpage = ERR_PTR(-ENOMEM);
2003                 return NULL;
2004         }
2005
2006         count_vm_event(THP_COLLAPSE_ALLOC);
2007         return *hpage;
2008 }
2009 #else
2010 static struct page *khugepaged_alloc_hugepage(bool *wait)
2011 {
2012         struct page *hpage;
2013
2014         do {
2015                 hpage = alloc_hugepage(khugepaged_defrag());
2016                 if (!hpage) {
2017                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2018                         if (!*wait)
2019                                 return NULL;
2020
2021                         *wait = false;
2022                         khugepaged_alloc_sleep();
2023                 } else
2024                         count_vm_event(THP_COLLAPSE_ALLOC);
2025         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2026
2027         return hpage;
2028 }
2029
2030 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2031 {
2032         if (!*hpage)
2033                 *hpage = khugepaged_alloc_hugepage(wait);
2034
2035         if (unlikely(!*hpage))
2036                 return false;
2037
2038         return true;
2039 }
2040
2041 static struct page
2042 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2043                        struct vm_area_struct *vma, unsigned long address,
2044                        int node)
2045 {
2046         up_read(&mm->mmap_sem);
2047         VM_BUG_ON(!*hpage);
2048         return  *hpage;
2049 }
2050 #endif
2051
2052 static void collapse_huge_page(struct mm_struct *mm,
2053                                    unsigned long address,
2054                                    struct page **hpage,
2055                                    struct vm_area_struct *vma,
2056                                    int node)
2057 {
2058         pgd_t *pgd;
2059         pud_t *pud;
2060         pmd_t *pmd, _pmd;
2061         pte_t *pte;
2062         pgtable_t pgtable;
2063         struct page *new_page;
2064         spinlock_t *ptl;
2065         int isolated;
2066         unsigned long hstart, hend;
2067         unsigned long mmun_start;       /* For mmu_notifiers */
2068         unsigned long mmun_end;         /* For mmu_notifiers */
2069
2070         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2071
2072         /* release the mmap_sem read lock. */
2073         new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2074         if (!new_page)
2075                 return;
2076
2077         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2078                 return;
2079
2080         /*
2081          * Prevent all access to pagetables with the exception of
2082          * gup_fast later hanlded by the ptep_clear_flush and the VM
2083          * handled by the anon_vma lock + PG_lock.
2084          */
2085         down_write(&mm->mmap_sem);
2086         if (unlikely(khugepaged_test_exit(mm)))
2087                 goto out;
2088
2089         vma = find_vma(mm, address);
2090         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2091         hend = vma->vm_end & HPAGE_PMD_MASK;
2092         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2093                 goto out;
2094
2095         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2096             (vma->vm_flags & VM_NOHUGEPAGE))
2097                 goto out;
2098
2099         if (!vma->anon_vma || vma->vm_ops)
2100                 goto out;
2101         if (is_vma_temporary_stack(vma))
2102                 goto out;
2103         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2104
2105         pgd = pgd_offset(mm, address);
2106         if (!pgd_present(*pgd))
2107                 goto out;
2108
2109         pud = pud_offset(pgd, address);
2110         if (!pud_present(*pud))
2111                 goto out;
2112
2113         pmd = pmd_offset(pud, address);
2114         /* pmd can't go away or become huge under us */
2115         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2116                 goto out;
2117
2118         anon_vma_lock(vma->anon_vma);
2119
2120         pte = pte_offset_map(pmd, address);
2121         ptl = pte_lockptr(mm, pmd);
2122
2123         mmun_start = address;
2124         mmun_end   = address + HPAGE_PMD_SIZE;
2125         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2126         spin_lock(&mm->page_table_lock); /* probably unnecessary */
2127         /*
2128          * After this gup_fast can't run anymore. This also removes
2129          * any huge TLB entry from the CPU so we won't allow
2130          * huge and small TLB entries for the same virtual address
2131          * to avoid the risk of CPU bugs in that area.
2132          */
2133         _pmd = pmdp_clear_flush(vma, address, pmd);
2134         spin_unlock(&mm->page_table_lock);
2135         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2136
2137         spin_lock(ptl);
2138         isolated = __collapse_huge_page_isolate(vma, address, pte);
2139         spin_unlock(ptl);
2140
2141         if (unlikely(!isolated)) {
2142                 pte_unmap(pte);
2143                 spin_lock(&mm->page_table_lock);
2144                 BUG_ON(!pmd_none(*pmd));
2145                 set_pmd_at(mm, address, pmd, _pmd);
2146                 spin_unlock(&mm->page_table_lock);
2147                 anon_vma_unlock(vma->anon_vma);
2148                 goto out;
2149         }
2150
2151         /*
2152          * All pages are isolated and locked so anon_vma rmap
2153          * can't run anymore.
2154          */
2155         anon_vma_unlock(vma->anon_vma);
2156
2157         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2158         pte_unmap(pte);
2159         __SetPageUptodate(new_page);
2160         pgtable = pmd_pgtable(_pmd);
2161
2162         _pmd = mk_pmd(new_page, vma->vm_page_prot);
2163         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2164         _pmd = pmd_mkhuge(_pmd);
2165
2166         /*
2167          * spin_lock() below is not the equivalent of smp_wmb(), so
2168          * this is needed to avoid the copy_huge_page writes to become
2169          * visible after the set_pmd_at() write.
2170          */
2171         smp_wmb();
2172
2173         spin_lock(&mm->page_table_lock);
2174         BUG_ON(!pmd_none(*pmd));
2175         page_add_new_anon_rmap(new_page, vma, address);
2176         set_pmd_at(mm, address, pmd, _pmd);
2177         update_mmu_cache_pmd(vma, address, pmd);
2178         pgtable_trans_huge_deposit(mm, pgtable);
2179         spin_unlock(&mm->page_table_lock);
2180
2181         *hpage = NULL;
2182
2183         khugepaged_pages_collapsed++;
2184 out_up_write:
2185         up_write(&mm->mmap_sem);
2186         return;
2187
2188 out:
2189         mem_cgroup_uncharge_page(new_page);
2190         goto out_up_write;
2191 }
2192
2193 static int khugepaged_scan_pmd(struct mm_struct *mm,
2194                                struct vm_area_struct *vma,
2195                                unsigned long address,
2196                                struct page **hpage)
2197 {
2198         pgd_t *pgd;
2199         pud_t *pud;
2200         pmd_t *pmd;
2201         pte_t *pte, *_pte;
2202         int ret = 0, referenced = 0, none = 0;
2203         struct page *page;
2204         unsigned long _address;
2205         spinlock_t *ptl;
2206         int node = -1;
2207
2208         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2209
2210         pgd = pgd_offset(mm, address);
2211         if (!pgd_present(*pgd))
2212                 goto out;
2213
2214         pud = pud_offset(pgd, address);
2215         if (!pud_present(*pud))
2216                 goto out;
2217
2218         pmd = pmd_offset(pud, address);
2219         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2220                 goto out;
2221
2222         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2223         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2224              _pte++, _address += PAGE_SIZE) {
2225                 pte_t pteval = *_pte;
2226                 if (pte_none(pteval)) {
2227                         if (++none <= khugepaged_max_ptes_none)
2228                                 continue;
2229                         else
2230                                 goto out_unmap;
2231                 }
2232                 if (!pte_present(pteval) || !pte_write(pteval))
2233                         goto out_unmap;
2234                 page = vm_normal_page(vma, _address, pteval);
2235                 if (unlikely(!page))
2236                         goto out_unmap;
2237                 /*
2238                  * Chose the node of the first page. This could
2239                  * be more sophisticated and look at more pages,
2240                  * but isn't for now.
2241                  */
2242                 if (node == -1)
2243                         node = page_to_nid(page);
2244                 VM_BUG_ON(PageCompound(page));
2245                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2246                         goto out_unmap;
2247                 /* cannot use mapcount: can't collapse if there's a gup pin */
2248                 if (page_count(page) != 1)
2249                         goto out_unmap;
2250                 if (pte_young(pteval) || PageReferenced(page) ||
2251                     mmu_notifier_test_young(vma->vm_mm, address))
2252                         referenced = 1;
2253         }
2254         if (referenced)
2255                 ret = 1;
2256 out_unmap:
2257         pte_unmap_unlock(pte, ptl);
2258         if (ret)
2259                 /* collapse_huge_page will return with the mmap_sem released */
2260                 collapse_huge_page(mm, address, hpage, vma, node);
2261 out:
2262         return ret;
2263 }
2264
2265 static void collect_mm_slot(struct mm_slot *mm_slot)
2266 {
2267         struct mm_struct *mm = mm_slot->mm;
2268
2269         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2270
2271         if (khugepaged_test_exit(mm)) {
2272                 /* free mm_slot */
2273                 hlist_del(&mm_slot->hash);
2274                 list_del(&mm_slot->mm_node);
2275
2276                 /*
2277                  * Not strictly needed because the mm exited already.
2278                  *
2279                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2280                  */
2281
2282                 /* khugepaged_mm_lock actually not necessary for the below */
2283                 free_mm_slot(mm_slot);
2284                 mmdrop(mm);
2285         }
2286 }
2287
2288 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2289                                             struct page **hpage)
2290         __releases(&khugepaged_mm_lock)
2291         __acquires(&khugepaged_mm_lock)
2292 {
2293         struct mm_slot *mm_slot;
2294         struct mm_struct *mm;
2295         struct vm_area_struct *vma;
2296         int progress = 0;
2297
2298         VM_BUG_ON(!pages);
2299         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2300
2301         if (khugepaged_scan.mm_slot)
2302                 mm_slot = khugepaged_scan.mm_slot;
2303         else {
2304                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2305                                      struct mm_slot, mm_node);
2306                 khugepaged_scan.address = 0;
2307                 khugepaged_scan.mm_slot = mm_slot;
2308         }
2309         spin_unlock(&khugepaged_mm_lock);
2310
2311         mm = mm_slot->mm;
2312         down_read(&mm->mmap_sem);
2313         if (unlikely(khugepaged_test_exit(mm)))
2314                 vma = NULL;
2315         else
2316                 vma = find_vma(mm, khugepaged_scan.address);
2317
2318         progress++;
2319         for (; vma; vma = vma->vm_next) {
2320                 unsigned long hstart, hend;
2321
2322                 cond_resched();
2323                 if (unlikely(khugepaged_test_exit(mm))) {
2324                         progress++;
2325                         break;
2326                 }
2327
2328                 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2329                      !khugepaged_always()) ||
2330                     (vma->vm_flags & VM_NOHUGEPAGE)) {
2331                 skip:
2332                         progress++;
2333                         continue;
2334                 }
2335                 if (!vma->anon_vma || vma->vm_ops)
2336                         goto skip;
2337                 if (is_vma_temporary_stack(vma))
2338                         goto skip;
2339                 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2340
2341                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2342                 hend = vma->vm_end & HPAGE_PMD_MASK;
2343                 if (hstart >= hend)
2344                         goto skip;
2345                 if (khugepaged_scan.address > hend)
2346                         goto skip;
2347                 if (khugepaged_scan.address < hstart)
2348                         khugepaged_scan.address = hstart;
2349                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2350
2351                 while (khugepaged_scan.address < hend) {
2352                         int ret;
2353                         cond_resched();
2354                         if (unlikely(khugepaged_test_exit(mm)))
2355                                 goto breakouterloop;
2356
2357                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2358                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2359                                   hend);
2360                         ret = khugepaged_scan_pmd(mm, vma,
2361                                                   khugepaged_scan.address,
2362                                                   hpage);
2363                         /* move to next address */
2364                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2365                         progress += HPAGE_PMD_NR;
2366                         if (ret)
2367                                 /* we released mmap_sem so break loop */
2368                                 goto breakouterloop_mmap_sem;
2369                         if (progress >= pages)
2370                                 goto breakouterloop;
2371                 }
2372         }
2373 breakouterloop:
2374         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2375 breakouterloop_mmap_sem:
2376
2377         spin_lock(&khugepaged_mm_lock);
2378         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2379         /*
2380          * Release the current mm_slot if this mm is about to die, or
2381          * if we scanned all vmas of this mm.
2382          */
2383         if (khugepaged_test_exit(mm) || !vma) {
2384                 /*
2385                  * Make sure that if mm_users is reaching zero while
2386                  * khugepaged runs here, khugepaged_exit will find
2387                  * mm_slot not pointing to the exiting mm.
2388                  */
2389                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2390                         khugepaged_scan.mm_slot = list_entry(
2391                                 mm_slot->mm_node.next,
2392                                 struct mm_slot, mm_node);
2393                         khugepaged_scan.address = 0;
2394                 } else {
2395                         khugepaged_scan.mm_slot = NULL;
2396                         khugepaged_full_scans++;
2397                 }
2398
2399                 collect_mm_slot(mm_slot);
2400         }
2401
2402         return progress;
2403 }
2404
2405 static int khugepaged_has_work(void)
2406 {
2407         return !list_empty(&khugepaged_scan.mm_head) &&
2408                 khugepaged_enabled();
2409 }
2410
2411 static int khugepaged_wait_event(void)
2412 {
2413         return !list_empty(&khugepaged_scan.mm_head) ||
2414                 kthread_should_stop();
2415 }
2416
2417 static void khugepaged_do_scan(void)
2418 {
2419         struct page *hpage = NULL;
2420         unsigned int progress = 0, pass_through_head = 0;
2421         bool wait = true;
2422         unsigned int pages = ACCESS_ONCE(khugepaged_pages_to_scan);
2423
2424         while (progress < pages) {
2425                 if (!khugepaged_prealloc_page(&hpage, &wait))
2426                         break;
2427
2428                 cond_resched();
2429
2430                 if (unlikely(kthread_should_stop() || freezing(current)))
2431                         break;
2432
2433                 spin_lock(&khugepaged_mm_lock);
2434                 if (!khugepaged_scan.mm_slot)
2435                         pass_through_head++;
2436                 if (khugepaged_has_work() &&
2437                     pass_through_head < 2)
2438                         progress += khugepaged_scan_mm_slot(pages - progress,
2439                                                             &hpage);
2440                 else
2441                         progress = pages;
2442                 spin_unlock(&khugepaged_mm_lock);
2443         }
2444
2445         if (!IS_ERR_OR_NULL(hpage))
2446                 put_page(hpage);
2447 }
2448
2449 static void khugepaged_wait_work(void)
2450 {
2451         try_to_freeze();
2452
2453         if (khugepaged_has_work()) {
2454                 if (!khugepaged_scan_sleep_millisecs)
2455                         return;
2456
2457                 wait_event_freezable_timeout(khugepaged_wait,
2458                                              kthread_should_stop(),
2459                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2460                 return;
2461         }
2462
2463         if (khugepaged_enabled())
2464                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2465 }
2466
2467 static int khugepaged(void *none)
2468 {
2469         struct mm_slot *mm_slot;
2470
2471         set_freezable();
2472         set_user_nice(current, 19);
2473
2474         while (!kthread_should_stop()) {
2475                 khugepaged_do_scan();
2476                 khugepaged_wait_work();
2477         }
2478
2479         spin_lock(&khugepaged_mm_lock);
2480         mm_slot = khugepaged_scan.mm_slot;
2481         khugepaged_scan.mm_slot = NULL;
2482         if (mm_slot)
2483                 collect_mm_slot(mm_slot);
2484         spin_unlock(&khugepaged_mm_lock);
2485         return 0;
2486 }
2487
2488 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2489 {
2490         struct page *page;
2491
2492         spin_lock(&mm->page_table_lock);
2493         if (unlikely(!pmd_trans_huge(*pmd))) {
2494                 spin_unlock(&mm->page_table_lock);
2495                 return;
2496         }
2497         page = pmd_page(*pmd);
2498         VM_BUG_ON(!page_count(page));
2499         get_page(page);
2500         spin_unlock(&mm->page_table_lock);
2501
2502         split_huge_page(page);
2503
2504         put_page(page);
2505         BUG_ON(pmd_trans_huge(*pmd));
2506 }
2507
2508 static void split_huge_page_address(struct mm_struct *mm,
2509                                     unsigned long address)
2510 {
2511         pgd_t *pgd;
2512         pud_t *pud;
2513         pmd_t *pmd;
2514
2515         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2516
2517         pgd = pgd_offset(mm, address);
2518         if (!pgd_present(*pgd))
2519                 return;
2520
2521         pud = pud_offset(pgd, address);
2522         if (!pud_present(*pud))
2523                 return;
2524
2525         pmd = pmd_offset(pud, address);
2526         if (!pmd_present(*pmd))
2527                 return;
2528         /*
2529          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2530          * materialize from under us.
2531          */
2532         split_huge_page_pmd(mm, pmd);
2533 }
2534
2535 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2536                              unsigned long start,
2537                              unsigned long end,
2538                              long adjust_next)
2539 {
2540         /*
2541          * If the new start address isn't hpage aligned and it could
2542          * previously contain an hugepage: check if we need to split
2543          * an huge pmd.
2544          */
2545         if (start & ~HPAGE_PMD_MASK &&
2546             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2547             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2548                 split_huge_page_address(vma->vm_mm, start);
2549
2550         /*
2551          * If the new end address isn't hpage aligned and it could
2552          * previously contain an hugepage: check if we need to split
2553          * an huge pmd.
2554          */
2555         if (end & ~HPAGE_PMD_MASK &&
2556             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2557             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2558                 split_huge_page_address(vma->vm_mm, end);
2559
2560         /*
2561          * If we're also updating the vma->vm_next->vm_start, if the new
2562          * vm_next->vm_start isn't page aligned and it could previously
2563          * contain an hugepage: check if we need to split an huge pmd.
2564          */
2565         if (adjust_next > 0) {
2566                 struct vm_area_struct *next = vma->vm_next;
2567                 unsigned long nstart = next->vm_start;
2568                 nstart += adjust_next << PAGE_SHIFT;
2569                 if (nstart & ~HPAGE_PMD_MASK &&
2570                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2571                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2572                         split_huge_page_address(next->vm_mm, nstart);
2573         }
2574 }