]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/huge_memory.c
mm: introduce fault_env
[karo-tx-linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39         SCAN_FAIL,
40         SCAN_SUCCEED,
41         SCAN_PMD_NULL,
42         SCAN_EXCEED_NONE_PTE,
43         SCAN_PTE_NON_PRESENT,
44         SCAN_PAGE_RO,
45         SCAN_NO_REFERENCED_PAGE,
46         SCAN_PAGE_NULL,
47         SCAN_SCAN_ABORT,
48         SCAN_PAGE_COUNT,
49         SCAN_PAGE_LRU,
50         SCAN_PAGE_LOCK,
51         SCAN_PAGE_ANON,
52         SCAN_PAGE_COMPOUND,
53         SCAN_ANY_PROCESS,
54         SCAN_VMA_NULL,
55         SCAN_VMA_CHECK,
56         SCAN_ADDRESS_RANGE,
57         SCAN_SWAP_CACHE_PAGE,
58         SCAN_DEL_PAGE_LRU,
59         SCAN_ALLOC_HUGE_PAGE_FAIL,
60         SCAN_CGROUP_CHARGE_FAIL,
61         SCAN_EXCEED_SWAP_PTE
62 };
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
66
67 /*
68  * By default transparent hugepage support is disabled in order that avoid
69  * to risk increase the memory footprint of applications without a guaranteed
70  * benefit. When transparent hugepage support is enabled, is for all mappings,
71  * and khugepaged scans all mappings.
72  * Defrag is invoked by khugepaged hugepage allocations and by page faults
73  * for all hugepage allocations.
74  */
75 unsigned long transparent_hugepage_flags __read_mostly =
76 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
77         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
78 #endif
79 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
80         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
81 #endif
82         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
83         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
84         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
85
86 /* default scan 8*512 pte (or vmas) every 30 second */
87 static unsigned int khugepaged_pages_to_scan __read_mostly;
88 static unsigned int khugepaged_pages_collapsed;
89 static unsigned int khugepaged_full_scans;
90 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
91 /* during fragmentation poll the hugepage allocator once every minute */
92 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
93 static unsigned long khugepaged_sleep_expire;
94 static struct task_struct *khugepaged_thread __read_mostly;
95 static DEFINE_MUTEX(khugepaged_mutex);
96 static DEFINE_SPINLOCK(khugepaged_mm_lock);
97 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
98 /*
99  * default collapse hugepages if there is at least one pte mapped like
100  * it would have happened if the vma was large enough during page
101  * fault.
102  */
103 static unsigned int khugepaged_max_ptes_none __read_mostly;
104 static unsigned int khugepaged_max_ptes_swap __read_mostly;
105
106 static int khugepaged(void *none);
107 static int khugepaged_slab_init(void);
108 static void khugepaged_slab_exit(void);
109
110 #define MM_SLOTS_HASH_BITS 10
111 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
112
113 static struct kmem_cache *mm_slot_cache __read_mostly;
114
115 /**
116  * struct mm_slot - hash lookup from mm to mm_slot
117  * @hash: hash collision list
118  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node hash;
123         struct list_head mm_node;
124         struct mm_struct *mm;
125 };
126
127 /**
128  * struct khugepaged_scan - cursor for scanning
129  * @mm_head: the head of the mm list to scan
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  *
133  * There is only the one khugepaged_scan instance of this cursor structure.
134  */
135 struct khugepaged_scan {
136         struct list_head mm_head;
137         struct mm_slot *mm_slot;
138         unsigned long address;
139 };
140 static struct khugepaged_scan khugepaged_scan = {
141         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
142 };
143
144 static struct shrinker deferred_split_shrinker;
145
146 static void set_recommended_min_free_kbytes(void)
147 {
148         struct zone *zone;
149         int nr_zones = 0;
150         unsigned long recommended_min;
151
152         for_each_populated_zone(zone)
153                 nr_zones++;
154
155         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
156         recommended_min = pageblock_nr_pages * nr_zones * 2;
157
158         /*
159          * Make sure that on average at least two pageblocks are almost free
160          * of another type, one for a migratetype to fall back to and a
161          * second to avoid subsequent fallbacks of other types There are 3
162          * MIGRATE_TYPES we care about.
163          */
164         recommended_min += pageblock_nr_pages * nr_zones *
165                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
166
167         /* don't ever allow to reserve more than 5% of the lowmem */
168         recommended_min = min(recommended_min,
169                               (unsigned long) nr_free_buffer_pages() / 20);
170         recommended_min <<= (PAGE_SHIFT-10);
171
172         if (recommended_min > min_free_kbytes) {
173                 if (user_min_free_kbytes >= 0)
174                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
175                                 min_free_kbytes, recommended_min);
176
177                 min_free_kbytes = recommended_min;
178         }
179         setup_per_zone_wmarks();
180 }
181
182 static int start_stop_khugepaged(void)
183 {
184         int err = 0;
185         if (khugepaged_enabled()) {
186                 if (!khugepaged_thread)
187                         khugepaged_thread = kthread_run(khugepaged, NULL,
188                                                         "khugepaged");
189                 if (IS_ERR(khugepaged_thread)) {
190                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
191                         err = PTR_ERR(khugepaged_thread);
192                         khugepaged_thread = NULL;
193                         goto fail;
194                 }
195
196                 if (!list_empty(&khugepaged_scan.mm_head))
197                         wake_up_interruptible(&khugepaged_wait);
198
199                 set_recommended_min_free_kbytes();
200         } else if (khugepaged_thread) {
201                 kthread_stop(khugepaged_thread);
202                 khugepaged_thread = NULL;
203         }
204 fail:
205         return err;
206 }
207
208 static atomic_t huge_zero_refcount;
209 struct page *huge_zero_page __read_mostly;
210
211 struct page *get_huge_zero_page(void)
212 {
213         struct page *zero_page;
214 retry:
215         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
216                 return READ_ONCE(huge_zero_page);
217
218         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
219                         HPAGE_PMD_ORDER);
220         if (!zero_page) {
221                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222                 return NULL;
223         }
224         count_vm_event(THP_ZERO_PAGE_ALLOC);
225         preempt_disable();
226         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
227                 preempt_enable();
228                 __free_pages(zero_page, compound_order(zero_page));
229                 goto retry;
230         }
231
232         /* We take additional reference here. It will be put back by shrinker */
233         atomic_set(&huge_zero_refcount, 2);
234         preempt_enable();
235         return READ_ONCE(huge_zero_page);
236 }
237
238 void put_huge_zero_page(void)
239 {
240         /*
241          * Counter should never go to zero here. Only shrinker can put
242          * last reference.
243          */
244         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
245 }
246
247 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
248                                         struct shrink_control *sc)
249 {
250         /* we can free zero page only if last reference remains */
251         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
252 }
253
254 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
255                                        struct shrink_control *sc)
256 {
257         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
258                 struct page *zero_page = xchg(&huge_zero_page, NULL);
259                 BUG_ON(zero_page == NULL);
260                 __free_pages(zero_page, compound_order(zero_page));
261                 return HPAGE_PMD_NR;
262         }
263
264         return 0;
265 }
266
267 static struct shrinker huge_zero_page_shrinker = {
268         .count_objects = shrink_huge_zero_page_count,
269         .scan_objects = shrink_huge_zero_page_scan,
270         .seeks = DEFAULT_SEEKS,
271 };
272
273 #ifdef CONFIG_SYSFS
274
275 static ssize_t triple_flag_store(struct kobject *kobj,
276                                  struct kobj_attribute *attr,
277                                  const char *buf, size_t count,
278                                  enum transparent_hugepage_flag enabled,
279                                  enum transparent_hugepage_flag deferred,
280                                  enum transparent_hugepage_flag req_madv)
281 {
282         if (!memcmp("defer", buf,
283                     min(sizeof("defer")-1, count))) {
284                 if (enabled == deferred)
285                         return -EINVAL;
286                 clear_bit(enabled, &transparent_hugepage_flags);
287                 clear_bit(req_madv, &transparent_hugepage_flags);
288                 set_bit(deferred, &transparent_hugepage_flags);
289         } else if (!memcmp("always", buf,
290                     min(sizeof("always")-1, count))) {
291                 clear_bit(deferred, &transparent_hugepage_flags);
292                 clear_bit(req_madv, &transparent_hugepage_flags);
293                 set_bit(enabled, &transparent_hugepage_flags);
294         } else if (!memcmp("madvise", buf,
295                            min(sizeof("madvise")-1, count))) {
296                 clear_bit(enabled, &transparent_hugepage_flags);
297                 clear_bit(deferred, &transparent_hugepage_flags);
298                 set_bit(req_madv, &transparent_hugepage_flags);
299         } else if (!memcmp("never", buf,
300                            min(sizeof("never")-1, count))) {
301                 clear_bit(enabled, &transparent_hugepage_flags);
302                 clear_bit(req_madv, &transparent_hugepage_flags);
303                 clear_bit(deferred, &transparent_hugepage_flags);
304         } else
305                 return -EINVAL;
306
307         return count;
308 }
309
310 static ssize_t enabled_show(struct kobject *kobj,
311                             struct kobj_attribute *attr, char *buf)
312 {
313         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
314                 return sprintf(buf, "[always] madvise never\n");
315         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
316                 return sprintf(buf, "always [madvise] never\n");
317         else
318                 return sprintf(buf, "always madvise [never]\n");
319 }
320
321 static ssize_t enabled_store(struct kobject *kobj,
322                              struct kobj_attribute *attr,
323                              const char *buf, size_t count)
324 {
325         ssize_t ret;
326
327         ret = triple_flag_store(kobj, attr, buf, count,
328                                 TRANSPARENT_HUGEPAGE_FLAG,
329                                 TRANSPARENT_HUGEPAGE_FLAG,
330                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
331
332         if (ret > 0) {
333                 int err;
334
335                 mutex_lock(&khugepaged_mutex);
336                 err = start_stop_khugepaged();
337                 mutex_unlock(&khugepaged_mutex);
338
339                 if (err)
340                         ret = err;
341         }
342
343         return ret;
344 }
345 static struct kobj_attribute enabled_attr =
346         __ATTR(enabled, 0644, enabled_show, enabled_store);
347
348 static ssize_t single_flag_show(struct kobject *kobj,
349                                 struct kobj_attribute *attr, char *buf,
350                                 enum transparent_hugepage_flag flag)
351 {
352         return sprintf(buf, "%d\n",
353                        !!test_bit(flag, &transparent_hugepage_flags));
354 }
355
356 static ssize_t single_flag_store(struct kobject *kobj,
357                                  struct kobj_attribute *attr,
358                                  const char *buf, size_t count,
359                                  enum transparent_hugepage_flag flag)
360 {
361         unsigned long value;
362         int ret;
363
364         ret = kstrtoul(buf, 10, &value);
365         if (ret < 0)
366                 return ret;
367         if (value > 1)
368                 return -EINVAL;
369
370         if (value)
371                 set_bit(flag, &transparent_hugepage_flags);
372         else
373                 clear_bit(flag, &transparent_hugepage_flags);
374
375         return count;
376 }
377
378 /*
379  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
380  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
381  * memory just to allocate one more hugepage.
382  */
383 static ssize_t defrag_show(struct kobject *kobj,
384                            struct kobj_attribute *attr, char *buf)
385 {
386         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
387                 return sprintf(buf, "[always] defer madvise never\n");
388         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
389                 return sprintf(buf, "always [defer] madvise never\n");
390         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
391                 return sprintf(buf, "always defer [madvise] never\n");
392         else
393                 return sprintf(buf, "always defer madvise [never]\n");
394
395 }
396 static ssize_t defrag_store(struct kobject *kobj,
397                             struct kobj_attribute *attr,
398                             const char *buf, size_t count)
399 {
400         return triple_flag_store(kobj, attr, buf, count,
401                                  TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
402                                  TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
403                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
404 }
405 static struct kobj_attribute defrag_attr =
406         __ATTR(defrag, 0644, defrag_show, defrag_store);
407
408 static ssize_t use_zero_page_show(struct kobject *kobj,
409                 struct kobj_attribute *attr, char *buf)
410 {
411         return single_flag_show(kobj, attr, buf,
412                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
413 }
414 static ssize_t use_zero_page_store(struct kobject *kobj,
415                 struct kobj_attribute *attr, const char *buf, size_t count)
416 {
417         return single_flag_store(kobj, attr, buf, count,
418                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
419 }
420 static struct kobj_attribute use_zero_page_attr =
421         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
422 #ifdef CONFIG_DEBUG_VM
423 static ssize_t debug_cow_show(struct kobject *kobj,
424                                 struct kobj_attribute *attr, char *buf)
425 {
426         return single_flag_show(kobj, attr, buf,
427                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
428 }
429 static ssize_t debug_cow_store(struct kobject *kobj,
430                                struct kobj_attribute *attr,
431                                const char *buf, size_t count)
432 {
433         return single_flag_store(kobj, attr, buf, count,
434                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
435 }
436 static struct kobj_attribute debug_cow_attr =
437         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
438 #endif /* CONFIG_DEBUG_VM */
439
440 static struct attribute *hugepage_attr[] = {
441         &enabled_attr.attr,
442         &defrag_attr.attr,
443         &use_zero_page_attr.attr,
444 #ifdef CONFIG_DEBUG_VM
445         &debug_cow_attr.attr,
446 #endif
447         NULL,
448 };
449
450 static struct attribute_group hugepage_attr_group = {
451         .attrs = hugepage_attr,
452 };
453
454 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
455                                          struct kobj_attribute *attr,
456                                          char *buf)
457 {
458         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
459 }
460
461 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
462                                           struct kobj_attribute *attr,
463                                           const char *buf, size_t count)
464 {
465         unsigned long msecs;
466         int err;
467
468         err = kstrtoul(buf, 10, &msecs);
469         if (err || msecs > UINT_MAX)
470                 return -EINVAL;
471
472         khugepaged_scan_sleep_millisecs = msecs;
473         khugepaged_sleep_expire = 0;
474         wake_up_interruptible(&khugepaged_wait);
475
476         return count;
477 }
478 static struct kobj_attribute scan_sleep_millisecs_attr =
479         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
480                scan_sleep_millisecs_store);
481
482 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
483                                           struct kobj_attribute *attr,
484                                           char *buf)
485 {
486         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
487 }
488
489 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
490                                            struct kobj_attribute *attr,
491                                            const char *buf, size_t count)
492 {
493         unsigned long msecs;
494         int err;
495
496         err = kstrtoul(buf, 10, &msecs);
497         if (err || msecs > UINT_MAX)
498                 return -EINVAL;
499
500         khugepaged_alloc_sleep_millisecs = msecs;
501         khugepaged_sleep_expire = 0;
502         wake_up_interruptible(&khugepaged_wait);
503
504         return count;
505 }
506 static struct kobj_attribute alloc_sleep_millisecs_attr =
507         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
508                alloc_sleep_millisecs_store);
509
510 static ssize_t pages_to_scan_show(struct kobject *kobj,
511                                   struct kobj_attribute *attr,
512                                   char *buf)
513 {
514         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
515 }
516 static ssize_t pages_to_scan_store(struct kobject *kobj,
517                                    struct kobj_attribute *attr,
518                                    const char *buf, size_t count)
519 {
520         int err;
521         unsigned long pages;
522
523         err = kstrtoul(buf, 10, &pages);
524         if (err || !pages || pages > UINT_MAX)
525                 return -EINVAL;
526
527         khugepaged_pages_to_scan = pages;
528
529         return count;
530 }
531 static struct kobj_attribute pages_to_scan_attr =
532         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
533                pages_to_scan_store);
534
535 static ssize_t pages_collapsed_show(struct kobject *kobj,
536                                     struct kobj_attribute *attr,
537                                     char *buf)
538 {
539         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
540 }
541 static struct kobj_attribute pages_collapsed_attr =
542         __ATTR_RO(pages_collapsed);
543
544 static ssize_t full_scans_show(struct kobject *kobj,
545                                struct kobj_attribute *attr,
546                                char *buf)
547 {
548         return sprintf(buf, "%u\n", khugepaged_full_scans);
549 }
550 static struct kobj_attribute full_scans_attr =
551         __ATTR_RO(full_scans);
552
553 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
554                                       struct kobj_attribute *attr, char *buf)
555 {
556         return single_flag_show(kobj, attr, buf,
557                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
558 }
559 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
560                                        struct kobj_attribute *attr,
561                                        const char *buf, size_t count)
562 {
563         return single_flag_store(kobj, attr, buf, count,
564                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
565 }
566 static struct kobj_attribute khugepaged_defrag_attr =
567         __ATTR(defrag, 0644, khugepaged_defrag_show,
568                khugepaged_defrag_store);
569
570 /*
571  * max_ptes_none controls if khugepaged should collapse hugepages over
572  * any unmapped ptes in turn potentially increasing the memory
573  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
574  * reduce the available free memory in the system as it
575  * runs. Increasing max_ptes_none will instead potentially reduce the
576  * free memory in the system during the khugepaged scan.
577  */
578 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
579                                              struct kobj_attribute *attr,
580                                              char *buf)
581 {
582         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
583 }
584 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
585                                               struct kobj_attribute *attr,
586                                               const char *buf, size_t count)
587 {
588         int err;
589         unsigned long max_ptes_none;
590
591         err = kstrtoul(buf, 10, &max_ptes_none);
592         if (err || max_ptes_none > HPAGE_PMD_NR-1)
593                 return -EINVAL;
594
595         khugepaged_max_ptes_none = max_ptes_none;
596
597         return count;
598 }
599 static struct kobj_attribute khugepaged_max_ptes_none_attr =
600         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
601                khugepaged_max_ptes_none_store);
602
603 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
604                                              struct kobj_attribute *attr,
605                                              char *buf)
606 {
607         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
608 }
609
610 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
611                                               struct kobj_attribute *attr,
612                                               const char *buf, size_t count)
613 {
614         int err;
615         unsigned long max_ptes_swap;
616
617         err  = kstrtoul(buf, 10, &max_ptes_swap);
618         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
619                 return -EINVAL;
620
621         khugepaged_max_ptes_swap = max_ptes_swap;
622
623         return count;
624 }
625
626 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
627         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
628                khugepaged_max_ptes_swap_store);
629
630 static struct attribute *khugepaged_attr[] = {
631         &khugepaged_defrag_attr.attr,
632         &khugepaged_max_ptes_none_attr.attr,
633         &pages_to_scan_attr.attr,
634         &pages_collapsed_attr.attr,
635         &full_scans_attr.attr,
636         &scan_sleep_millisecs_attr.attr,
637         &alloc_sleep_millisecs_attr.attr,
638         &khugepaged_max_ptes_swap_attr.attr,
639         NULL,
640 };
641
642 static struct attribute_group khugepaged_attr_group = {
643         .attrs = khugepaged_attr,
644         .name = "khugepaged",
645 };
646
647 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
648 {
649         int err;
650
651         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
652         if (unlikely(!*hugepage_kobj)) {
653                 pr_err("failed to create transparent hugepage kobject\n");
654                 return -ENOMEM;
655         }
656
657         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
658         if (err) {
659                 pr_err("failed to register transparent hugepage group\n");
660                 goto delete_obj;
661         }
662
663         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
664         if (err) {
665                 pr_err("failed to register transparent hugepage group\n");
666                 goto remove_hp_group;
667         }
668
669         return 0;
670
671 remove_hp_group:
672         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
673 delete_obj:
674         kobject_put(*hugepage_kobj);
675         return err;
676 }
677
678 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
679 {
680         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
681         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
682         kobject_put(hugepage_kobj);
683 }
684 #else
685 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
686 {
687         return 0;
688 }
689
690 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
691 {
692 }
693 #endif /* CONFIG_SYSFS */
694
695 static int __init hugepage_init(void)
696 {
697         int err;
698         struct kobject *hugepage_kobj;
699
700         if (!has_transparent_hugepage()) {
701                 transparent_hugepage_flags = 0;
702                 return -EINVAL;
703         }
704
705         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
706         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
707         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
708         /*
709          * hugepages can't be allocated by the buddy allocator
710          */
711         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
712         /*
713          * we use page->mapping and page->index in second tail page
714          * as list_head: assuming THP order >= 2
715          */
716         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
717
718         err = hugepage_init_sysfs(&hugepage_kobj);
719         if (err)
720                 goto err_sysfs;
721
722         err = khugepaged_slab_init();
723         if (err)
724                 goto err_slab;
725
726         err = register_shrinker(&huge_zero_page_shrinker);
727         if (err)
728                 goto err_hzp_shrinker;
729         err = register_shrinker(&deferred_split_shrinker);
730         if (err)
731                 goto err_split_shrinker;
732
733         /*
734          * By default disable transparent hugepages on smaller systems,
735          * where the extra memory used could hurt more than TLB overhead
736          * is likely to save.  The admin can still enable it through /sys.
737          */
738         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
739                 transparent_hugepage_flags = 0;
740                 return 0;
741         }
742
743         err = start_stop_khugepaged();
744         if (err)
745                 goto err_khugepaged;
746
747         return 0;
748 err_khugepaged:
749         unregister_shrinker(&deferred_split_shrinker);
750 err_split_shrinker:
751         unregister_shrinker(&huge_zero_page_shrinker);
752 err_hzp_shrinker:
753         khugepaged_slab_exit();
754 err_slab:
755         hugepage_exit_sysfs(hugepage_kobj);
756 err_sysfs:
757         return err;
758 }
759 subsys_initcall(hugepage_init);
760
761 static int __init setup_transparent_hugepage(char *str)
762 {
763         int ret = 0;
764         if (!str)
765                 goto out;
766         if (!strcmp(str, "always")) {
767                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
768                         &transparent_hugepage_flags);
769                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
770                           &transparent_hugepage_flags);
771                 ret = 1;
772         } else if (!strcmp(str, "madvise")) {
773                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
774                           &transparent_hugepage_flags);
775                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
776                         &transparent_hugepage_flags);
777                 ret = 1;
778         } else if (!strcmp(str, "never")) {
779                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
780                           &transparent_hugepage_flags);
781                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
782                           &transparent_hugepage_flags);
783                 ret = 1;
784         }
785 out:
786         if (!ret)
787                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
788         return ret;
789 }
790 __setup("transparent_hugepage=", setup_transparent_hugepage);
791
792 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
793 {
794         if (likely(vma->vm_flags & VM_WRITE))
795                 pmd = pmd_mkwrite(pmd);
796         return pmd;
797 }
798
799 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
800 {
801         return pmd_mkhuge(mk_pmd(page, prot));
802 }
803
804 static inline struct list_head *page_deferred_list(struct page *page)
805 {
806         /*
807          * ->lru in the tail pages is occupied by compound_head.
808          * Let's use ->mapping + ->index in the second tail page as list_head.
809          */
810         return (struct list_head *)&page[2].mapping;
811 }
812
813 void prep_transhuge_page(struct page *page)
814 {
815         /*
816          * we use page->mapping and page->indexlru in second tail page
817          * as list_head: assuming THP order >= 2
818          */
819
820         INIT_LIST_HEAD(page_deferred_list(page));
821         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
822 }
823
824 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
825                 gfp_t gfp)
826 {
827         struct vm_area_struct *vma = fe->vma;
828         struct mem_cgroup *memcg;
829         pgtable_t pgtable;
830         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
831
832         VM_BUG_ON_PAGE(!PageCompound(page), page);
833
834         if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
835                 put_page(page);
836                 count_vm_event(THP_FAULT_FALLBACK);
837                 return VM_FAULT_FALLBACK;
838         }
839
840         pgtable = pte_alloc_one(vma->vm_mm, haddr);
841         if (unlikely(!pgtable)) {
842                 mem_cgroup_cancel_charge(page, memcg, true);
843                 put_page(page);
844                 return VM_FAULT_OOM;
845         }
846
847         clear_huge_page(page, haddr, HPAGE_PMD_NR);
848         /*
849          * The memory barrier inside __SetPageUptodate makes sure that
850          * clear_huge_page writes become visible before the set_pmd_at()
851          * write.
852          */
853         __SetPageUptodate(page);
854
855         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
856         if (unlikely(!pmd_none(*fe->pmd))) {
857                 spin_unlock(fe->ptl);
858                 mem_cgroup_cancel_charge(page, memcg, true);
859                 put_page(page);
860                 pte_free(vma->vm_mm, pgtable);
861         } else {
862                 pmd_t entry;
863
864                 /* Deliver the page fault to userland */
865                 if (userfaultfd_missing(vma)) {
866                         int ret;
867
868                         spin_unlock(fe->ptl);
869                         mem_cgroup_cancel_charge(page, memcg, true);
870                         put_page(page);
871                         pte_free(vma->vm_mm, pgtable);
872                         ret = handle_userfault(fe, VM_UFFD_MISSING);
873                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
874                         return ret;
875                 }
876
877                 entry = mk_huge_pmd(page, vma->vm_page_prot);
878                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
879                 page_add_new_anon_rmap(page, vma, haddr, true);
880                 mem_cgroup_commit_charge(page, memcg, false, true);
881                 lru_cache_add_active_or_unevictable(page, vma);
882                 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
883                 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
884                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
885                 atomic_long_inc(&vma->vm_mm->nr_ptes);
886                 spin_unlock(fe->ptl);
887                 count_vm_event(THP_FAULT_ALLOC);
888         }
889
890         return 0;
891 }
892
893 /*
894  * If THP is set to always then directly reclaim/compact as necessary
895  * If set to defer then do no reclaim and defer to khugepaged
896  * If set to madvise and the VMA is flagged then directly reclaim/compact
897  */
898 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
899 {
900         gfp_t reclaim_flags = 0;
901
902         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
903             (vma->vm_flags & VM_HUGEPAGE))
904                 reclaim_flags = __GFP_DIRECT_RECLAIM;
905         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
906                 reclaim_flags = __GFP_KSWAPD_RECLAIM;
907         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
908                 reclaim_flags = __GFP_DIRECT_RECLAIM;
909
910         return GFP_TRANSHUGE | reclaim_flags;
911 }
912
913 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
914 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
915 {
916         return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
917 }
918
919 /* Caller must hold page table lock. */
920 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
921                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
922                 struct page *zero_page)
923 {
924         pmd_t entry;
925         if (!pmd_none(*pmd))
926                 return false;
927         entry = mk_pmd(zero_page, vma->vm_page_prot);
928         entry = pmd_mkhuge(entry);
929         if (pgtable)
930                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
931         set_pmd_at(mm, haddr, pmd, entry);
932         atomic_long_inc(&mm->nr_ptes);
933         return true;
934 }
935
936 int do_huge_pmd_anonymous_page(struct fault_env *fe)
937 {
938         struct vm_area_struct *vma = fe->vma;
939         gfp_t gfp;
940         struct page *page;
941         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
942
943         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
944                 return VM_FAULT_FALLBACK;
945         if (unlikely(anon_vma_prepare(vma)))
946                 return VM_FAULT_OOM;
947         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
948                 return VM_FAULT_OOM;
949         if (!(fe->flags & FAULT_FLAG_WRITE) &&
950                         !mm_forbids_zeropage(vma->vm_mm) &&
951                         transparent_hugepage_use_zero_page()) {
952                 pgtable_t pgtable;
953                 struct page *zero_page;
954                 bool set;
955                 int ret;
956                 pgtable = pte_alloc_one(vma->vm_mm, haddr);
957                 if (unlikely(!pgtable))
958                         return VM_FAULT_OOM;
959                 zero_page = get_huge_zero_page();
960                 if (unlikely(!zero_page)) {
961                         pte_free(vma->vm_mm, pgtable);
962                         count_vm_event(THP_FAULT_FALLBACK);
963                         return VM_FAULT_FALLBACK;
964                 }
965                 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
966                 ret = 0;
967                 set = false;
968                 if (pmd_none(*fe->pmd)) {
969                         if (userfaultfd_missing(vma)) {
970                                 spin_unlock(fe->ptl);
971                                 ret = handle_userfault(fe, VM_UFFD_MISSING);
972                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
973                         } else {
974                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
975                                                    haddr, fe->pmd, zero_page);
976                                 spin_unlock(fe->ptl);
977                                 set = true;
978                         }
979                 } else
980                         spin_unlock(fe->ptl);
981                 if (!set) {
982                         pte_free(vma->vm_mm, pgtable);
983                         put_huge_zero_page();
984                 }
985                 return ret;
986         }
987         gfp = alloc_hugepage_direct_gfpmask(vma);
988         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
989         if (unlikely(!page)) {
990                 count_vm_event(THP_FAULT_FALLBACK);
991                 return VM_FAULT_FALLBACK;
992         }
993         prep_transhuge_page(page);
994         return __do_huge_pmd_anonymous_page(fe, page, gfp);
995 }
996
997 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
998                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
999 {
1000         struct mm_struct *mm = vma->vm_mm;
1001         pmd_t entry;
1002         spinlock_t *ptl;
1003
1004         ptl = pmd_lock(mm, pmd);
1005         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1006         if (pfn_t_devmap(pfn))
1007                 entry = pmd_mkdevmap(entry);
1008         if (write) {
1009                 entry = pmd_mkyoung(pmd_mkdirty(entry));
1010                 entry = maybe_pmd_mkwrite(entry, vma);
1011         }
1012         set_pmd_at(mm, addr, pmd, entry);
1013         update_mmu_cache_pmd(vma, addr, pmd);
1014         spin_unlock(ptl);
1015 }
1016
1017 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1018                         pmd_t *pmd, pfn_t pfn, bool write)
1019 {
1020         pgprot_t pgprot = vma->vm_page_prot;
1021         /*
1022          * If we had pmd_special, we could avoid all these restrictions,
1023          * but we need to be consistent with PTEs and architectures that
1024          * can't support a 'special' bit.
1025          */
1026         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1027         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1028                                                 (VM_PFNMAP|VM_MIXEDMAP));
1029         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1030         BUG_ON(!pfn_t_devmap(pfn));
1031
1032         if (addr < vma->vm_start || addr >= vma->vm_end)
1033                 return VM_FAULT_SIGBUS;
1034         if (track_pfn_insert(vma, &pgprot, pfn))
1035                 return VM_FAULT_SIGBUS;
1036         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1037         return VM_FAULT_NOPAGE;
1038 }
1039 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1040
1041 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1042                 pmd_t *pmd)
1043 {
1044         pmd_t _pmd;
1045
1046         /*
1047          * We should set the dirty bit only for FOLL_WRITE but for now
1048          * the dirty bit in the pmd is meaningless.  And if the dirty
1049          * bit will become meaningful and we'll only set it with
1050          * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1051          * set the young bit, instead of the current set_pmd_at.
1052          */
1053         _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1054         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1055                                 pmd, _pmd,  1))
1056                 update_mmu_cache_pmd(vma, addr, pmd);
1057 }
1058
1059 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1060                 pmd_t *pmd, int flags)
1061 {
1062         unsigned long pfn = pmd_pfn(*pmd);
1063         struct mm_struct *mm = vma->vm_mm;
1064         struct dev_pagemap *pgmap;
1065         struct page *page;
1066
1067         assert_spin_locked(pmd_lockptr(mm, pmd));
1068
1069         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1070                 return NULL;
1071
1072         if (pmd_present(*pmd) && pmd_devmap(*pmd))
1073                 /* pass */;
1074         else
1075                 return NULL;
1076
1077         if (flags & FOLL_TOUCH)
1078                 touch_pmd(vma, addr, pmd);
1079
1080         /*
1081          * device mapped pages can only be returned if the
1082          * caller will manage the page reference count.
1083          */
1084         if (!(flags & FOLL_GET))
1085                 return ERR_PTR(-EEXIST);
1086
1087         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1088         pgmap = get_dev_pagemap(pfn, NULL);
1089         if (!pgmap)
1090                 return ERR_PTR(-EFAULT);
1091         page = pfn_to_page(pfn);
1092         get_page(page);
1093         put_dev_pagemap(pgmap);
1094
1095         return page;
1096 }
1097
1098 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1099                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1100                   struct vm_area_struct *vma)
1101 {
1102         spinlock_t *dst_ptl, *src_ptl;
1103         struct page *src_page;
1104         pmd_t pmd;
1105         pgtable_t pgtable = NULL;
1106         int ret;
1107
1108         if (!vma_is_dax(vma)) {
1109                 ret = -ENOMEM;
1110                 pgtable = pte_alloc_one(dst_mm, addr);
1111                 if (unlikely(!pgtable))
1112                         goto out;
1113         }
1114
1115         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1116         src_ptl = pmd_lockptr(src_mm, src_pmd);
1117         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1118
1119         ret = -EAGAIN;
1120         pmd = *src_pmd;
1121         if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1122                 pte_free(dst_mm, pgtable);
1123                 goto out_unlock;
1124         }
1125         /*
1126          * When page table lock is held, the huge zero pmd should not be
1127          * under splitting since we don't split the page itself, only pmd to
1128          * a page table.
1129          */
1130         if (is_huge_zero_pmd(pmd)) {
1131                 struct page *zero_page;
1132                 /*
1133                  * get_huge_zero_page() will never allocate a new page here,
1134                  * since we already have a zero page to copy. It just takes a
1135                  * reference.
1136                  */
1137                 zero_page = get_huge_zero_page();
1138                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1139                                 zero_page);
1140                 ret = 0;
1141                 goto out_unlock;
1142         }
1143
1144         if (!vma_is_dax(vma)) {
1145                 /* thp accounting separate from pmd_devmap accounting */
1146                 src_page = pmd_page(pmd);
1147                 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1148                 get_page(src_page);
1149                 page_dup_rmap(src_page, true);
1150                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1151                 atomic_long_inc(&dst_mm->nr_ptes);
1152                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1153         }
1154
1155         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1156         pmd = pmd_mkold(pmd_wrprotect(pmd));
1157         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1158
1159         ret = 0;
1160 out_unlock:
1161         spin_unlock(src_ptl);
1162         spin_unlock(dst_ptl);
1163 out:
1164         return ret;
1165 }
1166
1167 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
1168 {
1169         pmd_t entry;
1170         unsigned long haddr;
1171
1172         fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
1173         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1174                 goto unlock;
1175
1176         entry = pmd_mkyoung(orig_pmd);
1177         haddr = fe->address & HPAGE_PMD_MASK;
1178         if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
1179                                 fe->flags & FAULT_FLAG_WRITE))
1180                 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
1181
1182 unlock:
1183         spin_unlock(fe->ptl);
1184 }
1185
1186 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
1187                 struct page *page)
1188 {
1189         struct vm_area_struct *vma = fe->vma;
1190         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1191         struct mem_cgroup *memcg;
1192         pgtable_t pgtable;
1193         pmd_t _pmd;
1194         int ret = 0, i;
1195         struct page **pages;
1196         unsigned long mmun_start;       /* For mmu_notifiers */
1197         unsigned long mmun_end;         /* For mmu_notifiers */
1198
1199         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1200                         GFP_KERNEL);
1201         if (unlikely(!pages)) {
1202                 ret |= VM_FAULT_OOM;
1203                 goto out;
1204         }
1205
1206         for (i = 0; i < HPAGE_PMD_NR; i++) {
1207                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1208                                                __GFP_OTHER_NODE, vma,
1209                                                fe->address, page_to_nid(page));
1210                 if (unlikely(!pages[i] ||
1211                              mem_cgroup_try_charge(pages[i], vma->vm_mm,
1212                                      GFP_KERNEL, &memcg, false))) {
1213                         if (pages[i])
1214                                 put_page(pages[i]);
1215                         while (--i >= 0) {
1216                                 memcg = (void *)page_private(pages[i]);
1217                                 set_page_private(pages[i], 0);
1218                                 mem_cgroup_cancel_charge(pages[i], memcg,
1219                                                 false);
1220                                 put_page(pages[i]);
1221                         }
1222                         kfree(pages);
1223                         ret |= VM_FAULT_OOM;
1224                         goto out;
1225                 }
1226                 set_page_private(pages[i], (unsigned long)memcg);
1227         }
1228
1229         for (i = 0; i < HPAGE_PMD_NR; i++) {
1230                 copy_user_highpage(pages[i], page + i,
1231                                    haddr + PAGE_SIZE * i, vma);
1232                 __SetPageUptodate(pages[i]);
1233                 cond_resched();
1234         }
1235
1236         mmun_start = haddr;
1237         mmun_end   = haddr + HPAGE_PMD_SIZE;
1238         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1239
1240         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1241         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1242                 goto out_free_pages;
1243         VM_BUG_ON_PAGE(!PageHead(page), page);
1244
1245         pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1246         /* leave pmd empty until pte is filled */
1247
1248         pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
1249         pmd_populate(vma->vm_mm, &_pmd, pgtable);
1250
1251         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1252                 pte_t entry;
1253                 entry = mk_pte(pages[i], vma->vm_page_prot);
1254                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1255                 memcg = (void *)page_private(pages[i]);
1256                 set_page_private(pages[i], 0);
1257                 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
1258                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1259                 lru_cache_add_active_or_unevictable(pages[i], vma);
1260                 fe->pte = pte_offset_map(&_pmd, haddr);
1261                 VM_BUG_ON(!pte_none(*fe->pte));
1262                 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
1263                 pte_unmap(fe->pte);
1264         }
1265         kfree(pages);
1266
1267         smp_wmb(); /* make pte visible before pmd */
1268         pmd_populate(vma->vm_mm, fe->pmd, pgtable);
1269         page_remove_rmap(page, true);
1270         spin_unlock(fe->ptl);
1271
1272         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1273
1274         ret |= VM_FAULT_WRITE;
1275         put_page(page);
1276
1277 out:
1278         return ret;
1279
1280 out_free_pages:
1281         spin_unlock(fe->ptl);
1282         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1283         for (i = 0; i < HPAGE_PMD_NR; i++) {
1284                 memcg = (void *)page_private(pages[i]);
1285                 set_page_private(pages[i], 0);
1286                 mem_cgroup_cancel_charge(pages[i], memcg, false);
1287                 put_page(pages[i]);
1288         }
1289         kfree(pages);
1290         goto out;
1291 }
1292
1293 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
1294 {
1295         struct vm_area_struct *vma = fe->vma;
1296         struct page *page = NULL, *new_page;
1297         struct mem_cgroup *memcg;
1298         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1299         unsigned long mmun_start;       /* For mmu_notifiers */
1300         unsigned long mmun_end;         /* For mmu_notifiers */
1301         gfp_t huge_gfp;                 /* for allocation and charge */
1302         int ret = 0;
1303
1304         fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1305         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1306         if (is_huge_zero_pmd(orig_pmd))
1307                 goto alloc;
1308         spin_lock(fe->ptl);
1309         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1310                 goto out_unlock;
1311
1312         page = pmd_page(orig_pmd);
1313         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1314         /*
1315          * We can only reuse the page if nobody else maps the huge page or it's
1316          * part.
1317          */
1318         if (page_trans_huge_mapcount(page, NULL) == 1) {
1319                 pmd_t entry;
1320                 entry = pmd_mkyoung(orig_pmd);
1321                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1322                 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
1323                         update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1324                 ret |= VM_FAULT_WRITE;
1325                 goto out_unlock;
1326         }
1327         get_page(page);
1328         spin_unlock(fe->ptl);
1329 alloc:
1330         if (transparent_hugepage_enabled(vma) &&
1331             !transparent_hugepage_debug_cow()) {
1332                 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1333                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1334         } else
1335                 new_page = NULL;
1336
1337         if (likely(new_page)) {
1338                 prep_transhuge_page(new_page);
1339         } else {
1340                 if (!page) {
1341                         split_huge_pmd(vma, fe->pmd, fe->address);
1342                         ret |= VM_FAULT_FALLBACK;
1343                 } else {
1344                         ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1345                         if (ret & VM_FAULT_OOM) {
1346                                 split_huge_pmd(vma, fe->pmd, fe->address);
1347                                 ret |= VM_FAULT_FALLBACK;
1348                         }
1349                         put_page(page);
1350                 }
1351                 count_vm_event(THP_FAULT_FALLBACK);
1352                 goto out;
1353         }
1354
1355         if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1356                                         huge_gfp, &memcg, true))) {
1357                 put_page(new_page);
1358                 split_huge_pmd(vma, fe->pmd, fe->address);
1359                 if (page)
1360                         put_page(page);
1361                 ret |= VM_FAULT_FALLBACK;
1362                 count_vm_event(THP_FAULT_FALLBACK);
1363                 goto out;
1364         }
1365
1366         count_vm_event(THP_FAULT_ALLOC);
1367
1368         if (!page)
1369                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1370         else
1371                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1372         __SetPageUptodate(new_page);
1373
1374         mmun_start = haddr;
1375         mmun_end   = haddr + HPAGE_PMD_SIZE;
1376         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1377
1378         spin_lock(fe->ptl);
1379         if (page)
1380                 put_page(page);
1381         if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1382                 spin_unlock(fe->ptl);
1383                 mem_cgroup_cancel_charge(new_page, memcg, true);
1384                 put_page(new_page);
1385                 goto out_mn;
1386         } else {
1387                 pmd_t entry;
1388                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1389                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1390                 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1391                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1392                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1393                 lru_cache_add_active_or_unevictable(new_page, vma);
1394                 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1395                 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1396                 if (!page) {
1397                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1398                         put_huge_zero_page();
1399                 } else {
1400                         VM_BUG_ON_PAGE(!PageHead(page), page);
1401                         page_remove_rmap(page, true);
1402                         put_page(page);
1403                 }
1404                 ret |= VM_FAULT_WRITE;
1405         }
1406         spin_unlock(fe->ptl);
1407 out_mn:
1408         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1409 out:
1410         return ret;
1411 out_unlock:
1412         spin_unlock(fe->ptl);
1413         return ret;
1414 }
1415
1416 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1417                                    unsigned long addr,
1418                                    pmd_t *pmd,
1419                                    unsigned int flags)
1420 {
1421         struct mm_struct *mm = vma->vm_mm;
1422         struct page *page = NULL;
1423
1424         assert_spin_locked(pmd_lockptr(mm, pmd));
1425
1426         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1427                 goto out;
1428
1429         /* Avoid dumping huge zero page */
1430         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1431                 return ERR_PTR(-EFAULT);
1432
1433         /* Full NUMA hinting faults to serialise migration in fault paths */
1434         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1435                 goto out;
1436
1437         page = pmd_page(*pmd);
1438         VM_BUG_ON_PAGE(!PageHead(page), page);
1439         if (flags & FOLL_TOUCH)
1440                 touch_pmd(vma, addr, pmd);
1441         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1442                 /*
1443                  * We don't mlock() pte-mapped THPs. This way we can avoid
1444                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1445                  *
1446                  * In most cases the pmd is the only mapping of the page as we
1447                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1448                  * writable private mappings in populate_vma_page_range().
1449                  *
1450                  * The only scenario when we have the page shared here is if we
1451                  * mlocking read-only mapping shared over fork(). We skip
1452                  * mlocking such pages.
1453                  */
1454                 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1455                                 page->mapping && trylock_page(page)) {
1456                         lru_add_drain();
1457                         if (page->mapping)
1458                                 mlock_vma_page(page);
1459                         unlock_page(page);
1460                 }
1461         }
1462         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1463         VM_BUG_ON_PAGE(!PageCompound(page), page);
1464         if (flags & FOLL_GET)
1465                 get_page(page);
1466
1467 out:
1468         return page;
1469 }
1470
1471 /* NUMA hinting page fault entry point for trans huge pmds */
1472 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1473 {
1474         struct vm_area_struct *vma = fe->vma;
1475         struct anon_vma *anon_vma = NULL;
1476         struct page *page;
1477         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1478         int page_nid = -1, this_nid = numa_node_id();
1479         int target_nid, last_cpupid = -1;
1480         bool page_locked;
1481         bool migrated = false;
1482         bool was_writable;
1483         int flags = 0;
1484
1485         /* A PROT_NONE fault should not end up here */
1486         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1487
1488         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1489         if (unlikely(!pmd_same(pmd, *fe->pmd)))
1490                 goto out_unlock;
1491
1492         /*
1493          * If there are potential migrations, wait for completion and retry
1494          * without disrupting NUMA hinting information. Do not relock and
1495          * check_same as the page may no longer be mapped.
1496          */
1497         if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1498                 page = pmd_page(*fe->pmd);
1499                 spin_unlock(fe->ptl);
1500                 wait_on_page_locked(page);
1501                 goto out;
1502         }
1503
1504         page = pmd_page(pmd);
1505         BUG_ON(is_huge_zero_page(page));
1506         page_nid = page_to_nid(page);
1507         last_cpupid = page_cpupid_last(page);
1508         count_vm_numa_event(NUMA_HINT_FAULTS);
1509         if (page_nid == this_nid) {
1510                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1511                 flags |= TNF_FAULT_LOCAL;
1512         }
1513
1514         /* See similar comment in do_numa_page for explanation */
1515         if (!(vma->vm_flags & VM_WRITE))
1516                 flags |= TNF_NO_GROUP;
1517
1518         /*
1519          * Acquire the page lock to serialise THP migrations but avoid dropping
1520          * page_table_lock if at all possible
1521          */
1522         page_locked = trylock_page(page);
1523         target_nid = mpol_misplaced(page, vma, haddr);
1524         if (target_nid == -1) {
1525                 /* If the page was locked, there are no parallel migrations */
1526                 if (page_locked)
1527                         goto clear_pmdnuma;
1528         }
1529
1530         /* Migration could have started since the pmd_trans_migrating check */
1531         if (!page_locked) {
1532                 spin_unlock(fe->ptl);
1533                 wait_on_page_locked(page);
1534                 page_nid = -1;
1535                 goto out;
1536         }
1537
1538         /*
1539          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1540          * to serialises splits
1541          */
1542         get_page(page);
1543         spin_unlock(fe->ptl);
1544         anon_vma = page_lock_anon_vma_read(page);
1545
1546         /* Confirm the PMD did not change while page_table_lock was released */
1547         spin_lock(fe->ptl);
1548         if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1549                 unlock_page(page);
1550                 put_page(page);
1551                 page_nid = -1;
1552                 goto out_unlock;
1553         }
1554
1555         /* Bail if we fail to protect against THP splits for any reason */
1556         if (unlikely(!anon_vma)) {
1557                 put_page(page);
1558                 page_nid = -1;
1559                 goto clear_pmdnuma;
1560         }
1561
1562         /*
1563          * Migrate the THP to the requested node, returns with page unlocked
1564          * and access rights restored.
1565          */
1566         spin_unlock(fe->ptl);
1567         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1568                                 fe->pmd, pmd, fe->address, page, target_nid);
1569         if (migrated) {
1570                 flags |= TNF_MIGRATED;
1571                 page_nid = target_nid;
1572         } else
1573                 flags |= TNF_MIGRATE_FAIL;
1574
1575         goto out;
1576 clear_pmdnuma:
1577         BUG_ON(!PageLocked(page));
1578         was_writable = pmd_write(pmd);
1579         pmd = pmd_modify(pmd, vma->vm_page_prot);
1580         pmd = pmd_mkyoung(pmd);
1581         if (was_writable)
1582                 pmd = pmd_mkwrite(pmd);
1583         set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1584         update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1585         unlock_page(page);
1586 out_unlock:
1587         spin_unlock(fe->ptl);
1588
1589 out:
1590         if (anon_vma)
1591                 page_unlock_anon_vma_read(anon_vma);
1592
1593         if (page_nid != -1)
1594                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1595
1596         return 0;
1597 }
1598
1599 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1600                 pmd_t *pmd, unsigned long addr, unsigned long next)
1601
1602 {
1603         spinlock_t *ptl;
1604         pmd_t orig_pmd;
1605         struct page *page;
1606         struct mm_struct *mm = tlb->mm;
1607         int ret = 0;
1608
1609         ptl = pmd_trans_huge_lock(pmd, vma);
1610         if (!ptl)
1611                 goto out_unlocked;
1612
1613         orig_pmd = *pmd;
1614         if (is_huge_zero_pmd(orig_pmd)) {
1615                 ret = 1;
1616                 goto out;
1617         }
1618
1619         page = pmd_page(orig_pmd);
1620         /*
1621          * If other processes are mapping this page, we couldn't discard
1622          * the page unless they all do MADV_FREE so let's skip the page.
1623          */
1624         if (page_mapcount(page) != 1)
1625                 goto out;
1626
1627         if (!trylock_page(page))
1628                 goto out;
1629
1630         /*
1631          * If user want to discard part-pages of THP, split it so MADV_FREE
1632          * will deactivate only them.
1633          */
1634         if (next - addr != HPAGE_PMD_SIZE) {
1635                 get_page(page);
1636                 spin_unlock(ptl);
1637                 split_huge_page(page);
1638                 put_page(page);
1639                 unlock_page(page);
1640                 goto out_unlocked;
1641         }
1642
1643         if (PageDirty(page))
1644                 ClearPageDirty(page);
1645         unlock_page(page);
1646
1647         if (PageActive(page))
1648                 deactivate_page(page);
1649
1650         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1651                 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1652                         tlb->fullmm);
1653                 orig_pmd = pmd_mkold(orig_pmd);
1654                 orig_pmd = pmd_mkclean(orig_pmd);
1655
1656                 set_pmd_at(mm, addr, pmd, orig_pmd);
1657                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1658         }
1659         ret = 1;
1660 out:
1661         spin_unlock(ptl);
1662 out_unlocked:
1663         return ret;
1664 }
1665
1666 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1667                  pmd_t *pmd, unsigned long addr)
1668 {
1669         pmd_t orig_pmd;
1670         spinlock_t *ptl;
1671
1672         ptl = __pmd_trans_huge_lock(pmd, vma);
1673         if (!ptl)
1674                 return 0;
1675         /*
1676          * For architectures like ppc64 we look at deposited pgtable
1677          * when calling pmdp_huge_get_and_clear. So do the
1678          * pgtable_trans_huge_withdraw after finishing pmdp related
1679          * operations.
1680          */
1681         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1682                         tlb->fullmm);
1683         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1684         if (vma_is_dax(vma)) {
1685                 spin_unlock(ptl);
1686                 if (is_huge_zero_pmd(orig_pmd))
1687                         tlb_remove_page(tlb, pmd_page(orig_pmd));
1688         } else if (is_huge_zero_pmd(orig_pmd)) {
1689                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1690                 atomic_long_dec(&tlb->mm->nr_ptes);
1691                 spin_unlock(ptl);
1692                 tlb_remove_page(tlb, pmd_page(orig_pmd));
1693         } else {
1694                 struct page *page = pmd_page(orig_pmd);
1695                 page_remove_rmap(page, true);
1696                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1697                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1698                 VM_BUG_ON_PAGE(!PageHead(page), page);
1699                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1700                 atomic_long_dec(&tlb->mm->nr_ptes);
1701                 spin_unlock(ptl);
1702                 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1703         }
1704         return 1;
1705 }
1706
1707 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1708                   unsigned long new_addr, unsigned long old_end,
1709                   pmd_t *old_pmd, pmd_t *new_pmd)
1710 {
1711         spinlock_t *old_ptl, *new_ptl;
1712         pmd_t pmd;
1713         struct mm_struct *mm = vma->vm_mm;
1714
1715         if ((old_addr & ~HPAGE_PMD_MASK) ||
1716             (new_addr & ~HPAGE_PMD_MASK) ||
1717             old_end - old_addr < HPAGE_PMD_SIZE)
1718                 return false;
1719
1720         /*
1721          * The destination pmd shouldn't be established, free_pgtables()
1722          * should have release it.
1723          */
1724         if (WARN_ON(!pmd_none(*new_pmd))) {
1725                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1726                 return false;
1727         }
1728
1729         /*
1730          * We don't have to worry about the ordering of src and dst
1731          * ptlocks because exclusive mmap_sem prevents deadlock.
1732          */
1733         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1734         if (old_ptl) {
1735                 new_ptl = pmd_lockptr(mm, new_pmd);
1736                 if (new_ptl != old_ptl)
1737                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1738                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1739                 VM_BUG_ON(!pmd_none(*new_pmd));
1740
1741                 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1742                                 vma_is_anonymous(vma)) {
1743                         pgtable_t pgtable;
1744                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1745                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1746                 }
1747                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1748                 if (new_ptl != old_ptl)
1749                         spin_unlock(new_ptl);
1750                 spin_unlock(old_ptl);
1751                 return true;
1752         }
1753         return false;
1754 }
1755
1756 /*
1757  * Returns
1758  *  - 0 if PMD could not be locked
1759  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1760  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1761  */
1762 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1763                 unsigned long addr, pgprot_t newprot, int prot_numa)
1764 {
1765         struct mm_struct *mm = vma->vm_mm;
1766         spinlock_t *ptl;
1767         int ret = 0;
1768
1769         ptl = __pmd_trans_huge_lock(pmd, vma);
1770         if (ptl) {
1771                 pmd_t entry;
1772                 bool preserve_write = prot_numa && pmd_write(*pmd);
1773                 ret = 1;
1774
1775                 /*
1776                  * Avoid trapping faults against the zero page. The read-only
1777                  * data is likely to be read-cached on the local CPU and
1778                  * local/remote hits to the zero page are not interesting.
1779                  */
1780                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1781                         spin_unlock(ptl);
1782                         return ret;
1783                 }
1784
1785                 if (!prot_numa || !pmd_protnone(*pmd)) {
1786                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1787                         entry = pmd_modify(entry, newprot);
1788                         if (preserve_write)
1789                                 entry = pmd_mkwrite(entry);
1790                         ret = HPAGE_PMD_NR;
1791                         set_pmd_at(mm, addr, pmd, entry);
1792                         BUG_ON(!preserve_write && pmd_write(entry));
1793                 }
1794                 spin_unlock(ptl);
1795         }
1796
1797         return ret;
1798 }
1799
1800 /*
1801  * Returns true if a given pmd maps a thp, false otherwise.
1802  *
1803  * Note that if it returns true, this routine returns without unlocking page
1804  * table lock. So callers must unlock it.
1805  */
1806 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1807 {
1808         spinlock_t *ptl;
1809         ptl = pmd_lock(vma->vm_mm, pmd);
1810         if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1811                 return ptl;
1812         spin_unlock(ptl);
1813         return NULL;
1814 }
1815
1816 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1817
1818 int hugepage_madvise(struct vm_area_struct *vma,
1819                      unsigned long *vm_flags, int advice)
1820 {
1821         switch (advice) {
1822         case MADV_HUGEPAGE:
1823 #ifdef CONFIG_S390
1824                 /*
1825                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1826                  * can't handle this properly after s390_enable_sie, so we simply
1827                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
1828                  */
1829                 if (mm_has_pgste(vma->vm_mm))
1830                         return 0;
1831 #endif
1832                 /*
1833                  * Be somewhat over-protective like KSM for now!
1834                  */
1835                 if (*vm_flags & VM_NO_THP)
1836                         return -EINVAL;
1837                 *vm_flags &= ~VM_NOHUGEPAGE;
1838                 *vm_flags |= VM_HUGEPAGE;
1839                 /*
1840                  * If the vma become good for khugepaged to scan,
1841                  * register it here without waiting a page fault that
1842                  * may not happen any time soon.
1843                  */
1844                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1845                         return -ENOMEM;
1846                 break;
1847         case MADV_NOHUGEPAGE:
1848                 /*
1849                  * Be somewhat over-protective like KSM for now!
1850                  */
1851                 if (*vm_flags & VM_NO_THP)
1852                         return -EINVAL;
1853                 *vm_flags &= ~VM_HUGEPAGE;
1854                 *vm_flags |= VM_NOHUGEPAGE;
1855                 /*
1856                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1857                  * this vma even if we leave the mm registered in khugepaged if
1858                  * it got registered before VM_NOHUGEPAGE was set.
1859                  */
1860                 break;
1861         }
1862
1863         return 0;
1864 }
1865
1866 static int __init khugepaged_slab_init(void)
1867 {
1868         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1869                                           sizeof(struct mm_slot),
1870                                           __alignof__(struct mm_slot), 0, NULL);
1871         if (!mm_slot_cache)
1872                 return -ENOMEM;
1873
1874         return 0;
1875 }
1876
1877 static void __init khugepaged_slab_exit(void)
1878 {
1879         kmem_cache_destroy(mm_slot_cache);
1880 }
1881
1882 static inline struct mm_slot *alloc_mm_slot(void)
1883 {
1884         if (!mm_slot_cache)     /* initialization failed */
1885                 return NULL;
1886         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1887 }
1888
1889 static inline void free_mm_slot(struct mm_slot *mm_slot)
1890 {
1891         kmem_cache_free(mm_slot_cache, mm_slot);
1892 }
1893
1894 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1895 {
1896         struct mm_slot *mm_slot;
1897
1898         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1899                 if (mm == mm_slot->mm)
1900                         return mm_slot;
1901
1902         return NULL;
1903 }
1904
1905 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1906                                     struct mm_slot *mm_slot)
1907 {
1908         mm_slot->mm = mm;
1909         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1910 }
1911
1912 static inline int khugepaged_test_exit(struct mm_struct *mm)
1913 {
1914         return atomic_read(&mm->mm_users) == 0;
1915 }
1916
1917 int __khugepaged_enter(struct mm_struct *mm)
1918 {
1919         struct mm_slot *mm_slot;
1920         int wakeup;
1921
1922         mm_slot = alloc_mm_slot();
1923         if (!mm_slot)
1924                 return -ENOMEM;
1925
1926         /* __khugepaged_exit() must not run from under us */
1927         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1928         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1929                 free_mm_slot(mm_slot);
1930                 return 0;
1931         }
1932
1933         spin_lock(&khugepaged_mm_lock);
1934         insert_to_mm_slots_hash(mm, mm_slot);
1935         /*
1936          * Insert just behind the scanning cursor, to let the area settle
1937          * down a little.
1938          */
1939         wakeup = list_empty(&khugepaged_scan.mm_head);
1940         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1941         spin_unlock(&khugepaged_mm_lock);
1942
1943         atomic_inc(&mm->mm_count);
1944         if (wakeup)
1945                 wake_up_interruptible(&khugepaged_wait);
1946
1947         return 0;
1948 }
1949
1950 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1951                                unsigned long vm_flags)
1952 {
1953         unsigned long hstart, hend;
1954         if (!vma->anon_vma)
1955                 /*
1956                  * Not yet faulted in so we will register later in the
1957                  * page fault if needed.
1958                  */
1959                 return 0;
1960         if (vma->vm_ops || (vm_flags & VM_NO_THP))
1961                 /* khugepaged not yet working on file or special mappings */
1962                 return 0;
1963         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1964         hend = vma->vm_end & HPAGE_PMD_MASK;
1965         if (hstart < hend)
1966                 return khugepaged_enter(vma, vm_flags);
1967         return 0;
1968 }
1969
1970 void __khugepaged_exit(struct mm_struct *mm)
1971 {
1972         struct mm_slot *mm_slot;
1973         int free = 0;
1974
1975         spin_lock(&khugepaged_mm_lock);
1976         mm_slot = get_mm_slot(mm);
1977         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1978                 hash_del(&mm_slot->hash);
1979                 list_del(&mm_slot->mm_node);
1980                 free = 1;
1981         }
1982         spin_unlock(&khugepaged_mm_lock);
1983
1984         if (free) {
1985                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1986                 free_mm_slot(mm_slot);
1987                 mmdrop(mm);
1988         } else if (mm_slot) {
1989                 /*
1990                  * This is required to serialize against
1991                  * khugepaged_test_exit() (which is guaranteed to run
1992                  * under mmap sem read mode). Stop here (after we
1993                  * return all pagetables will be destroyed) until
1994                  * khugepaged has finished working on the pagetables
1995                  * under the mmap_sem.
1996                  */
1997                 down_write(&mm->mmap_sem);
1998                 up_write(&mm->mmap_sem);
1999         }
2000 }
2001
2002 static void release_pte_page(struct page *page)
2003 {
2004         /* 0 stands for page_is_file_cache(page) == false */
2005         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2006         unlock_page(page);
2007         putback_lru_page(page);
2008 }
2009
2010 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2011 {
2012         while (--_pte >= pte) {
2013                 pte_t pteval = *_pte;
2014                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2015                         release_pte_page(pte_page(pteval));
2016         }
2017 }
2018
2019 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2020                                         unsigned long address,
2021                                         pte_t *pte)
2022 {
2023         struct page *page = NULL;
2024         pte_t *_pte;
2025         int none_or_zero = 0, result = 0;
2026         bool referenced = false, writable = false;
2027
2028         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2029              _pte++, address += PAGE_SIZE) {
2030                 pte_t pteval = *_pte;
2031                 if (pte_none(pteval) || (pte_present(pteval) &&
2032                                 is_zero_pfn(pte_pfn(pteval)))) {
2033                         if (!userfaultfd_armed(vma) &&
2034                             ++none_or_zero <= khugepaged_max_ptes_none) {
2035                                 continue;
2036                         } else {
2037                                 result = SCAN_EXCEED_NONE_PTE;
2038                                 goto out;
2039                         }
2040                 }
2041                 if (!pte_present(pteval)) {
2042                         result = SCAN_PTE_NON_PRESENT;
2043                         goto out;
2044                 }
2045                 page = vm_normal_page(vma, address, pteval);
2046                 if (unlikely(!page)) {
2047                         result = SCAN_PAGE_NULL;
2048                         goto out;
2049                 }
2050
2051                 VM_BUG_ON_PAGE(PageCompound(page), page);
2052                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2053                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2054
2055                 /*
2056                  * We can do it before isolate_lru_page because the
2057                  * page can't be freed from under us. NOTE: PG_lock
2058                  * is needed to serialize against split_huge_page
2059                  * when invoked from the VM.
2060                  */
2061                 if (!trylock_page(page)) {
2062                         result = SCAN_PAGE_LOCK;
2063                         goto out;
2064                 }
2065
2066                 /*
2067                  * cannot use mapcount: can't collapse if there's a gup pin.
2068                  * The page must only be referenced by the scanned process
2069                  * and page swap cache.
2070                  */
2071                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2072                         unlock_page(page);
2073                         result = SCAN_PAGE_COUNT;
2074                         goto out;
2075                 }
2076                 if (pte_write(pteval)) {
2077                         writable = true;
2078                 } else {
2079                         if (PageSwapCache(page) &&
2080                             !reuse_swap_page(page, NULL)) {
2081                                 unlock_page(page);
2082                                 result = SCAN_SWAP_CACHE_PAGE;
2083                                 goto out;
2084                         }
2085                         /*
2086                          * Page is not in the swap cache. It can be collapsed
2087                          * into a THP.
2088                          */
2089                 }
2090
2091                 /*
2092                  * Isolate the page to avoid collapsing an hugepage
2093                  * currently in use by the VM.
2094                  */
2095                 if (isolate_lru_page(page)) {
2096                         unlock_page(page);
2097                         result = SCAN_DEL_PAGE_LRU;
2098                         goto out;
2099                 }
2100                 /* 0 stands for page_is_file_cache(page) == false */
2101                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2102                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2103                 VM_BUG_ON_PAGE(PageLRU(page), page);
2104
2105                 /* If there is no mapped pte young don't collapse the page */
2106                 if (pte_young(pteval) ||
2107                     page_is_young(page) || PageReferenced(page) ||
2108                     mmu_notifier_test_young(vma->vm_mm, address))
2109                         referenced = true;
2110         }
2111         if (likely(writable)) {
2112                 if (likely(referenced)) {
2113                         result = SCAN_SUCCEED;
2114                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2115                                                             referenced, writable, result);
2116                         return 1;
2117                 }
2118         } else {
2119                 result = SCAN_PAGE_RO;
2120         }
2121
2122 out:
2123         release_pte_pages(pte, _pte);
2124         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2125                                             referenced, writable, result);
2126         return 0;
2127 }
2128
2129 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2130                                       struct vm_area_struct *vma,
2131                                       unsigned long address,
2132                                       spinlock_t *ptl)
2133 {
2134         pte_t *_pte;
2135         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2136                 pte_t pteval = *_pte;
2137                 struct page *src_page;
2138
2139                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2140                         clear_user_highpage(page, address);
2141                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2142                         if (is_zero_pfn(pte_pfn(pteval))) {
2143                                 /*
2144                                  * ptl mostly unnecessary.
2145                                  */
2146                                 spin_lock(ptl);
2147                                 /*
2148                                  * paravirt calls inside pte_clear here are
2149                                  * superfluous.
2150                                  */
2151                                 pte_clear(vma->vm_mm, address, _pte);
2152                                 spin_unlock(ptl);
2153                         }
2154                 } else {
2155                         src_page = pte_page(pteval);
2156                         copy_user_highpage(page, src_page, address, vma);
2157                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2158                         release_pte_page(src_page);
2159                         /*
2160                          * ptl mostly unnecessary, but preempt has to
2161                          * be disabled to update the per-cpu stats
2162                          * inside page_remove_rmap().
2163                          */
2164                         spin_lock(ptl);
2165                         /*
2166                          * paravirt calls inside pte_clear here are
2167                          * superfluous.
2168                          */
2169                         pte_clear(vma->vm_mm, address, _pte);
2170                         page_remove_rmap(src_page, false);
2171                         spin_unlock(ptl);
2172                         free_page_and_swap_cache(src_page);
2173                 }
2174
2175                 address += PAGE_SIZE;
2176                 page++;
2177         }
2178 }
2179
2180 static void khugepaged_alloc_sleep(void)
2181 {
2182         DEFINE_WAIT(wait);
2183
2184         add_wait_queue(&khugepaged_wait, &wait);
2185         freezable_schedule_timeout_interruptible(
2186                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2187         remove_wait_queue(&khugepaged_wait, &wait);
2188 }
2189
2190 static int khugepaged_node_load[MAX_NUMNODES];
2191
2192 static bool khugepaged_scan_abort(int nid)
2193 {
2194         int i;
2195
2196         /*
2197          * If zone_reclaim_mode is disabled, then no extra effort is made to
2198          * allocate memory locally.
2199          */
2200         if (!zone_reclaim_mode)
2201                 return false;
2202
2203         /* If there is a count for this node already, it must be acceptable */
2204         if (khugepaged_node_load[nid])
2205                 return false;
2206
2207         for (i = 0; i < MAX_NUMNODES; i++) {
2208                 if (!khugepaged_node_load[i])
2209                         continue;
2210                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2211                         return true;
2212         }
2213         return false;
2214 }
2215
2216 #ifdef CONFIG_NUMA
2217 static int khugepaged_find_target_node(void)
2218 {
2219         static int last_khugepaged_target_node = NUMA_NO_NODE;
2220         int nid, target_node = 0, max_value = 0;
2221
2222         /* find first node with max normal pages hit */
2223         for (nid = 0; nid < MAX_NUMNODES; nid++)
2224                 if (khugepaged_node_load[nid] > max_value) {
2225                         max_value = khugepaged_node_load[nid];
2226                         target_node = nid;
2227                 }
2228
2229         /* do some balance if several nodes have the same hit record */
2230         if (target_node <= last_khugepaged_target_node)
2231                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2232                                 nid++)
2233                         if (max_value == khugepaged_node_load[nid]) {
2234                                 target_node = nid;
2235                                 break;
2236                         }
2237
2238         last_khugepaged_target_node = target_node;
2239         return target_node;
2240 }
2241
2242 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2243 {
2244         if (IS_ERR(*hpage)) {
2245                 if (!*wait)
2246                         return false;
2247
2248                 *wait = false;
2249                 *hpage = NULL;
2250                 khugepaged_alloc_sleep();
2251         } else if (*hpage) {
2252                 put_page(*hpage);
2253                 *hpage = NULL;
2254         }
2255
2256         return true;
2257 }
2258
2259 static struct page *
2260 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2261                        unsigned long address, int node)
2262 {
2263         VM_BUG_ON_PAGE(*hpage, *hpage);
2264
2265         /*
2266          * Before allocating the hugepage, release the mmap_sem read lock.
2267          * The allocation can take potentially a long time if it involves
2268          * sync compaction, and we do not need to hold the mmap_sem during
2269          * that. We will recheck the vma after taking it again in write mode.
2270          */
2271         up_read(&mm->mmap_sem);
2272
2273         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2274         if (unlikely(!*hpage)) {
2275                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2276                 *hpage = ERR_PTR(-ENOMEM);
2277                 return NULL;
2278         }
2279
2280         prep_transhuge_page(*hpage);
2281         count_vm_event(THP_COLLAPSE_ALLOC);
2282         return *hpage;
2283 }
2284 #else
2285 static int khugepaged_find_target_node(void)
2286 {
2287         return 0;
2288 }
2289
2290 static inline struct page *alloc_khugepaged_hugepage(void)
2291 {
2292         struct page *page;
2293
2294         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2295                            HPAGE_PMD_ORDER);
2296         if (page)
2297                 prep_transhuge_page(page);
2298         return page;
2299 }
2300
2301 static struct page *khugepaged_alloc_hugepage(bool *wait)
2302 {
2303         struct page *hpage;
2304
2305         do {
2306                 hpage = alloc_khugepaged_hugepage();
2307                 if (!hpage) {
2308                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2309                         if (!*wait)
2310                                 return NULL;
2311
2312                         *wait = false;
2313                         khugepaged_alloc_sleep();
2314                 } else
2315                         count_vm_event(THP_COLLAPSE_ALLOC);
2316         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2317
2318         return hpage;
2319 }
2320
2321 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2322 {
2323         if (!*hpage)
2324                 *hpage = khugepaged_alloc_hugepage(wait);
2325
2326         if (unlikely(!*hpage))
2327                 return false;
2328
2329         return true;
2330 }
2331
2332 static struct page *
2333 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2334                        unsigned long address, int node)
2335 {
2336         up_read(&mm->mmap_sem);
2337         VM_BUG_ON(!*hpage);
2338
2339         return  *hpage;
2340 }
2341 #endif
2342
2343 static bool hugepage_vma_check(struct vm_area_struct *vma)
2344 {
2345         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2346             (vma->vm_flags & VM_NOHUGEPAGE))
2347                 return false;
2348         if (!vma->anon_vma || vma->vm_ops)
2349                 return false;
2350         if (is_vma_temporary_stack(vma))
2351                 return false;
2352         return !(vma->vm_flags & VM_NO_THP);
2353 }
2354
2355 /*
2356  * If mmap_sem temporarily dropped, revalidate vma
2357  * before taking mmap_sem.
2358  * Return 0 if succeeds, otherwise return none-zero
2359  * value (scan code).
2360  */
2361
2362 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2363 {
2364         struct vm_area_struct *vma;
2365         unsigned long hstart, hend;
2366
2367         if (unlikely(khugepaged_test_exit(mm)))
2368                 return SCAN_ANY_PROCESS;
2369
2370         vma = find_vma(mm, address);
2371         if (!vma)
2372                 return SCAN_VMA_NULL;
2373
2374         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2375         hend = vma->vm_end & HPAGE_PMD_MASK;
2376         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2377                 return SCAN_ADDRESS_RANGE;
2378         if (!hugepage_vma_check(vma))
2379                 return SCAN_VMA_CHECK;
2380         return 0;
2381 }
2382
2383 /*
2384  * Bring missing pages in from swap, to complete THP collapse.
2385  * Only done if khugepaged_scan_pmd believes it is worthwhile.
2386  *
2387  * Called and returns without pte mapped or spinlocks held,
2388  * but with mmap_sem held to protect against vma changes.
2389  */
2390
2391 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
2392                                         struct vm_area_struct *vma,
2393                                         unsigned long address, pmd_t *pmd)
2394 {
2395         pte_t pteval;
2396         int swapped_in = 0, ret = 0;
2397         struct fault_env fe = {
2398                 .vma = vma,
2399                 .address = address,
2400                 .flags = FAULT_FLAG_ALLOW_RETRY,
2401                 .pmd = pmd,
2402         };
2403
2404         fe.pte = pte_offset_map(pmd, address);
2405         for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
2406                         fe.pte++, fe.address += PAGE_SIZE) {
2407                 pteval = *fe.pte;
2408                 if (!is_swap_pte(pteval))
2409                         continue;
2410                 swapped_in++;
2411                 ret = do_swap_page(&fe, pteval);
2412                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2413                 if (ret & VM_FAULT_RETRY) {
2414                         down_read(&mm->mmap_sem);
2415                         /* vma is no longer available, don't continue to swapin */
2416                         if (hugepage_vma_revalidate(mm, address))
2417                                 return false;
2418                         /* check if the pmd is still valid */
2419                         if (mm_find_pmd(mm, address) != pmd)
2420                                 return false;
2421                 }
2422                 if (ret & VM_FAULT_ERROR) {
2423                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
2424                         return false;
2425                 }
2426                 /* pte is unmapped now, we need to map it */
2427                 fe.pte = pte_offset_map(pmd, fe.address);
2428         }
2429         fe.pte--;
2430         pte_unmap(fe.pte);
2431         trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
2432         return true;
2433 }
2434
2435 static void collapse_huge_page(struct mm_struct *mm,
2436                                    unsigned long address,
2437                                    struct page **hpage,
2438                                    struct vm_area_struct *vma,
2439                                    int node)
2440 {
2441         pmd_t *pmd, _pmd;
2442         pte_t *pte;
2443         pgtable_t pgtable;
2444         struct page *new_page;
2445         spinlock_t *pmd_ptl, *pte_ptl;
2446         int isolated = 0, result = 0;
2447         struct mem_cgroup *memcg;
2448         unsigned long mmun_start;       /* For mmu_notifiers */
2449         unsigned long mmun_end;         /* For mmu_notifiers */
2450         gfp_t gfp;
2451
2452         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2453
2454         /* Only allocate from the target node */
2455         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2456
2457         /* release the mmap_sem read lock. */
2458         new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2459         if (!new_page) {
2460                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2461                 goto out_nolock;
2462         }
2463
2464         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2465                 result = SCAN_CGROUP_CHARGE_FAIL;
2466                 goto out_nolock;
2467         }
2468
2469         down_read(&mm->mmap_sem);
2470         result = hugepage_vma_revalidate(mm, address);
2471         if (result) {
2472                 mem_cgroup_cancel_charge(new_page, memcg, true);
2473                 up_read(&mm->mmap_sem);
2474                 goto out_nolock;
2475         }
2476
2477         pmd = mm_find_pmd(mm, address);
2478         if (!pmd) {
2479                 result = SCAN_PMD_NULL;
2480                 mem_cgroup_cancel_charge(new_page, memcg, true);
2481                 up_read(&mm->mmap_sem);
2482                 goto out_nolock;
2483         }
2484
2485         /*
2486          * __collapse_huge_page_swapin always returns with mmap_sem locked.
2487          * If it fails, release mmap_sem and jump directly out.
2488          * Continuing to collapse causes inconsistency.
2489          */
2490         if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
2491                 mem_cgroup_cancel_charge(new_page, memcg, true);
2492                 up_read(&mm->mmap_sem);
2493                 goto out_nolock;
2494         }
2495
2496         up_read(&mm->mmap_sem);
2497         /*
2498          * Prevent all access to pagetables with the exception of
2499          * gup_fast later handled by the ptep_clear_flush and the VM
2500          * handled by the anon_vma lock + PG_lock.
2501          */
2502         down_write(&mm->mmap_sem);
2503         result = hugepage_vma_revalidate(mm, address);
2504         if (result)
2505                 goto out;
2506         /* check if the pmd is still valid */
2507         if (mm_find_pmd(mm, address) != pmd)
2508                 goto out;
2509
2510         anon_vma_lock_write(vma->anon_vma);
2511
2512         pte = pte_offset_map(pmd, address);
2513         pte_ptl = pte_lockptr(mm, pmd);
2514
2515         mmun_start = address;
2516         mmun_end   = address + HPAGE_PMD_SIZE;
2517         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2518         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2519         /*
2520          * After this gup_fast can't run anymore. This also removes
2521          * any huge TLB entry from the CPU so we won't allow
2522          * huge and small TLB entries for the same virtual address
2523          * to avoid the risk of CPU bugs in that area.
2524          */
2525         _pmd = pmdp_collapse_flush(vma, address, pmd);
2526         spin_unlock(pmd_ptl);
2527         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2528
2529         spin_lock(pte_ptl);
2530         isolated = __collapse_huge_page_isolate(vma, address, pte);
2531         spin_unlock(pte_ptl);
2532
2533         if (unlikely(!isolated)) {
2534                 pte_unmap(pte);
2535                 spin_lock(pmd_ptl);
2536                 BUG_ON(!pmd_none(*pmd));
2537                 /*
2538                  * We can only use set_pmd_at when establishing
2539                  * hugepmds and never for establishing regular pmds that
2540                  * points to regular pagetables. Use pmd_populate for that
2541                  */
2542                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2543                 spin_unlock(pmd_ptl);
2544                 anon_vma_unlock_write(vma->anon_vma);
2545                 result = SCAN_FAIL;
2546                 goto out;
2547         }
2548
2549         /*
2550          * All pages are isolated and locked so anon_vma rmap
2551          * can't run anymore.
2552          */
2553         anon_vma_unlock_write(vma->anon_vma);
2554
2555         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2556         pte_unmap(pte);
2557         __SetPageUptodate(new_page);
2558         pgtable = pmd_pgtable(_pmd);
2559
2560         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2561         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2562
2563         /*
2564          * spin_lock() below is not the equivalent of smp_wmb(), so
2565          * this is needed to avoid the copy_huge_page writes to become
2566          * visible after the set_pmd_at() write.
2567          */
2568         smp_wmb();
2569
2570         spin_lock(pmd_ptl);
2571         BUG_ON(!pmd_none(*pmd));
2572         page_add_new_anon_rmap(new_page, vma, address, true);
2573         mem_cgroup_commit_charge(new_page, memcg, false, true);
2574         lru_cache_add_active_or_unevictable(new_page, vma);
2575         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2576         set_pmd_at(mm, address, pmd, _pmd);
2577         update_mmu_cache_pmd(vma, address, pmd);
2578         spin_unlock(pmd_ptl);
2579
2580         *hpage = NULL;
2581
2582         khugepaged_pages_collapsed++;
2583         result = SCAN_SUCCEED;
2584 out_up_write:
2585         up_write(&mm->mmap_sem);
2586 out_nolock:
2587         trace_mm_collapse_huge_page(mm, isolated, result);
2588         return;
2589 out:
2590         mem_cgroup_cancel_charge(new_page, memcg, true);
2591         goto out_up_write;
2592 }
2593
2594 static int khugepaged_scan_pmd(struct mm_struct *mm,
2595                                struct vm_area_struct *vma,
2596                                unsigned long address,
2597                                struct page **hpage)
2598 {
2599         pmd_t *pmd;
2600         pte_t *pte, *_pte;
2601         int ret = 0, none_or_zero = 0, result = 0;
2602         struct page *page = NULL;
2603         unsigned long _address;
2604         spinlock_t *ptl;
2605         int node = NUMA_NO_NODE, unmapped = 0;
2606         bool writable = false, referenced = false;
2607
2608         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2609
2610         pmd = mm_find_pmd(mm, address);
2611         if (!pmd) {
2612                 result = SCAN_PMD_NULL;
2613                 goto out;
2614         }
2615
2616         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2617         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2618         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2619              _pte++, _address += PAGE_SIZE) {
2620                 pte_t pteval = *_pte;
2621                 if (is_swap_pte(pteval)) {
2622                         if (++unmapped <= khugepaged_max_ptes_swap) {
2623                                 continue;
2624                         } else {
2625                                 result = SCAN_EXCEED_SWAP_PTE;
2626                                 goto out_unmap;
2627                         }
2628                 }
2629                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2630                         if (!userfaultfd_armed(vma) &&
2631                             ++none_or_zero <= khugepaged_max_ptes_none) {
2632                                 continue;
2633                         } else {
2634                                 result = SCAN_EXCEED_NONE_PTE;
2635                                 goto out_unmap;
2636                         }
2637                 }
2638                 if (!pte_present(pteval)) {
2639                         result = SCAN_PTE_NON_PRESENT;
2640                         goto out_unmap;
2641                 }
2642                 if (pte_write(pteval))
2643                         writable = true;
2644
2645                 page = vm_normal_page(vma, _address, pteval);
2646                 if (unlikely(!page)) {
2647                         result = SCAN_PAGE_NULL;
2648                         goto out_unmap;
2649                 }
2650
2651                 /* TODO: teach khugepaged to collapse THP mapped with pte */
2652                 if (PageCompound(page)) {
2653                         result = SCAN_PAGE_COMPOUND;
2654                         goto out_unmap;
2655                 }
2656
2657                 /*
2658                  * Record which node the original page is from and save this
2659                  * information to khugepaged_node_load[].
2660                  * Khupaged will allocate hugepage from the node has the max
2661                  * hit record.
2662                  */
2663                 node = page_to_nid(page);
2664                 if (khugepaged_scan_abort(node)) {
2665                         result = SCAN_SCAN_ABORT;
2666                         goto out_unmap;
2667                 }
2668                 khugepaged_node_load[node]++;
2669                 if (!PageLRU(page)) {
2670                         result = SCAN_PAGE_LRU;
2671                         goto out_unmap;
2672                 }
2673                 if (PageLocked(page)) {
2674                         result = SCAN_PAGE_LOCK;
2675                         goto out_unmap;
2676                 }
2677                 if (!PageAnon(page)) {
2678                         result = SCAN_PAGE_ANON;
2679                         goto out_unmap;
2680                 }
2681
2682                 /*
2683                  * cannot use mapcount: can't collapse if there's a gup pin.
2684                  * The page must only be referenced by the scanned process
2685                  * and page swap cache.
2686                  */
2687                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2688                         result = SCAN_PAGE_COUNT;
2689                         goto out_unmap;
2690                 }
2691                 if (pte_young(pteval) ||
2692                     page_is_young(page) || PageReferenced(page) ||
2693                     mmu_notifier_test_young(vma->vm_mm, address))
2694                         referenced = true;
2695         }
2696         if (writable) {
2697                 if (referenced) {
2698                         result = SCAN_SUCCEED;
2699                         ret = 1;
2700                 } else {
2701                         result = SCAN_NO_REFERENCED_PAGE;
2702                 }
2703         } else {
2704                 result = SCAN_PAGE_RO;
2705         }
2706 out_unmap:
2707         pte_unmap_unlock(pte, ptl);
2708         if (ret) {
2709                 node = khugepaged_find_target_node();
2710                 /* collapse_huge_page will return with the mmap_sem released */
2711                 collapse_huge_page(mm, address, hpage, vma, node);
2712         }
2713 out:
2714         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2715                                      none_or_zero, result, unmapped);
2716         return ret;
2717 }
2718
2719 static void collect_mm_slot(struct mm_slot *mm_slot)
2720 {
2721         struct mm_struct *mm = mm_slot->mm;
2722
2723         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2724
2725         if (khugepaged_test_exit(mm)) {
2726                 /* free mm_slot */
2727                 hash_del(&mm_slot->hash);
2728                 list_del(&mm_slot->mm_node);
2729
2730                 /*
2731                  * Not strictly needed because the mm exited already.
2732                  *
2733                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2734                  */
2735
2736                 /* khugepaged_mm_lock actually not necessary for the below */
2737                 free_mm_slot(mm_slot);
2738                 mmdrop(mm);
2739         }
2740 }
2741
2742 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2743                                             struct page **hpage)
2744         __releases(&khugepaged_mm_lock)
2745         __acquires(&khugepaged_mm_lock)
2746 {
2747         struct mm_slot *mm_slot;
2748         struct mm_struct *mm;
2749         struct vm_area_struct *vma;
2750         int progress = 0;
2751
2752         VM_BUG_ON(!pages);
2753         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2754
2755         if (khugepaged_scan.mm_slot)
2756                 mm_slot = khugepaged_scan.mm_slot;
2757         else {
2758                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2759                                      struct mm_slot, mm_node);
2760                 khugepaged_scan.address = 0;
2761                 khugepaged_scan.mm_slot = mm_slot;
2762         }
2763         spin_unlock(&khugepaged_mm_lock);
2764
2765         mm = mm_slot->mm;
2766         down_read(&mm->mmap_sem);
2767         if (unlikely(khugepaged_test_exit(mm)))
2768                 vma = NULL;
2769         else
2770                 vma = find_vma(mm, khugepaged_scan.address);
2771
2772         progress++;
2773         for (; vma; vma = vma->vm_next) {
2774                 unsigned long hstart, hend;
2775
2776                 cond_resched();
2777                 if (unlikely(khugepaged_test_exit(mm))) {
2778                         progress++;
2779                         break;
2780                 }
2781                 if (!hugepage_vma_check(vma)) {
2782 skip:
2783                         progress++;
2784                         continue;
2785                 }
2786                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2787                 hend = vma->vm_end & HPAGE_PMD_MASK;
2788                 if (hstart >= hend)
2789                         goto skip;
2790                 if (khugepaged_scan.address > hend)
2791                         goto skip;
2792                 if (khugepaged_scan.address < hstart)
2793                         khugepaged_scan.address = hstart;
2794                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2795
2796                 while (khugepaged_scan.address < hend) {
2797                         int ret;
2798                         cond_resched();
2799                         if (unlikely(khugepaged_test_exit(mm)))
2800                                 goto breakouterloop;
2801
2802                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2803                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2804                                   hend);
2805                         ret = khugepaged_scan_pmd(mm, vma,
2806                                                   khugepaged_scan.address,
2807                                                   hpage);
2808                         /* move to next address */
2809                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2810                         progress += HPAGE_PMD_NR;
2811                         if (ret)
2812                                 /* we released mmap_sem so break loop */
2813                                 goto breakouterloop_mmap_sem;
2814                         if (progress >= pages)
2815                                 goto breakouterloop;
2816                 }
2817         }
2818 breakouterloop:
2819         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2820 breakouterloop_mmap_sem:
2821
2822         spin_lock(&khugepaged_mm_lock);
2823         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2824         /*
2825          * Release the current mm_slot if this mm is about to die, or
2826          * if we scanned all vmas of this mm.
2827          */
2828         if (khugepaged_test_exit(mm) || !vma) {
2829                 /*
2830                  * Make sure that if mm_users is reaching zero while
2831                  * khugepaged runs here, khugepaged_exit will find
2832                  * mm_slot not pointing to the exiting mm.
2833                  */
2834                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2835                         khugepaged_scan.mm_slot = list_entry(
2836                                 mm_slot->mm_node.next,
2837                                 struct mm_slot, mm_node);
2838                         khugepaged_scan.address = 0;
2839                 } else {
2840                         khugepaged_scan.mm_slot = NULL;
2841                         khugepaged_full_scans++;
2842                 }
2843
2844                 collect_mm_slot(mm_slot);
2845         }
2846
2847         return progress;
2848 }
2849
2850 static int khugepaged_has_work(void)
2851 {
2852         return !list_empty(&khugepaged_scan.mm_head) &&
2853                 khugepaged_enabled();
2854 }
2855
2856 static int khugepaged_wait_event(void)
2857 {
2858         return !list_empty(&khugepaged_scan.mm_head) ||
2859                 kthread_should_stop();
2860 }
2861
2862 static void khugepaged_do_scan(void)
2863 {
2864         struct page *hpage = NULL;
2865         unsigned int progress = 0, pass_through_head = 0;
2866         unsigned int pages = khugepaged_pages_to_scan;
2867         bool wait = true;
2868
2869         barrier(); /* write khugepaged_pages_to_scan to local stack */
2870
2871         while (progress < pages) {
2872                 if (!khugepaged_prealloc_page(&hpage, &wait))
2873                         break;
2874
2875                 cond_resched();
2876
2877                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2878                         break;
2879
2880                 spin_lock(&khugepaged_mm_lock);
2881                 if (!khugepaged_scan.mm_slot)
2882                         pass_through_head++;
2883                 if (khugepaged_has_work() &&
2884                     pass_through_head < 2)
2885                         progress += khugepaged_scan_mm_slot(pages - progress,
2886                                                             &hpage);
2887                 else
2888                         progress = pages;
2889                 spin_unlock(&khugepaged_mm_lock);
2890         }
2891
2892         if (!IS_ERR_OR_NULL(hpage))
2893                 put_page(hpage);
2894 }
2895
2896 static bool khugepaged_should_wakeup(void)
2897 {
2898         return kthread_should_stop() ||
2899                time_after_eq(jiffies, khugepaged_sleep_expire);
2900 }
2901
2902 static void khugepaged_wait_work(void)
2903 {
2904         if (khugepaged_has_work()) {
2905                 const unsigned long scan_sleep_jiffies =
2906                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2907
2908                 if (!scan_sleep_jiffies)
2909                         return;
2910
2911                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2912                 wait_event_freezable_timeout(khugepaged_wait,
2913                                              khugepaged_should_wakeup(),
2914                                              scan_sleep_jiffies);
2915                 return;
2916         }
2917
2918         if (khugepaged_enabled())
2919                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2920 }
2921
2922 static int khugepaged(void *none)
2923 {
2924         struct mm_slot *mm_slot;
2925
2926         set_freezable();
2927         set_user_nice(current, MAX_NICE);
2928
2929         while (!kthread_should_stop()) {
2930                 khugepaged_do_scan();
2931                 khugepaged_wait_work();
2932         }
2933
2934         spin_lock(&khugepaged_mm_lock);
2935         mm_slot = khugepaged_scan.mm_slot;
2936         khugepaged_scan.mm_slot = NULL;
2937         if (mm_slot)
2938                 collect_mm_slot(mm_slot);
2939         spin_unlock(&khugepaged_mm_lock);
2940         return 0;
2941 }
2942
2943 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2944                 unsigned long haddr, pmd_t *pmd)
2945 {
2946         struct mm_struct *mm = vma->vm_mm;
2947         pgtable_t pgtable;
2948         pmd_t _pmd;
2949         int i;
2950
2951         /* leave pmd empty until pte is filled */
2952         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2953
2954         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2955         pmd_populate(mm, &_pmd, pgtable);
2956
2957         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2958                 pte_t *pte, entry;
2959                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2960                 entry = pte_mkspecial(entry);
2961                 pte = pte_offset_map(&_pmd, haddr);
2962                 VM_BUG_ON(!pte_none(*pte));
2963                 set_pte_at(mm, haddr, pte, entry);
2964                 pte_unmap(pte);
2965         }
2966         smp_wmb(); /* make pte visible before pmd */
2967         pmd_populate(mm, pmd, pgtable);
2968         put_huge_zero_page();
2969 }
2970
2971 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2972                 unsigned long haddr, bool freeze)
2973 {
2974         struct mm_struct *mm = vma->vm_mm;
2975         struct page *page;
2976         pgtable_t pgtable;
2977         pmd_t _pmd;
2978         bool young, write, dirty;
2979         unsigned long addr;
2980         int i;
2981
2982         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2983         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2984         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2985         VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2986
2987         count_vm_event(THP_SPLIT_PMD);
2988
2989         if (vma_is_dax(vma)) {
2990                 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2991                 if (is_huge_zero_pmd(_pmd))
2992                         put_huge_zero_page();
2993                 return;
2994         } else if (is_huge_zero_pmd(*pmd)) {
2995                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2996         }
2997
2998         page = pmd_page(*pmd);
2999         VM_BUG_ON_PAGE(!page_count(page), page);
3000         page_ref_add(page, HPAGE_PMD_NR - 1);
3001         write = pmd_write(*pmd);
3002         young = pmd_young(*pmd);
3003         dirty = pmd_dirty(*pmd);
3004
3005         pmdp_huge_split_prepare(vma, haddr, pmd);
3006         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3007         pmd_populate(mm, &_pmd, pgtable);
3008
3009         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3010                 pte_t entry, *pte;
3011                 /*
3012                  * Note that NUMA hinting access restrictions are not
3013                  * transferred to avoid any possibility of altering
3014                  * permissions across VMAs.
3015                  */
3016                 if (freeze) {
3017                         swp_entry_t swp_entry;
3018                         swp_entry = make_migration_entry(page + i, write);
3019                         entry = swp_entry_to_pte(swp_entry);
3020                 } else {
3021                         entry = mk_pte(page + i, vma->vm_page_prot);
3022                         entry = maybe_mkwrite(entry, vma);
3023                         if (!write)
3024                                 entry = pte_wrprotect(entry);
3025                         if (!young)
3026                                 entry = pte_mkold(entry);
3027                 }
3028                 if (dirty)
3029                         SetPageDirty(page + i);
3030                 pte = pte_offset_map(&_pmd, addr);
3031                 BUG_ON(!pte_none(*pte));
3032                 set_pte_at(mm, addr, pte, entry);
3033                 atomic_inc(&page[i]._mapcount);
3034                 pte_unmap(pte);
3035         }
3036
3037         /*
3038          * Set PG_double_map before dropping compound_mapcount to avoid
3039          * false-negative page_mapped().
3040          */
3041         if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3042                 for (i = 0; i < HPAGE_PMD_NR; i++)
3043                         atomic_inc(&page[i]._mapcount);
3044         }
3045
3046         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3047                 /* Last compound_mapcount is gone. */
3048                 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3049                 if (TestClearPageDoubleMap(page)) {
3050                         /* No need in mapcount reference anymore */
3051                         for (i = 0; i < HPAGE_PMD_NR; i++)
3052                                 atomic_dec(&page[i]._mapcount);
3053                 }
3054         }
3055
3056         smp_wmb(); /* make pte visible before pmd */
3057         /*
3058          * Up to this point the pmd is present and huge and userland has the
3059          * whole access to the hugepage during the split (which happens in
3060          * place). If we overwrite the pmd with the not-huge version pointing
3061          * to the pte here (which of course we could if all CPUs were bug
3062          * free), userland could trigger a small page size TLB miss on the
3063          * small sized TLB while the hugepage TLB entry is still established in
3064          * the huge TLB. Some CPU doesn't like that.
3065          * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3066          * 383 on page 93. Intel should be safe but is also warns that it's
3067          * only safe if the permission and cache attributes of the two entries
3068          * loaded in the two TLB is identical (which should be the case here).
3069          * But it is generally safer to never allow small and huge TLB entries
3070          * for the same virtual address to be loaded simultaneously. So instead
3071          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3072          * current pmd notpresent (atomically because here the pmd_trans_huge
3073          * and pmd_trans_splitting must remain set at all times on the pmd
3074          * until the split is complete for this pmd), then we flush the SMP TLB
3075          * and finally we write the non-huge version of the pmd entry with
3076          * pmd_populate.
3077          */
3078         pmdp_invalidate(vma, haddr, pmd);
3079         pmd_populate(mm, pmd, pgtable);
3080
3081         if (freeze) {
3082                 for (i = 0; i < HPAGE_PMD_NR; i++) {
3083                         page_remove_rmap(page + i, false);
3084                         put_page(page + i);
3085                 }
3086         }
3087 }
3088
3089 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3090                 unsigned long address, bool freeze, struct page *page)
3091 {
3092         spinlock_t *ptl;
3093         struct mm_struct *mm = vma->vm_mm;
3094         unsigned long haddr = address & HPAGE_PMD_MASK;
3095
3096         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3097         ptl = pmd_lock(mm, pmd);
3098
3099         /*
3100          * If caller asks to setup a migration entries, we need a page to check
3101          * pmd against. Otherwise we can end up replacing wrong page.
3102          */
3103         VM_BUG_ON(freeze && !page);
3104         if (page && page != pmd_page(*pmd))
3105                 goto out;
3106
3107         if (pmd_trans_huge(*pmd)) {
3108                 page = pmd_page(*pmd);
3109                 if (PageMlocked(page))
3110                         clear_page_mlock(page);
3111         } else if (!pmd_devmap(*pmd))
3112                 goto out;
3113         __split_huge_pmd_locked(vma, pmd, haddr, freeze);
3114 out:
3115         spin_unlock(ptl);
3116         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3117 }
3118
3119 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3120                 bool freeze, struct page *page)
3121 {
3122         pgd_t *pgd;
3123         pud_t *pud;
3124         pmd_t *pmd;
3125
3126         pgd = pgd_offset(vma->vm_mm, address);
3127         if (!pgd_present(*pgd))
3128                 return;
3129
3130         pud = pud_offset(pgd, address);
3131         if (!pud_present(*pud))
3132                 return;
3133
3134         pmd = pmd_offset(pud, address);
3135
3136         __split_huge_pmd(vma, pmd, address, freeze, page);
3137 }
3138
3139 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3140                              unsigned long start,
3141                              unsigned long end,
3142                              long adjust_next)
3143 {
3144         /*
3145          * If the new start address isn't hpage aligned and it could
3146          * previously contain an hugepage: check if we need to split
3147          * an huge pmd.
3148          */
3149         if (start & ~HPAGE_PMD_MASK &&
3150             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3151             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3152                 split_huge_pmd_address(vma, start, false, NULL);
3153
3154         /*
3155          * If the new end address isn't hpage aligned and it could
3156          * previously contain an hugepage: check if we need to split
3157          * an huge pmd.
3158          */
3159         if (end & ~HPAGE_PMD_MASK &&
3160             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3161             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3162                 split_huge_pmd_address(vma, end, false, NULL);
3163
3164         /*
3165          * If we're also updating the vma->vm_next->vm_start, if the new
3166          * vm_next->vm_start isn't page aligned and it could previously
3167          * contain an hugepage: check if we need to split an huge pmd.
3168          */
3169         if (adjust_next > 0) {
3170                 struct vm_area_struct *next = vma->vm_next;
3171                 unsigned long nstart = next->vm_start;
3172                 nstart += adjust_next << PAGE_SHIFT;
3173                 if (nstart & ~HPAGE_PMD_MASK &&
3174                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3175                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3176                         split_huge_pmd_address(next, nstart, false, NULL);
3177         }
3178 }
3179
3180 static void freeze_page(struct page *page)
3181 {
3182         enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3183                 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3184         int i, ret;
3185
3186         VM_BUG_ON_PAGE(!PageHead(page), page);
3187
3188         /* We only need TTU_SPLIT_HUGE_PMD once */
3189         ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3190         for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3191                 /* Cut short if the page is unmapped */
3192                 if (page_count(page) == 1)
3193                         return;
3194
3195                 ret = try_to_unmap(page + i, ttu_flags);
3196         }
3197         VM_BUG_ON(ret);
3198 }
3199
3200 static void unfreeze_page(struct page *page)
3201 {
3202         int i;
3203
3204         for (i = 0; i < HPAGE_PMD_NR; i++)
3205                 remove_migration_ptes(page + i, page + i, true);
3206 }
3207
3208 static void __split_huge_page_tail(struct page *head, int tail,
3209                 struct lruvec *lruvec, struct list_head *list)
3210 {
3211         struct page *page_tail = head + tail;
3212
3213         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3214         VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3215
3216         /*
3217          * tail_page->_refcount is zero and not changing from under us. But
3218          * get_page_unless_zero() may be running from under us on the
3219          * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3220          * would then run atomic_set() concurrently with
3221          * get_page_unless_zero(), and atomic_set() is implemented in C not
3222          * using locked ops. spin_unlock on x86 sometime uses locked ops
3223          * because of PPro errata 66, 92, so unless somebody can guarantee
3224          * atomic_set() here would be safe on all archs (and not only on x86),
3225          * it's safer to use atomic_inc().
3226          */
3227         page_ref_inc(page_tail);
3228
3229         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3230         page_tail->flags |= (head->flags &
3231                         ((1L << PG_referenced) |
3232                          (1L << PG_swapbacked) |
3233                          (1L << PG_mlocked) |
3234                          (1L << PG_uptodate) |
3235                          (1L << PG_active) |
3236                          (1L << PG_locked) |
3237                          (1L << PG_unevictable) |
3238                          (1L << PG_dirty)));
3239
3240         /*
3241          * After clearing PageTail the gup refcount can be released.
3242          * Page flags also must be visible before we make the page non-compound.
3243          */
3244         smp_wmb();
3245
3246         clear_compound_head(page_tail);
3247
3248         if (page_is_young(head))
3249                 set_page_young(page_tail);
3250         if (page_is_idle(head))
3251                 set_page_idle(page_tail);
3252
3253         /* ->mapping in first tail page is compound_mapcount */
3254         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3255                         page_tail);
3256         page_tail->mapping = head->mapping;
3257
3258         page_tail->index = head->index + tail;
3259         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3260         lru_add_page_tail(head, page_tail, lruvec, list);
3261 }
3262
3263 static void __split_huge_page(struct page *page, struct list_head *list)
3264 {
3265         struct page *head = compound_head(page);
3266         struct zone *zone = page_zone(head);
3267         struct lruvec *lruvec;
3268         int i;
3269
3270         /* prevent PageLRU to go away from under us, and freeze lru stats */
3271         spin_lock_irq(&zone->lru_lock);
3272         lruvec = mem_cgroup_page_lruvec(head, zone);
3273
3274         /* complete memcg works before add pages to LRU */
3275         mem_cgroup_split_huge_fixup(head);
3276
3277         for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3278                 __split_huge_page_tail(head, i, lruvec, list);
3279
3280         ClearPageCompound(head);
3281         spin_unlock_irq(&zone->lru_lock);
3282
3283         unfreeze_page(head);
3284
3285         for (i = 0; i < HPAGE_PMD_NR; i++) {
3286                 struct page *subpage = head + i;
3287                 if (subpage == page)
3288                         continue;
3289                 unlock_page(subpage);
3290
3291                 /*
3292                  * Subpages may be freed if there wasn't any mapping
3293                  * like if add_to_swap() is running on a lru page that
3294                  * had its mapping zapped. And freeing these pages
3295                  * requires taking the lru_lock so we do the put_page
3296                  * of the tail pages after the split is complete.
3297                  */
3298                 put_page(subpage);
3299         }
3300 }
3301
3302 int total_mapcount(struct page *page)
3303 {
3304         int i, ret;
3305
3306         VM_BUG_ON_PAGE(PageTail(page), page);
3307
3308         if (likely(!PageCompound(page)))
3309                 return atomic_read(&page->_mapcount) + 1;
3310
3311         ret = compound_mapcount(page);
3312         if (PageHuge(page))
3313                 return ret;
3314         for (i = 0; i < HPAGE_PMD_NR; i++)
3315                 ret += atomic_read(&page[i]._mapcount) + 1;
3316         if (PageDoubleMap(page))
3317                 ret -= HPAGE_PMD_NR;
3318         return ret;
3319 }
3320
3321 /*
3322  * This calculates accurately how many mappings a transparent hugepage
3323  * has (unlike page_mapcount() which isn't fully accurate). This full
3324  * accuracy is primarily needed to know if copy-on-write faults can
3325  * reuse the page and change the mapping to read-write instead of
3326  * copying them. At the same time this returns the total_mapcount too.
3327  *
3328  * The function returns the highest mapcount any one of the subpages
3329  * has. If the return value is one, even if different processes are
3330  * mapping different subpages of the transparent hugepage, they can
3331  * all reuse it, because each process is reusing a different subpage.
3332  *
3333  * The total_mapcount is instead counting all virtual mappings of the
3334  * subpages. If the total_mapcount is equal to "one", it tells the
3335  * caller all mappings belong to the same "mm" and in turn the
3336  * anon_vma of the transparent hugepage can become the vma->anon_vma
3337  * local one as no other process may be mapping any of the subpages.
3338  *
3339  * It would be more accurate to replace page_mapcount() with
3340  * page_trans_huge_mapcount(), however we only use
3341  * page_trans_huge_mapcount() in the copy-on-write faults where we
3342  * need full accuracy to avoid breaking page pinning, because
3343  * page_trans_huge_mapcount() is slower than page_mapcount().
3344  */
3345 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3346 {
3347         int i, ret, _total_mapcount, mapcount;
3348
3349         /* hugetlbfs shouldn't call it */
3350         VM_BUG_ON_PAGE(PageHuge(page), page);
3351
3352         if (likely(!PageTransCompound(page))) {
3353                 mapcount = atomic_read(&page->_mapcount) + 1;
3354                 if (total_mapcount)
3355                         *total_mapcount = mapcount;
3356                 return mapcount;
3357         }
3358
3359         page = compound_head(page);
3360
3361         _total_mapcount = ret = 0;
3362         for (i = 0; i < HPAGE_PMD_NR; i++) {
3363                 mapcount = atomic_read(&page[i]._mapcount) + 1;
3364                 ret = max(ret, mapcount);
3365                 _total_mapcount += mapcount;
3366         }
3367         if (PageDoubleMap(page)) {
3368                 ret -= 1;
3369                 _total_mapcount -= HPAGE_PMD_NR;
3370         }
3371         mapcount = compound_mapcount(page);
3372         ret += mapcount;
3373         _total_mapcount += mapcount;
3374         if (total_mapcount)
3375                 *total_mapcount = _total_mapcount;
3376         return ret;
3377 }
3378
3379 /*
3380  * This function splits huge page into normal pages. @page can point to any
3381  * subpage of huge page to split. Split doesn't change the position of @page.
3382  *
3383  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3384  * The huge page must be locked.
3385  *
3386  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3387  *
3388  * Both head page and tail pages will inherit mapping, flags, and so on from
3389  * the hugepage.
3390  *
3391  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3392  * they are not mapped.
3393  *
3394  * Returns 0 if the hugepage is split successfully.
3395  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3396  * us.
3397  */
3398 int split_huge_page_to_list(struct page *page, struct list_head *list)
3399 {
3400         struct page *head = compound_head(page);
3401         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3402         struct anon_vma *anon_vma;
3403         int count, mapcount, ret;
3404         bool mlocked;
3405         unsigned long flags;
3406
3407         VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3408         VM_BUG_ON_PAGE(!PageAnon(page), page);
3409         VM_BUG_ON_PAGE(!PageLocked(page), page);
3410         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3411         VM_BUG_ON_PAGE(!PageCompound(page), page);
3412
3413         /*
3414          * The caller does not necessarily hold an mmap_sem that would prevent
3415          * the anon_vma disappearing so we first we take a reference to it
3416          * and then lock the anon_vma for write. This is similar to
3417          * page_lock_anon_vma_read except the write lock is taken to serialise
3418          * against parallel split or collapse operations.
3419          */
3420         anon_vma = page_get_anon_vma(head);
3421         if (!anon_vma) {
3422                 ret = -EBUSY;
3423                 goto out;
3424         }
3425         anon_vma_lock_write(anon_vma);
3426
3427         /*
3428          * Racy check if we can split the page, before freeze_page() will
3429          * split PMDs
3430          */
3431         if (total_mapcount(head) != page_count(head) - 1) {
3432                 ret = -EBUSY;
3433                 goto out_unlock;
3434         }
3435
3436         mlocked = PageMlocked(page);
3437         freeze_page(head);
3438         VM_BUG_ON_PAGE(compound_mapcount(head), head);
3439
3440         /* Make sure the page is not on per-CPU pagevec as it takes pin */
3441         if (mlocked)
3442                 lru_add_drain();
3443
3444         /* Prevent deferred_split_scan() touching ->_refcount */
3445         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3446         count = page_count(head);
3447         mapcount = total_mapcount(head);
3448         if (!mapcount && count == 1) {
3449                 if (!list_empty(page_deferred_list(head))) {
3450                         pgdata->split_queue_len--;
3451                         list_del(page_deferred_list(head));
3452                 }
3453                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3454                 __split_huge_page(page, list);
3455                 ret = 0;
3456         } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3457                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3458                 pr_alert("total_mapcount: %u, page_count(): %u\n",
3459                                 mapcount, count);
3460                 if (PageTail(page))
3461                         dump_page(head, NULL);
3462                 dump_page(page, "total_mapcount(head) > 0");
3463                 BUG();
3464         } else {
3465                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3466                 unfreeze_page(head);
3467                 ret = -EBUSY;
3468         }
3469
3470 out_unlock:
3471         anon_vma_unlock_write(anon_vma);
3472         put_anon_vma(anon_vma);
3473 out:
3474         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3475         return ret;
3476 }
3477
3478 void free_transhuge_page(struct page *page)
3479 {
3480         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3481         unsigned long flags;
3482
3483         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3484         if (!list_empty(page_deferred_list(page))) {
3485                 pgdata->split_queue_len--;
3486                 list_del(page_deferred_list(page));
3487         }
3488         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3489         free_compound_page(page);
3490 }
3491
3492 void deferred_split_huge_page(struct page *page)
3493 {
3494         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3495         unsigned long flags;
3496
3497         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3498
3499         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3500         if (list_empty(page_deferred_list(page))) {
3501                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3502                 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3503                 pgdata->split_queue_len++;
3504         }
3505         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3506 }
3507
3508 static unsigned long deferred_split_count(struct shrinker *shrink,
3509                 struct shrink_control *sc)
3510 {
3511         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3512         return ACCESS_ONCE(pgdata->split_queue_len);
3513 }
3514
3515 static unsigned long deferred_split_scan(struct shrinker *shrink,
3516                 struct shrink_control *sc)
3517 {
3518         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3519         unsigned long flags;
3520         LIST_HEAD(list), *pos, *next;
3521         struct page *page;
3522         int split = 0;
3523
3524         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3525         /* Take pin on all head pages to avoid freeing them under us */
3526         list_for_each_safe(pos, next, &pgdata->split_queue) {
3527                 page = list_entry((void *)pos, struct page, mapping);
3528                 page = compound_head(page);
3529                 if (get_page_unless_zero(page)) {
3530                         list_move(page_deferred_list(page), &list);
3531                 } else {
3532                         /* We lost race with put_compound_page() */
3533                         list_del_init(page_deferred_list(page));
3534                         pgdata->split_queue_len--;
3535                 }
3536                 if (!--sc->nr_to_scan)
3537                         break;
3538         }
3539         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3540
3541         list_for_each_safe(pos, next, &list) {
3542                 page = list_entry((void *)pos, struct page, mapping);
3543                 lock_page(page);
3544                 /* split_huge_page() removes page from list on success */
3545                 if (!split_huge_page(page))
3546                         split++;
3547                 unlock_page(page);
3548                 put_page(page);
3549         }
3550
3551         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3552         list_splice_tail(&list, &pgdata->split_queue);
3553         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3554
3555         /*
3556          * Stop shrinker if we didn't split any page, but the queue is empty.
3557          * This can happen if pages were freed under us.
3558          */
3559         if (!split && list_empty(&pgdata->split_queue))
3560                 return SHRINK_STOP;
3561         return split;
3562 }
3563
3564 static struct shrinker deferred_split_shrinker = {
3565         .count_objects = deferred_split_count,
3566         .scan_objects = deferred_split_scan,
3567         .seeks = DEFAULT_SEEKS,
3568         .flags = SHRINKER_NUMA_AWARE,
3569 };
3570
3571 #ifdef CONFIG_DEBUG_FS
3572 static int split_huge_pages_set(void *data, u64 val)
3573 {
3574         struct zone *zone;
3575         struct page *page;
3576         unsigned long pfn, max_zone_pfn;
3577         unsigned long total = 0, split = 0;
3578
3579         if (val != 1)
3580                 return -EINVAL;
3581
3582         for_each_populated_zone(zone) {
3583                 max_zone_pfn = zone_end_pfn(zone);
3584                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3585                         if (!pfn_valid(pfn))
3586                                 continue;
3587
3588                         page = pfn_to_page(pfn);
3589                         if (!get_page_unless_zero(page))
3590                                 continue;
3591
3592                         if (zone != page_zone(page))
3593                                 goto next;
3594
3595                         if (!PageHead(page) || !PageAnon(page) ||
3596                                         PageHuge(page))
3597                                 goto next;
3598
3599                         total++;
3600                         lock_page(page);
3601                         if (!split_huge_page(page))
3602                                 split++;
3603                         unlock_page(page);
3604 next:
3605                         put_page(page);
3606                 }
3607         }
3608
3609         pr_info("%lu of %lu THP split\n", split, total);
3610
3611         return 0;
3612 }
3613 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3614                 "%llu\n");
3615
3616 static int __init split_huge_pages_debugfs(void)
3617 {
3618         void *ret;
3619
3620         ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3621                         &split_huge_pages_fops);
3622         if (!ret)
3623                 pr_warn("Failed to create split_huge_pages in debugfs");
3624         return 0;
3625 }
3626 late_initcall(split_huge_pages_debugfs);
3627 #endif