]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
Revert "mwifiex: cancel cmd timer and free curr_cmd in shutdown process
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 /*
57  * Region tracking -- allows tracking of reservations and instantiated pages
58  *                    across the pages in a mapping.
59  *
60  * The region data structures are protected by a combination of the mmap_sem
61  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62  * must either hold the mmap_sem for write, or the mmap_sem for read and
63  * the hugetlb_instantiation mutex:
64  *
65  *      down_write(&mm->mmap_sem);
66  * or
67  *      down_read(&mm->mmap_sem);
68  *      mutex_lock(&hugetlb_instantiation_mutex);
69  */
70 struct file_region {
71         struct list_head link;
72         long from;
73         long to;
74 };
75
76 static long region_add(struct list_head *head, long f, long t)
77 {
78         struct file_region *rg, *nrg, *trg;
79
80         /* Locate the region we are either in or before. */
81         list_for_each_entry(rg, head, link)
82                 if (f <= rg->to)
83                         break;
84
85         /* Round our left edge to the current segment if it encloses us. */
86         if (f > rg->from)
87                 f = rg->from;
88
89         /* Check for and consume any regions we now overlap with. */
90         nrg = rg;
91         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92                 if (&rg->link == head)
93                         break;
94                 if (rg->from > t)
95                         break;
96
97                 /* If this area reaches higher then extend our area to
98                  * include it completely.  If this is not the first area
99                  * which we intend to reuse, free it. */
100                 if (rg->to > t)
101                         t = rg->to;
102                 if (rg != nrg) {
103                         list_del(&rg->link);
104                         kfree(rg);
105                 }
106         }
107         nrg->from = f;
108         nrg->to = t;
109         return 0;
110 }
111
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114         struct file_region *rg, *nrg;
115         long chg = 0;
116
117         /* Locate the region we are before or in. */
118         list_for_each_entry(rg, head, link)
119                 if (f <= rg->to)
120                         break;
121
122         /* If we are below the current region then a new region is required.
123          * Subtle, allocate a new region at the position but make it zero
124          * size such that we can guarantee to record the reservation. */
125         if (&rg->link == head || t < rg->from) {
126                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127                 if (!nrg)
128                         return -ENOMEM;
129                 nrg->from = f;
130                 nrg->to   = f;
131                 INIT_LIST_HEAD(&nrg->link);
132                 list_add(&nrg->link, rg->link.prev);
133
134                 return t - f;
135         }
136
137         /* Round our left edge to the current segment if it encloses us. */
138         if (f > rg->from)
139                 f = rg->from;
140         chg = t - f;
141
142         /* Check for and consume any regions we now overlap with. */
143         list_for_each_entry(rg, rg->link.prev, link) {
144                 if (&rg->link == head)
145                         break;
146                 if (rg->from > t)
147                         return chg;
148
149                 /* We overlap with this area, if it extends further than
150                  * us then we must extend ourselves.  Account for its
151                  * existing reservation. */
152                 if (rg->to > t) {
153                         chg += rg->to - t;
154                         t = rg->to;
155                 }
156                 chg -= rg->to - rg->from;
157         }
158         return chg;
159 }
160
161 static long region_truncate(struct list_head *head, long end)
162 {
163         struct file_region *rg, *trg;
164         long chg = 0;
165
166         /* Locate the region we are either in or before. */
167         list_for_each_entry(rg, head, link)
168                 if (end <= rg->to)
169                         break;
170         if (&rg->link == head)
171                 return 0;
172
173         /* If we are in the middle of a region then adjust it. */
174         if (end > rg->from) {
175                 chg = rg->to - end;
176                 rg->to = end;
177                 rg = list_entry(rg->link.next, typeof(*rg), link);
178         }
179
180         /* Drop any remaining regions. */
181         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182                 if (&rg->link == head)
183                         break;
184                 chg += rg->to - rg->from;
185                 list_del(&rg->link);
186                 kfree(rg);
187         }
188         return chg;
189 }
190
191 static long region_count(struct list_head *head, long f, long t)
192 {
193         struct file_region *rg;
194         long chg = 0;
195
196         /* Locate each segment we overlap with, and count that overlap. */
197         list_for_each_entry(rg, head, link) {
198                 int seg_from;
199                 int seg_to;
200
201                 if (rg->to <= f)
202                         continue;
203                 if (rg->from >= t)
204                         break;
205
206                 seg_from = max(rg->from, f);
207                 seg_to = min(rg->to, t);
208
209                 chg += seg_to - seg_from;
210         }
211
212         return chg;
213 }
214
215 /*
216  * Convert the address within this vma to the page offset within
217  * the mapping, in pagecache page units; huge pages here.
218  */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220                         struct vm_area_struct *vma, unsigned long address)
221 {
222         return ((address - vma->vm_start) >> huge_page_shift(h)) +
223                         (vma->vm_pgoff >> huge_page_order(h));
224 }
225
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227                                      unsigned long address)
228 {
229         return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231
232 /*
233  * Return the size of the pages allocated when backing a VMA. In the majority
234  * cases this will be same size as used by the page table entries.
235  */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238         struct hstate *hstate;
239
240         if (!is_vm_hugetlb_page(vma))
241                 return PAGE_SIZE;
242
243         hstate = hstate_vma(vma);
244
245         return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249 /*
250  * Return the page size being used by the MMU to back a VMA. In the majority
251  * of cases, the page size used by the kernel matches the MMU size. On
252  * architectures where it differs, an architecture-specific version of this
253  * function is required.
254  */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258         return vma_kernel_pagesize(vma);
259 }
260 #endif
261
262 /*
263  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264  * bits of the reservation map pointer, which are always clear due to
265  * alignment.
266  */
267 #define HPAGE_RESV_OWNER    (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271 /*
272  * These helpers are used to track how many pages are reserved for
273  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274  * is guaranteed to have their future faults succeed.
275  *
276  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277  * the reserve counters are updated with the hugetlb_lock held. It is safe
278  * to reset the VMA at fork() time as it is not in use yet and there is no
279  * chance of the global counters getting corrupted as a result of the values.
280  *
281  * The private mapping reservation is represented in a subtly different
282  * manner to a shared mapping.  A shared mapping has a region map associated
283  * with the underlying file, this region map represents the backing file
284  * pages which have ever had a reservation assigned which this persists even
285  * after the page is instantiated.  A private mapping has a region map
286  * associated with the original mmap which is attached to all VMAs which
287  * reference it, this region map represents those offsets which have consumed
288  * reservation ie. where pages have been instantiated.
289  */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292         return (unsigned long)vma->vm_private_data;
293 }
294
295 static void set_vma_private_data(struct vm_area_struct *vma,
296                                                         unsigned long value)
297 {
298         vma->vm_private_data = (void *)value;
299 }
300
301 struct resv_map {
302         struct kref refs;
303         struct list_head regions;
304 };
305
306 static struct resv_map *resv_map_alloc(void)
307 {
308         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309         if (!resv_map)
310                 return NULL;
311
312         kref_init(&resv_map->refs);
313         INIT_LIST_HEAD(&resv_map->regions);
314
315         return resv_map;
316 }
317
318 static void resv_map_release(struct kref *ref)
319 {
320         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322         /* Clear out any active regions before we release the map. */
323         region_truncate(&resv_map->regions, 0);
324         kfree(resv_map);
325 }
326
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329         VM_BUG_ON(!is_vm_hugetlb_page(vma));
330         if (!(vma->vm_flags & VM_MAYSHARE))
331                 return (struct resv_map *)(get_vma_private_data(vma) &
332                                                         ~HPAGE_RESV_MASK);
333         return NULL;
334 }
335
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338         VM_BUG_ON(!is_vm_hugetlb_page(vma));
339         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341         set_vma_private_data(vma, (get_vma_private_data(vma) &
342                                 HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347         VM_BUG_ON(!is_vm_hugetlb_page(vma));
348         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355         VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357         return (get_vma_private_data(vma) & flag) != 0;
358 }
359
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362                         struct vm_area_struct *vma)
363 {
364         if (vma->vm_flags & VM_NORESERVE)
365                 return;
366
367         if (vma->vm_flags & VM_MAYSHARE) {
368                 /* Shared mappings always use reserves */
369                 h->resv_huge_pages--;
370         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371                 /*
372                  * Only the process that called mmap() has reserves for
373                  * private mappings.
374                  */
375                 h->resv_huge_pages--;
376         }
377 }
378
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382         VM_BUG_ON(!is_vm_hugetlb_page(vma));
383         if (!(vma->vm_flags & VM_MAYSHARE))
384                 vma->vm_private_data = (void *)0;
385 }
386
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390         if (vma->vm_flags & VM_MAYSHARE)
391                 return 1;
392         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393                 return 1;
394         return 0;
395 }
396
397 static void copy_gigantic_page(struct page *dst, struct page *src)
398 {
399         int i;
400         struct hstate *h = page_hstate(src);
401         struct page *dst_base = dst;
402         struct page *src_base = src;
403
404         for (i = 0; i < pages_per_huge_page(h); ) {
405                 cond_resched();
406                 copy_highpage(dst, src);
407
408                 i++;
409                 dst = mem_map_next(dst, dst_base, i);
410                 src = mem_map_next(src, src_base, i);
411         }
412 }
413
414 void copy_huge_page(struct page *dst, struct page *src)
415 {
416         int i;
417         struct hstate *h = page_hstate(src);
418
419         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420                 copy_gigantic_page(dst, src);
421                 return;
422         }
423
424         might_sleep();
425         for (i = 0; i < pages_per_huge_page(h); i++) {
426                 cond_resched();
427                 copy_highpage(dst + i, src + i);
428         }
429 }
430
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
432 {
433         int nid = page_to_nid(page);
434         list_add(&page->lru, &h->hugepage_freelists[nid]);
435         h->free_huge_pages++;
436         h->free_huge_pages_node[nid]++;
437 }
438
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440 {
441         struct page *page;
442
443         if (list_empty(&h->hugepage_freelists[nid]))
444                 return NULL;
445         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446         list_del(&page->lru);
447         set_page_refcounted(page);
448         h->free_huge_pages--;
449         h->free_huge_pages_node[nid]--;
450         return page;
451 }
452
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454                                 struct vm_area_struct *vma,
455                                 unsigned long address, int avoid_reserve)
456 {
457         struct page *page = NULL;
458         struct mempolicy *mpol;
459         nodemask_t *nodemask;
460         struct zonelist *zonelist;
461         struct zone *zone;
462         struct zoneref *z;
463         unsigned int cpuset_mems_cookie;
464
465 retry_cpuset:
466         cpuset_mems_cookie = get_mems_allowed();
467         zonelist = huge_zonelist(vma, address,
468                                         htlb_alloc_mask, &mpol, &nodemask);
469         /*
470          * A child process with MAP_PRIVATE mappings created by their parent
471          * have no page reserves. This check ensures that reservations are
472          * not "stolen". The child may still get SIGKILLed
473          */
474         if (!vma_has_reserves(vma) &&
475                         h->free_huge_pages - h->resv_huge_pages == 0)
476                 goto err;
477
478         /* If reserves cannot be used, ensure enough pages are in the pool */
479         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
480                 goto err;
481
482         for_each_zone_zonelist_nodemask(zone, z, zonelist,
483                                                 MAX_NR_ZONES - 1, nodemask) {
484                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
485                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
486                         if (page) {
487                                 if (!avoid_reserve)
488                                         decrement_hugepage_resv_vma(h, vma);
489                                 break;
490                         }
491                 }
492         }
493
494         mpol_cond_put(mpol);
495         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
496                 goto retry_cpuset;
497         return page;
498
499 err:
500         mpol_cond_put(mpol);
501         return NULL;
502 }
503
504 static void update_and_free_page(struct hstate *h, struct page *page)
505 {
506         int i;
507
508         VM_BUG_ON(h->order >= MAX_ORDER);
509
510         h->nr_huge_pages--;
511         h->nr_huge_pages_node[page_to_nid(page)]--;
512         for (i = 0; i < pages_per_huge_page(h); i++) {
513                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
514                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
515                                 1 << PG_private | 1<< PG_writeback);
516         }
517         set_compound_page_dtor(page, NULL);
518         set_page_refcounted(page);
519         arch_release_hugepage(page);
520         __free_pages(page, huge_page_order(h));
521 }
522
523 struct hstate *size_to_hstate(unsigned long size)
524 {
525         struct hstate *h;
526
527         for_each_hstate(h) {
528                 if (huge_page_size(h) == size)
529                         return h;
530         }
531         return NULL;
532 }
533
534 static void free_huge_page(struct page *page)
535 {
536         /*
537          * Can't pass hstate in here because it is called from the
538          * compound page destructor.
539          */
540         struct hstate *h = page_hstate(page);
541         int nid = page_to_nid(page);
542         struct address_space *mapping;
543
544         mapping = (struct address_space *) page_private(page);
545         set_page_private(page, 0);
546         page->mapping = NULL;
547         BUG_ON(page_count(page));
548         BUG_ON(page_mapcount(page));
549         INIT_LIST_HEAD(&page->lru);
550
551         spin_lock(&hugetlb_lock);
552         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
553                 update_and_free_page(h, page);
554                 h->surplus_huge_pages--;
555                 h->surplus_huge_pages_node[nid]--;
556         } else {
557                 enqueue_huge_page(h, page);
558         }
559         spin_unlock(&hugetlb_lock);
560         if (mapping)
561                 hugetlb_put_quota(mapping, 1);
562 }
563
564 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
565 {
566         set_compound_page_dtor(page, free_huge_page);
567         spin_lock(&hugetlb_lock);
568         h->nr_huge_pages++;
569         h->nr_huge_pages_node[nid]++;
570         spin_unlock(&hugetlb_lock);
571         put_page(page); /* free it into the hugepage allocator */
572 }
573
574 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
575 {
576         int i;
577         int nr_pages = 1 << order;
578         struct page *p = page + 1;
579
580         /* we rely on prep_new_huge_page to set the destructor */
581         set_compound_order(page, order);
582         __SetPageHead(page);
583         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
584                 __SetPageTail(p);
585                 set_page_count(p, 0);
586                 p->first_page = page;
587         }
588 }
589
590 int PageHuge(struct page *page)
591 {
592         compound_page_dtor *dtor;
593
594         if (!PageCompound(page))
595                 return 0;
596
597         page = compound_head(page);
598         dtor = get_compound_page_dtor(page);
599
600         return dtor == free_huge_page;
601 }
602
603 EXPORT_SYMBOL_GPL(PageHuge);
604
605 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
606 {
607         struct page *page;
608
609         if (h->order >= MAX_ORDER)
610                 return NULL;
611
612         page = alloc_pages_exact_node(nid,
613                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
614                                                 __GFP_REPEAT|__GFP_NOWARN,
615                 huge_page_order(h));
616         if (page) {
617                 if (arch_prepare_hugepage(page)) {
618                         __free_pages(page, huge_page_order(h));
619                         return NULL;
620                 }
621                 prep_new_huge_page(h, page, nid);
622         }
623
624         return page;
625 }
626
627 /*
628  * common helper functions for hstate_next_node_to_{alloc|free}.
629  * We may have allocated or freed a huge page based on a different
630  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
631  * be outside of *nodes_allowed.  Ensure that we use an allowed
632  * node for alloc or free.
633  */
634 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
635 {
636         nid = next_node(nid, *nodes_allowed);
637         if (nid == MAX_NUMNODES)
638                 nid = first_node(*nodes_allowed);
639         VM_BUG_ON(nid >= MAX_NUMNODES);
640
641         return nid;
642 }
643
644 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
645 {
646         if (!node_isset(nid, *nodes_allowed))
647                 nid = next_node_allowed(nid, nodes_allowed);
648         return nid;
649 }
650
651 /*
652  * returns the previously saved node ["this node"] from which to
653  * allocate a persistent huge page for the pool and advance the
654  * next node from which to allocate, handling wrap at end of node
655  * mask.
656  */
657 static int hstate_next_node_to_alloc(struct hstate *h,
658                                         nodemask_t *nodes_allowed)
659 {
660         int nid;
661
662         VM_BUG_ON(!nodes_allowed);
663
664         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
665         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
666
667         return nid;
668 }
669
670 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
671 {
672         struct page *page;
673         int start_nid;
674         int next_nid;
675         int ret = 0;
676
677         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
678         next_nid = start_nid;
679
680         do {
681                 page = alloc_fresh_huge_page_node(h, next_nid);
682                 if (page) {
683                         ret = 1;
684                         break;
685                 }
686                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
687         } while (next_nid != start_nid);
688
689         if (ret)
690                 count_vm_event(HTLB_BUDDY_PGALLOC);
691         else
692                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
693
694         return ret;
695 }
696
697 /*
698  * helper for free_pool_huge_page() - return the previously saved
699  * node ["this node"] from which to free a huge page.  Advance the
700  * next node id whether or not we find a free huge page to free so
701  * that the next attempt to free addresses the next node.
702  */
703 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
704 {
705         int nid;
706
707         VM_BUG_ON(!nodes_allowed);
708
709         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
710         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
711
712         return nid;
713 }
714
715 /*
716  * Free huge page from pool from next node to free.
717  * Attempt to keep persistent huge pages more or less
718  * balanced over allowed nodes.
719  * Called with hugetlb_lock locked.
720  */
721 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
722                                                          bool acct_surplus)
723 {
724         int start_nid;
725         int next_nid;
726         int ret = 0;
727
728         start_nid = hstate_next_node_to_free(h, nodes_allowed);
729         next_nid = start_nid;
730
731         do {
732                 /*
733                  * If we're returning unused surplus pages, only examine
734                  * nodes with surplus pages.
735                  */
736                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
737                     !list_empty(&h->hugepage_freelists[next_nid])) {
738                         struct page *page =
739                                 list_entry(h->hugepage_freelists[next_nid].next,
740                                           struct page, lru);
741                         list_del(&page->lru);
742                         h->free_huge_pages--;
743                         h->free_huge_pages_node[next_nid]--;
744                         if (acct_surplus) {
745                                 h->surplus_huge_pages--;
746                                 h->surplus_huge_pages_node[next_nid]--;
747                         }
748                         update_and_free_page(h, page);
749                         ret = 1;
750                         break;
751                 }
752                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
753         } while (next_nid != start_nid);
754
755         return ret;
756 }
757
758 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
759 {
760         struct page *page;
761         unsigned int r_nid;
762
763         if (h->order >= MAX_ORDER)
764                 return NULL;
765
766         /*
767          * Assume we will successfully allocate the surplus page to
768          * prevent racing processes from causing the surplus to exceed
769          * overcommit
770          *
771          * This however introduces a different race, where a process B
772          * tries to grow the static hugepage pool while alloc_pages() is
773          * called by process A. B will only examine the per-node
774          * counters in determining if surplus huge pages can be
775          * converted to normal huge pages in adjust_pool_surplus(). A
776          * won't be able to increment the per-node counter, until the
777          * lock is dropped by B, but B doesn't drop hugetlb_lock until
778          * no more huge pages can be converted from surplus to normal
779          * state (and doesn't try to convert again). Thus, we have a
780          * case where a surplus huge page exists, the pool is grown, and
781          * the surplus huge page still exists after, even though it
782          * should just have been converted to a normal huge page. This
783          * does not leak memory, though, as the hugepage will be freed
784          * once it is out of use. It also does not allow the counters to
785          * go out of whack in adjust_pool_surplus() as we don't modify
786          * the node values until we've gotten the hugepage and only the
787          * per-node value is checked there.
788          */
789         spin_lock(&hugetlb_lock);
790         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
791                 spin_unlock(&hugetlb_lock);
792                 return NULL;
793         } else {
794                 h->nr_huge_pages++;
795                 h->surplus_huge_pages++;
796         }
797         spin_unlock(&hugetlb_lock);
798
799         if (nid == NUMA_NO_NODE)
800                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
801                                    __GFP_REPEAT|__GFP_NOWARN,
802                                    huge_page_order(h));
803         else
804                 page = alloc_pages_exact_node(nid,
805                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
806                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
807
808         if (page && arch_prepare_hugepage(page)) {
809                 __free_pages(page, huge_page_order(h));
810                 return NULL;
811         }
812
813         spin_lock(&hugetlb_lock);
814         if (page) {
815                 r_nid = page_to_nid(page);
816                 set_compound_page_dtor(page, free_huge_page);
817                 /*
818                  * We incremented the global counters already
819                  */
820                 h->nr_huge_pages_node[r_nid]++;
821                 h->surplus_huge_pages_node[r_nid]++;
822                 __count_vm_event(HTLB_BUDDY_PGALLOC);
823         } else {
824                 h->nr_huge_pages--;
825                 h->surplus_huge_pages--;
826                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
827         }
828         spin_unlock(&hugetlb_lock);
829
830         return page;
831 }
832
833 /*
834  * This allocation function is useful in the context where vma is irrelevant.
835  * E.g. soft-offlining uses this function because it only cares physical
836  * address of error page.
837  */
838 struct page *alloc_huge_page_node(struct hstate *h, int nid)
839 {
840         struct page *page;
841
842         spin_lock(&hugetlb_lock);
843         page = dequeue_huge_page_node(h, nid);
844         spin_unlock(&hugetlb_lock);
845
846         if (!page)
847                 page = alloc_buddy_huge_page(h, nid);
848
849         return page;
850 }
851
852 /*
853  * Increase the hugetlb pool such that it can accommodate a reservation
854  * of size 'delta'.
855  */
856 static int gather_surplus_pages(struct hstate *h, int delta)
857 {
858         struct list_head surplus_list;
859         struct page *page, *tmp;
860         int ret, i;
861         int needed, allocated;
862
863         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
864         if (needed <= 0) {
865                 h->resv_huge_pages += delta;
866                 return 0;
867         }
868
869         allocated = 0;
870         INIT_LIST_HEAD(&surplus_list);
871
872         ret = -ENOMEM;
873 retry:
874         spin_unlock(&hugetlb_lock);
875         for (i = 0; i < needed; i++) {
876                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
877                 if (!page)
878                         /*
879                          * We were not able to allocate enough pages to
880                          * satisfy the entire reservation so we free what
881                          * we've allocated so far.
882                          */
883                         goto free;
884
885                 list_add(&page->lru, &surplus_list);
886         }
887         allocated += needed;
888
889         /*
890          * After retaking hugetlb_lock, we need to recalculate 'needed'
891          * because either resv_huge_pages or free_huge_pages may have changed.
892          */
893         spin_lock(&hugetlb_lock);
894         needed = (h->resv_huge_pages + delta) -
895                         (h->free_huge_pages + allocated);
896         if (needed > 0)
897                 goto retry;
898
899         /*
900          * The surplus_list now contains _at_least_ the number of extra pages
901          * needed to accommodate the reservation.  Add the appropriate number
902          * of pages to the hugetlb pool and free the extras back to the buddy
903          * allocator.  Commit the entire reservation here to prevent another
904          * process from stealing the pages as they are added to the pool but
905          * before they are reserved.
906          */
907         needed += allocated;
908         h->resv_huge_pages += delta;
909         ret = 0;
910
911         /* Free the needed pages to the hugetlb pool */
912         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
913                 if ((--needed) < 0)
914                         break;
915                 list_del(&page->lru);
916                 /*
917                  * This page is now managed by the hugetlb allocator and has
918                  * no users -- drop the buddy allocator's reference.
919                  */
920                 put_page_testzero(page);
921                 VM_BUG_ON(page_count(page));
922                 enqueue_huge_page(h, page);
923         }
924         spin_unlock(&hugetlb_lock);
925
926         /* Free unnecessary surplus pages to the buddy allocator */
927 free:
928         if (!list_empty(&surplus_list)) {
929                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
930                         list_del(&page->lru);
931                         put_page(page);
932                 }
933         }
934         spin_lock(&hugetlb_lock);
935
936         return ret;
937 }
938
939 /*
940  * When releasing a hugetlb pool reservation, any surplus pages that were
941  * allocated to satisfy the reservation must be explicitly freed if they were
942  * never used.
943  * Called with hugetlb_lock held.
944  */
945 static void return_unused_surplus_pages(struct hstate *h,
946                                         unsigned long unused_resv_pages)
947 {
948         unsigned long nr_pages;
949
950         /* Uncommit the reservation */
951         h->resv_huge_pages -= unused_resv_pages;
952
953         /* Cannot return gigantic pages currently */
954         if (h->order >= MAX_ORDER)
955                 return;
956
957         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
958
959         /*
960          * We want to release as many surplus pages as possible, spread
961          * evenly across all nodes with memory. Iterate across these nodes
962          * until we can no longer free unreserved surplus pages. This occurs
963          * when the nodes with surplus pages have no free pages.
964          * free_pool_huge_page() will balance the the freed pages across the
965          * on-line nodes with memory and will handle the hstate accounting.
966          */
967         while (nr_pages--) {
968                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
969                         break;
970         }
971 }
972
973 /*
974  * Determine if the huge page at addr within the vma has an associated
975  * reservation.  Where it does not we will need to logically increase
976  * reservation and actually increase quota before an allocation can occur.
977  * Where any new reservation would be required the reservation change is
978  * prepared, but not committed.  Once the page has been quota'd allocated
979  * an instantiated the change should be committed via vma_commit_reservation.
980  * No action is required on failure.
981  */
982 static long vma_needs_reservation(struct hstate *h,
983                         struct vm_area_struct *vma, unsigned long addr)
984 {
985         struct address_space *mapping = vma->vm_file->f_mapping;
986         struct inode *inode = mapping->host;
987
988         if (vma->vm_flags & VM_MAYSHARE) {
989                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
990                 return region_chg(&inode->i_mapping->private_list,
991                                                         idx, idx + 1);
992
993         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
994                 return 1;
995
996         } else  {
997                 long err;
998                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
999                 struct resv_map *reservations = vma_resv_map(vma);
1000
1001                 err = region_chg(&reservations->regions, idx, idx + 1);
1002                 if (err < 0)
1003                         return err;
1004                 return 0;
1005         }
1006 }
1007 static void vma_commit_reservation(struct hstate *h,
1008                         struct vm_area_struct *vma, unsigned long addr)
1009 {
1010         struct address_space *mapping = vma->vm_file->f_mapping;
1011         struct inode *inode = mapping->host;
1012
1013         if (vma->vm_flags & VM_MAYSHARE) {
1014                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1015                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1016
1017         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1018                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1019                 struct resv_map *reservations = vma_resv_map(vma);
1020
1021                 /* Mark this page used in the map. */
1022                 region_add(&reservations->regions, idx, idx + 1);
1023         }
1024 }
1025
1026 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1027                                     unsigned long addr, int avoid_reserve)
1028 {
1029         struct hstate *h = hstate_vma(vma);
1030         struct page *page;
1031         struct address_space *mapping = vma->vm_file->f_mapping;
1032         struct inode *inode = mapping->host;
1033         long chg;
1034
1035         /*
1036          * Processes that did not create the mapping will have no reserves and
1037          * will not have accounted against quota. Check that the quota can be
1038          * made before satisfying the allocation
1039          * MAP_NORESERVE mappings may also need pages and quota allocated
1040          * if no reserve mapping overlaps.
1041          */
1042         chg = vma_needs_reservation(h, vma, addr);
1043         if (chg < 0)
1044                 return ERR_PTR(-VM_FAULT_OOM);
1045         if (chg)
1046                 if (hugetlb_get_quota(inode->i_mapping, chg))
1047                         return ERR_PTR(-VM_FAULT_SIGBUS);
1048
1049         spin_lock(&hugetlb_lock);
1050         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1051         spin_unlock(&hugetlb_lock);
1052
1053         if (!page) {
1054                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1055                 if (!page) {
1056                         hugetlb_put_quota(inode->i_mapping, chg);
1057                         return ERR_PTR(-VM_FAULT_SIGBUS);
1058                 }
1059         }
1060
1061         set_page_private(page, (unsigned long) mapping);
1062
1063         vma_commit_reservation(h, vma, addr);
1064
1065         return page;
1066 }
1067
1068 int __weak alloc_bootmem_huge_page(struct hstate *h)
1069 {
1070         struct huge_bootmem_page *m;
1071         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1072
1073         while (nr_nodes) {
1074                 void *addr;
1075
1076                 addr = __alloc_bootmem_node_nopanic(
1077                                 NODE_DATA(hstate_next_node_to_alloc(h,
1078                                                 &node_states[N_HIGH_MEMORY])),
1079                                 huge_page_size(h), huge_page_size(h), 0);
1080
1081                 if (addr) {
1082                         /*
1083                          * Use the beginning of the huge page to store the
1084                          * huge_bootmem_page struct (until gather_bootmem
1085                          * puts them into the mem_map).
1086                          */
1087                         m = addr;
1088                         goto found;
1089                 }
1090                 nr_nodes--;
1091         }
1092         return 0;
1093
1094 found:
1095         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1096         /* Put them into a private list first because mem_map is not up yet */
1097         list_add(&m->list, &huge_boot_pages);
1098         m->hstate = h;
1099         return 1;
1100 }
1101
1102 static void prep_compound_huge_page(struct page *page, int order)
1103 {
1104         if (unlikely(order > (MAX_ORDER - 1)))
1105                 prep_compound_gigantic_page(page, order);
1106         else
1107                 prep_compound_page(page, order);
1108 }
1109
1110 /* Put bootmem huge pages into the standard lists after mem_map is up */
1111 static void __init gather_bootmem_prealloc(void)
1112 {
1113         struct huge_bootmem_page *m;
1114
1115         list_for_each_entry(m, &huge_boot_pages, list) {
1116                 struct page *page = virt_to_page(m);
1117                 struct hstate *h = m->hstate;
1118                 __ClearPageReserved(page);
1119                 WARN_ON(page_count(page) != 1);
1120                 prep_compound_huge_page(page, h->order);
1121                 prep_new_huge_page(h, page, page_to_nid(page));
1122                 /*
1123                  * If we had gigantic hugepages allocated at boot time, we need
1124                  * to restore the 'stolen' pages to totalram_pages in order to
1125                  * fix confusing memory reports from free(1) and another
1126                  * side-effects, like CommitLimit going negative.
1127                  */
1128                 if (h->order > (MAX_ORDER - 1))
1129                         totalram_pages += 1 << h->order;
1130         }
1131 }
1132
1133 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1134 {
1135         unsigned long i;
1136
1137         for (i = 0; i < h->max_huge_pages; ++i) {
1138                 if (h->order >= MAX_ORDER) {
1139                         if (!alloc_bootmem_huge_page(h))
1140                                 break;
1141                 } else if (!alloc_fresh_huge_page(h,
1142                                          &node_states[N_HIGH_MEMORY]))
1143                         break;
1144         }
1145         h->max_huge_pages = i;
1146 }
1147
1148 static void __init hugetlb_init_hstates(void)
1149 {
1150         struct hstate *h;
1151
1152         for_each_hstate(h) {
1153                 /* oversize hugepages were init'ed in early boot */
1154                 if (h->order < MAX_ORDER)
1155                         hugetlb_hstate_alloc_pages(h);
1156         }
1157 }
1158
1159 static char * __init memfmt(char *buf, unsigned long n)
1160 {
1161         if (n >= (1UL << 30))
1162                 sprintf(buf, "%lu GB", n >> 30);
1163         else if (n >= (1UL << 20))
1164                 sprintf(buf, "%lu MB", n >> 20);
1165         else
1166                 sprintf(buf, "%lu KB", n >> 10);
1167         return buf;
1168 }
1169
1170 static void __init report_hugepages(void)
1171 {
1172         struct hstate *h;
1173
1174         for_each_hstate(h) {
1175                 char buf[32];
1176                 printk(KERN_INFO "HugeTLB registered %s page size, "
1177                                  "pre-allocated %ld pages\n",
1178                         memfmt(buf, huge_page_size(h)),
1179                         h->free_huge_pages);
1180         }
1181 }
1182
1183 #ifdef CONFIG_HIGHMEM
1184 static void try_to_free_low(struct hstate *h, unsigned long count,
1185                                                 nodemask_t *nodes_allowed)
1186 {
1187         int i;
1188
1189         if (h->order >= MAX_ORDER)
1190                 return;
1191
1192         for_each_node_mask(i, *nodes_allowed) {
1193                 struct page *page, *next;
1194                 struct list_head *freel = &h->hugepage_freelists[i];
1195                 list_for_each_entry_safe(page, next, freel, lru) {
1196                         if (count >= h->nr_huge_pages)
1197                                 return;
1198                         if (PageHighMem(page))
1199                                 continue;
1200                         list_del(&page->lru);
1201                         update_and_free_page(h, page);
1202                         h->free_huge_pages--;
1203                         h->free_huge_pages_node[page_to_nid(page)]--;
1204                 }
1205         }
1206 }
1207 #else
1208 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1209                                                 nodemask_t *nodes_allowed)
1210 {
1211 }
1212 #endif
1213
1214 /*
1215  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1216  * balanced by operating on them in a round-robin fashion.
1217  * Returns 1 if an adjustment was made.
1218  */
1219 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1220                                 int delta)
1221 {
1222         int start_nid, next_nid;
1223         int ret = 0;
1224
1225         VM_BUG_ON(delta != -1 && delta != 1);
1226
1227         if (delta < 0)
1228                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1229         else
1230                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1231         next_nid = start_nid;
1232
1233         do {
1234                 int nid = next_nid;
1235                 if (delta < 0)  {
1236                         /*
1237                          * To shrink on this node, there must be a surplus page
1238                          */
1239                         if (!h->surplus_huge_pages_node[nid]) {
1240                                 next_nid = hstate_next_node_to_alloc(h,
1241                                                                 nodes_allowed);
1242                                 continue;
1243                         }
1244                 }
1245                 if (delta > 0) {
1246                         /*
1247                          * Surplus cannot exceed the total number of pages
1248                          */
1249                         if (h->surplus_huge_pages_node[nid] >=
1250                                                 h->nr_huge_pages_node[nid]) {
1251                                 next_nid = hstate_next_node_to_free(h,
1252                                                                 nodes_allowed);
1253                                 continue;
1254                         }
1255                 }
1256
1257                 h->surplus_huge_pages += delta;
1258                 h->surplus_huge_pages_node[nid] += delta;
1259                 ret = 1;
1260                 break;
1261         } while (next_nid != start_nid);
1262
1263         return ret;
1264 }
1265
1266 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1267 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1268                                                 nodemask_t *nodes_allowed)
1269 {
1270         unsigned long min_count, ret;
1271
1272         if (h->order >= MAX_ORDER)
1273                 return h->max_huge_pages;
1274
1275         /*
1276          * Increase the pool size
1277          * First take pages out of surplus state.  Then make up the
1278          * remaining difference by allocating fresh huge pages.
1279          *
1280          * We might race with alloc_buddy_huge_page() here and be unable
1281          * to convert a surplus huge page to a normal huge page. That is
1282          * not critical, though, it just means the overall size of the
1283          * pool might be one hugepage larger than it needs to be, but
1284          * within all the constraints specified by the sysctls.
1285          */
1286         spin_lock(&hugetlb_lock);
1287         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1288                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1289                         break;
1290         }
1291
1292         while (count > persistent_huge_pages(h)) {
1293                 /*
1294                  * If this allocation races such that we no longer need the
1295                  * page, free_huge_page will handle it by freeing the page
1296                  * and reducing the surplus.
1297                  */
1298                 spin_unlock(&hugetlb_lock);
1299                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1300                 spin_lock(&hugetlb_lock);
1301                 if (!ret)
1302                         goto out;
1303
1304                 /* Bail for signals. Probably ctrl-c from user */
1305                 if (signal_pending(current))
1306                         goto out;
1307         }
1308
1309         /*
1310          * Decrease the pool size
1311          * First return free pages to the buddy allocator (being careful
1312          * to keep enough around to satisfy reservations).  Then place
1313          * pages into surplus state as needed so the pool will shrink
1314          * to the desired size as pages become free.
1315          *
1316          * By placing pages into the surplus state independent of the
1317          * overcommit value, we are allowing the surplus pool size to
1318          * exceed overcommit. There are few sane options here. Since
1319          * alloc_buddy_huge_page() is checking the global counter,
1320          * though, we'll note that we're not allowed to exceed surplus
1321          * and won't grow the pool anywhere else. Not until one of the
1322          * sysctls are changed, or the surplus pages go out of use.
1323          */
1324         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1325         min_count = max(count, min_count);
1326         try_to_free_low(h, min_count, nodes_allowed);
1327         while (min_count < persistent_huge_pages(h)) {
1328                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1329                         break;
1330         }
1331         while (count < persistent_huge_pages(h)) {
1332                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1333                         break;
1334         }
1335 out:
1336         ret = persistent_huge_pages(h);
1337         spin_unlock(&hugetlb_lock);
1338         return ret;
1339 }
1340
1341 #define HSTATE_ATTR_RO(_name) \
1342         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1343
1344 #define HSTATE_ATTR(_name) \
1345         static struct kobj_attribute _name##_attr = \
1346                 __ATTR(_name, 0644, _name##_show, _name##_store)
1347
1348 static struct kobject *hugepages_kobj;
1349 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1350
1351 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1352
1353 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1354 {
1355         int i;
1356
1357         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1358                 if (hstate_kobjs[i] == kobj) {
1359                         if (nidp)
1360                                 *nidp = NUMA_NO_NODE;
1361                         return &hstates[i];
1362                 }
1363
1364         return kobj_to_node_hstate(kobj, nidp);
1365 }
1366
1367 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1368                                         struct kobj_attribute *attr, char *buf)
1369 {
1370         struct hstate *h;
1371         unsigned long nr_huge_pages;
1372         int nid;
1373
1374         h = kobj_to_hstate(kobj, &nid);
1375         if (nid == NUMA_NO_NODE)
1376                 nr_huge_pages = h->nr_huge_pages;
1377         else
1378                 nr_huge_pages = h->nr_huge_pages_node[nid];
1379
1380         return sprintf(buf, "%lu\n", nr_huge_pages);
1381 }
1382
1383 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1384                         struct kobject *kobj, struct kobj_attribute *attr,
1385                         const char *buf, size_t len)
1386 {
1387         int err;
1388         int nid;
1389         unsigned long count;
1390         struct hstate *h;
1391         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1392
1393         err = strict_strtoul(buf, 10, &count);
1394         if (err)
1395                 goto out;
1396
1397         h = kobj_to_hstate(kobj, &nid);
1398         if (h->order >= MAX_ORDER) {
1399                 err = -EINVAL;
1400                 goto out;
1401         }
1402
1403         if (nid == NUMA_NO_NODE) {
1404                 /*
1405                  * global hstate attribute
1406                  */
1407                 if (!(obey_mempolicy &&
1408                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1409                         NODEMASK_FREE(nodes_allowed);
1410                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1411                 }
1412         } else if (nodes_allowed) {
1413                 /*
1414                  * per node hstate attribute: adjust count to global,
1415                  * but restrict alloc/free to the specified node.
1416                  */
1417                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1418                 init_nodemask_of_node(nodes_allowed, nid);
1419         } else
1420                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1421
1422         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1423
1424         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1425                 NODEMASK_FREE(nodes_allowed);
1426
1427         return len;
1428 out:
1429         NODEMASK_FREE(nodes_allowed);
1430         return err;
1431 }
1432
1433 static ssize_t nr_hugepages_show(struct kobject *kobj,
1434                                        struct kobj_attribute *attr, char *buf)
1435 {
1436         return nr_hugepages_show_common(kobj, attr, buf);
1437 }
1438
1439 static ssize_t nr_hugepages_store(struct kobject *kobj,
1440                struct kobj_attribute *attr, const char *buf, size_t len)
1441 {
1442         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1443 }
1444 HSTATE_ATTR(nr_hugepages);
1445
1446 #ifdef CONFIG_NUMA
1447
1448 /*
1449  * hstate attribute for optionally mempolicy-based constraint on persistent
1450  * huge page alloc/free.
1451  */
1452 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1453                                        struct kobj_attribute *attr, char *buf)
1454 {
1455         return nr_hugepages_show_common(kobj, attr, buf);
1456 }
1457
1458 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1459                struct kobj_attribute *attr, const char *buf, size_t len)
1460 {
1461         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1462 }
1463 HSTATE_ATTR(nr_hugepages_mempolicy);
1464 #endif
1465
1466
1467 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1468                                         struct kobj_attribute *attr, char *buf)
1469 {
1470         struct hstate *h = kobj_to_hstate(kobj, NULL);
1471         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1472 }
1473
1474 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1475                 struct kobj_attribute *attr, const char *buf, size_t count)
1476 {
1477         int err;
1478         unsigned long input;
1479         struct hstate *h = kobj_to_hstate(kobj, NULL);
1480
1481         if (h->order >= MAX_ORDER)
1482                 return -EINVAL;
1483
1484         err = strict_strtoul(buf, 10, &input);
1485         if (err)
1486                 return err;
1487
1488         spin_lock(&hugetlb_lock);
1489         h->nr_overcommit_huge_pages = input;
1490         spin_unlock(&hugetlb_lock);
1491
1492         return count;
1493 }
1494 HSTATE_ATTR(nr_overcommit_hugepages);
1495
1496 static ssize_t free_hugepages_show(struct kobject *kobj,
1497                                         struct kobj_attribute *attr, char *buf)
1498 {
1499         struct hstate *h;
1500         unsigned long free_huge_pages;
1501         int nid;
1502
1503         h = kobj_to_hstate(kobj, &nid);
1504         if (nid == NUMA_NO_NODE)
1505                 free_huge_pages = h->free_huge_pages;
1506         else
1507                 free_huge_pages = h->free_huge_pages_node[nid];
1508
1509         return sprintf(buf, "%lu\n", free_huge_pages);
1510 }
1511 HSTATE_ATTR_RO(free_hugepages);
1512
1513 static ssize_t resv_hugepages_show(struct kobject *kobj,
1514                                         struct kobj_attribute *attr, char *buf)
1515 {
1516         struct hstate *h = kobj_to_hstate(kobj, NULL);
1517         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1518 }
1519 HSTATE_ATTR_RO(resv_hugepages);
1520
1521 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1522                                         struct kobj_attribute *attr, char *buf)
1523 {
1524         struct hstate *h;
1525         unsigned long surplus_huge_pages;
1526         int nid;
1527
1528         h = kobj_to_hstate(kobj, &nid);
1529         if (nid == NUMA_NO_NODE)
1530                 surplus_huge_pages = h->surplus_huge_pages;
1531         else
1532                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1533
1534         return sprintf(buf, "%lu\n", surplus_huge_pages);
1535 }
1536 HSTATE_ATTR_RO(surplus_hugepages);
1537
1538 static struct attribute *hstate_attrs[] = {
1539         &nr_hugepages_attr.attr,
1540         &nr_overcommit_hugepages_attr.attr,
1541         &free_hugepages_attr.attr,
1542         &resv_hugepages_attr.attr,
1543         &surplus_hugepages_attr.attr,
1544 #ifdef CONFIG_NUMA
1545         &nr_hugepages_mempolicy_attr.attr,
1546 #endif
1547         NULL,
1548 };
1549
1550 static struct attribute_group hstate_attr_group = {
1551         .attrs = hstate_attrs,
1552 };
1553
1554 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1555                                     struct kobject **hstate_kobjs,
1556                                     struct attribute_group *hstate_attr_group)
1557 {
1558         int retval;
1559         int hi = h - hstates;
1560
1561         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1562         if (!hstate_kobjs[hi])
1563                 return -ENOMEM;
1564
1565         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1566         if (retval)
1567                 kobject_put(hstate_kobjs[hi]);
1568
1569         return retval;
1570 }
1571
1572 static void __init hugetlb_sysfs_init(void)
1573 {
1574         struct hstate *h;
1575         int err;
1576
1577         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1578         if (!hugepages_kobj)
1579                 return;
1580
1581         for_each_hstate(h) {
1582                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1583                                          hstate_kobjs, &hstate_attr_group);
1584                 if (err)
1585                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1586                                                                 h->name);
1587         }
1588 }
1589
1590 #ifdef CONFIG_NUMA
1591
1592 /*
1593  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1594  * with node sysdevs in node_devices[] using a parallel array.  The array
1595  * index of a node sysdev or _hstate == node id.
1596  * This is here to avoid any static dependency of the node sysdev driver, in
1597  * the base kernel, on the hugetlb module.
1598  */
1599 struct node_hstate {
1600         struct kobject          *hugepages_kobj;
1601         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1602 };
1603 struct node_hstate node_hstates[MAX_NUMNODES];
1604
1605 /*
1606  * A subset of global hstate attributes for node sysdevs
1607  */
1608 static struct attribute *per_node_hstate_attrs[] = {
1609         &nr_hugepages_attr.attr,
1610         &free_hugepages_attr.attr,
1611         &surplus_hugepages_attr.attr,
1612         NULL,
1613 };
1614
1615 static struct attribute_group per_node_hstate_attr_group = {
1616         .attrs = per_node_hstate_attrs,
1617 };
1618
1619 /*
1620  * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1621  * Returns node id via non-NULL nidp.
1622  */
1623 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1624 {
1625         int nid;
1626
1627         for (nid = 0; nid < nr_node_ids; nid++) {
1628                 struct node_hstate *nhs = &node_hstates[nid];
1629                 int i;
1630                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1631                         if (nhs->hstate_kobjs[i] == kobj) {
1632                                 if (nidp)
1633                                         *nidp = nid;
1634                                 return &hstates[i];
1635                         }
1636         }
1637
1638         BUG();
1639         return NULL;
1640 }
1641
1642 /*
1643  * Unregister hstate attributes from a single node sysdev.
1644  * No-op if no hstate attributes attached.
1645  */
1646 void hugetlb_unregister_node(struct node *node)
1647 {
1648         struct hstate *h;
1649         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1650
1651         if (!nhs->hugepages_kobj)
1652                 return;         /* no hstate attributes */
1653
1654         for_each_hstate(h)
1655                 if (nhs->hstate_kobjs[h - hstates]) {
1656                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1657                         nhs->hstate_kobjs[h - hstates] = NULL;
1658                 }
1659
1660         kobject_put(nhs->hugepages_kobj);
1661         nhs->hugepages_kobj = NULL;
1662 }
1663
1664 /*
1665  * hugetlb module exit:  unregister hstate attributes from node sysdevs
1666  * that have them.
1667  */
1668 static void hugetlb_unregister_all_nodes(void)
1669 {
1670         int nid;
1671
1672         /*
1673          * disable node sysdev registrations.
1674          */
1675         register_hugetlbfs_with_node(NULL, NULL);
1676
1677         /*
1678          * remove hstate attributes from any nodes that have them.
1679          */
1680         for (nid = 0; nid < nr_node_ids; nid++)
1681                 hugetlb_unregister_node(&node_devices[nid]);
1682 }
1683
1684 /*
1685  * Register hstate attributes for a single node sysdev.
1686  * No-op if attributes already registered.
1687  */
1688 void hugetlb_register_node(struct node *node)
1689 {
1690         struct hstate *h;
1691         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1692         int err;
1693
1694         if (nhs->hugepages_kobj)
1695                 return;         /* already allocated */
1696
1697         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1698                                                         &node->sysdev.kobj);
1699         if (!nhs->hugepages_kobj)
1700                 return;
1701
1702         for_each_hstate(h) {
1703                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1704                                                 nhs->hstate_kobjs,
1705                                                 &per_node_hstate_attr_group);
1706                 if (err) {
1707                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1708                                         " for node %d\n",
1709                                                 h->name, node->sysdev.id);
1710                         hugetlb_unregister_node(node);
1711                         break;
1712                 }
1713         }
1714 }
1715
1716 /*
1717  * hugetlb init time:  register hstate attributes for all registered node
1718  * sysdevs of nodes that have memory.  All on-line nodes should have
1719  * registered their associated sysdev by this time.
1720  */
1721 static void hugetlb_register_all_nodes(void)
1722 {
1723         int nid;
1724
1725         for_each_node_state(nid, N_HIGH_MEMORY) {
1726                 struct node *node = &node_devices[nid];
1727                 if (node->sysdev.id == nid)
1728                         hugetlb_register_node(node);
1729         }
1730
1731         /*
1732          * Let the node sysdev driver know we're here so it can
1733          * [un]register hstate attributes on node hotplug.
1734          */
1735         register_hugetlbfs_with_node(hugetlb_register_node,
1736                                      hugetlb_unregister_node);
1737 }
1738 #else   /* !CONFIG_NUMA */
1739
1740 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1741 {
1742         BUG();
1743         if (nidp)
1744                 *nidp = -1;
1745         return NULL;
1746 }
1747
1748 static void hugetlb_unregister_all_nodes(void) { }
1749
1750 static void hugetlb_register_all_nodes(void) { }
1751
1752 #endif
1753
1754 static void __exit hugetlb_exit(void)
1755 {
1756         struct hstate *h;
1757
1758         hugetlb_unregister_all_nodes();
1759
1760         for_each_hstate(h) {
1761                 kobject_put(hstate_kobjs[h - hstates]);
1762         }
1763
1764         kobject_put(hugepages_kobj);
1765 }
1766 module_exit(hugetlb_exit);
1767
1768 static int __init hugetlb_init(void)
1769 {
1770         /* Some platform decide whether they support huge pages at boot
1771          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1772          * there is no such support
1773          */
1774         if (HPAGE_SHIFT == 0)
1775                 return 0;
1776
1777         if (!size_to_hstate(default_hstate_size)) {
1778                 default_hstate_size = HPAGE_SIZE;
1779                 if (!size_to_hstate(default_hstate_size))
1780                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1781         }
1782         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1783         if (default_hstate_max_huge_pages)
1784                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1785
1786         hugetlb_init_hstates();
1787
1788         gather_bootmem_prealloc();
1789
1790         report_hugepages();
1791
1792         hugetlb_sysfs_init();
1793
1794         hugetlb_register_all_nodes();
1795
1796         return 0;
1797 }
1798 module_init(hugetlb_init);
1799
1800 /* Should be called on processing a hugepagesz=... option */
1801 void __init hugetlb_add_hstate(unsigned order)
1802 {
1803         struct hstate *h;
1804         unsigned long i;
1805
1806         if (size_to_hstate(PAGE_SIZE << order)) {
1807                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1808                 return;
1809         }
1810         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1811         BUG_ON(order == 0);
1812         h = &hstates[max_hstate++];
1813         h->order = order;
1814         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1815         h->nr_huge_pages = 0;
1816         h->free_huge_pages = 0;
1817         for (i = 0; i < MAX_NUMNODES; ++i)
1818                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1819         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1820         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1821         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1822                                         huge_page_size(h)/1024);
1823
1824         parsed_hstate = h;
1825 }
1826
1827 static int __init hugetlb_nrpages_setup(char *s)
1828 {
1829         unsigned long *mhp;
1830         static unsigned long *last_mhp;
1831
1832         /*
1833          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1834          * so this hugepages= parameter goes to the "default hstate".
1835          */
1836         if (!max_hstate)
1837                 mhp = &default_hstate_max_huge_pages;
1838         else
1839                 mhp = &parsed_hstate->max_huge_pages;
1840
1841         if (mhp == last_mhp) {
1842                 printk(KERN_WARNING "hugepages= specified twice without "
1843                         "interleaving hugepagesz=, ignoring\n");
1844                 return 1;
1845         }
1846
1847         if (sscanf(s, "%lu", mhp) <= 0)
1848                 *mhp = 0;
1849
1850         /*
1851          * Global state is always initialized later in hugetlb_init.
1852          * But we need to allocate >= MAX_ORDER hstates here early to still
1853          * use the bootmem allocator.
1854          */
1855         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1856                 hugetlb_hstate_alloc_pages(parsed_hstate);
1857
1858         last_mhp = mhp;
1859
1860         return 1;
1861 }
1862 __setup("hugepages=", hugetlb_nrpages_setup);
1863
1864 static int __init hugetlb_default_setup(char *s)
1865 {
1866         default_hstate_size = memparse(s, &s);
1867         return 1;
1868 }
1869 __setup("default_hugepagesz=", hugetlb_default_setup);
1870
1871 static unsigned int cpuset_mems_nr(unsigned int *array)
1872 {
1873         int node;
1874         unsigned int nr = 0;
1875
1876         for_each_node_mask(node, cpuset_current_mems_allowed)
1877                 nr += array[node];
1878
1879         return nr;
1880 }
1881
1882 #ifdef CONFIG_SYSCTL
1883 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1884                          struct ctl_table *table, int write,
1885                          void __user *buffer, size_t *length, loff_t *ppos)
1886 {
1887         struct hstate *h = &default_hstate;
1888         unsigned long tmp;
1889         int ret;
1890
1891         tmp = h->max_huge_pages;
1892
1893         if (write && h->order >= MAX_ORDER)
1894                 return -EINVAL;
1895
1896         table->data = &tmp;
1897         table->maxlen = sizeof(unsigned long);
1898         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1899         if (ret)
1900                 goto out;
1901
1902         if (write) {
1903                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1904                                                 GFP_KERNEL | __GFP_NORETRY);
1905                 if (!(obey_mempolicy &&
1906                                init_nodemask_of_mempolicy(nodes_allowed))) {
1907                         NODEMASK_FREE(nodes_allowed);
1908                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1909                 }
1910                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1911
1912                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1913                         NODEMASK_FREE(nodes_allowed);
1914         }
1915 out:
1916         return ret;
1917 }
1918
1919 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1920                           void __user *buffer, size_t *length, loff_t *ppos)
1921 {
1922
1923         return hugetlb_sysctl_handler_common(false, table, write,
1924                                                         buffer, length, ppos);
1925 }
1926
1927 #ifdef CONFIG_NUMA
1928 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1929                           void __user *buffer, size_t *length, loff_t *ppos)
1930 {
1931         return hugetlb_sysctl_handler_common(true, table, write,
1932                                                         buffer, length, ppos);
1933 }
1934 #endif /* CONFIG_NUMA */
1935
1936 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1937                         void __user *buffer,
1938                         size_t *length, loff_t *ppos)
1939 {
1940         proc_dointvec(table, write, buffer, length, ppos);
1941         if (hugepages_treat_as_movable)
1942                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1943         else
1944                 htlb_alloc_mask = GFP_HIGHUSER;
1945         return 0;
1946 }
1947
1948 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1949                         void __user *buffer,
1950                         size_t *length, loff_t *ppos)
1951 {
1952         struct hstate *h = &default_hstate;
1953         unsigned long tmp;
1954         int ret;
1955
1956         tmp = h->nr_overcommit_huge_pages;
1957
1958         if (write && h->order >= MAX_ORDER)
1959                 return -EINVAL;
1960
1961         table->data = &tmp;
1962         table->maxlen = sizeof(unsigned long);
1963         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1964         if (ret)
1965                 goto out;
1966
1967         if (write) {
1968                 spin_lock(&hugetlb_lock);
1969                 h->nr_overcommit_huge_pages = tmp;
1970                 spin_unlock(&hugetlb_lock);
1971         }
1972 out:
1973         return ret;
1974 }
1975
1976 #endif /* CONFIG_SYSCTL */
1977
1978 void hugetlb_report_meminfo(struct seq_file *m)
1979 {
1980         struct hstate *h = &default_hstate;
1981         seq_printf(m,
1982                         "HugePages_Total:   %5lu\n"
1983                         "HugePages_Free:    %5lu\n"
1984                         "HugePages_Rsvd:    %5lu\n"
1985                         "HugePages_Surp:    %5lu\n"
1986                         "Hugepagesize:   %8lu kB\n",
1987                         h->nr_huge_pages,
1988                         h->free_huge_pages,
1989                         h->resv_huge_pages,
1990                         h->surplus_huge_pages,
1991                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1992 }
1993
1994 int hugetlb_report_node_meminfo(int nid, char *buf)
1995 {
1996         struct hstate *h = &default_hstate;
1997         return sprintf(buf,
1998                 "Node %d HugePages_Total: %5u\n"
1999                 "Node %d HugePages_Free:  %5u\n"
2000                 "Node %d HugePages_Surp:  %5u\n",
2001                 nid, h->nr_huge_pages_node[nid],
2002                 nid, h->free_huge_pages_node[nid],
2003                 nid, h->surplus_huge_pages_node[nid]);
2004 }
2005
2006 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2007 unsigned long hugetlb_total_pages(void)
2008 {
2009         struct hstate *h;
2010         unsigned long nr_total_pages = 0;
2011
2012         for_each_hstate(h)
2013                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2014         return nr_total_pages;
2015 }
2016
2017 static int hugetlb_acct_memory(struct hstate *h, long delta)
2018 {
2019         int ret = -ENOMEM;
2020
2021         spin_lock(&hugetlb_lock);
2022         /*
2023          * When cpuset is configured, it breaks the strict hugetlb page
2024          * reservation as the accounting is done on a global variable. Such
2025          * reservation is completely rubbish in the presence of cpuset because
2026          * the reservation is not checked against page availability for the
2027          * current cpuset. Application can still potentially OOM'ed by kernel
2028          * with lack of free htlb page in cpuset that the task is in.
2029          * Attempt to enforce strict accounting with cpuset is almost
2030          * impossible (or too ugly) because cpuset is too fluid that
2031          * task or memory node can be dynamically moved between cpusets.
2032          *
2033          * The change of semantics for shared hugetlb mapping with cpuset is
2034          * undesirable. However, in order to preserve some of the semantics,
2035          * we fall back to check against current free page availability as
2036          * a best attempt and hopefully to minimize the impact of changing
2037          * semantics that cpuset has.
2038          */
2039         if (delta > 0) {
2040                 if (gather_surplus_pages(h, delta) < 0)
2041                         goto out;
2042
2043                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2044                         return_unused_surplus_pages(h, delta);
2045                         goto out;
2046                 }
2047         }
2048
2049         ret = 0;
2050         if (delta < 0)
2051                 return_unused_surplus_pages(h, (unsigned long) -delta);
2052
2053 out:
2054         spin_unlock(&hugetlb_lock);
2055         return ret;
2056 }
2057
2058 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2059 {
2060         struct resv_map *reservations = vma_resv_map(vma);
2061
2062         /*
2063          * This new VMA should share its siblings reservation map if present.
2064          * The VMA will only ever have a valid reservation map pointer where
2065          * it is being copied for another still existing VMA.  As that VMA
2066          * has a reference to the reservation map it cannot disappear until
2067          * after this open call completes.  It is therefore safe to take a
2068          * new reference here without additional locking.
2069          */
2070         if (reservations)
2071                 kref_get(&reservations->refs);
2072 }
2073
2074 static void resv_map_put(struct vm_area_struct *vma)
2075 {
2076         struct resv_map *reservations = vma_resv_map(vma);
2077
2078         if (!reservations)
2079                 return;
2080         kref_put(&reservations->refs, resv_map_release);
2081 }
2082
2083 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2084 {
2085         struct hstate *h = hstate_vma(vma);
2086         struct resv_map *reservations = vma_resv_map(vma);
2087         unsigned long reserve;
2088         unsigned long start;
2089         unsigned long end;
2090
2091         if (reservations) {
2092                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2093                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2094
2095                 reserve = (end - start) -
2096                         region_count(&reservations->regions, start, end);
2097
2098                 resv_map_put(vma);
2099
2100                 if (reserve) {
2101                         hugetlb_acct_memory(h, -reserve);
2102                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2103                 }
2104         }
2105 }
2106
2107 /*
2108  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2109  * handle_mm_fault() to try to instantiate regular-sized pages in the
2110  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2111  * this far.
2112  */
2113 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2114 {
2115         BUG();
2116         return 0;
2117 }
2118
2119 const struct vm_operations_struct hugetlb_vm_ops = {
2120         .fault = hugetlb_vm_op_fault,
2121         .open = hugetlb_vm_op_open,
2122         .close = hugetlb_vm_op_close,
2123 };
2124
2125 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2126                                 int writable)
2127 {
2128         pte_t entry;
2129
2130         if (writable) {
2131                 entry =
2132                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2133         } else {
2134                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2135         }
2136         entry = pte_mkyoung(entry);
2137         entry = pte_mkhuge(entry);
2138
2139         return entry;
2140 }
2141
2142 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2143                                    unsigned long address, pte_t *ptep)
2144 {
2145         pte_t entry;
2146
2147         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2148         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2149                 update_mmu_cache(vma, address, ptep);
2150         }
2151 }
2152
2153
2154 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2155                             struct vm_area_struct *vma)
2156 {
2157         pte_t *src_pte, *dst_pte, entry;
2158         struct page *ptepage;
2159         unsigned long addr;
2160         int cow;
2161         struct hstate *h = hstate_vma(vma);
2162         unsigned long sz = huge_page_size(h);
2163
2164         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2165
2166         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2167                 src_pte = huge_pte_offset(src, addr);
2168                 if (!src_pte)
2169                         continue;
2170                 dst_pte = huge_pte_alloc(dst, addr, sz);
2171                 if (!dst_pte)
2172                         goto nomem;
2173
2174                 /* If the pagetables are shared don't copy or take references */
2175                 if (dst_pte == src_pte)
2176                         continue;
2177
2178                 spin_lock(&dst->page_table_lock);
2179                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2180                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2181                         if (cow)
2182                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2183                         entry = huge_ptep_get(src_pte);
2184                         ptepage = pte_page(entry);
2185                         get_page(ptepage);
2186                         page_dup_rmap(ptepage);
2187                         set_huge_pte_at(dst, addr, dst_pte, entry);
2188                 }
2189                 spin_unlock(&src->page_table_lock);
2190                 spin_unlock(&dst->page_table_lock);
2191         }
2192         return 0;
2193
2194 nomem:
2195         return -ENOMEM;
2196 }
2197
2198 static int is_hugetlb_entry_migration(pte_t pte)
2199 {
2200         swp_entry_t swp;
2201
2202         if (huge_pte_none(pte) || pte_present(pte))
2203                 return 0;
2204         swp = pte_to_swp_entry(pte);
2205         if (non_swap_entry(swp) && is_migration_entry(swp)) {
2206                 return 1;
2207         } else
2208                 return 0;
2209 }
2210
2211 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2212 {
2213         swp_entry_t swp;
2214
2215         if (huge_pte_none(pte) || pte_present(pte))
2216                 return 0;
2217         swp = pte_to_swp_entry(pte);
2218         if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2219                 return 1;
2220         } else
2221                 return 0;
2222 }
2223
2224 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2225                             unsigned long end, struct page *ref_page)
2226 {
2227         struct mm_struct *mm = vma->vm_mm;
2228         unsigned long address;
2229         pte_t *ptep;
2230         pte_t pte;
2231         struct page *page;
2232         struct page *tmp;
2233         struct hstate *h = hstate_vma(vma);
2234         unsigned long sz = huge_page_size(h);
2235
2236         /*
2237          * A page gathering list, protected by per file i_mmap_mutex. The
2238          * lock is used to avoid list corruption from multiple unmapping
2239          * of the same page since we are using page->lru.
2240          */
2241         LIST_HEAD(page_list);
2242
2243         WARN_ON(!is_vm_hugetlb_page(vma));
2244         BUG_ON(start & ~huge_page_mask(h));
2245         BUG_ON(end & ~huge_page_mask(h));
2246
2247         mmu_notifier_invalidate_range_start(mm, start, end);
2248         spin_lock(&mm->page_table_lock);
2249         for (address = start; address < end; address += sz) {
2250                 ptep = huge_pte_offset(mm, address);
2251                 if (!ptep)
2252                         continue;
2253
2254                 if (huge_pmd_unshare(mm, &address, ptep))
2255                         continue;
2256
2257                 /*
2258                  * If a reference page is supplied, it is because a specific
2259                  * page is being unmapped, not a range. Ensure the page we
2260                  * are about to unmap is the actual page of interest.
2261                  */
2262                 if (ref_page) {
2263                         pte = huge_ptep_get(ptep);
2264                         if (huge_pte_none(pte))
2265                                 continue;
2266                         page = pte_page(pte);
2267                         if (page != ref_page)
2268                                 continue;
2269
2270                         /*
2271                          * Mark the VMA as having unmapped its page so that
2272                          * future faults in this VMA will fail rather than
2273                          * looking like data was lost
2274                          */
2275                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2276                 }
2277
2278                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2279                 if (huge_pte_none(pte))
2280                         continue;
2281
2282                 /*
2283                  * HWPoisoned hugepage is already unmapped and dropped reference
2284                  */
2285                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2286                         continue;
2287
2288                 page = pte_page(pte);
2289                 if (pte_dirty(pte))
2290                         set_page_dirty(page);
2291                 list_add(&page->lru, &page_list);
2292         }
2293         spin_unlock(&mm->page_table_lock);
2294         flush_tlb_range(vma, start, end);
2295         mmu_notifier_invalidate_range_end(mm, start, end);
2296         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2297                 page_remove_rmap(page);
2298                 list_del(&page->lru);
2299                 put_page(page);
2300         }
2301 }
2302
2303 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2304                           unsigned long end, struct page *ref_page)
2305 {
2306         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2307         __unmap_hugepage_range(vma, start, end, ref_page);
2308         /*
2309          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2310          * test will fail on a vma being torn down, and not grab a page table
2311          * on its way out.  We're lucky that the flag has such an appropriate
2312          * name, and can in fact be safely cleared here. We could clear it
2313          * before the __unmap_hugepage_range above, but all that's necessary
2314          * is to clear it before releasing the i_mmap_mutex below.
2315          *
2316          * This works because in the contexts this is called, the VMA is
2317          * going to be destroyed. It is not vunerable to madvise(DONTNEED)
2318          * because madvise is not supported on hugetlbfs. The same applies
2319          * for direct IO. unmap_hugepage_range() is only being called just
2320          * before free_pgtables() so clearing VM_MAYSHARE will not cause
2321          * surprises later.
2322          */
2323         vma->vm_flags &= ~VM_MAYSHARE;
2324         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2325 }
2326
2327 /*
2328  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2329  * mappping it owns the reserve page for. The intention is to unmap the page
2330  * from other VMAs and let the children be SIGKILLed if they are faulting the
2331  * same region.
2332  */
2333 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2334                                 struct page *page, unsigned long address)
2335 {
2336         struct hstate *h = hstate_vma(vma);
2337         struct vm_area_struct *iter_vma;
2338         struct address_space *mapping;
2339         struct prio_tree_iter iter;
2340         pgoff_t pgoff;
2341
2342         /*
2343          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2344          * from page cache lookup which is in HPAGE_SIZE units.
2345          */
2346         address = address & huge_page_mask(h);
2347         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2348                 + (vma->vm_pgoff >> PAGE_SHIFT);
2349         mapping = (struct address_space *)page_private(page);
2350
2351         /*
2352          * Take the mapping lock for the duration of the table walk. As
2353          * this mapping should be shared between all the VMAs,
2354          * __unmap_hugepage_range() is called as the lock is already held
2355          */
2356         mutex_lock(&mapping->i_mmap_mutex);
2357         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2358                 /* Do not unmap the current VMA */
2359                 if (iter_vma == vma)
2360                         continue;
2361
2362                 /*
2363                  * Unmap the page from other VMAs without their own reserves.
2364                  * They get marked to be SIGKILLed if they fault in these
2365                  * areas. This is because a future no-page fault on this VMA
2366                  * could insert a zeroed page instead of the data existing
2367                  * from the time of fork. This would look like data corruption
2368                  */
2369                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2370                         __unmap_hugepage_range(iter_vma,
2371                                 address, address + huge_page_size(h),
2372                                 page);
2373         }
2374         mutex_unlock(&mapping->i_mmap_mutex);
2375
2376         return 1;
2377 }
2378
2379 /*
2380  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2381  */
2382 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2383                         unsigned long address, pte_t *ptep, pte_t pte,
2384                         struct page *pagecache_page)
2385 {
2386         struct hstate *h = hstate_vma(vma);
2387         struct page *old_page, *new_page;
2388         int avoidcopy;
2389         int outside_reserve = 0;
2390
2391         old_page = pte_page(pte);
2392
2393 retry_avoidcopy:
2394         /* If no-one else is actually using this page, avoid the copy
2395          * and just make the page writable */
2396         avoidcopy = (page_mapcount(old_page) == 1);
2397         if (avoidcopy) {
2398                 if (PageAnon(old_page))
2399                         page_move_anon_rmap(old_page, vma, address);
2400                 set_huge_ptep_writable(vma, address, ptep);
2401                 return 0;
2402         }
2403
2404         /*
2405          * If the process that created a MAP_PRIVATE mapping is about to
2406          * perform a COW due to a shared page count, attempt to satisfy
2407          * the allocation without using the existing reserves. The pagecache
2408          * page is used to determine if the reserve at this address was
2409          * consumed or not. If reserves were used, a partial faulted mapping
2410          * at the time of fork() could consume its reserves on COW instead
2411          * of the full address range.
2412          */
2413         if (!(vma->vm_flags & VM_MAYSHARE) &&
2414                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2415                         old_page != pagecache_page)
2416                 outside_reserve = 1;
2417
2418         page_cache_get(old_page);
2419
2420         /* Drop page_table_lock as buddy allocator may be called */
2421         spin_unlock(&mm->page_table_lock);
2422         new_page = alloc_huge_page(vma, address, outside_reserve);
2423
2424         if (IS_ERR(new_page)) {
2425                 page_cache_release(old_page);
2426
2427                 /*
2428                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2429                  * it is due to references held by a child and an insufficient
2430                  * huge page pool. To guarantee the original mappers
2431                  * reliability, unmap the page from child processes. The child
2432                  * may get SIGKILLed if it later faults.
2433                  */
2434                 if (outside_reserve) {
2435                         BUG_ON(huge_pte_none(pte));
2436                         if (unmap_ref_private(mm, vma, old_page, address)) {
2437                                 BUG_ON(huge_pte_none(pte));
2438                                 spin_lock(&mm->page_table_lock);
2439                                 goto retry_avoidcopy;
2440                         }
2441                         WARN_ON_ONCE(1);
2442                 }
2443
2444                 /* Caller expects lock to be held */
2445                 spin_lock(&mm->page_table_lock);
2446                 return -PTR_ERR(new_page);
2447         }
2448
2449         /*
2450          * When the original hugepage is shared one, it does not have
2451          * anon_vma prepared.
2452          */
2453         if (unlikely(anon_vma_prepare(vma))) {
2454                 page_cache_release(new_page);
2455                 page_cache_release(old_page);
2456                 /* Caller expects lock to be held */
2457                 spin_lock(&mm->page_table_lock);
2458                 return VM_FAULT_OOM;
2459         }
2460
2461         copy_user_huge_page(new_page, old_page, address, vma,
2462                             pages_per_huge_page(h));
2463         __SetPageUptodate(new_page);
2464
2465         /*
2466          * Retake the page_table_lock to check for racing updates
2467          * before the page tables are altered
2468          */
2469         spin_lock(&mm->page_table_lock);
2470         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2471         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2472                 /* Break COW */
2473                 mmu_notifier_invalidate_range_start(mm,
2474                         address & huge_page_mask(h),
2475                         (address & huge_page_mask(h)) + huge_page_size(h));
2476                 huge_ptep_clear_flush(vma, address, ptep);
2477                 set_huge_pte_at(mm, address, ptep,
2478                                 make_huge_pte(vma, new_page, 1));
2479                 page_remove_rmap(old_page);
2480                 hugepage_add_new_anon_rmap(new_page, vma, address);
2481                 /* Make the old page be freed below */
2482                 new_page = old_page;
2483                 mmu_notifier_invalidate_range_end(mm,
2484                         address & huge_page_mask(h),
2485                         (address & huge_page_mask(h)) + huge_page_size(h));
2486         }
2487         page_cache_release(new_page);
2488         page_cache_release(old_page);
2489         return 0;
2490 }
2491
2492 /* Return the pagecache page at a given address within a VMA */
2493 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2494                         struct vm_area_struct *vma, unsigned long address)
2495 {
2496         struct address_space *mapping;
2497         pgoff_t idx;
2498
2499         mapping = vma->vm_file->f_mapping;
2500         idx = vma_hugecache_offset(h, vma, address);
2501
2502         return find_lock_page(mapping, idx);
2503 }
2504
2505 /*
2506  * Return whether there is a pagecache page to back given address within VMA.
2507  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2508  */
2509 static bool hugetlbfs_pagecache_present(struct hstate *h,
2510                         struct vm_area_struct *vma, unsigned long address)
2511 {
2512         struct address_space *mapping;
2513         pgoff_t idx;
2514         struct page *page;
2515
2516         mapping = vma->vm_file->f_mapping;
2517         idx = vma_hugecache_offset(h, vma, address);
2518
2519         page = find_get_page(mapping, idx);
2520         if (page)
2521                 put_page(page);
2522         return page != NULL;
2523 }
2524
2525 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2526                         unsigned long address, pte_t *ptep, unsigned int flags)
2527 {
2528         struct hstate *h = hstate_vma(vma);
2529         int ret = VM_FAULT_SIGBUS;
2530         pgoff_t idx;
2531         unsigned long size;
2532         struct page *page;
2533         struct address_space *mapping;
2534         pte_t new_pte;
2535
2536         /*
2537          * Currently, we are forced to kill the process in the event the
2538          * original mapper has unmapped pages from the child due to a failed
2539          * COW. Warn that such a situation has occurred as it may not be obvious
2540          */
2541         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2542                 printk(KERN_WARNING
2543                         "PID %d killed due to inadequate hugepage pool\n",
2544                         current->pid);
2545                 return ret;
2546         }
2547
2548         mapping = vma->vm_file->f_mapping;
2549         idx = vma_hugecache_offset(h, vma, address);
2550
2551         /*
2552          * Use page lock to guard against racing truncation
2553          * before we get page_table_lock.
2554          */
2555 retry:
2556         page = find_lock_page(mapping, idx);
2557         if (!page) {
2558                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2559                 if (idx >= size)
2560                         goto out;
2561                 page = alloc_huge_page(vma, address, 0);
2562                 if (IS_ERR(page)) {
2563                         ret = -PTR_ERR(page);
2564                         goto out;
2565                 }
2566                 clear_huge_page(page, address, pages_per_huge_page(h));
2567                 __SetPageUptodate(page);
2568
2569                 if (vma->vm_flags & VM_MAYSHARE) {
2570                         int err;
2571                         struct inode *inode = mapping->host;
2572
2573                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2574                         if (err) {
2575                                 put_page(page);
2576                                 if (err == -EEXIST)
2577                                         goto retry;
2578                                 goto out;
2579                         }
2580
2581                         spin_lock(&inode->i_lock);
2582                         inode->i_blocks += blocks_per_huge_page(h);
2583                         spin_unlock(&inode->i_lock);
2584                         page_dup_rmap(page);
2585                 } else {
2586                         lock_page(page);
2587                         if (unlikely(anon_vma_prepare(vma))) {
2588                                 ret = VM_FAULT_OOM;
2589                                 goto backout_unlocked;
2590                         }
2591                         hugepage_add_new_anon_rmap(page, vma, address);
2592                 }
2593         } else {
2594                 /*
2595                  * If memory error occurs between mmap() and fault, some process
2596                  * don't have hwpoisoned swap entry for errored virtual address.
2597                  * So we need to block hugepage fault by PG_hwpoison bit check.
2598                  */
2599                 if (unlikely(PageHWPoison(page))) {
2600                         ret = VM_FAULT_HWPOISON | 
2601                               VM_FAULT_SET_HINDEX(h - hstates);
2602                         goto backout_unlocked;
2603                 }
2604                 page_dup_rmap(page);
2605         }
2606
2607         /*
2608          * If we are going to COW a private mapping later, we examine the
2609          * pending reservations for this page now. This will ensure that
2610          * any allocations necessary to record that reservation occur outside
2611          * the spinlock.
2612          */
2613         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2614                 if (vma_needs_reservation(h, vma, address) < 0) {
2615                         ret = VM_FAULT_OOM;
2616                         goto backout_unlocked;
2617                 }
2618
2619         spin_lock(&mm->page_table_lock);
2620         size = i_size_read(mapping->host) >> huge_page_shift(h);
2621         if (idx >= size)
2622                 goto backout;
2623
2624         ret = 0;
2625         if (!huge_pte_none(huge_ptep_get(ptep)))
2626                 goto backout;
2627
2628         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2629                                 && (vma->vm_flags & VM_SHARED)));
2630         set_huge_pte_at(mm, address, ptep, new_pte);
2631
2632         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2633                 /* Optimization, do the COW without a second fault */
2634                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2635         }
2636
2637         spin_unlock(&mm->page_table_lock);
2638         unlock_page(page);
2639 out:
2640         return ret;
2641
2642 backout:
2643         spin_unlock(&mm->page_table_lock);
2644 backout_unlocked:
2645         unlock_page(page);
2646         put_page(page);
2647         goto out;
2648 }
2649
2650 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2651                         unsigned long address, unsigned int flags)
2652 {
2653         pte_t *ptep;
2654         pte_t entry;
2655         int ret;
2656         struct page *page = NULL;
2657         struct page *pagecache_page = NULL;
2658         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2659         struct hstate *h = hstate_vma(vma);
2660
2661         ptep = huge_pte_offset(mm, address);
2662         if (ptep) {
2663                 entry = huge_ptep_get(ptep);
2664                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2665                         migration_entry_wait(mm, (pmd_t *)ptep, address);
2666                         return 0;
2667                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2668                         return VM_FAULT_HWPOISON_LARGE | 
2669                                VM_FAULT_SET_HINDEX(h - hstates);
2670         }
2671
2672         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2673         if (!ptep)
2674                 return VM_FAULT_OOM;
2675
2676         /*
2677          * Serialize hugepage allocation and instantiation, so that we don't
2678          * get spurious allocation failures if two CPUs race to instantiate
2679          * the same page in the page cache.
2680          */
2681         mutex_lock(&hugetlb_instantiation_mutex);
2682         entry = huge_ptep_get(ptep);
2683         if (huge_pte_none(entry)) {
2684                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2685                 goto out_mutex;
2686         }
2687
2688         ret = 0;
2689
2690         /*
2691          * If we are going to COW the mapping later, we examine the pending
2692          * reservations for this page now. This will ensure that any
2693          * allocations necessary to record that reservation occur outside the
2694          * spinlock. For private mappings, we also lookup the pagecache
2695          * page now as it is used to determine if a reservation has been
2696          * consumed.
2697          */
2698         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2699                 if (vma_needs_reservation(h, vma, address) < 0) {
2700                         ret = VM_FAULT_OOM;
2701                         goto out_mutex;
2702                 }
2703
2704                 if (!(vma->vm_flags & VM_MAYSHARE))
2705                         pagecache_page = hugetlbfs_pagecache_page(h,
2706                                                                 vma, address);
2707         }
2708
2709         /*
2710          * hugetlb_cow() requires page locks of pte_page(entry) and
2711          * pagecache_page, so here we need take the former one
2712          * when page != pagecache_page or !pagecache_page.
2713          * Note that locking order is always pagecache_page -> page,
2714          * so no worry about deadlock.
2715          */
2716         page = pte_page(entry);
2717         get_page(page);
2718         if (page != pagecache_page)
2719                 lock_page(page);
2720
2721         spin_lock(&mm->page_table_lock);
2722         /* Check for a racing update before calling hugetlb_cow */
2723         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2724                 goto out_page_table_lock;
2725
2726
2727         if (flags & FAULT_FLAG_WRITE) {
2728                 if (!pte_write(entry)) {
2729                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2730                                                         pagecache_page);
2731                         goto out_page_table_lock;
2732                 }
2733                 entry = pte_mkdirty(entry);
2734         }
2735         entry = pte_mkyoung(entry);
2736         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2737                                                 flags & FAULT_FLAG_WRITE))
2738                 update_mmu_cache(vma, address, ptep);
2739
2740 out_page_table_lock:
2741         spin_unlock(&mm->page_table_lock);
2742
2743         if (pagecache_page) {
2744                 unlock_page(pagecache_page);
2745                 put_page(pagecache_page);
2746         }
2747         if (page != pagecache_page)
2748                 unlock_page(page);
2749         put_page(page);
2750
2751 out_mutex:
2752         mutex_unlock(&hugetlb_instantiation_mutex);
2753
2754         return ret;
2755 }
2756
2757 /* Can be overriden by architectures */
2758 __attribute__((weak)) struct page *
2759 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2760                pud_t *pud, int write)
2761 {
2762         BUG();
2763         return NULL;
2764 }
2765
2766 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2767                         struct page **pages, struct vm_area_struct **vmas,
2768                         unsigned long *position, int *length, int i,
2769                         unsigned int flags)
2770 {
2771         unsigned long pfn_offset;
2772         unsigned long vaddr = *position;
2773         int remainder = *length;
2774         struct hstate *h = hstate_vma(vma);
2775
2776         spin_lock(&mm->page_table_lock);
2777         while (vaddr < vma->vm_end && remainder) {
2778                 pte_t *pte;
2779                 int absent;
2780                 struct page *page;
2781
2782                 /*
2783                  * Some archs (sparc64, sh*) have multiple pte_ts to
2784                  * each hugepage.  We have to make sure we get the
2785                  * first, for the page indexing below to work.
2786                  */
2787                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2788                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2789
2790                 /*
2791                  * When coredumping, it suits get_dump_page if we just return
2792                  * an error where there's an empty slot with no huge pagecache
2793                  * to back it.  This way, we avoid allocating a hugepage, and
2794                  * the sparse dumpfile avoids allocating disk blocks, but its
2795                  * huge holes still show up with zeroes where they need to be.
2796                  */
2797                 if (absent && (flags & FOLL_DUMP) &&
2798                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2799                         remainder = 0;
2800                         break;
2801                 }
2802
2803                 if (absent ||
2804                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2805                         int ret;
2806
2807                         spin_unlock(&mm->page_table_lock);
2808                         ret = hugetlb_fault(mm, vma, vaddr,
2809                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2810                         spin_lock(&mm->page_table_lock);
2811                         if (!(ret & VM_FAULT_ERROR))
2812                                 continue;
2813
2814                         remainder = 0;
2815                         break;
2816                 }
2817
2818                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2819                 page = pte_page(huge_ptep_get(pte));
2820 same_page:
2821                 if (pages) {
2822                         pages[i] = mem_map_offset(page, pfn_offset);
2823                         get_page(pages[i]);
2824                 }
2825
2826                 if (vmas)
2827                         vmas[i] = vma;
2828
2829                 vaddr += PAGE_SIZE;
2830                 ++pfn_offset;
2831                 --remainder;
2832                 ++i;
2833                 if (vaddr < vma->vm_end && remainder &&
2834                                 pfn_offset < pages_per_huge_page(h)) {
2835                         /*
2836                          * We use pfn_offset to avoid touching the pageframes
2837                          * of this compound page.
2838                          */
2839                         goto same_page;
2840                 }
2841         }
2842         spin_unlock(&mm->page_table_lock);
2843         *length = remainder;
2844         *position = vaddr;
2845
2846         return i ? i : -EFAULT;
2847 }
2848
2849 void hugetlb_change_protection(struct vm_area_struct *vma,
2850                 unsigned long address, unsigned long end, pgprot_t newprot)
2851 {
2852         struct mm_struct *mm = vma->vm_mm;
2853         unsigned long start = address;
2854         pte_t *ptep;
2855         pte_t pte;
2856         struct hstate *h = hstate_vma(vma);
2857
2858         BUG_ON(address >= end);
2859         flush_cache_range(vma, address, end);
2860
2861         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2862         spin_lock(&mm->page_table_lock);
2863         for (; address < end; address += huge_page_size(h)) {
2864                 ptep = huge_pte_offset(mm, address);
2865                 if (!ptep)
2866                         continue;
2867                 if (huge_pmd_unshare(mm, &address, ptep))
2868                         continue;
2869                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2870                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2871                         pte = pte_mkhuge(pte_modify(pte, newprot));
2872                         set_huge_pte_at(mm, address, ptep, pte);
2873                 }
2874         }
2875         spin_unlock(&mm->page_table_lock);
2876         /*
2877          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
2878          * may have cleared our pud entry and done put_page on the page table:
2879          * once we release i_mmap_mutex, another task can do the final put_page
2880          * and that page table be reused and filled with junk.
2881          */
2882         flush_tlb_range(vma, start, end);
2883         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2884 }
2885
2886 int hugetlb_reserve_pages(struct inode *inode,
2887                                         long from, long to,
2888                                         struct vm_area_struct *vma,
2889                                         vm_flags_t vm_flags)
2890 {
2891         long ret, chg;
2892         struct hstate *h = hstate_inode(inode);
2893
2894         /*
2895          * Only apply hugepage reservation if asked. At fault time, an
2896          * attempt will be made for VM_NORESERVE to allocate a page
2897          * and filesystem quota without using reserves
2898          */
2899         if (vm_flags & VM_NORESERVE)
2900                 return 0;
2901
2902         /*
2903          * Shared mappings base their reservation on the number of pages that
2904          * are already allocated on behalf of the file. Private mappings need
2905          * to reserve the full area even if read-only as mprotect() may be
2906          * called to make the mapping read-write. Assume !vma is a shm mapping
2907          */
2908         if (!vma || vma->vm_flags & VM_MAYSHARE)
2909                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2910         else {
2911                 struct resv_map *resv_map = resv_map_alloc();
2912                 if (!resv_map)
2913                         return -ENOMEM;
2914
2915                 chg = to - from;
2916
2917                 set_vma_resv_map(vma, resv_map);
2918                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2919         }
2920
2921         if (chg < 0) {
2922                 ret = chg;
2923                 goto out_err;
2924         }
2925
2926         /* There must be enough filesystem quota for the mapping */
2927         if (hugetlb_get_quota(inode->i_mapping, chg)) {
2928                 ret = -ENOSPC;
2929                 goto out_err;
2930         }
2931
2932         /*
2933          * Check enough hugepages are available for the reservation.
2934          * Hand back the quota if there are not
2935          */
2936         ret = hugetlb_acct_memory(h, chg);
2937         if (ret < 0) {
2938                 hugetlb_put_quota(inode->i_mapping, chg);
2939                 goto out_err;
2940         }
2941
2942         /*
2943          * Account for the reservations made. Shared mappings record regions
2944          * that have reservations as they are shared by multiple VMAs.
2945          * When the last VMA disappears, the region map says how much
2946          * the reservation was and the page cache tells how much of
2947          * the reservation was consumed. Private mappings are per-VMA and
2948          * only the consumed reservations are tracked. When the VMA
2949          * disappears, the original reservation is the VMA size and the
2950          * consumed reservations are stored in the map. Hence, nothing
2951          * else has to be done for private mappings here
2952          */
2953         if (!vma || vma->vm_flags & VM_MAYSHARE)
2954                 region_add(&inode->i_mapping->private_list, from, to);
2955         return 0;
2956 out_err:
2957         if (vma)
2958                 resv_map_put(vma);
2959         return ret;
2960 }
2961
2962 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2963 {
2964         struct hstate *h = hstate_inode(inode);
2965         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2966
2967         spin_lock(&inode->i_lock);
2968         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2969         spin_unlock(&inode->i_lock);
2970
2971         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2972         hugetlb_acct_memory(h, -(chg - freed));
2973 }
2974
2975 #ifdef CONFIG_MEMORY_FAILURE
2976
2977 /* Should be called in hugetlb_lock */
2978 static int is_hugepage_on_freelist(struct page *hpage)
2979 {
2980         struct page *page;
2981         struct page *tmp;
2982         struct hstate *h = page_hstate(hpage);
2983         int nid = page_to_nid(hpage);
2984
2985         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2986                 if (page == hpage)
2987                         return 1;
2988         return 0;
2989 }
2990
2991 /*
2992  * This function is called from memory failure code.
2993  * Assume the caller holds page lock of the head page.
2994  */
2995 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2996 {
2997         struct hstate *h = page_hstate(hpage);
2998         int nid = page_to_nid(hpage);
2999         int ret = -EBUSY;
3000
3001         spin_lock(&hugetlb_lock);
3002         if (is_hugepage_on_freelist(hpage)) {
3003                 list_del(&hpage->lru);
3004                 set_page_refcounted(hpage);
3005                 h->free_huge_pages--;
3006                 h->free_huge_pages_node[nid]--;
3007                 ret = 0;
3008         }
3009         spin_unlock(&hugetlb_lock);
3010         return ret;
3011 }
3012 #endif