]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
mm: hugetlb: fix softlockup when a large number of hugepages are freed.
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441         VM_BUG_ON(!is_vm_hugetlb_page(vma));
442         if (!(vma->vm_flags & VM_MAYSHARE))
443                 vma->vm_private_data = (void *)0;
444 }
445
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449         if (vma->vm_flags & VM_NORESERVE) {
450                 /*
451                  * This address is already reserved by other process(chg == 0),
452                  * so, we should decrement reserved count. Without decrementing,
453                  * reserve count remains after releasing inode, because this
454                  * allocated page will go into page cache and is regarded as
455                  * coming from reserved pool in releasing step.  Currently, we
456                  * don't have any other solution to deal with this situation
457                  * properly, so add work-around here.
458                  */
459                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460                         return 1;
461                 else
462                         return 0;
463         }
464
465         /* Shared mappings always use reserves */
466         if (vma->vm_flags & VM_MAYSHARE)
467                 return 1;
468
469         /*
470          * Only the process that called mmap() has reserves for
471          * private mappings.
472          */
473         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474                 return 1;
475
476         return 0;
477 }
478
479 static void enqueue_huge_page(struct hstate *h, struct page *page)
480 {
481         int nid = page_to_nid(page);
482         list_move(&page->lru, &h->hugepage_freelists[nid]);
483         h->free_huge_pages++;
484         h->free_huge_pages_node[nid]++;
485 }
486
487 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
488 {
489         struct page *page;
490
491         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492                 if (!is_migrate_isolate_page(page))
493                         break;
494         /*
495          * if 'non-isolated free hugepage' not found on the list,
496          * the allocation fails.
497          */
498         if (&h->hugepage_freelists[nid] == &page->lru)
499                 return NULL;
500         list_move(&page->lru, &h->hugepage_activelist);
501         set_page_refcounted(page);
502         h->free_huge_pages--;
503         h->free_huge_pages_node[nid]--;
504         return page;
505 }
506
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t htlb_alloc_mask(struct hstate *h)
509 {
510         if (hugepages_treat_as_movable || hugepage_migration_support(h))
511                 return GFP_HIGHUSER_MOVABLE;
512         else
513                 return GFP_HIGHUSER;
514 }
515
516 static struct page *dequeue_huge_page_vma(struct hstate *h,
517                                 struct vm_area_struct *vma,
518                                 unsigned long address, int avoid_reserve,
519                                 long chg)
520 {
521         struct page *page = NULL;
522         struct mempolicy *mpol;
523         nodemask_t *nodemask;
524         struct zonelist *zonelist;
525         struct zone *zone;
526         struct zoneref *z;
527         unsigned int cpuset_mems_cookie;
528
529         /*
530          * A child process with MAP_PRIVATE mappings created by their parent
531          * have no page reserves. This check ensures that reservations are
532          * not "stolen". The child may still get SIGKILLed
533          */
534         if (!vma_has_reserves(vma, chg) &&
535                         h->free_huge_pages - h->resv_huge_pages == 0)
536                 goto err;
537
538         /* If reserves cannot be used, ensure enough pages are in the pool */
539         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540                 goto err;
541
542 retry_cpuset:
543         cpuset_mems_cookie = get_mems_allowed();
544         zonelist = huge_zonelist(vma, address,
545                                         htlb_alloc_mask(h), &mpol, &nodemask);
546
547         for_each_zone_zonelist_nodemask(zone, z, zonelist,
548                                                 MAX_NR_ZONES - 1, nodemask) {
549                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
551                         if (page) {
552                                 if (avoid_reserve)
553                                         break;
554                                 if (!vma_has_reserves(vma, chg))
555                                         break;
556
557                                 SetPagePrivate(page);
558                                 h->resv_huge_pages--;
559                                 break;
560                         }
561                 }
562         }
563
564         mpol_cond_put(mpol);
565         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
566                 goto retry_cpuset;
567         return page;
568
569 err:
570         return NULL;
571 }
572
573 static void update_and_free_page(struct hstate *h, struct page *page)
574 {
575         int i;
576
577         VM_BUG_ON(h->order >= MAX_ORDER);
578
579         h->nr_huge_pages--;
580         h->nr_huge_pages_node[page_to_nid(page)]--;
581         for (i = 0; i < pages_per_huge_page(h); i++) {
582                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583                                 1 << PG_referenced | 1 << PG_dirty |
584                                 1 << PG_active | 1 << PG_reserved |
585                                 1 << PG_private | 1 << PG_writeback);
586         }
587         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
588         set_compound_page_dtor(page, NULL);
589         set_page_refcounted(page);
590         arch_release_hugepage(page);
591         __free_pages(page, huge_page_order(h));
592 }
593
594 struct hstate *size_to_hstate(unsigned long size)
595 {
596         struct hstate *h;
597
598         for_each_hstate(h) {
599                 if (huge_page_size(h) == size)
600                         return h;
601         }
602         return NULL;
603 }
604
605 static void free_huge_page(struct page *page)
606 {
607         /*
608          * Can't pass hstate in here because it is called from the
609          * compound page destructor.
610          */
611         struct hstate *h = page_hstate(page);
612         int nid = page_to_nid(page);
613         struct hugepage_subpool *spool =
614                 (struct hugepage_subpool *)page_private(page);
615         bool restore_reserve;
616
617         set_page_private(page, 0);
618         page->mapping = NULL;
619         BUG_ON(page_count(page));
620         BUG_ON(page_mapcount(page));
621         restore_reserve = PagePrivate(page);
622         ClearPagePrivate(page);
623
624         spin_lock(&hugetlb_lock);
625         hugetlb_cgroup_uncharge_page(hstate_index(h),
626                                      pages_per_huge_page(h), page);
627         if (restore_reserve)
628                 h->resv_huge_pages++;
629
630         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631                 /* remove the page from active list */
632                 list_del(&page->lru);
633                 update_and_free_page(h, page);
634                 h->surplus_huge_pages--;
635                 h->surplus_huge_pages_node[nid]--;
636         } else {
637                 arch_clear_hugepage_flags(page);
638                 enqueue_huge_page(h, page);
639         }
640         spin_unlock(&hugetlb_lock);
641         hugepage_subpool_put_pages(spool, 1);
642 }
643
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645 {
646         INIT_LIST_HEAD(&page->lru);
647         set_compound_page_dtor(page, free_huge_page);
648         spin_lock(&hugetlb_lock);
649         set_hugetlb_cgroup(page, NULL);
650         h->nr_huge_pages++;
651         h->nr_huge_pages_node[nid]++;
652         spin_unlock(&hugetlb_lock);
653         put_page(page); /* free it into the hugepage allocator */
654 }
655
656 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
657 {
658         int i;
659         int nr_pages = 1 << order;
660         struct page *p = page + 1;
661
662         /* we rely on prep_new_huge_page to set the destructor */
663         set_compound_order(page, order);
664         __SetPageHead(page);
665         __ClearPageReserved(page);
666         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667                 __SetPageTail(p);
668                 /*
669                  * For gigantic hugepages allocated through bootmem at
670                  * boot, it's safer to be consistent with the not-gigantic
671                  * hugepages and clear the PG_reserved bit from all tail pages
672                  * too.  Otherwse drivers using get_user_pages() to access tail
673                  * pages may get the reference counting wrong if they see
674                  * PG_reserved set on a tail page (despite the head page not
675                  * having PG_reserved set).  Enforcing this consistency between
676                  * head and tail pages allows drivers to optimize away a check
677                  * on the head page when they need know if put_page() is needed
678                  * after get_user_pages().
679                  */
680                 __ClearPageReserved(p);
681                 set_page_count(p, 0);
682                 p->first_page = page;
683         }
684 }
685
686 /*
687  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688  * transparent huge pages.  See the PageTransHuge() documentation for more
689  * details.
690  */
691 int PageHuge(struct page *page)
692 {
693         if (!PageCompound(page))
694                 return 0;
695
696         page = compound_head(page);
697         return get_compound_page_dtor(page) == free_huge_page;
698 }
699 EXPORT_SYMBOL_GPL(PageHuge);
700
701 /*
702  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
703  * normal or transparent huge pages.
704  */
705 int PageHeadHuge(struct page *page_head)
706 {
707         if (!PageHead(page_head))
708                 return 0;
709
710         return get_compound_page_dtor(page_head) == free_huge_page;
711 }
712
713 pgoff_t __basepage_index(struct page *page)
714 {
715         struct page *page_head = compound_head(page);
716         pgoff_t index = page_index(page_head);
717         unsigned long compound_idx;
718
719         if (!PageHuge(page_head))
720                 return page_index(page);
721
722         if (compound_order(page_head) >= MAX_ORDER)
723                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
724         else
725                 compound_idx = page - page_head;
726
727         return (index << compound_order(page_head)) + compound_idx;
728 }
729
730 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
731 {
732         struct page *page;
733
734         if (h->order >= MAX_ORDER)
735                 return NULL;
736
737         page = alloc_pages_exact_node(nid,
738                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
739                                                 __GFP_REPEAT|__GFP_NOWARN,
740                 huge_page_order(h));
741         if (page) {
742                 if (arch_prepare_hugepage(page)) {
743                         __free_pages(page, huge_page_order(h));
744                         return NULL;
745                 }
746                 prep_new_huge_page(h, page, nid);
747         }
748
749         return page;
750 }
751
752 /*
753  * common helper functions for hstate_next_node_to_{alloc|free}.
754  * We may have allocated or freed a huge page based on a different
755  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
756  * be outside of *nodes_allowed.  Ensure that we use an allowed
757  * node for alloc or free.
758  */
759 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
760 {
761         nid = next_node(nid, *nodes_allowed);
762         if (nid == MAX_NUMNODES)
763                 nid = first_node(*nodes_allowed);
764         VM_BUG_ON(nid >= MAX_NUMNODES);
765
766         return nid;
767 }
768
769 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
770 {
771         if (!node_isset(nid, *nodes_allowed))
772                 nid = next_node_allowed(nid, nodes_allowed);
773         return nid;
774 }
775
776 /*
777  * returns the previously saved node ["this node"] from which to
778  * allocate a persistent huge page for the pool and advance the
779  * next node from which to allocate, handling wrap at end of node
780  * mask.
781  */
782 static int hstate_next_node_to_alloc(struct hstate *h,
783                                         nodemask_t *nodes_allowed)
784 {
785         int nid;
786
787         VM_BUG_ON(!nodes_allowed);
788
789         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
790         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
791
792         return nid;
793 }
794
795 /*
796  * helper for free_pool_huge_page() - return the previously saved
797  * node ["this node"] from which to free a huge page.  Advance the
798  * next node id whether or not we find a free huge page to free so
799  * that the next attempt to free addresses the next node.
800  */
801 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
802 {
803         int nid;
804
805         VM_BUG_ON(!nodes_allowed);
806
807         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
808         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
809
810         return nid;
811 }
812
813 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
814         for (nr_nodes = nodes_weight(*mask);                            \
815                 nr_nodes > 0 &&                                         \
816                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
817                 nr_nodes--)
818
819 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
820         for (nr_nodes = nodes_weight(*mask);                            \
821                 nr_nodes > 0 &&                                         \
822                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
823                 nr_nodes--)
824
825 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
826 {
827         struct page *page;
828         int nr_nodes, node;
829         int ret = 0;
830
831         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
832                 page = alloc_fresh_huge_page_node(h, node);
833                 if (page) {
834                         ret = 1;
835                         break;
836                 }
837         }
838
839         if (ret)
840                 count_vm_event(HTLB_BUDDY_PGALLOC);
841         else
842                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
843
844         return ret;
845 }
846
847 /*
848  * Free huge page from pool from next node to free.
849  * Attempt to keep persistent huge pages more or less
850  * balanced over allowed nodes.
851  * Called with hugetlb_lock locked.
852  */
853 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
854                                                          bool acct_surplus)
855 {
856         int nr_nodes, node;
857         int ret = 0;
858
859         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
860                 /*
861                  * If we're returning unused surplus pages, only examine
862                  * nodes with surplus pages.
863                  */
864                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
865                     !list_empty(&h->hugepage_freelists[node])) {
866                         struct page *page =
867                                 list_entry(h->hugepage_freelists[node].next,
868                                           struct page, lru);
869                         list_del(&page->lru);
870                         h->free_huge_pages--;
871                         h->free_huge_pages_node[node]--;
872                         if (acct_surplus) {
873                                 h->surplus_huge_pages--;
874                                 h->surplus_huge_pages_node[node]--;
875                         }
876                         update_and_free_page(h, page);
877                         ret = 1;
878                         break;
879                 }
880         }
881
882         return ret;
883 }
884
885 /*
886  * Dissolve a given free hugepage into free buddy pages. This function does
887  * nothing for in-use (including surplus) hugepages.
888  */
889 static void dissolve_free_huge_page(struct page *page)
890 {
891         spin_lock(&hugetlb_lock);
892         if (PageHuge(page) && !page_count(page)) {
893                 struct hstate *h = page_hstate(page);
894                 int nid = page_to_nid(page);
895                 list_del(&page->lru);
896                 h->free_huge_pages--;
897                 h->free_huge_pages_node[nid]--;
898                 update_and_free_page(h, page);
899         }
900         spin_unlock(&hugetlb_lock);
901 }
902
903 /*
904  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
905  * make specified memory blocks removable from the system.
906  * Note that start_pfn should aligned with (minimum) hugepage size.
907  */
908 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
909 {
910         unsigned int order = 8 * sizeof(void *);
911         unsigned long pfn;
912         struct hstate *h;
913
914         /* Set scan step to minimum hugepage size */
915         for_each_hstate(h)
916                 if (order > huge_page_order(h))
917                         order = huge_page_order(h);
918         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
919         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
920                 dissolve_free_huge_page(pfn_to_page(pfn));
921 }
922
923 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
924 {
925         struct page *page;
926         unsigned int r_nid;
927
928         if (h->order >= MAX_ORDER)
929                 return NULL;
930
931         /*
932          * Assume we will successfully allocate the surplus page to
933          * prevent racing processes from causing the surplus to exceed
934          * overcommit
935          *
936          * This however introduces a different race, where a process B
937          * tries to grow the static hugepage pool while alloc_pages() is
938          * called by process A. B will only examine the per-node
939          * counters in determining if surplus huge pages can be
940          * converted to normal huge pages in adjust_pool_surplus(). A
941          * won't be able to increment the per-node counter, until the
942          * lock is dropped by B, but B doesn't drop hugetlb_lock until
943          * no more huge pages can be converted from surplus to normal
944          * state (and doesn't try to convert again). Thus, we have a
945          * case where a surplus huge page exists, the pool is grown, and
946          * the surplus huge page still exists after, even though it
947          * should just have been converted to a normal huge page. This
948          * does not leak memory, though, as the hugepage will be freed
949          * once it is out of use. It also does not allow the counters to
950          * go out of whack in adjust_pool_surplus() as we don't modify
951          * the node values until we've gotten the hugepage and only the
952          * per-node value is checked there.
953          */
954         spin_lock(&hugetlb_lock);
955         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
956                 spin_unlock(&hugetlb_lock);
957                 return NULL;
958         } else {
959                 h->nr_huge_pages++;
960                 h->surplus_huge_pages++;
961         }
962         spin_unlock(&hugetlb_lock);
963
964         if (nid == NUMA_NO_NODE)
965                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
966                                    __GFP_REPEAT|__GFP_NOWARN,
967                                    huge_page_order(h));
968         else
969                 page = alloc_pages_exact_node(nid,
970                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
971                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
972
973         if (page && arch_prepare_hugepage(page)) {
974                 __free_pages(page, huge_page_order(h));
975                 page = NULL;
976         }
977
978         spin_lock(&hugetlb_lock);
979         if (page) {
980                 INIT_LIST_HEAD(&page->lru);
981                 r_nid = page_to_nid(page);
982                 set_compound_page_dtor(page, free_huge_page);
983                 set_hugetlb_cgroup(page, NULL);
984                 /*
985                  * We incremented the global counters already
986                  */
987                 h->nr_huge_pages_node[r_nid]++;
988                 h->surplus_huge_pages_node[r_nid]++;
989                 __count_vm_event(HTLB_BUDDY_PGALLOC);
990         } else {
991                 h->nr_huge_pages--;
992                 h->surplus_huge_pages--;
993                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
994         }
995         spin_unlock(&hugetlb_lock);
996
997         return page;
998 }
999
1000 /*
1001  * This allocation function is useful in the context where vma is irrelevant.
1002  * E.g. soft-offlining uses this function because it only cares physical
1003  * address of error page.
1004  */
1005 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1006 {
1007         struct page *page = NULL;
1008
1009         spin_lock(&hugetlb_lock);
1010         if (h->free_huge_pages - h->resv_huge_pages > 0)
1011                 page = dequeue_huge_page_node(h, nid);
1012         spin_unlock(&hugetlb_lock);
1013
1014         if (!page)
1015                 page = alloc_buddy_huge_page(h, nid);
1016
1017         return page;
1018 }
1019
1020 /*
1021  * Increase the hugetlb pool such that it can accommodate a reservation
1022  * of size 'delta'.
1023  */
1024 static int gather_surplus_pages(struct hstate *h, int delta)
1025 {
1026         struct list_head surplus_list;
1027         struct page *page, *tmp;
1028         int ret, i;
1029         int needed, allocated;
1030         bool alloc_ok = true;
1031
1032         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1033         if (needed <= 0) {
1034                 h->resv_huge_pages += delta;
1035                 return 0;
1036         }
1037
1038         allocated = 0;
1039         INIT_LIST_HEAD(&surplus_list);
1040
1041         ret = -ENOMEM;
1042 retry:
1043         spin_unlock(&hugetlb_lock);
1044         for (i = 0; i < needed; i++) {
1045                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1046                 if (!page) {
1047                         alloc_ok = false;
1048                         break;
1049                 }
1050                 list_add(&page->lru, &surplus_list);
1051         }
1052         allocated += i;
1053
1054         /*
1055          * After retaking hugetlb_lock, we need to recalculate 'needed'
1056          * because either resv_huge_pages or free_huge_pages may have changed.
1057          */
1058         spin_lock(&hugetlb_lock);
1059         needed = (h->resv_huge_pages + delta) -
1060                         (h->free_huge_pages + allocated);
1061         if (needed > 0) {
1062                 if (alloc_ok)
1063                         goto retry;
1064                 /*
1065                  * We were not able to allocate enough pages to
1066                  * satisfy the entire reservation so we free what
1067                  * we've allocated so far.
1068                  */
1069                 goto free;
1070         }
1071         /*
1072          * The surplus_list now contains _at_least_ the number of extra pages
1073          * needed to accommodate the reservation.  Add the appropriate number
1074          * of pages to the hugetlb pool and free the extras back to the buddy
1075          * allocator.  Commit the entire reservation here to prevent another
1076          * process from stealing the pages as they are added to the pool but
1077          * before they are reserved.
1078          */
1079         needed += allocated;
1080         h->resv_huge_pages += delta;
1081         ret = 0;
1082
1083         /* Free the needed pages to the hugetlb pool */
1084         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1085                 if ((--needed) < 0)
1086                         break;
1087                 /*
1088                  * This page is now managed by the hugetlb allocator and has
1089                  * no users -- drop the buddy allocator's reference.
1090                  */
1091                 put_page_testzero(page);
1092                 VM_BUG_ON_PAGE(page_count(page), page);
1093                 enqueue_huge_page(h, page);
1094         }
1095 free:
1096         spin_unlock(&hugetlb_lock);
1097
1098         /* Free unnecessary surplus pages to the buddy allocator */
1099         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1100                 put_page(page);
1101         spin_lock(&hugetlb_lock);
1102
1103         return ret;
1104 }
1105
1106 /*
1107  * When releasing a hugetlb pool reservation, any surplus pages that were
1108  * allocated to satisfy the reservation must be explicitly freed if they were
1109  * never used.
1110  * Called with hugetlb_lock held.
1111  */
1112 static void return_unused_surplus_pages(struct hstate *h,
1113                                         unsigned long unused_resv_pages)
1114 {
1115         unsigned long nr_pages;
1116
1117         /* Uncommit the reservation */
1118         h->resv_huge_pages -= unused_resv_pages;
1119
1120         /* Cannot return gigantic pages currently */
1121         if (h->order >= MAX_ORDER)
1122                 return;
1123
1124         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1125
1126         /*
1127          * We want to release as many surplus pages as possible, spread
1128          * evenly across all nodes with memory. Iterate across these nodes
1129          * until we can no longer free unreserved surplus pages. This occurs
1130          * when the nodes with surplus pages have no free pages.
1131          * free_pool_huge_page() will balance the the freed pages across the
1132          * on-line nodes with memory and will handle the hstate accounting.
1133          */
1134         while (nr_pages--) {
1135                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1136                         break;
1137         }
1138 }
1139
1140 /*
1141  * Determine if the huge page at addr within the vma has an associated
1142  * reservation.  Where it does not we will need to logically increase
1143  * reservation and actually increase subpool usage before an allocation
1144  * can occur.  Where any new reservation would be required the
1145  * reservation change is prepared, but not committed.  Once the page
1146  * has been allocated from the subpool and instantiated the change should
1147  * be committed via vma_commit_reservation.  No action is required on
1148  * failure.
1149  */
1150 static long vma_needs_reservation(struct hstate *h,
1151                         struct vm_area_struct *vma, unsigned long addr)
1152 {
1153         struct address_space *mapping = vma->vm_file->f_mapping;
1154         struct inode *inode = mapping->host;
1155
1156         if (vma->vm_flags & VM_MAYSHARE) {
1157                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1158                 return region_chg(&inode->i_mapping->private_list,
1159                                                         idx, idx + 1);
1160
1161         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1162                 return 1;
1163
1164         } else  {
1165                 long err;
1166                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1167                 struct resv_map *resv = vma_resv_map(vma);
1168
1169                 err = region_chg(&resv->regions, idx, idx + 1);
1170                 if (err < 0)
1171                         return err;
1172                 return 0;
1173         }
1174 }
1175 static void vma_commit_reservation(struct hstate *h,
1176                         struct vm_area_struct *vma, unsigned long addr)
1177 {
1178         struct address_space *mapping = vma->vm_file->f_mapping;
1179         struct inode *inode = mapping->host;
1180
1181         if (vma->vm_flags & VM_MAYSHARE) {
1182                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1183                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1184
1185         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1186                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1187                 struct resv_map *resv = vma_resv_map(vma);
1188
1189                 /* Mark this page used in the map. */
1190                 region_add(&resv->regions, idx, idx + 1);
1191         }
1192 }
1193
1194 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1195                                     unsigned long addr, int avoid_reserve)
1196 {
1197         struct hugepage_subpool *spool = subpool_vma(vma);
1198         struct hstate *h = hstate_vma(vma);
1199         struct page *page;
1200         long chg;
1201         int ret, idx;
1202         struct hugetlb_cgroup *h_cg;
1203
1204         idx = hstate_index(h);
1205         /*
1206          * Processes that did not create the mapping will have no
1207          * reserves and will not have accounted against subpool
1208          * limit. Check that the subpool limit can be made before
1209          * satisfying the allocation MAP_NORESERVE mappings may also
1210          * need pages and subpool limit allocated allocated if no reserve
1211          * mapping overlaps.
1212          */
1213         chg = vma_needs_reservation(h, vma, addr);
1214         if (chg < 0)
1215                 return ERR_PTR(-ENOMEM);
1216         if (chg || avoid_reserve)
1217                 if (hugepage_subpool_get_pages(spool, 1))
1218                         return ERR_PTR(-ENOSPC);
1219
1220         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1221         if (ret) {
1222                 if (chg || avoid_reserve)
1223                         hugepage_subpool_put_pages(spool, 1);
1224                 return ERR_PTR(-ENOSPC);
1225         }
1226         spin_lock(&hugetlb_lock);
1227         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1228         if (!page) {
1229                 spin_unlock(&hugetlb_lock);
1230                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1231                 if (!page) {
1232                         hugetlb_cgroup_uncharge_cgroup(idx,
1233                                                        pages_per_huge_page(h),
1234                                                        h_cg);
1235                         if (chg || avoid_reserve)
1236                                 hugepage_subpool_put_pages(spool, 1);
1237                         return ERR_PTR(-ENOSPC);
1238                 }
1239                 spin_lock(&hugetlb_lock);
1240                 list_move(&page->lru, &h->hugepage_activelist);
1241                 /* Fall through */
1242         }
1243         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1244         spin_unlock(&hugetlb_lock);
1245
1246         set_page_private(page, (unsigned long)spool);
1247
1248         vma_commit_reservation(h, vma, addr);
1249         return page;
1250 }
1251
1252 /*
1253  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1254  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1255  * where no ERR_VALUE is expected to be returned.
1256  */
1257 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1258                                 unsigned long addr, int avoid_reserve)
1259 {
1260         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1261         if (IS_ERR(page))
1262                 page = NULL;
1263         return page;
1264 }
1265
1266 int __weak alloc_bootmem_huge_page(struct hstate *h)
1267 {
1268         struct huge_bootmem_page *m;
1269         int nr_nodes, node;
1270
1271         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1272                 void *addr;
1273
1274                 addr = memblock_virt_alloc_try_nid_nopanic(
1275                                 huge_page_size(h), huge_page_size(h),
1276                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1277                 if (addr) {
1278                         /*
1279                          * Use the beginning of the huge page to store the
1280                          * huge_bootmem_page struct (until gather_bootmem
1281                          * puts them into the mem_map).
1282                          */
1283                         m = addr;
1284                         goto found;
1285                 }
1286         }
1287         return 0;
1288
1289 found:
1290         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1291         /* Put them into a private list first because mem_map is not up yet */
1292         list_add(&m->list, &huge_boot_pages);
1293         m->hstate = h;
1294         return 1;
1295 }
1296
1297 static void prep_compound_huge_page(struct page *page, int order)
1298 {
1299         if (unlikely(order > (MAX_ORDER - 1)))
1300                 prep_compound_gigantic_page(page, order);
1301         else
1302                 prep_compound_page(page, order);
1303 }
1304
1305 /* Put bootmem huge pages into the standard lists after mem_map is up */
1306 static void __init gather_bootmem_prealloc(void)
1307 {
1308         struct huge_bootmem_page *m;
1309
1310         list_for_each_entry(m, &huge_boot_pages, list) {
1311                 struct hstate *h = m->hstate;
1312                 struct page *page;
1313
1314 #ifdef CONFIG_HIGHMEM
1315                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1316                 memblock_free_late(__pa(m),
1317                                    sizeof(struct huge_bootmem_page));
1318 #else
1319                 page = virt_to_page(m);
1320 #endif
1321                 WARN_ON(page_count(page) != 1);
1322                 prep_compound_huge_page(page, h->order);
1323                 WARN_ON(PageReserved(page));
1324                 prep_new_huge_page(h, page, page_to_nid(page));
1325                 /*
1326                  * If we had gigantic hugepages allocated at boot time, we need
1327                  * to restore the 'stolen' pages to totalram_pages in order to
1328                  * fix confusing memory reports from free(1) and another
1329                  * side-effects, like CommitLimit going negative.
1330                  */
1331                 if (h->order > (MAX_ORDER - 1))
1332                         adjust_managed_page_count(page, 1 << h->order);
1333         }
1334 }
1335
1336 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1337 {
1338         unsigned long i;
1339
1340         for (i = 0; i < h->max_huge_pages; ++i) {
1341                 if (h->order >= MAX_ORDER) {
1342                         if (!alloc_bootmem_huge_page(h))
1343                                 break;
1344                 } else if (!alloc_fresh_huge_page(h,
1345                                          &node_states[N_MEMORY]))
1346                         break;
1347         }
1348         h->max_huge_pages = i;
1349 }
1350
1351 static void __init hugetlb_init_hstates(void)
1352 {
1353         struct hstate *h;
1354
1355         for_each_hstate(h) {
1356                 /* oversize hugepages were init'ed in early boot */
1357                 if (h->order < MAX_ORDER)
1358                         hugetlb_hstate_alloc_pages(h);
1359         }
1360 }
1361
1362 static char * __init memfmt(char *buf, unsigned long n)
1363 {
1364         if (n >= (1UL << 30))
1365                 sprintf(buf, "%lu GB", n >> 30);
1366         else if (n >= (1UL << 20))
1367                 sprintf(buf, "%lu MB", n >> 20);
1368         else
1369                 sprintf(buf, "%lu KB", n >> 10);
1370         return buf;
1371 }
1372
1373 static void __init report_hugepages(void)
1374 {
1375         struct hstate *h;
1376
1377         for_each_hstate(h) {
1378                 char buf[32];
1379                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1380                         memfmt(buf, huge_page_size(h)),
1381                         h->free_huge_pages);
1382         }
1383 }
1384
1385 #ifdef CONFIG_HIGHMEM
1386 static void try_to_free_low(struct hstate *h, unsigned long count,
1387                                                 nodemask_t *nodes_allowed)
1388 {
1389         int i;
1390
1391         if (h->order >= MAX_ORDER)
1392                 return;
1393
1394         for_each_node_mask(i, *nodes_allowed) {
1395                 struct page *page, *next;
1396                 struct list_head *freel = &h->hugepage_freelists[i];
1397                 list_for_each_entry_safe(page, next, freel, lru) {
1398                         if (count >= h->nr_huge_pages)
1399                                 return;
1400                         if (PageHighMem(page))
1401                                 continue;
1402                         list_del(&page->lru);
1403                         update_and_free_page(h, page);
1404                         h->free_huge_pages--;
1405                         h->free_huge_pages_node[page_to_nid(page)]--;
1406                 }
1407         }
1408 }
1409 #else
1410 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1411                                                 nodemask_t *nodes_allowed)
1412 {
1413 }
1414 #endif
1415
1416 /*
1417  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1418  * balanced by operating on them in a round-robin fashion.
1419  * Returns 1 if an adjustment was made.
1420  */
1421 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1422                                 int delta)
1423 {
1424         int nr_nodes, node;
1425
1426         VM_BUG_ON(delta != -1 && delta != 1);
1427
1428         if (delta < 0) {
1429                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1430                         if (h->surplus_huge_pages_node[node])
1431                                 goto found;
1432                 }
1433         } else {
1434                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1435                         if (h->surplus_huge_pages_node[node] <
1436                                         h->nr_huge_pages_node[node])
1437                                 goto found;
1438                 }
1439         }
1440         return 0;
1441
1442 found:
1443         h->surplus_huge_pages += delta;
1444         h->surplus_huge_pages_node[node] += delta;
1445         return 1;
1446 }
1447
1448 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1449 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1450                                                 nodemask_t *nodes_allowed)
1451 {
1452         unsigned long min_count, ret;
1453
1454         if (h->order >= MAX_ORDER)
1455                 return h->max_huge_pages;
1456
1457         /*
1458          * Increase the pool size
1459          * First take pages out of surplus state.  Then make up the
1460          * remaining difference by allocating fresh huge pages.
1461          *
1462          * We might race with alloc_buddy_huge_page() here and be unable
1463          * to convert a surplus huge page to a normal huge page. That is
1464          * not critical, though, it just means the overall size of the
1465          * pool might be one hugepage larger than it needs to be, but
1466          * within all the constraints specified by the sysctls.
1467          */
1468         spin_lock(&hugetlb_lock);
1469         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1470                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1471                         break;
1472         }
1473
1474         while (count > persistent_huge_pages(h)) {
1475                 /*
1476                  * If this allocation races such that we no longer need the
1477                  * page, free_huge_page will handle it by freeing the page
1478                  * and reducing the surplus.
1479                  */
1480                 spin_unlock(&hugetlb_lock);
1481                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1482                 spin_lock(&hugetlb_lock);
1483                 if (!ret)
1484                         goto out;
1485
1486                 /* Bail for signals. Probably ctrl-c from user */
1487                 if (signal_pending(current))
1488                         goto out;
1489         }
1490
1491         /*
1492          * Decrease the pool size
1493          * First return free pages to the buddy allocator (being careful
1494          * to keep enough around to satisfy reservations).  Then place
1495          * pages into surplus state as needed so the pool will shrink
1496          * to the desired size as pages become free.
1497          *
1498          * By placing pages into the surplus state independent of the
1499          * overcommit value, we are allowing the surplus pool size to
1500          * exceed overcommit. There are few sane options here. Since
1501          * alloc_buddy_huge_page() is checking the global counter,
1502          * though, we'll note that we're not allowed to exceed surplus
1503          * and won't grow the pool anywhere else. Not until one of the
1504          * sysctls are changed, or the surplus pages go out of use.
1505          */
1506         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1507         min_count = max(count, min_count);
1508         try_to_free_low(h, min_count, nodes_allowed);
1509         while (min_count < persistent_huge_pages(h)) {
1510                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1511                         break;
1512                 cond_resched_lock(&hugetlb_lock);
1513         }
1514         while (count < persistent_huge_pages(h)) {
1515                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1516                         break;
1517         }
1518 out:
1519         ret = persistent_huge_pages(h);
1520         spin_unlock(&hugetlb_lock);
1521         return ret;
1522 }
1523
1524 #define HSTATE_ATTR_RO(_name) \
1525         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1526
1527 #define HSTATE_ATTR(_name) \
1528         static struct kobj_attribute _name##_attr = \
1529                 __ATTR(_name, 0644, _name##_show, _name##_store)
1530
1531 static struct kobject *hugepages_kobj;
1532 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1533
1534 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1535
1536 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1537 {
1538         int i;
1539
1540         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1541                 if (hstate_kobjs[i] == kobj) {
1542                         if (nidp)
1543                                 *nidp = NUMA_NO_NODE;
1544                         return &hstates[i];
1545                 }
1546
1547         return kobj_to_node_hstate(kobj, nidp);
1548 }
1549
1550 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1551                                         struct kobj_attribute *attr, char *buf)
1552 {
1553         struct hstate *h;
1554         unsigned long nr_huge_pages;
1555         int nid;
1556
1557         h = kobj_to_hstate(kobj, &nid);
1558         if (nid == NUMA_NO_NODE)
1559                 nr_huge_pages = h->nr_huge_pages;
1560         else
1561                 nr_huge_pages = h->nr_huge_pages_node[nid];
1562
1563         return sprintf(buf, "%lu\n", nr_huge_pages);
1564 }
1565
1566 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1567                         struct kobject *kobj, struct kobj_attribute *attr,
1568                         const char *buf, size_t len)
1569 {
1570         int err;
1571         int nid;
1572         unsigned long count;
1573         struct hstate *h;
1574         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1575
1576         err = kstrtoul(buf, 10, &count);
1577         if (err)
1578                 goto out;
1579
1580         h = kobj_to_hstate(kobj, &nid);
1581         if (h->order >= MAX_ORDER) {
1582                 err = -EINVAL;
1583                 goto out;
1584         }
1585
1586         if (nid == NUMA_NO_NODE) {
1587                 /*
1588                  * global hstate attribute
1589                  */
1590                 if (!(obey_mempolicy &&
1591                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1592                         NODEMASK_FREE(nodes_allowed);
1593                         nodes_allowed = &node_states[N_MEMORY];
1594                 }
1595         } else if (nodes_allowed) {
1596                 /*
1597                  * per node hstate attribute: adjust count to global,
1598                  * but restrict alloc/free to the specified node.
1599                  */
1600                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1601                 init_nodemask_of_node(nodes_allowed, nid);
1602         } else
1603                 nodes_allowed = &node_states[N_MEMORY];
1604
1605         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1606
1607         if (nodes_allowed != &node_states[N_MEMORY])
1608                 NODEMASK_FREE(nodes_allowed);
1609
1610         return len;
1611 out:
1612         NODEMASK_FREE(nodes_allowed);
1613         return err;
1614 }
1615
1616 static ssize_t nr_hugepages_show(struct kobject *kobj,
1617                                        struct kobj_attribute *attr, char *buf)
1618 {
1619         return nr_hugepages_show_common(kobj, attr, buf);
1620 }
1621
1622 static ssize_t nr_hugepages_store(struct kobject *kobj,
1623                struct kobj_attribute *attr, const char *buf, size_t len)
1624 {
1625         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1626 }
1627 HSTATE_ATTR(nr_hugepages);
1628
1629 #ifdef CONFIG_NUMA
1630
1631 /*
1632  * hstate attribute for optionally mempolicy-based constraint on persistent
1633  * huge page alloc/free.
1634  */
1635 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1636                                        struct kobj_attribute *attr, char *buf)
1637 {
1638         return nr_hugepages_show_common(kobj, attr, buf);
1639 }
1640
1641 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1642                struct kobj_attribute *attr, const char *buf, size_t len)
1643 {
1644         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1645 }
1646 HSTATE_ATTR(nr_hugepages_mempolicy);
1647 #endif
1648
1649
1650 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1651                                         struct kobj_attribute *attr, char *buf)
1652 {
1653         struct hstate *h = kobj_to_hstate(kobj, NULL);
1654         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1655 }
1656
1657 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1658                 struct kobj_attribute *attr, const char *buf, size_t count)
1659 {
1660         int err;
1661         unsigned long input;
1662         struct hstate *h = kobj_to_hstate(kobj, NULL);
1663
1664         if (h->order >= MAX_ORDER)
1665                 return -EINVAL;
1666
1667         err = kstrtoul(buf, 10, &input);
1668         if (err)
1669                 return err;
1670
1671         spin_lock(&hugetlb_lock);
1672         h->nr_overcommit_huge_pages = input;
1673         spin_unlock(&hugetlb_lock);
1674
1675         return count;
1676 }
1677 HSTATE_ATTR(nr_overcommit_hugepages);
1678
1679 static ssize_t free_hugepages_show(struct kobject *kobj,
1680                                         struct kobj_attribute *attr, char *buf)
1681 {
1682         struct hstate *h;
1683         unsigned long free_huge_pages;
1684         int nid;
1685
1686         h = kobj_to_hstate(kobj, &nid);
1687         if (nid == NUMA_NO_NODE)
1688                 free_huge_pages = h->free_huge_pages;
1689         else
1690                 free_huge_pages = h->free_huge_pages_node[nid];
1691
1692         return sprintf(buf, "%lu\n", free_huge_pages);
1693 }
1694 HSTATE_ATTR_RO(free_hugepages);
1695
1696 static ssize_t resv_hugepages_show(struct kobject *kobj,
1697                                         struct kobj_attribute *attr, char *buf)
1698 {
1699         struct hstate *h = kobj_to_hstate(kobj, NULL);
1700         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1701 }
1702 HSTATE_ATTR_RO(resv_hugepages);
1703
1704 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1705                                         struct kobj_attribute *attr, char *buf)
1706 {
1707         struct hstate *h;
1708         unsigned long surplus_huge_pages;
1709         int nid;
1710
1711         h = kobj_to_hstate(kobj, &nid);
1712         if (nid == NUMA_NO_NODE)
1713                 surplus_huge_pages = h->surplus_huge_pages;
1714         else
1715                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1716
1717         return sprintf(buf, "%lu\n", surplus_huge_pages);
1718 }
1719 HSTATE_ATTR_RO(surplus_hugepages);
1720
1721 static struct attribute *hstate_attrs[] = {
1722         &nr_hugepages_attr.attr,
1723         &nr_overcommit_hugepages_attr.attr,
1724         &free_hugepages_attr.attr,
1725         &resv_hugepages_attr.attr,
1726         &surplus_hugepages_attr.attr,
1727 #ifdef CONFIG_NUMA
1728         &nr_hugepages_mempolicy_attr.attr,
1729 #endif
1730         NULL,
1731 };
1732
1733 static struct attribute_group hstate_attr_group = {
1734         .attrs = hstate_attrs,
1735 };
1736
1737 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1738                                     struct kobject **hstate_kobjs,
1739                                     struct attribute_group *hstate_attr_group)
1740 {
1741         int retval;
1742         int hi = hstate_index(h);
1743
1744         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1745         if (!hstate_kobjs[hi])
1746                 return -ENOMEM;
1747
1748         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1749         if (retval)
1750                 kobject_put(hstate_kobjs[hi]);
1751
1752         return retval;
1753 }
1754
1755 static void __init hugetlb_sysfs_init(void)
1756 {
1757         struct hstate *h;
1758         int err;
1759
1760         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1761         if (!hugepages_kobj)
1762                 return;
1763
1764         for_each_hstate(h) {
1765                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1766                                          hstate_kobjs, &hstate_attr_group);
1767                 if (err)
1768                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1769         }
1770 }
1771
1772 #ifdef CONFIG_NUMA
1773
1774 /*
1775  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1776  * with node devices in node_devices[] using a parallel array.  The array
1777  * index of a node device or _hstate == node id.
1778  * This is here to avoid any static dependency of the node device driver, in
1779  * the base kernel, on the hugetlb module.
1780  */
1781 struct node_hstate {
1782         struct kobject          *hugepages_kobj;
1783         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1784 };
1785 struct node_hstate node_hstates[MAX_NUMNODES];
1786
1787 /*
1788  * A subset of global hstate attributes for node devices
1789  */
1790 static struct attribute *per_node_hstate_attrs[] = {
1791         &nr_hugepages_attr.attr,
1792         &free_hugepages_attr.attr,
1793         &surplus_hugepages_attr.attr,
1794         NULL,
1795 };
1796
1797 static struct attribute_group per_node_hstate_attr_group = {
1798         .attrs = per_node_hstate_attrs,
1799 };
1800
1801 /*
1802  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1803  * Returns node id via non-NULL nidp.
1804  */
1805 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1806 {
1807         int nid;
1808
1809         for (nid = 0; nid < nr_node_ids; nid++) {
1810                 struct node_hstate *nhs = &node_hstates[nid];
1811                 int i;
1812                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1813                         if (nhs->hstate_kobjs[i] == kobj) {
1814                                 if (nidp)
1815                                         *nidp = nid;
1816                                 return &hstates[i];
1817                         }
1818         }
1819
1820         BUG();
1821         return NULL;
1822 }
1823
1824 /*
1825  * Unregister hstate attributes from a single node device.
1826  * No-op if no hstate attributes attached.
1827  */
1828 static void hugetlb_unregister_node(struct node *node)
1829 {
1830         struct hstate *h;
1831         struct node_hstate *nhs = &node_hstates[node->dev.id];
1832
1833         if (!nhs->hugepages_kobj)
1834                 return;         /* no hstate attributes */
1835
1836         for_each_hstate(h) {
1837                 int idx = hstate_index(h);
1838                 if (nhs->hstate_kobjs[idx]) {
1839                         kobject_put(nhs->hstate_kobjs[idx]);
1840                         nhs->hstate_kobjs[idx] = NULL;
1841                 }
1842         }
1843
1844         kobject_put(nhs->hugepages_kobj);
1845         nhs->hugepages_kobj = NULL;
1846 }
1847
1848 /*
1849  * hugetlb module exit:  unregister hstate attributes from node devices
1850  * that have them.
1851  */
1852 static void hugetlb_unregister_all_nodes(void)
1853 {
1854         int nid;
1855
1856         /*
1857          * disable node device registrations.
1858          */
1859         register_hugetlbfs_with_node(NULL, NULL);
1860
1861         /*
1862          * remove hstate attributes from any nodes that have them.
1863          */
1864         for (nid = 0; nid < nr_node_ids; nid++)
1865                 hugetlb_unregister_node(node_devices[nid]);
1866 }
1867
1868 /*
1869  * Register hstate attributes for a single node device.
1870  * No-op if attributes already registered.
1871  */
1872 static void hugetlb_register_node(struct node *node)
1873 {
1874         struct hstate *h;
1875         struct node_hstate *nhs = &node_hstates[node->dev.id];
1876         int err;
1877
1878         if (nhs->hugepages_kobj)
1879                 return;         /* already allocated */
1880
1881         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1882                                                         &node->dev.kobj);
1883         if (!nhs->hugepages_kobj)
1884                 return;
1885
1886         for_each_hstate(h) {
1887                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1888                                                 nhs->hstate_kobjs,
1889                                                 &per_node_hstate_attr_group);
1890                 if (err) {
1891                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1892                                 h->name, node->dev.id);
1893                         hugetlb_unregister_node(node);
1894                         break;
1895                 }
1896         }
1897 }
1898
1899 /*
1900  * hugetlb init time:  register hstate attributes for all registered node
1901  * devices of nodes that have memory.  All on-line nodes should have
1902  * registered their associated device by this time.
1903  */
1904 static void hugetlb_register_all_nodes(void)
1905 {
1906         int nid;
1907
1908         for_each_node_state(nid, N_MEMORY) {
1909                 struct node *node = node_devices[nid];
1910                 if (node->dev.id == nid)
1911                         hugetlb_register_node(node);
1912         }
1913
1914         /*
1915          * Let the node device driver know we're here so it can
1916          * [un]register hstate attributes on node hotplug.
1917          */
1918         register_hugetlbfs_with_node(hugetlb_register_node,
1919                                      hugetlb_unregister_node);
1920 }
1921 #else   /* !CONFIG_NUMA */
1922
1923 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1924 {
1925         BUG();
1926         if (nidp)
1927                 *nidp = -1;
1928         return NULL;
1929 }
1930
1931 static void hugetlb_unregister_all_nodes(void) { }
1932
1933 static void hugetlb_register_all_nodes(void) { }
1934
1935 #endif
1936
1937 static void __exit hugetlb_exit(void)
1938 {
1939         struct hstate *h;
1940
1941         hugetlb_unregister_all_nodes();
1942
1943         for_each_hstate(h) {
1944                 kobject_put(hstate_kobjs[hstate_index(h)]);
1945         }
1946
1947         kobject_put(hugepages_kobj);
1948 }
1949 module_exit(hugetlb_exit);
1950
1951 static int __init hugetlb_init(void)
1952 {
1953         /* Some platform decide whether they support huge pages at boot
1954          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1955          * there is no such support
1956          */
1957         if (HPAGE_SHIFT == 0)
1958                 return 0;
1959
1960         if (!size_to_hstate(default_hstate_size)) {
1961                 default_hstate_size = HPAGE_SIZE;
1962                 if (!size_to_hstate(default_hstate_size))
1963                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1964         }
1965         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1966         if (default_hstate_max_huge_pages)
1967                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1968
1969         hugetlb_init_hstates();
1970         gather_bootmem_prealloc();
1971         report_hugepages();
1972
1973         hugetlb_sysfs_init();
1974         hugetlb_register_all_nodes();
1975         hugetlb_cgroup_file_init();
1976
1977         return 0;
1978 }
1979 module_init(hugetlb_init);
1980
1981 /* Should be called on processing a hugepagesz=... option */
1982 void __init hugetlb_add_hstate(unsigned order)
1983 {
1984         struct hstate *h;
1985         unsigned long i;
1986
1987         if (size_to_hstate(PAGE_SIZE << order)) {
1988                 pr_warning("hugepagesz= specified twice, ignoring\n");
1989                 return;
1990         }
1991         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1992         BUG_ON(order == 0);
1993         h = &hstates[hugetlb_max_hstate++];
1994         h->order = order;
1995         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1996         h->nr_huge_pages = 0;
1997         h->free_huge_pages = 0;
1998         for (i = 0; i < MAX_NUMNODES; ++i)
1999                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2000         INIT_LIST_HEAD(&h->hugepage_activelist);
2001         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2002         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2003         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2004                                         huge_page_size(h)/1024);
2005
2006         parsed_hstate = h;
2007 }
2008
2009 static int __init hugetlb_nrpages_setup(char *s)
2010 {
2011         unsigned long *mhp;
2012         static unsigned long *last_mhp;
2013
2014         /*
2015          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2016          * so this hugepages= parameter goes to the "default hstate".
2017          */
2018         if (!hugetlb_max_hstate)
2019                 mhp = &default_hstate_max_huge_pages;
2020         else
2021                 mhp = &parsed_hstate->max_huge_pages;
2022
2023         if (mhp == last_mhp) {
2024                 pr_warning("hugepages= specified twice without "
2025                            "interleaving hugepagesz=, ignoring\n");
2026                 return 1;
2027         }
2028
2029         if (sscanf(s, "%lu", mhp) <= 0)
2030                 *mhp = 0;
2031
2032         /*
2033          * Global state is always initialized later in hugetlb_init.
2034          * But we need to allocate >= MAX_ORDER hstates here early to still
2035          * use the bootmem allocator.
2036          */
2037         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2038                 hugetlb_hstate_alloc_pages(parsed_hstate);
2039
2040         last_mhp = mhp;
2041
2042         return 1;
2043 }
2044 __setup("hugepages=", hugetlb_nrpages_setup);
2045
2046 static int __init hugetlb_default_setup(char *s)
2047 {
2048         default_hstate_size = memparse(s, &s);
2049         return 1;
2050 }
2051 __setup("default_hugepagesz=", hugetlb_default_setup);
2052
2053 static unsigned int cpuset_mems_nr(unsigned int *array)
2054 {
2055         int node;
2056         unsigned int nr = 0;
2057
2058         for_each_node_mask(node, cpuset_current_mems_allowed)
2059                 nr += array[node];
2060
2061         return nr;
2062 }
2063
2064 #ifdef CONFIG_SYSCTL
2065 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2066                          struct ctl_table *table, int write,
2067                          void __user *buffer, size_t *length, loff_t *ppos)
2068 {
2069         struct hstate *h = &default_hstate;
2070         unsigned long tmp;
2071         int ret;
2072
2073         tmp = h->max_huge_pages;
2074
2075         if (write && h->order >= MAX_ORDER)
2076                 return -EINVAL;
2077
2078         table->data = &tmp;
2079         table->maxlen = sizeof(unsigned long);
2080         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2081         if (ret)
2082                 goto out;
2083
2084         if (write) {
2085                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2086                                                 GFP_KERNEL | __GFP_NORETRY);
2087                 if (!(obey_mempolicy &&
2088                                init_nodemask_of_mempolicy(nodes_allowed))) {
2089                         NODEMASK_FREE(nodes_allowed);
2090                         nodes_allowed = &node_states[N_MEMORY];
2091                 }
2092                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2093
2094                 if (nodes_allowed != &node_states[N_MEMORY])
2095                         NODEMASK_FREE(nodes_allowed);
2096         }
2097 out:
2098         return ret;
2099 }
2100
2101 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2102                           void __user *buffer, size_t *length, loff_t *ppos)
2103 {
2104
2105         return hugetlb_sysctl_handler_common(false, table, write,
2106                                                         buffer, length, ppos);
2107 }
2108
2109 #ifdef CONFIG_NUMA
2110 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2111                           void __user *buffer, size_t *length, loff_t *ppos)
2112 {
2113         return hugetlb_sysctl_handler_common(true, table, write,
2114                                                         buffer, length, ppos);
2115 }
2116 #endif /* CONFIG_NUMA */
2117
2118 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2119                         void __user *buffer,
2120                         size_t *length, loff_t *ppos)
2121 {
2122         struct hstate *h = &default_hstate;
2123         unsigned long tmp;
2124         int ret;
2125
2126         tmp = h->nr_overcommit_huge_pages;
2127
2128         if (write && h->order >= MAX_ORDER)
2129                 return -EINVAL;
2130
2131         table->data = &tmp;
2132         table->maxlen = sizeof(unsigned long);
2133         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2134         if (ret)
2135                 goto out;
2136
2137         if (write) {
2138                 spin_lock(&hugetlb_lock);
2139                 h->nr_overcommit_huge_pages = tmp;
2140                 spin_unlock(&hugetlb_lock);
2141         }
2142 out:
2143         return ret;
2144 }
2145
2146 #endif /* CONFIG_SYSCTL */
2147
2148 void hugetlb_report_meminfo(struct seq_file *m)
2149 {
2150         struct hstate *h = &default_hstate;
2151         seq_printf(m,
2152                         "HugePages_Total:   %5lu\n"
2153                         "HugePages_Free:    %5lu\n"
2154                         "HugePages_Rsvd:    %5lu\n"
2155                         "HugePages_Surp:    %5lu\n"
2156                         "Hugepagesize:   %8lu kB\n",
2157                         h->nr_huge_pages,
2158                         h->free_huge_pages,
2159                         h->resv_huge_pages,
2160                         h->surplus_huge_pages,
2161                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2162 }
2163
2164 int hugetlb_report_node_meminfo(int nid, char *buf)
2165 {
2166         struct hstate *h = &default_hstate;
2167         return sprintf(buf,
2168                 "Node %d HugePages_Total: %5u\n"
2169                 "Node %d HugePages_Free:  %5u\n"
2170                 "Node %d HugePages_Surp:  %5u\n",
2171                 nid, h->nr_huge_pages_node[nid],
2172                 nid, h->free_huge_pages_node[nid],
2173                 nid, h->surplus_huge_pages_node[nid]);
2174 }
2175
2176 void hugetlb_show_meminfo(void)
2177 {
2178         struct hstate *h;
2179         int nid;
2180
2181         for_each_node_state(nid, N_MEMORY)
2182                 for_each_hstate(h)
2183                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2184                                 nid,
2185                                 h->nr_huge_pages_node[nid],
2186                                 h->free_huge_pages_node[nid],
2187                                 h->surplus_huge_pages_node[nid],
2188                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2189 }
2190
2191 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2192 unsigned long hugetlb_total_pages(void)
2193 {
2194         struct hstate *h;
2195         unsigned long nr_total_pages = 0;
2196
2197         for_each_hstate(h)
2198                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2199         return nr_total_pages;
2200 }
2201
2202 static int hugetlb_acct_memory(struct hstate *h, long delta)
2203 {
2204         int ret = -ENOMEM;
2205
2206         spin_lock(&hugetlb_lock);
2207         /*
2208          * When cpuset is configured, it breaks the strict hugetlb page
2209          * reservation as the accounting is done on a global variable. Such
2210          * reservation is completely rubbish in the presence of cpuset because
2211          * the reservation is not checked against page availability for the
2212          * current cpuset. Application can still potentially OOM'ed by kernel
2213          * with lack of free htlb page in cpuset that the task is in.
2214          * Attempt to enforce strict accounting with cpuset is almost
2215          * impossible (or too ugly) because cpuset is too fluid that
2216          * task or memory node can be dynamically moved between cpusets.
2217          *
2218          * The change of semantics for shared hugetlb mapping with cpuset is
2219          * undesirable. However, in order to preserve some of the semantics,
2220          * we fall back to check against current free page availability as
2221          * a best attempt and hopefully to minimize the impact of changing
2222          * semantics that cpuset has.
2223          */
2224         if (delta > 0) {
2225                 if (gather_surplus_pages(h, delta) < 0)
2226                         goto out;
2227
2228                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2229                         return_unused_surplus_pages(h, delta);
2230                         goto out;
2231                 }
2232         }
2233
2234         ret = 0;
2235         if (delta < 0)
2236                 return_unused_surplus_pages(h, (unsigned long) -delta);
2237
2238 out:
2239         spin_unlock(&hugetlb_lock);
2240         return ret;
2241 }
2242
2243 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2244 {
2245         struct resv_map *resv = vma_resv_map(vma);
2246
2247         /*
2248          * This new VMA should share its siblings reservation map if present.
2249          * The VMA will only ever have a valid reservation map pointer where
2250          * it is being copied for another still existing VMA.  As that VMA
2251          * has a reference to the reservation map it cannot disappear until
2252          * after this open call completes.  It is therefore safe to take a
2253          * new reference here without additional locking.
2254          */
2255         if (resv)
2256                 kref_get(&resv->refs);
2257 }
2258
2259 static void resv_map_put(struct vm_area_struct *vma)
2260 {
2261         struct resv_map *resv = vma_resv_map(vma);
2262
2263         if (!resv)
2264                 return;
2265         kref_put(&resv->refs, resv_map_release);
2266 }
2267
2268 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2269 {
2270         struct hstate *h = hstate_vma(vma);
2271         struct resv_map *resv = vma_resv_map(vma);
2272         struct hugepage_subpool *spool = subpool_vma(vma);
2273         unsigned long reserve;
2274         unsigned long start;
2275         unsigned long end;
2276
2277         if (resv) {
2278                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2279                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2280
2281                 reserve = (end - start) -
2282                         region_count(&resv->regions, start, end);
2283
2284                 resv_map_put(vma);
2285
2286                 if (reserve) {
2287                         hugetlb_acct_memory(h, -reserve);
2288                         hugepage_subpool_put_pages(spool, reserve);
2289                 }
2290         }
2291 }
2292
2293 /*
2294  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2295  * handle_mm_fault() to try to instantiate regular-sized pages in the
2296  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2297  * this far.
2298  */
2299 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2300 {
2301         BUG();
2302         return 0;
2303 }
2304
2305 const struct vm_operations_struct hugetlb_vm_ops = {
2306         .fault = hugetlb_vm_op_fault,
2307         .open = hugetlb_vm_op_open,
2308         .close = hugetlb_vm_op_close,
2309 };
2310
2311 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2312                                 int writable)
2313 {
2314         pte_t entry;
2315
2316         if (writable) {
2317                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2318                                          vma->vm_page_prot)));
2319         } else {
2320                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2321                                            vma->vm_page_prot));
2322         }
2323         entry = pte_mkyoung(entry);
2324         entry = pte_mkhuge(entry);
2325         entry = arch_make_huge_pte(entry, vma, page, writable);
2326
2327         return entry;
2328 }
2329
2330 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2331                                    unsigned long address, pte_t *ptep)
2332 {
2333         pte_t entry;
2334
2335         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2336         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2337                 update_mmu_cache(vma, address, ptep);
2338 }
2339
2340
2341 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2342                             struct vm_area_struct *vma)
2343 {
2344         pte_t *src_pte, *dst_pte, entry;
2345         struct page *ptepage;
2346         unsigned long addr;
2347         int cow;
2348         struct hstate *h = hstate_vma(vma);
2349         unsigned long sz = huge_page_size(h);
2350         unsigned long mmun_start;       /* For mmu_notifiers */
2351         unsigned long mmun_end;         /* For mmu_notifiers */
2352         int ret = 0;
2353
2354         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2355
2356         mmun_start = vma->vm_start;
2357         mmun_end = vma->vm_end;
2358         if (cow)
2359                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2360
2361         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2362                 spinlock_t *src_ptl, *dst_ptl;
2363                 src_pte = huge_pte_offset(src, addr);
2364                 if (!src_pte)
2365                         continue;
2366                 dst_pte = huge_pte_alloc(dst, addr, sz);
2367                 if (!dst_pte) {
2368                         ret = -ENOMEM;
2369                         break;
2370                 }
2371
2372                 /* If the pagetables are shared don't copy or take references */
2373                 if (dst_pte == src_pte)
2374                         continue;
2375
2376                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2377                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2378                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2379                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2380                         if (cow)
2381                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2382                         entry = huge_ptep_get(src_pte);
2383                         ptepage = pte_page(entry);
2384                         get_page(ptepage);
2385                         page_dup_rmap(ptepage);
2386                         set_huge_pte_at(dst, addr, dst_pte, entry);
2387                 }
2388                 spin_unlock(src_ptl);
2389                 spin_unlock(dst_ptl);
2390         }
2391
2392         if (cow)
2393                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2394
2395         return ret;
2396 }
2397
2398 static int is_hugetlb_entry_migration(pte_t pte)
2399 {
2400         swp_entry_t swp;
2401
2402         if (huge_pte_none(pte) || pte_present(pte))
2403                 return 0;
2404         swp = pte_to_swp_entry(pte);
2405         if (non_swap_entry(swp) && is_migration_entry(swp))
2406                 return 1;
2407         else
2408                 return 0;
2409 }
2410
2411 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2412 {
2413         swp_entry_t swp;
2414
2415         if (huge_pte_none(pte) || pte_present(pte))
2416                 return 0;
2417         swp = pte_to_swp_entry(pte);
2418         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2419                 return 1;
2420         else
2421                 return 0;
2422 }
2423
2424 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2425                             unsigned long start, unsigned long end,
2426                             struct page *ref_page)
2427 {
2428         int force_flush = 0;
2429         struct mm_struct *mm = vma->vm_mm;
2430         unsigned long address;
2431         pte_t *ptep;
2432         pte_t pte;
2433         spinlock_t *ptl;
2434         struct page *page;
2435         struct hstate *h = hstate_vma(vma);
2436         unsigned long sz = huge_page_size(h);
2437         const unsigned long mmun_start = start; /* For mmu_notifiers */
2438         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2439
2440         WARN_ON(!is_vm_hugetlb_page(vma));
2441         BUG_ON(start & ~huge_page_mask(h));
2442         BUG_ON(end & ~huge_page_mask(h));
2443
2444         tlb_start_vma(tlb, vma);
2445         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2446 again:
2447         for (address = start; address < end; address += sz) {
2448                 ptep = huge_pte_offset(mm, address);
2449                 if (!ptep)
2450                         continue;
2451
2452                 ptl = huge_pte_lock(h, mm, ptep);
2453                 if (huge_pmd_unshare(mm, &address, ptep))
2454                         goto unlock;
2455
2456                 pte = huge_ptep_get(ptep);
2457                 if (huge_pte_none(pte))
2458                         goto unlock;
2459
2460                 /*
2461                  * HWPoisoned hugepage is already unmapped and dropped reference
2462                  */
2463                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2464                         huge_pte_clear(mm, address, ptep);
2465                         goto unlock;
2466                 }
2467
2468                 page = pte_page(pte);
2469                 /*
2470                  * If a reference page is supplied, it is because a specific
2471                  * page is being unmapped, not a range. Ensure the page we
2472                  * are about to unmap is the actual page of interest.
2473                  */
2474                 if (ref_page) {
2475                         if (page != ref_page)
2476                                 goto unlock;
2477
2478                         /*
2479                          * Mark the VMA as having unmapped its page so that
2480                          * future faults in this VMA will fail rather than
2481                          * looking like data was lost
2482                          */
2483                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2484                 }
2485
2486                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2487                 tlb_remove_tlb_entry(tlb, ptep, address);
2488                 if (huge_pte_dirty(pte))
2489                         set_page_dirty(page);
2490
2491                 page_remove_rmap(page);
2492                 force_flush = !__tlb_remove_page(tlb, page);
2493                 if (force_flush) {
2494                         spin_unlock(ptl);
2495                         break;
2496                 }
2497                 /* Bail out after unmapping reference page if supplied */
2498                 if (ref_page) {
2499                         spin_unlock(ptl);
2500                         break;
2501                 }
2502 unlock:
2503                 spin_unlock(ptl);
2504         }
2505         /*
2506          * mmu_gather ran out of room to batch pages, we break out of
2507          * the PTE lock to avoid doing the potential expensive TLB invalidate
2508          * and page-free while holding it.
2509          */
2510         if (force_flush) {
2511                 force_flush = 0;
2512                 tlb_flush_mmu(tlb);
2513                 if (address < end && !ref_page)
2514                         goto again;
2515         }
2516         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2517         tlb_end_vma(tlb, vma);
2518 }
2519
2520 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2521                           struct vm_area_struct *vma, unsigned long start,
2522                           unsigned long end, struct page *ref_page)
2523 {
2524         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2525
2526         /*
2527          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2528          * test will fail on a vma being torn down, and not grab a page table
2529          * on its way out.  We're lucky that the flag has such an appropriate
2530          * name, and can in fact be safely cleared here. We could clear it
2531          * before the __unmap_hugepage_range above, but all that's necessary
2532          * is to clear it before releasing the i_mmap_mutex. This works
2533          * because in the context this is called, the VMA is about to be
2534          * destroyed and the i_mmap_mutex is held.
2535          */
2536         vma->vm_flags &= ~VM_MAYSHARE;
2537 }
2538
2539 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2540                           unsigned long end, struct page *ref_page)
2541 {
2542         struct mm_struct *mm;
2543         struct mmu_gather tlb;
2544
2545         mm = vma->vm_mm;
2546
2547         tlb_gather_mmu(&tlb, mm, start, end);
2548         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2549         tlb_finish_mmu(&tlb, start, end);
2550 }
2551
2552 /*
2553  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2554  * mappping it owns the reserve page for. The intention is to unmap the page
2555  * from other VMAs and let the children be SIGKILLed if they are faulting the
2556  * same region.
2557  */
2558 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2559                                 struct page *page, unsigned long address)
2560 {
2561         struct hstate *h = hstate_vma(vma);
2562         struct vm_area_struct *iter_vma;
2563         struct address_space *mapping;
2564         pgoff_t pgoff;
2565
2566         /*
2567          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2568          * from page cache lookup which is in HPAGE_SIZE units.
2569          */
2570         address = address & huge_page_mask(h);
2571         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2572                         vma->vm_pgoff;
2573         mapping = file_inode(vma->vm_file)->i_mapping;
2574
2575         /*
2576          * Take the mapping lock for the duration of the table walk. As
2577          * this mapping should be shared between all the VMAs,
2578          * __unmap_hugepage_range() is called as the lock is already held
2579          */
2580         mutex_lock(&mapping->i_mmap_mutex);
2581         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2582                 /* Do not unmap the current VMA */
2583                 if (iter_vma == vma)
2584                         continue;
2585
2586                 /*
2587                  * Unmap the page from other VMAs without their own reserves.
2588                  * They get marked to be SIGKILLed if they fault in these
2589                  * areas. This is because a future no-page fault on this VMA
2590                  * could insert a zeroed page instead of the data existing
2591                  * from the time of fork. This would look like data corruption
2592                  */
2593                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2594                         unmap_hugepage_range(iter_vma, address,
2595                                              address + huge_page_size(h), page);
2596         }
2597         mutex_unlock(&mapping->i_mmap_mutex);
2598
2599         return 1;
2600 }
2601
2602 /*
2603  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2604  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2605  * cannot race with other handlers or page migration.
2606  * Keep the pte_same checks anyway to make transition from the mutex easier.
2607  */
2608 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2609                         unsigned long address, pte_t *ptep, pte_t pte,
2610                         struct page *pagecache_page, spinlock_t *ptl)
2611 {
2612         struct hstate *h = hstate_vma(vma);
2613         struct page *old_page, *new_page;
2614         int outside_reserve = 0;
2615         unsigned long mmun_start;       /* For mmu_notifiers */
2616         unsigned long mmun_end;         /* For mmu_notifiers */
2617
2618         old_page = pte_page(pte);
2619
2620 retry_avoidcopy:
2621         /* If no-one else is actually using this page, avoid the copy
2622          * and just make the page writable */
2623         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2624                 page_move_anon_rmap(old_page, vma, address);
2625                 set_huge_ptep_writable(vma, address, ptep);
2626                 return 0;
2627         }
2628
2629         /*
2630          * If the process that created a MAP_PRIVATE mapping is about to
2631          * perform a COW due to a shared page count, attempt to satisfy
2632          * the allocation without using the existing reserves. The pagecache
2633          * page is used to determine if the reserve at this address was
2634          * consumed or not. If reserves were used, a partial faulted mapping
2635          * at the time of fork() could consume its reserves on COW instead
2636          * of the full address range.
2637          */
2638         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2639                         old_page != pagecache_page)
2640                 outside_reserve = 1;
2641
2642         page_cache_get(old_page);
2643
2644         /* Drop page table lock as buddy allocator may be called */
2645         spin_unlock(ptl);
2646         new_page = alloc_huge_page(vma, address, outside_reserve);
2647
2648         if (IS_ERR(new_page)) {
2649                 long err = PTR_ERR(new_page);
2650                 page_cache_release(old_page);
2651
2652                 /*
2653                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2654                  * it is due to references held by a child and an insufficient
2655                  * huge page pool. To guarantee the original mappers
2656                  * reliability, unmap the page from child processes. The child
2657                  * may get SIGKILLed if it later faults.
2658                  */
2659                 if (outside_reserve) {
2660                         BUG_ON(huge_pte_none(pte));
2661                         if (unmap_ref_private(mm, vma, old_page, address)) {
2662                                 BUG_ON(huge_pte_none(pte));
2663                                 spin_lock(ptl);
2664                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2665                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2666                                         goto retry_avoidcopy;
2667                                 /*
2668                                  * race occurs while re-acquiring page table
2669                                  * lock, and our job is done.
2670                                  */
2671                                 return 0;
2672                         }
2673                         WARN_ON_ONCE(1);
2674                 }
2675
2676                 /* Caller expects lock to be held */
2677                 spin_lock(ptl);
2678                 if (err == -ENOMEM)
2679                         return VM_FAULT_OOM;
2680                 else
2681                         return VM_FAULT_SIGBUS;
2682         }
2683
2684         /*
2685          * When the original hugepage is shared one, it does not have
2686          * anon_vma prepared.
2687          */
2688         if (unlikely(anon_vma_prepare(vma))) {
2689                 page_cache_release(new_page);
2690                 page_cache_release(old_page);
2691                 /* Caller expects lock to be held */
2692                 spin_lock(ptl);
2693                 return VM_FAULT_OOM;
2694         }
2695
2696         copy_user_huge_page(new_page, old_page, address, vma,
2697                             pages_per_huge_page(h));
2698         __SetPageUptodate(new_page);
2699
2700         mmun_start = address & huge_page_mask(h);
2701         mmun_end = mmun_start + huge_page_size(h);
2702         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2703         /*
2704          * Retake the page table lock to check for racing updates
2705          * before the page tables are altered
2706          */
2707         spin_lock(ptl);
2708         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2709         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2710                 ClearPagePrivate(new_page);
2711
2712                 /* Break COW */
2713                 huge_ptep_clear_flush(vma, address, ptep);
2714                 set_huge_pte_at(mm, address, ptep,
2715                                 make_huge_pte(vma, new_page, 1));
2716                 page_remove_rmap(old_page);
2717                 hugepage_add_new_anon_rmap(new_page, vma, address);
2718                 /* Make the old page be freed below */
2719                 new_page = old_page;
2720         }
2721         spin_unlock(ptl);
2722         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2723         page_cache_release(new_page);
2724         page_cache_release(old_page);
2725
2726         /* Caller expects lock to be held */
2727         spin_lock(ptl);
2728         return 0;
2729 }
2730
2731 /* Return the pagecache page at a given address within a VMA */
2732 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2733                         struct vm_area_struct *vma, unsigned long address)
2734 {
2735         struct address_space *mapping;
2736         pgoff_t idx;
2737
2738         mapping = vma->vm_file->f_mapping;
2739         idx = vma_hugecache_offset(h, vma, address);
2740
2741         return find_lock_page(mapping, idx);
2742 }
2743
2744 /*
2745  * Return whether there is a pagecache page to back given address within VMA.
2746  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2747  */
2748 static bool hugetlbfs_pagecache_present(struct hstate *h,
2749                         struct vm_area_struct *vma, unsigned long address)
2750 {
2751         struct address_space *mapping;
2752         pgoff_t idx;
2753         struct page *page;
2754
2755         mapping = vma->vm_file->f_mapping;
2756         idx = vma_hugecache_offset(h, vma, address);
2757
2758         page = find_get_page(mapping, idx);
2759         if (page)
2760                 put_page(page);
2761         return page != NULL;
2762 }
2763
2764 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2765                         unsigned long address, pte_t *ptep, unsigned int flags)
2766 {
2767         struct hstate *h = hstate_vma(vma);
2768         int ret = VM_FAULT_SIGBUS;
2769         int anon_rmap = 0;
2770         pgoff_t idx;
2771         unsigned long size;
2772         struct page *page;
2773         struct address_space *mapping;
2774         pte_t new_pte;
2775         spinlock_t *ptl;
2776
2777         /*
2778          * Currently, we are forced to kill the process in the event the
2779          * original mapper has unmapped pages from the child due to a failed
2780          * COW. Warn that such a situation has occurred as it may not be obvious
2781          */
2782         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2783                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2784                            current->pid);
2785                 return ret;
2786         }
2787
2788         mapping = vma->vm_file->f_mapping;
2789         idx = vma_hugecache_offset(h, vma, address);
2790
2791         /*
2792          * Use page lock to guard against racing truncation
2793          * before we get page_table_lock.
2794          */
2795 retry:
2796         page = find_lock_page(mapping, idx);
2797         if (!page) {
2798                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2799                 if (idx >= size)
2800                         goto out;
2801                 page = alloc_huge_page(vma, address, 0);
2802                 if (IS_ERR(page)) {
2803                         ret = PTR_ERR(page);
2804                         if (ret == -ENOMEM)
2805                                 ret = VM_FAULT_OOM;
2806                         else
2807                                 ret = VM_FAULT_SIGBUS;
2808                         goto out;
2809                 }
2810                 clear_huge_page(page, address, pages_per_huge_page(h));
2811                 __SetPageUptodate(page);
2812
2813                 if (vma->vm_flags & VM_MAYSHARE) {
2814                         int err;
2815                         struct inode *inode = mapping->host;
2816
2817                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2818                         if (err) {
2819                                 put_page(page);
2820                                 if (err == -EEXIST)
2821                                         goto retry;
2822                                 goto out;
2823                         }
2824                         ClearPagePrivate(page);
2825
2826                         spin_lock(&inode->i_lock);
2827                         inode->i_blocks += blocks_per_huge_page(h);
2828                         spin_unlock(&inode->i_lock);
2829                 } else {
2830                         lock_page(page);
2831                         if (unlikely(anon_vma_prepare(vma))) {
2832                                 ret = VM_FAULT_OOM;
2833                                 goto backout_unlocked;
2834                         }
2835                         anon_rmap = 1;
2836                 }
2837         } else {
2838                 /*
2839                  * If memory error occurs between mmap() and fault, some process
2840                  * don't have hwpoisoned swap entry for errored virtual address.
2841                  * So we need to block hugepage fault by PG_hwpoison bit check.
2842                  */
2843                 if (unlikely(PageHWPoison(page))) {
2844                         ret = VM_FAULT_HWPOISON |
2845                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2846                         goto backout_unlocked;
2847                 }
2848         }
2849
2850         /*
2851          * If we are going to COW a private mapping later, we examine the
2852          * pending reservations for this page now. This will ensure that
2853          * any allocations necessary to record that reservation occur outside
2854          * the spinlock.
2855          */
2856         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2857                 if (vma_needs_reservation(h, vma, address) < 0) {
2858                         ret = VM_FAULT_OOM;
2859                         goto backout_unlocked;
2860                 }
2861
2862         ptl = huge_pte_lockptr(h, mm, ptep);
2863         spin_lock(ptl);
2864         size = i_size_read(mapping->host) >> huge_page_shift(h);
2865         if (idx >= size)
2866                 goto backout;
2867
2868         ret = 0;
2869         if (!huge_pte_none(huge_ptep_get(ptep)))
2870                 goto backout;
2871
2872         if (anon_rmap) {
2873                 ClearPagePrivate(page);
2874                 hugepage_add_new_anon_rmap(page, vma, address);
2875         }
2876         else
2877                 page_dup_rmap(page);
2878         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2879                                 && (vma->vm_flags & VM_SHARED)));
2880         set_huge_pte_at(mm, address, ptep, new_pte);
2881
2882         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2883                 /* Optimization, do the COW without a second fault */
2884                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2885         }
2886
2887         spin_unlock(ptl);
2888         unlock_page(page);
2889 out:
2890         return ret;
2891
2892 backout:
2893         spin_unlock(ptl);
2894 backout_unlocked:
2895         unlock_page(page);
2896         put_page(page);
2897         goto out;
2898 }
2899
2900 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2901                         unsigned long address, unsigned int flags)
2902 {
2903         pte_t *ptep;
2904         pte_t entry;
2905         spinlock_t *ptl;
2906         int ret;
2907         struct page *page = NULL;
2908         struct page *pagecache_page = NULL;
2909         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2910         struct hstate *h = hstate_vma(vma);
2911
2912         address &= huge_page_mask(h);
2913
2914         ptep = huge_pte_offset(mm, address);
2915         if (ptep) {
2916                 entry = huge_ptep_get(ptep);
2917                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2918                         migration_entry_wait_huge(vma, mm, ptep);
2919                         return 0;
2920                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2921                         return VM_FAULT_HWPOISON_LARGE |
2922                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2923         }
2924
2925         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2926         if (!ptep)
2927                 return VM_FAULT_OOM;
2928
2929         /*
2930          * Serialize hugepage allocation and instantiation, so that we don't
2931          * get spurious allocation failures if two CPUs race to instantiate
2932          * the same page in the page cache.
2933          */
2934         mutex_lock(&hugetlb_instantiation_mutex);
2935         entry = huge_ptep_get(ptep);
2936         if (huge_pte_none(entry)) {
2937                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2938                 goto out_mutex;
2939         }
2940
2941         ret = 0;
2942
2943         /*
2944          * If we are going to COW the mapping later, we examine the pending
2945          * reservations for this page now. This will ensure that any
2946          * allocations necessary to record that reservation occur outside the
2947          * spinlock. For private mappings, we also lookup the pagecache
2948          * page now as it is used to determine if a reservation has been
2949          * consumed.
2950          */
2951         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2952                 if (vma_needs_reservation(h, vma, address) < 0) {
2953                         ret = VM_FAULT_OOM;
2954                         goto out_mutex;
2955                 }
2956
2957                 if (!(vma->vm_flags & VM_MAYSHARE))
2958                         pagecache_page = hugetlbfs_pagecache_page(h,
2959                                                                 vma, address);
2960         }
2961
2962         /*
2963          * hugetlb_cow() requires page locks of pte_page(entry) and
2964          * pagecache_page, so here we need take the former one
2965          * when page != pagecache_page or !pagecache_page.
2966          * Note that locking order is always pagecache_page -> page,
2967          * so no worry about deadlock.
2968          */
2969         page = pte_page(entry);
2970         get_page(page);
2971         if (page != pagecache_page)
2972                 lock_page(page);
2973
2974         ptl = huge_pte_lockptr(h, mm, ptep);
2975         spin_lock(ptl);
2976         /* Check for a racing update before calling hugetlb_cow */
2977         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2978                 goto out_ptl;
2979
2980
2981         if (flags & FAULT_FLAG_WRITE) {
2982                 if (!huge_pte_write(entry)) {
2983                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2984                                         pagecache_page, ptl);
2985                         goto out_ptl;
2986                 }
2987                 entry = huge_pte_mkdirty(entry);
2988         }
2989         entry = pte_mkyoung(entry);
2990         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2991                                                 flags & FAULT_FLAG_WRITE))
2992                 update_mmu_cache(vma, address, ptep);
2993
2994 out_ptl:
2995         spin_unlock(ptl);
2996
2997         if (pagecache_page) {
2998                 unlock_page(pagecache_page);
2999                 put_page(pagecache_page);
3000         }
3001         if (page != pagecache_page)
3002                 unlock_page(page);
3003         put_page(page);
3004
3005 out_mutex:
3006         mutex_unlock(&hugetlb_instantiation_mutex);
3007
3008         return ret;
3009 }
3010
3011 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3012                          struct page **pages, struct vm_area_struct **vmas,
3013                          unsigned long *position, unsigned long *nr_pages,
3014                          long i, unsigned int flags)
3015 {
3016         unsigned long pfn_offset;
3017         unsigned long vaddr = *position;
3018         unsigned long remainder = *nr_pages;
3019         struct hstate *h = hstate_vma(vma);
3020
3021         while (vaddr < vma->vm_end && remainder) {
3022                 pte_t *pte;
3023                 spinlock_t *ptl = NULL;
3024                 int absent;
3025                 struct page *page;
3026
3027                 /*
3028                  * Some archs (sparc64, sh*) have multiple pte_ts to
3029                  * each hugepage.  We have to make sure we get the
3030                  * first, for the page indexing below to work.
3031                  *
3032                  * Note that page table lock is not held when pte is null.
3033                  */
3034                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3035                 if (pte)
3036                         ptl = huge_pte_lock(h, mm, pte);
3037                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3038
3039                 /*
3040                  * When coredumping, it suits get_dump_page if we just return
3041                  * an error where there's an empty slot with no huge pagecache
3042                  * to back it.  This way, we avoid allocating a hugepage, and
3043                  * the sparse dumpfile avoids allocating disk blocks, but its
3044                  * huge holes still show up with zeroes where they need to be.
3045                  */
3046                 if (absent && (flags & FOLL_DUMP) &&
3047                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3048                         if (pte)
3049                                 spin_unlock(ptl);
3050                         remainder = 0;
3051                         break;
3052                 }
3053
3054                 /*
3055                  * We need call hugetlb_fault for both hugepages under migration
3056                  * (in which case hugetlb_fault waits for the migration,) and
3057                  * hwpoisoned hugepages (in which case we need to prevent the
3058                  * caller from accessing to them.) In order to do this, we use
3059                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3060                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3061                  * both cases, and because we can't follow correct pages
3062                  * directly from any kind of swap entries.
3063                  */
3064                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3065                     ((flags & FOLL_WRITE) &&
3066                       !huge_pte_write(huge_ptep_get(pte)))) {
3067                         int ret;
3068
3069                         if (pte)
3070                                 spin_unlock(ptl);
3071                         ret = hugetlb_fault(mm, vma, vaddr,
3072                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3073                         if (!(ret & VM_FAULT_ERROR))
3074                                 continue;
3075
3076                         remainder = 0;
3077                         break;
3078                 }
3079
3080                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3081                 page = pte_page(huge_ptep_get(pte));
3082 same_page:
3083                 if (pages) {
3084                         pages[i] = mem_map_offset(page, pfn_offset);
3085                         get_page_foll(pages[i]);
3086                 }
3087
3088                 if (vmas)
3089                         vmas[i] = vma;
3090
3091                 vaddr += PAGE_SIZE;
3092                 ++pfn_offset;
3093                 --remainder;
3094                 ++i;
3095                 if (vaddr < vma->vm_end && remainder &&
3096                                 pfn_offset < pages_per_huge_page(h)) {
3097                         /*
3098                          * We use pfn_offset to avoid touching the pageframes
3099                          * of this compound page.
3100                          */
3101                         goto same_page;
3102                 }
3103                 spin_unlock(ptl);
3104         }
3105         *nr_pages = remainder;
3106         *position = vaddr;
3107
3108         return i ? i : -EFAULT;
3109 }
3110
3111 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3112                 unsigned long address, unsigned long end, pgprot_t newprot)
3113 {
3114         struct mm_struct *mm = vma->vm_mm;
3115         unsigned long start = address;
3116         pte_t *ptep;
3117         pte_t pte;
3118         struct hstate *h = hstate_vma(vma);
3119         unsigned long pages = 0;
3120
3121         BUG_ON(address >= end);
3122         flush_cache_range(vma, address, end);
3123
3124         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3125         for (; address < end; address += huge_page_size(h)) {
3126                 spinlock_t *ptl;
3127                 ptep = huge_pte_offset(mm, address);
3128                 if (!ptep)
3129                         continue;
3130                 ptl = huge_pte_lock(h, mm, ptep);
3131                 if (huge_pmd_unshare(mm, &address, ptep)) {
3132                         pages++;
3133                         spin_unlock(ptl);
3134                         continue;
3135                 }
3136                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3137                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3138                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3139                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3140                         set_huge_pte_at(mm, address, ptep, pte);
3141                         pages++;
3142                 }
3143                 spin_unlock(ptl);
3144         }
3145         /*
3146          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3147          * may have cleared our pud entry and done put_page on the page table:
3148          * once we release i_mmap_mutex, another task can do the final put_page
3149          * and that page table be reused and filled with junk.
3150          */
3151         flush_tlb_range(vma, start, end);
3152         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3153
3154         return pages << h->order;
3155 }
3156
3157 int hugetlb_reserve_pages(struct inode *inode,
3158                                         long from, long to,
3159                                         struct vm_area_struct *vma,
3160                                         vm_flags_t vm_flags)
3161 {
3162         long ret, chg;
3163         struct hstate *h = hstate_inode(inode);
3164         struct hugepage_subpool *spool = subpool_inode(inode);
3165
3166         /*
3167          * Only apply hugepage reservation if asked. At fault time, an
3168          * attempt will be made for VM_NORESERVE to allocate a page
3169          * without using reserves
3170          */
3171         if (vm_flags & VM_NORESERVE)
3172                 return 0;
3173
3174         /*
3175          * Shared mappings base their reservation on the number of pages that
3176          * are already allocated on behalf of the file. Private mappings need
3177          * to reserve the full area even if read-only as mprotect() may be
3178          * called to make the mapping read-write. Assume !vma is a shm mapping
3179          */
3180         if (!vma || vma->vm_flags & VM_MAYSHARE)
3181                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3182         else {
3183                 struct resv_map *resv_map = resv_map_alloc();
3184                 if (!resv_map)
3185                         return -ENOMEM;
3186
3187                 chg = to - from;
3188
3189                 set_vma_resv_map(vma, resv_map);
3190                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3191         }
3192
3193         if (chg < 0) {
3194                 ret = chg;
3195                 goto out_err;
3196         }
3197
3198         /* There must be enough pages in the subpool for the mapping */
3199         if (hugepage_subpool_get_pages(spool, chg)) {
3200                 ret = -ENOSPC;
3201                 goto out_err;
3202         }
3203
3204         /*
3205          * Check enough hugepages are available for the reservation.
3206          * Hand the pages back to the subpool if there are not
3207          */
3208         ret = hugetlb_acct_memory(h, chg);
3209         if (ret < 0) {
3210                 hugepage_subpool_put_pages(spool, chg);
3211                 goto out_err;
3212         }
3213
3214         /*
3215          * Account for the reservations made. Shared mappings record regions
3216          * that have reservations as they are shared by multiple VMAs.
3217          * When the last VMA disappears, the region map says how much
3218          * the reservation was and the page cache tells how much of
3219          * the reservation was consumed. Private mappings are per-VMA and
3220          * only the consumed reservations are tracked. When the VMA
3221          * disappears, the original reservation is the VMA size and the
3222          * consumed reservations are stored in the map. Hence, nothing
3223          * else has to be done for private mappings here
3224          */
3225         if (!vma || vma->vm_flags & VM_MAYSHARE)
3226                 region_add(&inode->i_mapping->private_list, from, to);
3227         return 0;
3228 out_err:
3229         if (vma)
3230                 resv_map_put(vma);
3231         return ret;
3232 }
3233
3234 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3235 {
3236         struct hstate *h = hstate_inode(inode);
3237         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3238         struct hugepage_subpool *spool = subpool_inode(inode);
3239
3240         spin_lock(&inode->i_lock);
3241         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3242         spin_unlock(&inode->i_lock);
3243
3244         hugepage_subpool_put_pages(spool, (chg - freed));
3245         hugetlb_acct_memory(h, -(chg - freed));
3246 }
3247
3248 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3249 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3250                                 struct vm_area_struct *vma,
3251                                 unsigned long addr, pgoff_t idx)
3252 {
3253         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3254                                 svma->vm_start;
3255         unsigned long sbase = saddr & PUD_MASK;
3256         unsigned long s_end = sbase + PUD_SIZE;
3257
3258         /* Allow segments to share if only one is marked locked */
3259         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3260         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3261
3262         /*
3263          * match the virtual addresses, permission and the alignment of the
3264          * page table page.
3265          */
3266         if (pmd_index(addr) != pmd_index(saddr) ||
3267             vm_flags != svm_flags ||
3268             sbase < svma->vm_start || svma->vm_end < s_end)
3269                 return 0;
3270
3271         return saddr;
3272 }
3273
3274 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3275 {
3276         unsigned long base = addr & PUD_MASK;
3277         unsigned long end = base + PUD_SIZE;
3278
3279         /*
3280          * check on proper vm_flags and page table alignment
3281          */
3282         if (vma->vm_flags & VM_MAYSHARE &&
3283             vma->vm_start <= base && end <= vma->vm_end)
3284                 return 1;
3285         return 0;
3286 }
3287
3288 /*
3289  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3290  * and returns the corresponding pte. While this is not necessary for the
3291  * !shared pmd case because we can allocate the pmd later as well, it makes the
3292  * code much cleaner. pmd allocation is essential for the shared case because
3293  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3294  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3295  * bad pmd for sharing.
3296  */
3297 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3298 {
3299         struct vm_area_struct *vma = find_vma(mm, addr);
3300         struct address_space *mapping = vma->vm_file->f_mapping;
3301         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3302                         vma->vm_pgoff;
3303         struct vm_area_struct *svma;
3304         unsigned long saddr;
3305         pte_t *spte = NULL;
3306         pte_t *pte;
3307         spinlock_t *ptl;
3308
3309         if (!vma_shareable(vma, addr))
3310                 return (pte_t *)pmd_alloc(mm, pud, addr);
3311
3312         mutex_lock(&mapping->i_mmap_mutex);
3313         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3314                 if (svma == vma)
3315                         continue;
3316
3317                 saddr = page_table_shareable(svma, vma, addr, idx);
3318                 if (saddr) {
3319                         spte = huge_pte_offset(svma->vm_mm, saddr);
3320                         if (spte) {
3321                                 get_page(virt_to_page(spte));
3322                                 break;
3323                         }
3324                 }
3325         }
3326
3327         if (!spte)
3328                 goto out;
3329
3330         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3331         spin_lock(ptl);
3332         if (pud_none(*pud))
3333                 pud_populate(mm, pud,
3334                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3335         else
3336                 put_page(virt_to_page(spte));
3337         spin_unlock(ptl);
3338 out:
3339         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3340         mutex_unlock(&mapping->i_mmap_mutex);
3341         return pte;
3342 }
3343
3344 /*
3345  * unmap huge page backed by shared pte.
3346  *
3347  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3348  * indicated by page_count > 1, unmap is achieved by clearing pud and
3349  * decrementing the ref count. If count == 1, the pte page is not shared.
3350  *
3351  * called with page table lock held.
3352  *
3353  * returns: 1 successfully unmapped a shared pte page
3354  *          0 the underlying pte page is not shared, or it is the last user
3355  */
3356 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3357 {
3358         pgd_t *pgd = pgd_offset(mm, *addr);
3359         pud_t *pud = pud_offset(pgd, *addr);
3360
3361         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3362         if (page_count(virt_to_page(ptep)) == 1)
3363                 return 0;
3364
3365         pud_clear(pud);
3366         put_page(virt_to_page(ptep));
3367         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3368         return 1;
3369 }
3370 #define want_pmd_share()        (1)
3371 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3372 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3373 {
3374         return NULL;
3375 }
3376 #define want_pmd_share()        (0)
3377 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3378
3379 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3380 pte_t *huge_pte_alloc(struct mm_struct *mm,
3381                         unsigned long addr, unsigned long sz)
3382 {
3383         pgd_t *pgd;
3384         pud_t *pud;
3385         pte_t *pte = NULL;
3386
3387         pgd = pgd_offset(mm, addr);
3388         pud = pud_alloc(mm, pgd, addr);
3389         if (pud) {
3390                 if (sz == PUD_SIZE) {
3391                         pte = (pte_t *)pud;
3392                 } else {
3393                         BUG_ON(sz != PMD_SIZE);
3394                         if (want_pmd_share() && pud_none(*pud))
3395                                 pte = huge_pmd_share(mm, addr, pud);
3396                         else
3397                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3398                 }
3399         }
3400         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3401
3402         return pte;
3403 }
3404
3405 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3406 {
3407         pgd_t *pgd;
3408         pud_t *pud;
3409         pmd_t *pmd = NULL;
3410
3411         pgd = pgd_offset(mm, addr);
3412         if (pgd_present(*pgd)) {
3413                 pud = pud_offset(pgd, addr);
3414                 if (pud_present(*pud)) {
3415                         if (pud_huge(*pud))
3416                                 return (pte_t *)pud;
3417                         pmd = pmd_offset(pud, addr);
3418                 }
3419         }
3420         return (pte_t *) pmd;
3421 }
3422
3423 struct page *
3424 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3425                 pmd_t *pmd, int write)
3426 {
3427         struct page *page;
3428
3429         page = pte_page(*(pte_t *)pmd);
3430         if (page)
3431                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3432         return page;
3433 }
3434
3435 struct page *
3436 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3437                 pud_t *pud, int write)
3438 {
3439         struct page *page;
3440
3441         page = pte_page(*(pte_t *)pud);
3442         if (page)
3443                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3444         return page;
3445 }
3446
3447 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3448
3449 /* Can be overriden by architectures */
3450 __attribute__((weak)) struct page *
3451 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3452                pud_t *pud, int write)
3453 {
3454         BUG();
3455         return NULL;
3456 }
3457
3458 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3459
3460 #ifdef CONFIG_MEMORY_FAILURE
3461
3462 /* Should be called in hugetlb_lock */
3463 static int is_hugepage_on_freelist(struct page *hpage)
3464 {
3465         struct page *page;
3466         struct page *tmp;
3467         struct hstate *h = page_hstate(hpage);
3468         int nid = page_to_nid(hpage);
3469
3470         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3471                 if (page == hpage)
3472                         return 1;
3473         return 0;
3474 }
3475
3476 /*
3477  * This function is called from memory failure code.
3478  * Assume the caller holds page lock of the head page.
3479  */
3480 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3481 {
3482         struct hstate *h = page_hstate(hpage);
3483         int nid = page_to_nid(hpage);
3484         int ret = -EBUSY;
3485
3486         spin_lock(&hugetlb_lock);
3487         if (is_hugepage_on_freelist(hpage)) {
3488                 /*
3489                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3490                  * but dangling hpage->lru can trigger list-debug warnings
3491                  * (this happens when we call unpoison_memory() on it),
3492                  * so let it point to itself with list_del_init().
3493                  */
3494                 list_del_init(&hpage->lru);
3495                 set_page_refcounted(hpage);
3496                 h->free_huge_pages--;
3497                 h->free_huge_pages_node[nid]--;
3498                 ret = 0;
3499         }
3500         spin_unlock(&hugetlb_lock);
3501         return ret;
3502 }
3503 #endif
3504
3505 bool isolate_huge_page(struct page *page, struct list_head *list)
3506 {
3507         VM_BUG_ON_PAGE(!PageHead(page), page);
3508         if (!get_page_unless_zero(page))
3509                 return false;
3510         spin_lock(&hugetlb_lock);
3511         list_move_tail(&page->lru, list);
3512         spin_unlock(&hugetlb_lock);
3513         return true;
3514 }
3515
3516 void putback_active_hugepage(struct page *page)
3517 {
3518         VM_BUG_ON_PAGE(!PageHead(page), page);
3519         spin_lock(&hugetlb_lock);
3520         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3521         spin_unlock(&hugetlb_lock);
3522         put_page(page);
3523 }
3524
3525 bool is_hugepage_active(struct page *page)
3526 {
3527         VM_BUG_ON_PAGE(!PageHuge(page), page);
3528         /*
3529          * This function can be called for a tail page because the caller,
3530          * scan_movable_pages, scans through a given pfn-range which typically
3531          * covers one memory block. In systems using gigantic hugepage (1GB
3532          * for x86_64,) a hugepage is larger than a memory block, and we don't
3533          * support migrating such large hugepages for now, so return false
3534          * when called for tail pages.
3535          */
3536         if (PageTail(page))
3537                 return false;
3538         /*
3539          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3540          * so we should return false for them.
3541          */
3542         if (unlikely(PageHWPoison(page)))
3543                 return false;
3544         return page_count(page) > 0;
3545 }