]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg)
376                         return -ENOMEM;
377
378                 spin_lock(&resv->lock);
379                 list_add(&trg->link, &resv->region_cache);
380                 resv->region_cache_count++;
381                 goto retry_locked;
382         }
383
384         /* Locate the region we are before or in. */
385         list_for_each_entry(rg, head, link)
386                 if (f <= rg->to)
387                         break;
388
389         /* If we are below the current region then a new region is required.
390          * Subtle, allocate a new region at the position but make it zero
391          * size such that we can guarantee to record the reservation. */
392         if (&rg->link == head || t < rg->from) {
393                 if (!nrg) {
394                         resv->adds_in_progress--;
395                         spin_unlock(&resv->lock);
396                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397                         if (!nrg)
398                                 return -ENOMEM;
399
400                         nrg->from = f;
401                         nrg->to   = f;
402                         INIT_LIST_HEAD(&nrg->link);
403                         goto retry;
404                 }
405
406                 list_add(&nrg->link, rg->link.prev);
407                 chg = t - f;
408                 goto out_nrg;
409         }
410
411         /* Round our left edge to the current segment if it encloses us. */
412         if (f > rg->from)
413                 f = rg->from;
414         chg = t - f;
415
416         /* Check for and consume any regions we now overlap with. */
417         list_for_each_entry(rg, rg->link.prev, link) {
418                 if (&rg->link == head)
419                         break;
420                 if (rg->from > t)
421                         goto out;
422
423                 /* We overlap with this area, if it extends further than
424                  * us then we must extend ourselves.  Account for its
425                  * existing reservation. */
426                 if (rg->to > t) {
427                         chg += rg->to - t;
428                         t = rg->to;
429                 }
430                 chg -= rg->to - rg->from;
431         }
432
433 out:
434         spin_unlock(&resv->lock);
435         /*  We already know we raced and no longer need the new region */
436         kfree(nrg);
437         return chg;
438 out_nrg:
439         spin_unlock(&resv->lock);
440         return chg;
441 }
442
443 /*
444  * Abort the in progress add operation.  The adds_in_progress field
445  * of the resv_map keeps track of the operations in progress between
446  * calls to region_chg and region_add.  Operations are sometimes
447  * aborted after the call to region_chg.  In such cases, region_abort
448  * is called to decrement the adds_in_progress counter.
449  *
450  * NOTE: The range arguments [f, t) are not needed or used in this
451  * routine.  They are kept to make reading the calling code easier as
452  * arguments will match the associated region_chg call.
453  */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456         spin_lock(&resv->lock);
457         VM_BUG_ON(!resv->region_cache_count);
458         resv->adds_in_progress--;
459         spin_unlock(&resv->lock);
460 }
461
462 /*
463  * Delete the specified range [f, t) from the reserve map.  If the
464  * t parameter is LONG_MAX, this indicates that ALL regions after f
465  * should be deleted.  Locate the regions which intersect [f, t)
466  * and either trim, delete or split the existing regions.
467  *
468  * Returns the number of huge pages deleted from the reserve map.
469  * In the normal case, the return value is zero or more.  In the
470  * case where a region must be split, a new region descriptor must
471  * be allocated.  If the allocation fails, -ENOMEM will be returned.
472  * NOTE: If the parameter t == LONG_MAX, then we will never split
473  * a region and possibly return -ENOMEM.  Callers specifying
474  * t == LONG_MAX do not need to check for -ENOMEM error.
475  */
476 static long region_del(struct resv_map *resv, long f, long t)
477 {
478         struct list_head *head = &resv->regions;
479         struct file_region *rg, *trg;
480         struct file_region *nrg = NULL;
481         long del = 0;
482
483 retry:
484         spin_lock(&resv->lock);
485         list_for_each_entry_safe(rg, trg, head, link) {
486                 if (rg->to <= f)
487                         continue;
488                 if (rg->from >= t)
489                         break;
490
491                 if (f > rg->from && t < rg->to) { /* Must split region */
492                         /*
493                          * Check for an entry in the cache before dropping
494                          * lock and attempting allocation.
495                          */
496                         if (!nrg &&
497                             resv->region_cache_count > resv->adds_in_progress) {
498                                 nrg = list_first_entry(&resv->region_cache,
499                                                         struct file_region,
500                                                         link);
501                                 list_del(&nrg->link);
502                                 resv->region_cache_count--;
503                         }
504
505                         if (!nrg) {
506                                 spin_unlock(&resv->lock);
507                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508                                 if (!nrg)
509                                         return -ENOMEM;
510                                 goto retry;
511                         }
512
513                         del += t - f;
514
515                         /* New entry for end of split region */
516                         nrg->from = t;
517                         nrg->to = rg->to;
518                         INIT_LIST_HEAD(&nrg->link);
519
520                         /* Original entry is trimmed */
521                         rg->to = f;
522
523                         list_add(&nrg->link, &rg->link);
524                         nrg = NULL;
525                         break;
526                 }
527
528                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529                         del += rg->to - rg->from;
530                         list_del(&rg->link);
531                         kfree(rg);
532                         continue;
533                 }
534
535                 if (f <= rg->from) {    /* Trim beginning of region */
536                         del += t - rg->from;
537                         rg->from = t;
538                 } else {                /* Trim end of region */
539                         del += rg->to - f;
540                         rg->to = f;
541                 }
542         }
543
544         spin_unlock(&resv->lock);
545         kfree(nrg);
546         return del;
547 }
548
549 /*
550  * A rare out of memory error was encountered which prevented removal of
551  * the reserve map region for a page.  The huge page itself was free'ed
552  * and removed from the page cache.  This routine will adjust the subpool
553  * usage count, and the global reserve count if needed.  By incrementing
554  * these counts, the reserve map entry which could not be deleted will
555  * appear as a "reserved" entry instead of simply dangling with incorrect
556  * counts.
557  */
558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559 {
560         struct hugepage_subpool *spool = subpool_inode(inode);
561         long rsv_adjust;
562
563         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564         if (restore_reserve && rsv_adjust) {
565                 struct hstate *h = hstate_inode(inode);
566
567                 hugetlb_acct_memory(h, 1);
568         }
569 }
570
571 /*
572  * Count and return the number of huge pages in the reserve map
573  * that intersect with the range [f, t).
574  */
575 static long region_count(struct resv_map *resv, long f, long t)
576 {
577         struct list_head *head = &resv->regions;
578         struct file_region *rg;
579         long chg = 0;
580
581         spin_lock(&resv->lock);
582         /* Locate each segment we overlap with, and count that overlap. */
583         list_for_each_entry(rg, head, link) {
584                 long seg_from;
585                 long seg_to;
586
587                 if (rg->to <= f)
588                         continue;
589                 if (rg->from >= t)
590                         break;
591
592                 seg_from = max(rg->from, f);
593                 seg_to = min(rg->to, t);
594
595                 chg += seg_to - seg_from;
596         }
597         spin_unlock(&resv->lock);
598
599         return chg;
600 }
601
602 /*
603  * Convert the address within this vma to the page offset within
604  * the mapping, in pagecache page units; huge pages here.
605  */
606 static pgoff_t vma_hugecache_offset(struct hstate *h,
607                         struct vm_area_struct *vma, unsigned long address)
608 {
609         return ((address - vma->vm_start) >> huge_page_shift(h)) +
610                         (vma->vm_pgoff >> huge_page_order(h));
611 }
612
613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614                                      unsigned long address)
615 {
616         return vma_hugecache_offset(hstate_vma(vma), vma, address);
617 }
618
619 /*
620  * Return the size of the pages allocated when backing a VMA. In the majority
621  * cases this will be same size as used by the page table entries.
622  */
623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624 {
625         struct hstate *hstate;
626
627         if (!is_vm_hugetlb_page(vma))
628                 return PAGE_SIZE;
629
630         hstate = hstate_vma(vma);
631
632         return 1UL << huge_page_shift(hstate);
633 }
634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635
636 /*
637  * Return the page size being used by the MMU to back a VMA. In the majority
638  * of cases, the page size used by the kernel matches the MMU size. On
639  * architectures where it differs, an architecture-specific version of this
640  * function is required.
641  */
642 #ifndef vma_mmu_pagesize
643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644 {
645         return vma_kernel_pagesize(vma);
646 }
647 #endif
648
649 /*
650  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
651  * bits of the reservation map pointer, which are always clear due to
652  * alignment.
653  */
654 #define HPAGE_RESV_OWNER    (1UL << 0)
655 #define HPAGE_RESV_UNMAPPED (1UL << 1)
656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657
658 /*
659  * These helpers are used to track how many pages are reserved for
660  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661  * is guaranteed to have their future faults succeed.
662  *
663  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664  * the reserve counters are updated with the hugetlb_lock held. It is safe
665  * to reset the VMA at fork() time as it is not in use yet and there is no
666  * chance of the global counters getting corrupted as a result of the values.
667  *
668  * The private mapping reservation is represented in a subtly different
669  * manner to a shared mapping.  A shared mapping has a region map associated
670  * with the underlying file, this region map represents the backing file
671  * pages which have ever had a reservation assigned which this persists even
672  * after the page is instantiated.  A private mapping has a region map
673  * associated with the original mmap which is attached to all VMAs which
674  * reference it, this region map represents those offsets which have consumed
675  * reservation ie. where pages have been instantiated.
676  */
677 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678 {
679         return (unsigned long)vma->vm_private_data;
680 }
681
682 static void set_vma_private_data(struct vm_area_struct *vma,
683                                                         unsigned long value)
684 {
685         vma->vm_private_data = (void *)value;
686 }
687
688 struct resv_map *resv_map_alloc(void)
689 {
690         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692
693         if (!resv_map || !rg) {
694                 kfree(resv_map);
695                 kfree(rg);
696                 return NULL;
697         }
698
699         kref_init(&resv_map->refs);
700         spin_lock_init(&resv_map->lock);
701         INIT_LIST_HEAD(&resv_map->regions);
702
703         resv_map->adds_in_progress = 0;
704
705         INIT_LIST_HEAD(&resv_map->region_cache);
706         list_add(&rg->link, &resv_map->region_cache);
707         resv_map->region_cache_count = 1;
708
709         return resv_map;
710 }
711
712 void resv_map_release(struct kref *ref)
713 {
714         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715         struct list_head *head = &resv_map->region_cache;
716         struct file_region *rg, *trg;
717
718         /* Clear out any active regions before we release the map. */
719         region_del(resv_map, 0, LONG_MAX);
720
721         /* ... and any entries left in the cache */
722         list_for_each_entry_safe(rg, trg, head, link) {
723                 list_del(&rg->link);
724                 kfree(rg);
725         }
726
727         VM_BUG_ON(resv_map->adds_in_progress);
728
729         kfree(resv_map);
730 }
731
732 static inline struct resv_map *inode_resv_map(struct inode *inode)
733 {
734         return inode->i_mapping->private_data;
735 }
736
737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738 {
739         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740         if (vma->vm_flags & VM_MAYSHARE) {
741                 struct address_space *mapping = vma->vm_file->f_mapping;
742                 struct inode *inode = mapping->host;
743
744                 return inode_resv_map(inode);
745
746         } else {
747                 return (struct resv_map *)(get_vma_private_data(vma) &
748                                                         ~HPAGE_RESV_MASK);
749         }
750 }
751
752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753 {
754         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756
757         set_vma_private_data(vma, (get_vma_private_data(vma) &
758                                 HPAGE_RESV_MASK) | (unsigned long)map);
759 }
760
761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 }
768
769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770 {
771         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772
773         return (get_vma_private_data(vma) & flag) != 0;
774 }
775
776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778 {
779         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780         if (!(vma->vm_flags & VM_MAYSHARE))
781                 vma->vm_private_data = (void *)0;
782 }
783
784 /* Returns true if the VMA has associated reserve pages */
785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786 {
787         if (vma->vm_flags & VM_NORESERVE) {
788                 /*
789                  * This address is already reserved by other process(chg == 0),
790                  * so, we should decrement reserved count. Without decrementing,
791                  * reserve count remains after releasing inode, because this
792                  * allocated page will go into page cache and is regarded as
793                  * coming from reserved pool in releasing step.  Currently, we
794                  * don't have any other solution to deal with this situation
795                  * properly, so add work-around here.
796                  */
797                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798                         return true;
799                 else
800                         return false;
801         }
802
803         /* Shared mappings always use reserves */
804         if (vma->vm_flags & VM_MAYSHARE) {
805                 /*
806                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
807                  * be a region map for all pages.  The only situation where
808                  * there is no region map is if a hole was punched via
809                  * fallocate.  In this case, there really are no reverves to
810                  * use.  This situation is indicated if chg != 0.
811                  */
812                 if (chg)
813                         return false;
814                 else
815                         return true;
816         }
817
818         /*
819          * Only the process that called mmap() has reserves for
820          * private mappings.
821          */
822         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823                 return true;
824
825         return false;
826 }
827
828 static void enqueue_huge_page(struct hstate *h, struct page *page)
829 {
830         int nid = page_to_nid(page);
831         list_move(&page->lru, &h->hugepage_freelists[nid]);
832         h->free_huge_pages++;
833         h->free_huge_pages_node[nid]++;
834 }
835
836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837 {
838         struct page *page;
839
840         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841                 if (!is_migrate_isolate_page(page))
842                         break;
843         /*
844          * if 'non-isolated free hugepage' not found on the list,
845          * the allocation fails.
846          */
847         if (&h->hugepage_freelists[nid] == &page->lru)
848                 return NULL;
849         list_move(&page->lru, &h->hugepage_activelist);
850         set_page_refcounted(page);
851         h->free_huge_pages--;
852         h->free_huge_pages_node[nid]--;
853         return page;
854 }
855
856 /* Movability of hugepages depends on migration support. */
857 static inline gfp_t htlb_alloc_mask(struct hstate *h)
858 {
859         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860                 return GFP_HIGHUSER_MOVABLE;
861         else
862                 return GFP_HIGHUSER;
863 }
864
865 static struct page *dequeue_huge_page_vma(struct hstate *h,
866                                 struct vm_area_struct *vma,
867                                 unsigned long address, int avoid_reserve,
868                                 long chg)
869 {
870         struct page *page = NULL;
871         struct mempolicy *mpol;
872         nodemask_t *nodemask;
873         struct zonelist *zonelist;
874         struct zone *zone;
875         struct zoneref *z;
876         unsigned int cpuset_mems_cookie;
877
878         /*
879          * A child process with MAP_PRIVATE mappings created by their parent
880          * have no page reserves. This check ensures that reservations are
881          * not "stolen". The child may still get SIGKILLed
882          */
883         if (!vma_has_reserves(vma, chg) &&
884                         h->free_huge_pages - h->resv_huge_pages == 0)
885                 goto err;
886
887         /* If reserves cannot be used, ensure enough pages are in the pool */
888         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889                 goto err;
890
891 retry_cpuset:
892         cpuset_mems_cookie = read_mems_allowed_begin();
893         zonelist = huge_zonelist(vma, address,
894                                         htlb_alloc_mask(h), &mpol, &nodemask);
895
896         for_each_zone_zonelist_nodemask(zone, z, zonelist,
897                                                 MAX_NR_ZONES - 1, nodemask) {
898                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
900                         if (page) {
901                                 if (avoid_reserve)
902                                         break;
903                                 if (!vma_has_reserves(vma, chg))
904                                         break;
905
906                                 SetPagePrivate(page);
907                                 h->resv_huge_pages--;
908                                 break;
909                         }
910                 }
911         }
912
913         mpol_cond_put(mpol);
914         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916         return page;
917
918 err:
919         return NULL;
920 }
921
922 /*
923  * common helper functions for hstate_next_node_to_{alloc|free}.
924  * We may have allocated or freed a huge page based on a different
925  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926  * be outside of *nodes_allowed.  Ensure that we use an allowed
927  * node for alloc or free.
928  */
929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930 {
931         nid = next_node(nid, *nodes_allowed);
932         if (nid == MAX_NUMNODES)
933                 nid = first_node(*nodes_allowed);
934         VM_BUG_ON(nid >= MAX_NUMNODES);
935
936         return nid;
937 }
938
939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941         if (!node_isset(nid, *nodes_allowed))
942                 nid = next_node_allowed(nid, nodes_allowed);
943         return nid;
944 }
945
946 /*
947  * returns the previously saved node ["this node"] from which to
948  * allocate a persistent huge page for the pool and advance the
949  * next node from which to allocate, handling wrap at end of node
950  * mask.
951  */
952 static int hstate_next_node_to_alloc(struct hstate *h,
953                                         nodemask_t *nodes_allowed)
954 {
955         int nid;
956
957         VM_BUG_ON(!nodes_allowed);
958
959         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961
962         return nid;
963 }
964
965 /*
966  * helper for free_pool_huge_page() - return the previously saved
967  * node ["this node"] from which to free a huge page.  Advance the
968  * next node id whether or not we find a free huge page to free so
969  * that the next attempt to free addresses the next node.
970  */
971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972 {
973         int nid;
974
975         VM_BUG_ON(!nodes_allowed);
976
977         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979
980         return nid;
981 }
982
983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
984         for (nr_nodes = nodes_weight(*mask);                            \
985                 nr_nodes > 0 &&                                         \
986                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
987                 nr_nodes--)
988
989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
990         for (nr_nodes = nodes_weight(*mask);                            \
991                 nr_nodes > 0 &&                                         \
992                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
993                 nr_nodes--)
994
995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996 static void destroy_compound_gigantic_page(struct page *page,
997                                         unsigned int order)
998 {
999         int i;
1000         int nr_pages = 1 << order;
1001         struct page *p = page + 1;
1002
1003         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004                 clear_compound_head(p);
1005                 set_page_refcounted(p);
1006         }
1007
1008         set_compound_order(page, 0);
1009         __ClearPageHead(page);
1010 }
1011
1012 static void free_gigantic_page(struct page *page, unsigned int order)
1013 {
1014         free_contig_range(page_to_pfn(page), 1 << order);
1015 }
1016
1017 static int __alloc_gigantic_page(unsigned long start_pfn,
1018                                 unsigned long nr_pages)
1019 {
1020         unsigned long end_pfn = start_pfn + nr_pages;
1021         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1022 }
1023
1024 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1025                                 unsigned long nr_pages)
1026 {
1027         unsigned long i, end_pfn = start_pfn + nr_pages;
1028         struct page *page;
1029
1030         for (i = start_pfn; i < end_pfn; i++) {
1031                 if (!pfn_valid(i))
1032                         return false;
1033
1034                 page = pfn_to_page(i);
1035
1036                 if (PageReserved(page))
1037                         return false;
1038
1039                 if (page_count(page) > 0)
1040                         return false;
1041
1042                 if (PageHuge(page))
1043                         return false;
1044         }
1045
1046         return true;
1047 }
1048
1049 static bool zone_spans_last_pfn(const struct zone *zone,
1050                         unsigned long start_pfn, unsigned long nr_pages)
1051 {
1052         unsigned long last_pfn = start_pfn + nr_pages - 1;
1053         return zone_spans_pfn(zone, last_pfn);
1054 }
1055
1056 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1057 {
1058         unsigned long nr_pages = 1 << order;
1059         unsigned long ret, pfn, flags;
1060         struct zone *z;
1061
1062         z = NODE_DATA(nid)->node_zones;
1063         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1064                 spin_lock_irqsave(&z->lock, flags);
1065
1066                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1067                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1068                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1069                                 /*
1070                                  * We release the zone lock here because
1071                                  * alloc_contig_range() will also lock the zone
1072                                  * at some point. If there's an allocation
1073                                  * spinning on this lock, it may win the race
1074                                  * and cause alloc_contig_range() to fail...
1075                                  */
1076                                 spin_unlock_irqrestore(&z->lock, flags);
1077                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1078                                 if (!ret)
1079                                         return pfn_to_page(pfn);
1080                                 spin_lock_irqsave(&z->lock, flags);
1081                         }
1082                         pfn += nr_pages;
1083                 }
1084
1085                 spin_unlock_irqrestore(&z->lock, flags);
1086         }
1087
1088         return NULL;
1089 }
1090
1091 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1092 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1093
1094 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1095 {
1096         struct page *page;
1097
1098         page = alloc_gigantic_page(nid, huge_page_order(h));
1099         if (page) {
1100                 prep_compound_gigantic_page(page, huge_page_order(h));
1101                 prep_new_huge_page(h, page, nid);
1102         }
1103
1104         return page;
1105 }
1106
1107 static int alloc_fresh_gigantic_page(struct hstate *h,
1108                                 nodemask_t *nodes_allowed)
1109 {
1110         struct page *page = NULL;
1111         int nr_nodes, node;
1112
1113         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1114                 page = alloc_fresh_gigantic_page_node(h, node);
1115                 if (page)
1116                         return 1;
1117         }
1118
1119         return 0;
1120 }
1121
1122 static inline bool gigantic_page_supported(void) { return true; }
1123 #else
1124 static inline bool gigantic_page_supported(void) { return false; }
1125 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1126 static inline void destroy_compound_gigantic_page(struct page *page,
1127                                                 unsigned int order) { }
1128 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1129                                         nodemask_t *nodes_allowed) { return 0; }
1130 #endif
1131
1132 static void update_and_free_page(struct hstate *h, struct page *page)
1133 {
1134         int i;
1135
1136         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1137                 return;
1138
1139         h->nr_huge_pages--;
1140         h->nr_huge_pages_node[page_to_nid(page)]--;
1141         for (i = 0; i < pages_per_huge_page(h); i++) {
1142                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1143                                 1 << PG_referenced | 1 << PG_dirty |
1144                                 1 << PG_active | 1 << PG_private |
1145                                 1 << PG_writeback);
1146         }
1147         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1148         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1149         set_page_refcounted(page);
1150         if (hstate_is_gigantic(h)) {
1151                 destroy_compound_gigantic_page(page, huge_page_order(h));
1152                 free_gigantic_page(page, huge_page_order(h));
1153         } else {
1154                 __free_pages(page, huge_page_order(h));
1155         }
1156 }
1157
1158 struct hstate *size_to_hstate(unsigned long size)
1159 {
1160         struct hstate *h;
1161
1162         for_each_hstate(h) {
1163                 if (huge_page_size(h) == size)
1164                         return h;
1165         }
1166         return NULL;
1167 }
1168
1169 /*
1170  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1171  * to hstate->hugepage_activelist.)
1172  *
1173  * This function can be called for tail pages, but never returns true for them.
1174  */
1175 bool page_huge_active(struct page *page)
1176 {
1177         VM_BUG_ON_PAGE(!PageHuge(page), page);
1178         return PageHead(page) && PagePrivate(&page[1]);
1179 }
1180
1181 /* never called for tail page */
1182 static void set_page_huge_active(struct page *page)
1183 {
1184         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1185         SetPagePrivate(&page[1]);
1186 }
1187
1188 static void clear_page_huge_active(struct page *page)
1189 {
1190         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1191         ClearPagePrivate(&page[1]);
1192 }
1193
1194 void free_huge_page(struct page *page)
1195 {
1196         /*
1197          * Can't pass hstate in here because it is called from the
1198          * compound page destructor.
1199          */
1200         struct hstate *h = page_hstate(page);
1201         int nid = page_to_nid(page);
1202         struct hugepage_subpool *spool =
1203                 (struct hugepage_subpool *)page_private(page);
1204         bool restore_reserve;
1205
1206         set_page_private(page, 0);
1207         page->mapping = NULL;
1208         BUG_ON(page_count(page));
1209         BUG_ON(page_mapcount(page));
1210         restore_reserve = PagePrivate(page);
1211         ClearPagePrivate(page);
1212
1213         /*
1214          * A return code of zero implies that the subpool will be under its
1215          * minimum size if the reservation is not restored after page is free.
1216          * Therefore, force restore_reserve operation.
1217          */
1218         if (hugepage_subpool_put_pages(spool, 1) == 0)
1219                 restore_reserve = true;
1220
1221         spin_lock(&hugetlb_lock);
1222         clear_page_huge_active(page);
1223         hugetlb_cgroup_uncharge_page(hstate_index(h),
1224                                      pages_per_huge_page(h), page);
1225         if (restore_reserve)
1226                 h->resv_huge_pages++;
1227
1228         if (h->surplus_huge_pages_node[nid]) {
1229                 /* remove the page from active list */
1230                 list_del(&page->lru);
1231                 update_and_free_page(h, page);
1232                 h->surplus_huge_pages--;
1233                 h->surplus_huge_pages_node[nid]--;
1234         } else {
1235                 arch_clear_hugepage_flags(page);
1236                 enqueue_huge_page(h, page);
1237         }
1238         spin_unlock(&hugetlb_lock);
1239 }
1240
1241 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1242 {
1243         INIT_LIST_HEAD(&page->lru);
1244         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1245         spin_lock(&hugetlb_lock);
1246         set_hugetlb_cgroup(page, NULL);
1247         h->nr_huge_pages++;
1248         h->nr_huge_pages_node[nid]++;
1249         spin_unlock(&hugetlb_lock);
1250         put_page(page); /* free it into the hugepage allocator */
1251 }
1252
1253 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1254 {
1255         int i;
1256         int nr_pages = 1 << order;
1257         struct page *p = page + 1;
1258
1259         /* we rely on prep_new_huge_page to set the destructor */
1260         set_compound_order(page, order);
1261         __SetPageHead(page);
1262         __ClearPageReserved(page);
1263         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1264                 /*
1265                  * For gigantic hugepages allocated through bootmem at
1266                  * boot, it's safer to be consistent with the not-gigantic
1267                  * hugepages and clear the PG_reserved bit from all tail pages
1268                  * too.  Otherwse drivers using get_user_pages() to access tail
1269                  * pages may get the reference counting wrong if they see
1270                  * PG_reserved set on a tail page (despite the head page not
1271                  * having PG_reserved set).  Enforcing this consistency between
1272                  * head and tail pages allows drivers to optimize away a check
1273                  * on the head page when they need know if put_page() is needed
1274                  * after get_user_pages().
1275                  */
1276                 __ClearPageReserved(p);
1277                 set_page_count(p, 0);
1278                 set_compound_head(p, page);
1279         }
1280 }
1281
1282 /*
1283  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1284  * transparent huge pages.  See the PageTransHuge() documentation for more
1285  * details.
1286  */
1287 int PageHuge(struct page *page)
1288 {
1289         if (!PageCompound(page))
1290                 return 0;
1291
1292         page = compound_head(page);
1293         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1294 }
1295 EXPORT_SYMBOL_GPL(PageHuge);
1296
1297 /*
1298  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1299  * normal or transparent huge pages.
1300  */
1301 int PageHeadHuge(struct page *page_head)
1302 {
1303         if (!PageHead(page_head))
1304                 return 0;
1305
1306         return get_compound_page_dtor(page_head) == free_huge_page;
1307 }
1308
1309 pgoff_t __basepage_index(struct page *page)
1310 {
1311         struct page *page_head = compound_head(page);
1312         pgoff_t index = page_index(page_head);
1313         unsigned long compound_idx;
1314
1315         if (!PageHuge(page_head))
1316                 return page_index(page);
1317
1318         if (compound_order(page_head) >= MAX_ORDER)
1319                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1320         else
1321                 compound_idx = page - page_head;
1322
1323         return (index << compound_order(page_head)) + compound_idx;
1324 }
1325
1326 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1327 {
1328         struct page *page;
1329
1330         page = __alloc_pages_node(nid,
1331                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1332                                                 __GFP_REPEAT|__GFP_NOWARN,
1333                 huge_page_order(h));
1334         if (page) {
1335                 prep_new_huge_page(h, page, nid);
1336         }
1337
1338         return page;
1339 }
1340
1341 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1342 {
1343         struct page *page;
1344         int nr_nodes, node;
1345         int ret = 0;
1346
1347         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1348                 page = alloc_fresh_huge_page_node(h, node);
1349                 if (page) {
1350                         ret = 1;
1351                         break;
1352                 }
1353         }
1354
1355         if (ret)
1356                 count_vm_event(HTLB_BUDDY_PGALLOC);
1357         else
1358                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1359
1360         return ret;
1361 }
1362
1363 /*
1364  * Free huge page from pool from next node to free.
1365  * Attempt to keep persistent huge pages more or less
1366  * balanced over allowed nodes.
1367  * Called with hugetlb_lock locked.
1368  */
1369 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1370                                                          bool acct_surplus)
1371 {
1372         int nr_nodes, node;
1373         int ret = 0;
1374
1375         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1376                 /*
1377                  * If we're returning unused surplus pages, only examine
1378                  * nodes with surplus pages.
1379                  */
1380                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1381                     !list_empty(&h->hugepage_freelists[node])) {
1382                         struct page *page =
1383                                 list_entry(h->hugepage_freelists[node].next,
1384                                           struct page, lru);
1385                         list_del(&page->lru);
1386                         h->free_huge_pages--;
1387                         h->free_huge_pages_node[node]--;
1388                         if (acct_surplus) {
1389                                 h->surplus_huge_pages--;
1390                                 h->surplus_huge_pages_node[node]--;
1391                         }
1392                         update_and_free_page(h, page);
1393                         ret = 1;
1394                         break;
1395                 }
1396         }
1397
1398         return ret;
1399 }
1400
1401 /*
1402  * Dissolve a given free hugepage into free buddy pages. This function does
1403  * nothing for in-use (including surplus) hugepages.
1404  */
1405 static void dissolve_free_huge_page(struct page *page)
1406 {
1407         spin_lock(&hugetlb_lock);
1408         if (PageHuge(page) && !page_count(page)) {
1409                 struct hstate *h = page_hstate(page);
1410                 int nid = page_to_nid(page);
1411                 list_del(&page->lru);
1412                 h->free_huge_pages--;
1413                 h->free_huge_pages_node[nid]--;
1414                 update_and_free_page(h, page);
1415         }
1416         spin_unlock(&hugetlb_lock);
1417 }
1418
1419 /*
1420  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1421  * make specified memory blocks removable from the system.
1422  * Note that start_pfn should aligned with (minimum) hugepage size.
1423  */
1424 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1425 {
1426         unsigned long pfn;
1427
1428         if (!hugepages_supported())
1429                 return;
1430
1431         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1432         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1433                 dissolve_free_huge_page(pfn_to_page(pfn));
1434 }
1435
1436 /*
1437  * There are 3 ways this can get called:
1438  * 1. With vma+addr: we use the VMA's memory policy
1439  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1440  *    page from any node, and let the buddy allocator itself figure
1441  *    it out.
1442  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1443  *    strictly from 'nid'
1444  */
1445 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1446                 struct vm_area_struct *vma, unsigned long addr, int nid)
1447 {
1448         int order = huge_page_order(h);
1449         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1450         unsigned int cpuset_mems_cookie;
1451
1452         /*
1453          * We need a VMA to get a memory policy.  If we do not
1454          * have one, we use the 'nid' argument.
1455          *
1456          * The mempolicy stuff below has some non-inlined bits
1457          * and calls ->vm_ops.  That makes it hard to optimize at
1458          * compile-time, even when NUMA is off and it does
1459          * nothing.  This helps the compiler optimize it out.
1460          */
1461         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1462                 /*
1463                  * If a specific node is requested, make sure to
1464                  * get memory from there, but only when a node
1465                  * is explicitly specified.
1466                  */
1467                 if (nid != NUMA_NO_NODE)
1468                         gfp |= __GFP_THISNODE;
1469                 /*
1470                  * Make sure to call something that can handle
1471                  * nid=NUMA_NO_NODE
1472                  */
1473                 return alloc_pages_node(nid, gfp, order);
1474         }
1475
1476         /*
1477          * OK, so we have a VMA.  Fetch the mempolicy and try to
1478          * allocate a huge page with it.  We will only reach this
1479          * when CONFIG_NUMA=y.
1480          */
1481         do {
1482                 struct page *page;
1483                 struct mempolicy *mpol;
1484                 struct zonelist *zl;
1485                 nodemask_t *nodemask;
1486
1487                 cpuset_mems_cookie = read_mems_allowed_begin();
1488                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1489                 mpol_cond_put(mpol);
1490                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1491                 if (page)
1492                         return page;
1493         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1494
1495         return NULL;
1496 }
1497
1498 /*
1499  * There are two ways to allocate a huge page:
1500  * 1. When you have a VMA and an address (like a fault)
1501  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1502  *
1503  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1504  * this case which signifies that the allocation should be done with
1505  * respect for the VMA's memory policy.
1506  *
1507  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1508  * implies that memory policies will not be taken in to account.
1509  */
1510 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1511                 struct vm_area_struct *vma, unsigned long addr, int nid)
1512 {
1513         struct page *page;
1514         unsigned int r_nid;
1515
1516         if (hstate_is_gigantic(h))
1517                 return NULL;
1518
1519         /*
1520          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1521          * This makes sure the caller is picking _one_ of the modes with which
1522          * we can call this function, not both.
1523          */
1524         if (vma || (addr != -1)) {
1525                 VM_WARN_ON_ONCE(addr == -1);
1526                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1527         }
1528         /*
1529          * Assume we will successfully allocate the surplus page to
1530          * prevent racing processes from causing the surplus to exceed
1531          * overcommit
1532          *
1533          * This however introduces a different race, where a process B
1534          * tries to grow the static hugepage pool while alloc_pages() is
1535          * called by process A. B will only examine the per-node
1536          * counters in determining if surplus huge pages can be
1537          * converted to normal huge pages in adjust_pool_surplus(). A
1538          * won't be able to increment the per-node counter, until the
1539          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1540          * no more huge pages can be converted from surplus to normal
1541          * state (and doesn't try to convert again). Thus, we have a
1542          * case where a surplus huge page exists, the pool is grown, and
1543          * the surplus huge page still exists after, even though it
1544          * should just have been converted to a normal huge page. This
1545          * does not leak memory, though, as the hugepage will be freed
1546          * once it is out of use. It also does not allow the counters to
1547          * go out of whack in adjust_pool_surplus() as we don't modify
1548          * the node values until we've gotten the hugepage and only the
1549          * per-node value is checked there.
1550          */
1551         spin_lock(&hugetlb_lock);
1552         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1553                 spin_unlock(&hugetlb_lock);
1554                 return NULL;
1555         } else {
1556                 h->nr_huge_pages++;
1557                 h->surplus_huge_pages++;
1558         }
1559         spin_unlock(&hugetlb_lock);
1560
1561         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1562
1563         spin_lock(&hugetlb_lock);
1564         if (page) {
1565                 INIT_LIST_HEAD(&page->lru);
1566                 r_nid = page_to_nid(page);
1567                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1568                 set_hugetlb_cgroup(page, NULL);
1569                 /*
1570                  * We incremented the global counters already
1571                  */
1572                 h->nr_huge_pages_node[r_nid]++;
1573                 h->surplus_huge_pages_node[r_nid]++;
1574                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1575         } else {
1576                 h->nr_huge_pages--;
1577                 h->surplus_huge_pages--;
1578                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1579         }
1580         spin_unlock(&hugetlb_lock);
1581
1582         return page;
1583 }
1584
1585 /*
1586  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1587  * NUMA_NO_NODE, which means that it may be allocated
1588  * anywhere.
1589  */
1590 static
1591 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1592 {
1593         unsigned long addr = -1;
1594
1595         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1596 }
1597
1598 /*
1599  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1600  */
1601 static
1602 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1603                 struct vm_area_struct *vma, unsigned long addr)
1604 {
1605         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1606 }
1607
1608 /*
1609  * This allocation function is useful in the context where vma is irrelevant.
1610  * E.g. soft-offlining uses this function because it only cares physical
1611  * address of error page.
1612  */
1613 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1614 {
1615         struct page *page = NULL;
1616
1617         spin_lock(&hugetlb_lock);
1618         if (h->free_huge_pages - h->resv_huge_pages > 0)
1619                 page = dequeue_huge_page_node(h, nid);
1620         spin_unlock(&hugetlb_lock);
1621
1622         if (!page)
1623                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1624
1625         return page;
1626 }
1627
1628 /*
1629  * Increase the hugetlb pool such that it can accommodate a reservation
1630  * of size 'delta'.
1631  */
1632 static int gather_surplus_pages(struct hstate *h, int delta)
1633 {
1634         struct list_head surplus_list;
1635         struct page *page, *tmp;
1636         int ret, i;
1637         int needed, allocated;
1638         bool alloc_ok = true;
1639
1640         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1641         if (needed <= 0) {
1642                 h->resv_huge_pages += delta;
1643                 return 0;
1644         }
1645
1646         allocated = 0;
1647         INIT_LIST_HEAD(&surplus_list);
1648
1649         ret = -ENOMEM;
1650 retry:
1651         spin_unlock(&hugetlb_lock);
1652         for (i = 0; i < needed; i++) {
1653                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1654                 if (!page) {
1655                         alloc_ok = false;
1656                         break;
1657                 }
1658                 list_add(&page->lru, &surplus_list);
1659         }
1660         allocated += i;
1661
1662         /*
1663          * After retaking hugetlb_lock, we need to recalculate 'needed'
1664          * because either resv_huge_pages or free_huge_pages may have changed.
1665          */
1666         spin_lock(&hugetlb_lock);
1667         needed = (h->resv_huge_pages + delta) -
1668                         (h->free_huge_pages + allocated);
1669         if (needed > 0) {
1670                 if (alloc_ok)
1671                         goto retry;
1672                 /*
1673                  * We were not able to allocate enough pages to
1674                  * satisfy the entire reservation so we free what
1675                  * we've allocated so far.
1676                  */
1677                 goto free;
1678         }
1679         /*
1680          * The surplus_list now contains _at_least_ the number of extra pages
1681          * needed to accommodate the reservation.  Add the appropriate number
1682          * of pages to the hugetlb pool and free the extras back to the buddy
1683          * allocator.  Commit the entire reservation here to prevent another
1684          * process from stealing the pages as they are added to the pool but
1685          * before they are reserved.
1686          */
1687         needed += allocated;
1688         h->resv_huge_pages += delta;
1689         ret = 0;
1690
1691         /* Free the needed pages to the hugetlb pool */
1692         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1693                 if ((--needed) < 0)
1694                         break;
1695                 /*
1696                  * This page is now managed by the hugetlb allocator and has
1697                  * no users -- drop the buddy allocator's reference.
1698                  */
1699                 put_page_testzero(page);
1700                 VM_BUG_ON_PAGE(page_count(page), page);
1701                 enqueue_huge_page(h, page);
1702         }
1703 free:
1704         spin_unlock(&hugetlb_lock);
1705
1706         /* Free unnecessary surplus pages to the buddy allocator */
1707         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1708                 put_page(page);
1709         spin_lock(&hugetlb_lock);
1710
1711         return ret;
1712 }
1713
1714 /*
1715  * When releasing a hugetlb pool reservation, any surplus pages that were
1716  * allocated to satisfy the reservation must be explicitly freed if they were
1717  * never used.
1718  * Called with hugetlb_lock held.
1719  */
1720 static void return_unused_surplus_pages(struct hstate *h,
1721                                         unsigned long unused_resv_pages)
1722 {
1723         unsigned long nr_pages;
1724
1725         /* Uncommit the reservation */
1726         h->resv_huge_pages -= unused_resv_pages;
1727
1728         /* Cannot return gigantic pages currently */
1729         if (hstate_is_gigantic(h))
1730                 return;
1731
1732         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1733
1734         /*
1735          * We want to release as many surplus pages as possible, spread
1736          * evenly across all nodes with memory. Iterate across these nodes
1737          * until we can no longer free unreserved surplus pages. This occurs
1738          * when the nodes with surplus pages have no free pages.
1739          * free_pool_huge_page() will balance the the freed pages across the
1740          * on-line nodes with memory and will handle the hstate accounting.
1741          */
1742         while (nr_pages--) {
1743                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1744                         break;
1745                 cond_resched_lock(&hugetlb_lock);
1746         }
1747 }
1748
1749
1750 /*
1751  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1752  * are used by the huge page allocation routines to manage reservations.
1753  *
1754  * vma_needs_reservation is called to determine if the huge page at addr
1755  * within the vma has an associated reservation.  If a reservation is
1756  * needed, the value 1 is returned.  The caller is then responsible for
1757  * managing the global reservation and subpool usage counts.  After
1758  * the huge page has been allocated, vma_commit_reservation is called
1759  * to add the page to the reservation map.  If the page allocation fails,
1760  * the reservation must be ended instead of committed.  vma_end_reservation
1761  * is called in such cases.
1762  *
1763  * In the normal case, vma_commit_reservation returns the same value
1764  * as the preceding vma_needs_reservation call.  The only time this
1765  * is not the case is if a reserve map was changed between calls.  It
1766  * is the responsibility of the caller to notice the difference and
1767  * take appropriate action.
1768  */
1769 enum vma_resv_mode {
1770         VMA_NEEDS_RESV,
1771         VMA_COMMIT_RESV,
1772         VMA_END_RESV,
1773 };
1774 static long __vma_reservation_common(struct hstate *h,
1775                                 struct vm_area_struct *vma, unsigned long addr,
1776                                 enum vma_resv_mode mode)
1777 {
1778         struct resv_map *resv;
1779         pgoff_t idx;
1780         long ret;
1781
1782         resv = vma_resv_map(vma);
1783         if (!resv)
1784                 return 1;
1785
1786         idx = vma_hugecache_offset(h, vma, addr);
1787         switch (mode) {
1788         case VMA_NEEDS_RESV:
1789                 ret = region_chg(resv, idx, idx + 1);
1790                 break;
1791         case VMA_COMMIT_RESV:
1792                 ret = region_add(resv, idx, idx + 1);
1793                 break;
1794         case VMA_END_RESV:
1795                 region_abort(resv, idx, idx + 1);
1796                 ret = 0;
1797                 break;
1798         default:
1799                 BUG();
1800         }
1801
1802         if (vma->vm_flags & VM_MAYSHARE)
1803                 return ret;
1804         else
1805                 return ret < 0 ? ret : 0;
1806 }
1807
1808 static long vma_needs_reservation(struct hstate *h,
1809                         struct vm_area_struct *vma, unsigned long addr)
1810 {
1811         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1812 }
1813
1814 static long vma_commit_reservation(struct hstate *h,
1815                         struct vm_area_struct *vma, unsigned long addr)
1816 {
1817         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1818 }
1819
1820 static void vma_end_reservation(struct hstate *h,
1821                         struct vm_area_struct *vma, unsigned long addr)
1822 {
1823         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1824 }
1825
1826 struct page *alloc_huge_page(struct vm_area_struct *vma,
1827                                     unsigned long addr, int avoid_reserve)
1828 {
1829         struct hugepage_subpool *spool = subpool_vma(vma);
1830         struct hstate *h = hstate_vma(vma);
1831         struct page *page;
1832         long map_chg, map_commit;
1833         long gbl_chg;
1834         int ret, idx;
1835         struct hugetlb_cgroup *h_cg;
1836
1837         idx = hstate_index(h);
1838         /*
1839          * Examine the region/reserve map to determine if the process
1840          * has a reservation for the page to be allocated.  A return
1841          * code of zero indicates a reservation exists (no change).
1842          */
1843         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1844         if (map_chg < 0)
1845                 return ERR_PTR(-ENOMEM);
1846
1847         /*
1848          * Processes that did not create the mapping will have no
1849          * reserves as indicated by the region/reserve map. Check
1850          * that the allocation will not exceed the subpool limit.
1851          * Allocations for MAP_NORESERVE mappings also need to be
1852          * checked against any subpool limit.
1853          */
1854         if (map_chg || avoid_reserve) {
1855                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1856                 if (gbl_chg < 0) {
1857                         vma_end_reservation(h, vma, addr);
1858                         return ERR_PTR(-ENOSPC);
1859                 }
1860
1861                 /*
1862                  * Even though there was no reservation in the region/reserve
1863                  * map, there could be reservations associated with the
1864                  * subpool that can be used.  This would be indicated if the
1865                  * return value of hugepage_subpool_get_pages() is zero.
1866                  * However, if avoid_reserve is specified we still avoid even
1867                  * the subpool reservations.
1868                  */
1869                 if (avoid_reserve)
1870                         gbl_chg = 1;
1871         }
1872
1873         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1874         if (ret)
1875                 goto out_subpool_put;
1876
1877         spin_lock(&hugetlb_lock);
1878         /*
1879          * glb_chg is passed to indicate whether or not a page must be taken
1880          * from the global free pool (global change).  gbl_chg == 0 indicates
1881          * a reservation exists for the allocation.
1882          */
1883         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1884         if (!page) {
1885                 spin_unlock(&hugetlb_lock);
1886                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1887                 if (!page)
1888                         goto out_uncharge_cgroup;
1889
1890                 spin_lock(&hugetlb_lock);
1891                 list_move(&page->lru, &h->hugepage_activelist);
1892                 /* Fall through */
1893         }
1894         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1895         spin_unlock(&hugetlb_lock);
1896
1897         set_page_private(page, (unsigned long)spool);
1898
1899         map_commit = vma_commit_reservation(h, vma, addr);
1900         if (unlikely(map_chg > map_commit)) {
1901                 /*
1902                  * The page was added to the reservation map between
1903                  * vma_needs_reservation and vma_commit_reservation.
1904                  * This indicates a race with hugetlb_reserve_pages.
1905                  * Adjust for the subpool count incremented above AND
1906                  * in hugetlb_reserve_pages for the same page.  Also,
1907                  * the reservation count added in hugetlb_reserve_pages
1908                  * no longer applies.
1909                  */
1910                 long rsv_adjust;
1911
1912                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1913                 hugetlb_acct_memory(h, -rsv_adjust);
1914         }
1915         return page;
1916
1917 out_uncharge_cgroup:
1918         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1919 out_subpool_put:
1920         if (map_chg || avoid_reserve)
1921                 hugepage_subpool_put_pages(spool, 1);
1922         vma_end_reservation(h, vma, addr);
1923         return ERR_PTR(-ENOSPC);
1924 }
1925
1926 /*
1927  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1928  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1929  * where no ERR_VALUE is expected to be returned.
1930  */
1931 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1932                                 unsigned long addr, int avoid_reserve)
1933 {
1934         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1935         if (IS_ERR(page))
1936                 page = NULL;
1937         return page;
1938 }
1939
1940 int __weak alloc_bootmem_huge_page(struct hstate *h)
1941 {
1942         struct huge_bootmem_page *m;
1943         int nr_nodes, node;
1944
1945         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1946                 void *addr;
1947
1948                 addr = memblock_virt_alloc_try_nid_nopanic(
1949                                 huge_page_size(h), huge_page_size(h),
1950                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1951                 if (addr) {
1952                         /*
1953                          * Use the beginning of the huge page to store the
1954                          * huge_bootmem_page struct (until gather_bootmem
1955                          * puts them into the mem_map).
1956                          */
1957                         m = addr;
1958                         goto found;
1959                 }
1960         }
1961         return 0;
1962
1963 found:
1964         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1965         /* Put them into a private list first because mem_map is not up yet */
1966         list_add(&m->list, &huge_boot_pages);
1967         m->hstate = h;
1968         return 1;
1969 }
1970
1971 static void __init prep_compound_huge_page(struct page *page,
1972                 unsigned int order)
1973 {
1974         if (unlikely(order > (MAX_ORDER - 1)))
1975                 prep_compound_gigantic_page(page, order);
1976         else
1977                 prep_compound_page(page, order);
1978 }
1979
1980 /* Put bootmem huge pages into the standard lists after mem_map is up */
1981 static void __init gather_bootmem_prealloc(void)
1982 {
1983         struct huge_bootmem_page *m;
1984
1985         list_for_each_entry(m, &huge_boot_pages, list) {
1986                 struct hstate *h = m->hstate;
1987                 struct page *page;
1988
1989 #ifdef CONFIG_HIGHMEM
1990                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1991                 memblock_free_late(__pa(m),
1992                                    sizeof(struct huge_bootmem_page));
1993 #else
1994                 page = virt_to_page(m);
1995 #endif
1996                 WARN_ON(page_count(page) != 1);
1997                 prep_compound_huge_page(page, h->order);
1998                 WARN_ON(PageReserved(page));
1999                 prep_new_huge_page(h, page, page_to_nid(page));
2000                 /*
2001                  * If we had gigantic hugepages allocated at boot time, we need
2002                  * to restore the 'stolen' pages to totalram_pages in order to
2003                  * fix confusing memory reports from free(1) and another
2004                  * side-effects, like CommitLimit going negative.
2005                  */
2006                 if (hstate_is_gigantic(h))
2007                         adjust_managed_page_count(page, 1 << h->order);
2008         }
2009 }
2010
2011 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2012 {
2013         unsigned long i;
2014
2015         for (i = 0; i < h->max_huge_pages; ++i) {
2016                 if (hstate_is_gigantic(h)) {
2017                         if (!alloc_bootmem_huge_page(h))
2018                                 break;
2019                 } else if (!alloc_fresh_huge_page(h,
2020                                          &node_states[N_MEMORY]))
2021                         break;
2022         }
2023         h->max_huge_pages = i;
2024 }
2025
2026 static void __init hugetlb_init_hstates(void)
2027 {
2028         struct hstate *h;
2029
2030         for_each_hstate(h) {
2031                 if (minimum_order > huge_page_order(h))
2032                         minimum_order = huge_page_order(h);
2033
2034                 /* oversize hugepages were init'ed in early boot */
2035                 if (!hstate_is_gigantic(h))
2036                         hugetlb_hstate_alloc_pages(h);
2037         }
2038         VM_BUG_ON(minimum_order == UINT_MAX);
2039 }
2040
2041 static char * __init memfmt(char *buf, unsigned long n)
2042 {
2043         if (n >= (1UL << 30))
2044                 sprintf(buf, "%lu GB", n >> 30);
2045         else if (n >= (1UL << 20))
2046                 sprintf(buf, "%lu MB", n >> 20);
2047         else
2048                 sprintf(buf, "%lu KB", n >> 10);
2049         return buf;
2050 }
2051
2052 static void __init report_hugepages(void)
2053 {
2054         struct hstate *h;
2055
2056         for_each_hstate(h) {
2057                 char buf[32];
2058                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2059                         memfmt(buf, huge_page_size(h)),
2060                         h->free_huge_pages);
2061         }
2062 }
2063
2064 #ifdef CONFIG_HIGHMEM
2065 static void try_to_free_low(struct hstate *h, unsigned long count,
2066                                                 nodemask_t *nodes_allowed)
2067 {
2068         int i;
2069
2070         if (hstate_is_gigantic(h))
2071                 return;
2072
2073         for_each_node_mask(i, *nodes_allowed) {
2074                 struct page *page, *next;
2075                 struct list_head *freel = &h->hugepage_freelists[i];
2076                 list_for_each_entry_safe(page, next, freel, lru) {
2077                         if (count >= h->nr_huge_pages)
2078                                 return;
2079                         if (PageHighMem(page))
2080                                 continue;
2081                         list_del(&page->lru);
2082                         update_and_free_page(h, page);
2083                         h->free_huge_pages--;
2084                         h->free_huge_pages_node[page_to_nid(page)]--;
2085                 }
2086         }
2087 }
2088 #else
2089 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2090                                                 nodemask_t *nodes_allowed)
2091 {
2092 }
2093 #endif
2094
2095 /*
2096  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2097  * balanced by operating on them in a round-robin fashion.
2098  * Returns 1 if an adjustment was made.
2099  */
2100 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2101                                 int delta)
2102 {
2103         int nr_nodes, node;
2104
2105         VM_BUG_ON(delta != -1 && delta != 1);
2106
2107         if (delta < 0) {
2108                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2109                         if (h->surplus_huge_pages_node[node])
2110                                 goto found;
2111                 }
2112         } else {
2113                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2114                         if (h->surplus_huge_pages_node[node] <
2115                                         h->nr_huge_pages_node[node])
2116                                 goto found;
2117                 }
2118         }
2119         return 0;
2120
2121 found:
2122         h->surplus_huge_pages += delta;
2123         h->surplus_huge_pages_node[node] += delta;
2124         return 1;
2125 }
2126
2127 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2128 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2129                                                 nodemask_t *nodes_allowed)
2130 {
2131         unsigned long min_count, ret;
2132
2133         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2134                 return h->max_huge_pages;
2135
2136         /*
2137          * Increase the pool size
2138          * First take pages out of surplus state.  Then make up the
2139          * remaining difference by allocating fresh huge pages.
2140          *
2141          * We might race with __alloc_buddy_huge_page() here and be unable
2142          * to convert a surplus huge page to a normal huge page. That is
2143          * not critical, though, it just means the overall size of the
2144          * pool might be one hugepage larger than it needs to be, but
2145          * within all the constraints specified by the sysctls.
2146          */
2147         spin_lock(&hugetlb_lock);
2148         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2149                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2150                         break;
2151         }
2152
2153         while (count > persistent_huge_pages(h)) {
2154                 /*
2155                  * If this allocation races such that we no longer need the
2156                  * page, free_huge_page will handle it by freeing the page
2157                  * and reducing the surplus.
2158                  */
2159                 spin_unlock(&hugetlb_lock);
2160                 if (hstate_is_gigantic(h))
2161                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2162                 else
2163                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2164                 spin_lock(&hugetlb_lock);
2165                 if (!ret)
2166                         goto out;
2167
2168                 /* Bail for signals. Probably ctrl-c from user */
2169                 if (signal_pending(current))
2170                         goto out;
2171         }
2172
2173         /*
2174          * Decrease the pool size
2175          * First return free pages to the buddy allocator (being careful
2176          * to keep enough around to satisfy reservations).  Then place
2177          * pages into surplus state as needed so the pool will shrink
2178          * to the desired size as pages become free.
2179          *
2180          * By placing pages into the surplus state independent of the
2181          * overcommit value, we are allowing the surplus pool size to
2182          * exceed overcommit. There are few sane options here. Since
2183          * __alloc_buddy_huge_page() is checking the global counter,
2184          * though, we'll note that we're not allowed to exceed surplus
2185          * and won't grow the pool anywhere else. Not until one of the
2186          * sysctls are changed, or the surplus pages go out of use.
2187          */
2188         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2189         min_count = max(count, min_count);
2190         try_to_free_low(h, min_count, nodes_allowed);
2191         while (min_count < persistent_huge_pages(h)) {
2192                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2193                         break;
2194                 cond_resched_lock(&hugetlb_lock);
2195         }
2196         while (count < persistent_huge_pages(h)) {
2197                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2198                         break;
2199         }
2200 out:
2201         ret = persistent_huge_pages(h);
2202         spin_unlock(&hugetlb_lock);
2203         return ret;
2204 }
2205
2206 #define HSTATE_ATTR_RO(_name) \
2207         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2208
2209 #define HSTATE_ATTR(_name) \
2210         static struct kobj_attribute _name##_attr = \
2211                 __ATTR(_name, 0644, _name##_show, _name##_store)
2212
2213 static struct kobject *hugepages_kobj;
2214 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2215
2216 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2217
2218 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2219 {
2220         int i;
2221
2222         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2223                 if (hstate_kobjs[i] == kobj) {
2224                         if (nidp)
2225                                 *nidp = NUMA_NO_NODE;
2226                         return &hstates[i];
2227                 }
2228
2229         return kobj_to_node_hstate(kobj, nidp);
2230 }
2231
2232 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2233                                         struct kobj_attribute *attr, char *buf)
2234 {
2235         struct hstate *h;
2236         unsigned long nr_huge_pages;
2237         int nid;
2238
2239         h = kobj_to_hstate(kobj, &nid);
2240         if (nid == NUMA_NO_NODE)
2241                 nr_huge_pages = h->nr_huge_pages;
2242         else
2243                 nr_huge_pages = h->nr_huge_pages_node[nid];
2244
2245         return sprintf(buf, "%lu\n", nr_huge_pages);
2246 }
2247
2248 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2249                                            struct hstate *h, int nid,
2250                                            unsigned long count, size_t len)
2251 {
2252         int err;
2253         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2254
2255         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2256                 err = -EINVAL;
2257                 goto out;
2258         }
2259
2260         if (nid == NUMA_NO_NODE) {
2261                 /*
2262                  * global hstate attribute
2263                  */
2264                 if (!(obey_mempolicy &&
2265                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2266                         NODEMASK_FREE(nodes_allowed);
2267                         nodes_allowed = &node_states[N_MEMORY];
2268                 }
2269         } else if (nodes_allowed) {
2270                 /*
2271                  * per node hstate attribute: adjust count to global,
2272                  * but restrict alloc/free to the specified node.
2273                  */
2274                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2275                 init_nodemask_of_node(nodes_allowed, nid);
2276         } else
2277                 nodes_allowed = &node_states[N_MEMORY];
2278
2279         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2280
2281         if (nodes_allowed != &node_states[N_MEMORY])
2282                 NODEMASK_FREE(nodes_allowed);
2283
2284         return len;
2285 out:
2286         NODEMASK_FREE(nodes_allowed);
2287         return err;
2288 }
2289
2290 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2291                                          struct kobject *kobj, const char *buf,
2292                                          size_t len)
2293 {
2294         struct hstate *h;
2295         unsigned long count;
2296         int nid;
2297         int err;
2298
2299         err = kstrtoul(buf, 10, &count);
2300         if (err)
2301                 return err;
2302
2303         h = kobj_to_hstate(kobj, &nid);
2304         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2305 }
2306
2307 static ssize_t nr_hugepages_show(struct kobject *kobj,
2308                                        struct kobj_attribute *attr, char *buf)
2309 {
2310         return nr_hugepages_show_common(kobj, attr, buf);
2311 }
2312
2313 static ssize_t nr_hugepages_store(struct kobject *kobj,
2314                struct kobj_attribute *attr, const char *buf, size_t len)
2315 {
2316         return nr_hugepages_store_common(false, kobj, buf, len);
2317 }
2318 HSTATE_ATTR(nr_hugepages);
2319
2320 #ifdef CONFIG_NUMA
2321
2322 /*
2323  * hstate attribute for optionally mempolicy-based constraint on persistent
2324  * huge page alloc/free.
2325  */
2326 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2327                                        struct kobj_attribute *attr, char *buf)
2328 {
2329         return nr_hugepages_show_common(kobj, attr, buf);
2330 }
2331
2332 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2333                struct kobj_attribute *attr, const char *buf, size_t len)
2334 {
2335         return nr_hugepages_store_common(true, kobj, buf, len);
2336 }
2337 HSTATE_ATTR(nr_hugepages_mempolicy);
2338 #endif
2339
2340
2341 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2342                                         struct kobj_attribute *attr, char *buf)
2343 {
2344         struct hstate *h = kobj_to_hstate(kobj, NULL);
2345         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2346 }
2347
2348 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2349                 struct kobj_attribute *attr, const char *buf, size_t count)
2350 {
2351         int err;
2352         unsigned long input;
2353         struct hstate *h = kobj_to_hstate(kobj, NULL);
2354
2355         if (hstate_is_gigantic(h))
2356                 return -EINVAL;
2357
2358         err = kstrtoul(buf, 10, &input);
2359         if (err)
2360                 return err;
2361
2362         spin_lock(&hugetlb_lock);
2363         h->nr_overcommit_huge_pages = input;
2364         spin_unlock(&hugetlb_lock);
2365
2366         return count;
2367 }
2368 HSTATE_ATTR(nr_overcommit_hugepages);
2369
2370 static ssize_t free_hugepages_show(struct kobject *kobj,
2371                                         struct kobj_attribute *attr, char *buf)
2372 {
2373         struct hstate *h;
2374         unsigned long free_huge_pages;
2375         int nid;
2376
2377         h = kobj_to_hstate(kobj, &nid);
2378         if (nid == NUMA_NO_NODE)
2379                 free_huge_pages = h->free_huge_pages;
2380         else
2381                 free_huge_pages = h->free_huge_pages_node[nid];
2382
2383         return sprintf(buf, "%lu\n", free_huge_pages);
2384 }
2385 HSTATE_ATTR_RO(free_hugepages);
2386
2387 static ssize_t resv_hugepages_show(struct kobject *kobj,
2388                                         struct kobj_attribute *attr, char *buf)
2389 {
2390         struct hstate *h = kobj_to_hstate(kobj, NULL);
2391         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2392 }
2393 HSTATE_ATTR_RO(resv_hugepages);
2394
2395 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2396                                         struct kobj_attribute *attr, char *buf)
2397 {
2398         struct hstate *h;
2399         unsigned long surplus_huge_pages;
2400         int nid;
2401
2402         h = kobj_to_hstate(kobj, &nid);
2403         if (nid == NUMA_NO_NODE)
2404                 surplus_huge_pages = h->surplus_huge_pages;
2405         else
2406                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2407
2408         return sprintf(buf, "%lu\n", surplus_huge_pages);
2409 }
2410 HSTATE_ATTR_RO(surplus_hugepages);
2411
2412 static struct attribute *hstate_attrs[] = {
2413         &nr_hugepages_attr.attr,
2414         &nr_overcommit_hugepages_attr.attr,
2415         &free_hugepages_attr.attr,
2416         &resv_hugepages_attr.attr,
2417         &surplus_hugepages_attr.attr,
2418 #ifdef CONFIG_NUMA
2419         &nr_hugepages_mempolicy_attr.attr,
2420 #endif
2421         NULL,
2422 };
2423
2424 static struct attribute_group hstate_attr_group = {
2425         .attrs = hstate_attrs,
2426 };
2427
2428 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2429                                     struct kobject **hstate_kobjs,
2430                                     struct attribute_group *hstate_attr_group)
2431 {
2432         int retval;
2433         int hi = hstate_index(h);
2434
2435         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2436         if (!hstate_kobjs[hi])
2437                 return -ENOMEM;
2438
2439         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2440         if (retval)
2441                 kobject_put(hstate_kobjs[hi]);
2442
2443         return retval;
2444 }
2445
2446 static void __init hugetlb_sysfs_init(void)
2447 {
2448         struct hstate *h;
2449         int err;
2450
2451         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2452         if (!hugepages_kobj)
2453                 return;
2454
2455         for_each_hstate(h) {
2456                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2457                                          hstate_kobjs, &hstate_attr_group);
2458                 if (err)
2459                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2460         }
2461 }
2462
2463 #ifdef CONFIG_NUMA
2464
2465 /*
2466  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2467  * with node devices in node_devices[] using a parallel array.  The array
2468  * index of a node device or _hstate == node id.
2469  * This is here to avoid any static dependency of the node device driver, in
2470  * the base kernel, on the hugetlb module.
2471  */
2472 struct node_hstate {
2473         struct kobject          *hugepages_kobj;
2474         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2475 };
2476 static struct node_hstate node_hstates[MAX_NUMNODES];
2477
2478 /*
2479  * A subset of global hstate attributes for node devices
2480  */
2481 static struct attribute *per_node_hstate_attrs[] = {
2482         &nr_hugepages_attr.attr,
2483         &free_hugepages_attr.attr,
2484         &surplus_hugepages_attr.attr,
2485         NULL,
2486 };
2487
2488 static struct attribute_group per_node_hstate_attr_group = {
2489         .attrs = per_node_hstate_attrs,
2490 };
2491
2492 /*
2493  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2494  * Returns node id via non-NULL nidp.
2495  */
2496 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2497 {
2498         int nid;
2499
2500         for (nid = 0; nid < nr_node_ids; nid++) {
2501                 struct node_hstate *nhs = &node_hstates[nid];
2502                 int i;
2503                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2504                         if (nhs->hstate_kobjs[i] == kobj) {
2505                                 if (nidp)
2506                                         *nidp = nid;
2507                                 return &hstates[i];
2508                         }
2509         }
2510
2511         BUG();
2512         return NULL;
2513 }
2514
2515 /*
2516  * Unregister hstate attributes from a single node device.
2517  * No-op if no hstate attributes attached.
2518  */
2519 static void hugetlb_unregister_node(struct node *node)
2520 {
2521         struct hstate *h;
2522         struct node_hstate *nhs = &node_hstates[node->dev.id];
2523
2524         if (!nhs->hugepages_kobj)
2525                 return;         /* no hstate attributes */
2526
2527         for_each_hstate(h) {
2528                 int idx = hstate_index(h);
2529                 if (nhs->hstate_kobjs[idx]) {
2530                         kobject_put(nhs->hstate_kobjs[idx]);
2531                         nhs->hstate_kobjs[idx] = NULL;
2532                 }
2533         }
2534
2535         kobject_put(nhs->hugepages_kobj);
2536         nhs->hugepages_kobj = NULL;
2537 }
2538
2539 /*
2540  * hugetlb module exit:  unregister hstate attributes from node devices
2541  * that have them.
2542  */
2543 static void hugetlb_unregister_all_nodes(void)
2544 {
2545         int nid;
2546
2547         /*
2548          * disable node device registrations.
2549          */
2550         register_hugetlbfs_with_node(NULL, NULL);
2551
2552         /*
2553          * remove hstate attributes from any nodes that have them.
2554          */
2555         for (nid = 0; nid < nr_node_ids; nid++)
2556                 hugetlb_unregister_node(node_devices[nid]);
2557 }
2558
2559 /*
2560  * Register hstate attributes for a single node device.
2561  * No-op if attributes already registered.
2562  */
2563 static void hugetlb_register_node(struct node *node)
2564 {
2565         struct hstate *h;
2566         struct node_hstate *nhs = &node_hstates[node->dev.id];
2567         int err;
2568
2569         if (nhs->hugepages_kobj)
2570                 return;         /* already allocated */
2571
2572         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2573                                                         &node->dev.kobj);
2574         if (!nhs->hugepages_kobj)
2575                 return;
2576
2577         for_each_hstate(h) {
2578                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2579                                                 nhs->hstate_kobjs,
2580                                                 &per_node_hstate_attr_group);
2581                 if (err) {
2582                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2583                                 h->name, node->dev.id);
2584                         hugetlb_unregister_node(node);
2585                         break;
2586                 }
2587         }
2588 }
2589
2590 /*
2591  * hugetlb init time:  register hstate attributes for all registered node
2592  * devices of nodes that have memory.  All on-line nodes should have
2593  * registered their associated device by this time.
2594  */
2595 static void __init hugetlb_register_all_nodes(void)
2596 {
2597         int nid;
2598
2599         for_each_node_state(nid, N_MEMORY) {
2600                 struct node *node = node_devices[nid];
2601                 if (node->dev.id == nid)
2602                         hugetlb_register_node(node);
2603         }
2604
2605         /*
2606          * Let the node device driver know we're here so it can
2607          * [un]register hstate attributes on node hotplug.
2608          */
2609         register_hugetlbfs_with_node(hugetlb_register_node,
2610                                      hugetlb_unregister_node);
2611 }
2612 #else   /* !CONFIG_NUMA */
2613
2614 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2615 {
2616         BUG();
2617         if (nidp)
2618                 *nidp = -1;
2619         return NULL;
2620 }
2621
2622 static void hugetlb_unregister_all_nodes(void) { }
2623
2624 static void hugetlb_register_all_nodes(void) { }
2625
2626 #endif
2627
2628 static void __exit hugetlb_exit(void)
2629 {
2630         struct hstate *h;
2631
2632         hugetlb_unregister_all_nodes();
2633
2634         for_each_hstate(h) {
2635                 kobject_put(hstate_kobjs[hstate_index(h)]);
2636         }
2637
2638         kobject_put(hugepages_kobj);
2639         kfree(hugetlb_fault_mutex_table);
2640 }
2641 module_exit(hugetlb_exit);
2642
2643 static int __init hugetlb_init(void)
2644 {
2645         int i;
2646
2647         if (!hugepages_supported())
2648                 return 0;
2649
2650         if (!size_to_hstate(default_hstate_size)) {
2651                 default_hstate_size = HPAGE_SIZE;
2652                 if (!size_to_hstate(default_hstate_size))
2653                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2654         }
2655         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2656         if (default_hstate_max_huge_pages)
2657                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2658
2659         hugetlb_init_hstates();
2660         gather_bootmem_prealloc();
2661         report_hugepages();
2662
2663         hugetlb_sysfs_init();
2664         hugetlb_register_all_nodes();
2665         hugetlb_cgroup_file_init();
2666
2667 #ifdef CONFIG_SMP
2668         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2669 #else
2670         num_fault_mutexes = 1;
2671 #endif
2672         hugetlb_fault_mutex_table =
2673                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2674         BUG_ON(!hugetlb_fault_mutex_table);
2675
2676         for (i = 0; i < num_fault_mutexes; i++)
2677                 mutex_init(&hugetlb_fault_mutex_table[i]);
2678         return 0;
2679 }
2680 module_init(hugetlb_init);
2681
2682 /* Should be called on processing a hugepagesz=... option */
2683 void __init hugetlb_add_hstate(unsigned int order)
2684 {
2685         struct hstate *h;
2686         unsigned long i;
2687
2688         if (size_to_hstate(PAGE_SIZE << order)) {
2689                 pr_warning("hugepagesz= specified twice, ignoring\n");
2690                 return;
2691         }
2692         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2693         BUG_ON(order == 0);
2694         h = &hstates[hugetlb_max_hstate++];
2695         h->order = order;
2696         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2697         h->nr_huge_pages = 0;
2698         h->free_huge_pages = 0;
2699         for (i = 0; i < MAX_NUMNODES; ++i)
2700                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2701         INIT_LIST_HEAD(&h->hugepage_activelist);
2702         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2703         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2704         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2705                                         huge_page_size(h)/1024);
2706
2707         parsed_hstate = h;
2708 }
2709
2710 static int __init hugetlb_nrpages_setup(char *s)
2711 {
2712         unsigned long *mhp;
2713         static unsigned long *last_mhp;
2714
2715         /*
2716          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2717          * so this hugepages= parameter goes to the "default hstate".
2718          */
2719         if (!hugetlb_max_hstate)
2720                 mhp = &default_hstate_max_huge_pages;
2721         else
2722                 mhp = &parsed_hstate->max_huge_pages;
2723
2724         if (mhp == last_mhp) {
2725                 pr_warning("hugepages= specified twice without "
2726                            "interleaving hugepagesz=, ignoring\n");
2727                 return 1;
2728         }
2729
2730         if (sscanf(s, "%lu", mhp) <= 0)
2731                 *mhp = 0;
2732
2733         /*
2734          * Global state is always initialized later in hugetlb_init.
2735          * But we need to allocate >= MAX_ORDER hstates here early to still
2736          * use the bootmem allocator.
2737          */
2738         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2739                 hugetlb_hstate_alloc_pages(parsed_hstate);
2740
2741         last_mhp = mhp;
2742
2743         return 1;
2744 }
2745 __setup("hugepages=", hugetlb_nrpages_setup);
2746
2747 static int __init hugetlb_default_setup(char *s)
2748 {
2749         default_hstate_size = memparse(s, &s);
2750         return 1;
2751 }
2752 __setup("default_hugepagesz=", hugetlb_default_setup);
2753
2754 static unsigned int cpuset_mems_nr(unsigned int *array)
2755 {
2756         int node;
2757         unsigned int nr = 0;
2758
2759         for_each_node_mask(node, cpuset_current_mems_allowed)
2760                 nr += array[node];
2761
2762         return nr;
2763 }
2764
2765 #ifdef CONFIG_SYSCTL
2766 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2767                          struct ctl_table *table, int write,
2768                          void __user *buffer, size_t *length, loff_t *ppos)
2769 {
2770         struct hstate *h = &default_hstate;
2771         unsigned long tmp = h->max_huge_pages;
2772         int ret;
2773
2774         if (!hugepages_supported())
2775                 return -ENOTSUPP;
2776
2777         table->data = &tmp;
2778         table->maxlen = sizeof(unsigned long);
2779         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2780         if (ret)
2781                 goto out;
2782
2783         if (write)
2784                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2785                                                   NUMA_NO_NODE, tmp, *length);
2786 out:
2787         return ret;
2788 }
2789
2790 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2791                           void __user *buffer, size_t *length, loff_t *ppos)
2792 {
2793
2794         return hugetlb_sysctl_handler_common(false, table, write,
2795                                                         buffer, length, ppos);
2796 }
2797
2798 #ifdef CONFIG_NUMA
2799 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2800                           void __user *buffer, size_t *length, loff_t *ppos)
2801 {
2802         return hugetlb_sysctl_handler_common(true, table, write,
2803                                                         buffer, length, ppos);
2804 }
2805 #endif /* CONFIG_NUMA */
2806
2807 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2808                         void __user *buffer,
2809                         size_t *length, loff_t *ppos)
2810 {
2811         struct hstate *h = &default_hstate;
2812         unsigned long tmp;
2813         int ret;
2814
2815         if (!hugepages_supported())
2816                 return -ENOTSUPP;
2817
2818         tmp = h->nr_overcommit_huge_pages;
2819
2820         if (write && hstate_is_gigantic(h))
2821                 return -EINVAL;
2822
2823         table->data = &tmp;
2824         table->maxlen = sizeof(unsigned long);
2825         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2826         if (ret)
2827                 goto out;
2828
2829         if (write) {
2830                 spin_lock(&hugetlb_lock);
2831                 h->nr_overcommit_huge_pages = tmp;
2832                 spin_unlock(&hugetlb_lock);
2833         }
2834 out:
2835         return ret;
2836 }
2837
2838 #endif /* CONFIG_SYSCTL */
2839
2840 void hugetlb_report_meminfo(struct seq_file *m)
2841 {
2842         struct hstate *h = &default_hstate;
2843         if (!hugepages_supported())
2844                 return;
2845         seq_printf(m,
2846                         "HugePages_Total:   %5lu\n"
2847                         "HugePages_Free:    %5lu\n"
2848                         "HugePages_Rsvd:    %5lu\n"
2849                         "HugePages_Surp:    %5lu\n"
2850                         "Hugepagesize:   %8lu kB\n",
2851                         h->nr_huge_pages,
2852                         h->free_huge_pages,
2853                         h->resv_huge_pages,
2854                         h->surplus_huge_pages,
2855                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2856 }
2857
2858 int hugetlb_report_node_meminfo(int nid, char *buf)
2859 {
2860         struct hstate *h = &default_hstate;
2861         if (!hugepages_supported())
2862                 return 0;
2863         return sprintf(buf,
2864                 "Node %d HugePages_Total: %5u\n"
2865                 "Node %d HugePages_Free:  %5u\n"
2866                 "Node %d HugePages_Surp:  %5u\n",
2867                 nid, h->nr_huge_pages_node[nid],
2868                 nid, h->free_huge_pages_node[nid],
2869                 nid, h->surplus_huge_pages_node[nid]);
2870 }
2871
2872 void hugetlb_show_meminfo(void)
2873 {
2874         struct hstate *h;
2875         int nid;
2876
2877         if (!hugepages_supported())
2878                 return;
2879
2880         for_each_node_state(nid, N_MEMORY)
2881                 for_each_hstate(h)
2882                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2883                                 nid,
2884                                 h->nr_huge_pages_node[nid],
2885                                 h->free_huge_pages_node[nid],
2886                                 h->surplus_huge_pages_node[nid],
2887                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2888 }
2889
2890 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2891 {
2892         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2893                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2894 }
2895
2896 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2897 unsigned long hugetlb_total_pages(void)
2898 {
2899         struct hstate *h;
2900         unsigned long nr_total_pages = 0;
2901
2902         for_each_hstate(h)
2903                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2904         return nr_total_pages;
2905 }
2906
2907 static int hugetlb_acct_memory(struct hstate *h, long delta)
2908 {
2909         int ret = -ENOMEM;
2910
2911         spin_lock(&hugetlb_lock);
2912         /*
2913          * When cpuset is configured, it breaks the strict hugetlb page
2914          * reservation as the accounting is done on a global variable. Such
2915          * reservation is completely rubbish in the presence of cpuset because
2916          * the reservation is not checked against page availability for the
2917          * current cpuset. Application can still potentially OOM'ed by kernel
2918          * with lack of free htlb page in cpuset that the task is in.
2919          * Attempt to enforce strict accounting with cpuset is almost
2920          * impossible (or too ugly) because cpuset is too fluid that
2921          * task or memory node can be dynamically moved between cpusets.
2922          *
2923          * The change of semantics for shared hugetlb mapping with cpuset is
2924          * undesirable. However, in order to preserve some of the semantics,
2925          * we fall back to check against current free page availability as
2926          * a best attempt and hopefully to minimize the impact of changing
2927          * semantics that cpuset has.
2928          */
2929         if (delta > 0) {
2930                 if (gather_surplus_pages(h, delta) < 0)
2931                         goto out;
2932
2933                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2934                         return_unused_surplus_pages(h, delta);
2935                         goto out;
2936                 }
2937         }
2938
2939         ret = 0;
2940         if (delta < 0)
2941                 return_unused_surplus_pages(h, (unsigned long) -delta);
2942
2943 out:
2944         spin_unlock(&hugetlb_lock);
2945         return ret;
2946 }
2947
2948 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2949 {
2950         struct resv_map *resv = vma_resv_map(vma);
2951
2952         /*
2953          * This new VMA should share its siblings reservation map if present.
2954          * The VMA will only ever have a valid reservation map pointer where
2955          * it is being copied for another still existing VMA.  As that VMA
2956          * has a reference to the reservation map it cannot disappear until
2957          * after this open call completes.  It is therefore safe to take a
2958          * new reference here without additional locking.
2959          */
2960         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2961                 kref_get(&resv->refs);
2962 }
2963
2964 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2965 {
2966         struct hstate *h = hstate_vma(vma);
2967         struct resv_map *resv = vma_resv_map(vma);
2968         struct hugepage_subpool *spool = subpool_vma(vma);
2969         unsigned long reserve, start, end;
2970         long gbl_reserve;
2971
2972         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2973                 return;
2974
2975         start = vma_hugecache_offset(h, vma, vma->vm_start);
2976         end = vma_hugecache_offset(h, vma, vma->vm_end);
2977
2978         reserve = (end - start) - region_count(resv, start, end);
2979
2980         kref_put(&resv->refs, resv_map_release);
2981
2982         if (reserve) {
2983                 /*
2984                  * Decrement reserve counts.  The global reserve count may be
2985                  * adjusted if the subpool has a minimum size.
2986                  */
2987                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2988                 hugetlb_acct_memory(h, -gbl_reserve);
2989         }
2990 }
2991
2992 /*
2993  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2994  * handle_mm_fault() to try to instantiate regular-sized pages in the
2995  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2996  * this far.
2997  */
2998 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2999 {
3000         BUG();
3001         return 0;
3002 }
3003
3004 const struct vm_operations_struct hugetlb_vm_ops = {
3005         .fault = hugetlb_vm_op_fault,
3006         .open = hugetlb_vm_op_open,
3007         .close = hugetlb_vm_op_close,
3008 };
3009
3010 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3011                                 int writable)
3012 {
3013         pte_t entry;
3014
3015         if (writable) {
3016                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3017                                          vma->vm_page_prot)));
3018         } else {
3019                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3020                                            vma->vm_page_prot));
3021         }
3022         entry = pte_mkyoung(entry);
3023         entry = pte_mkhuge(entry);
3024         entry = arch_make_huge_pte(entry, vma, page, writable);
3025
3026         return entry;
3027 }
3028
3029 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3030                                    unsigned long address, pte_t *ptep)
3031 {
3032         pte_t entry;
3033
3034         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3035         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3036                 update_mmu_cache(vma, address, ptep);
3037 }
3038
3039 static int is_hugetlb_entry_migration(pte_t pte)
3040 {
3041         swp_entry_t swp;
3042
3043         if (huge_pte_none(pte) || pte_present(pte))
3044                 return 0;
3045         swp = pte_to_swp_entry(pte);
3046         if (non_swap_entry(swp) && is_migration_entry(swp))
3047                 return 1;
3048         else
3049                 return 0;
3050 }
3051
3052 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3053 {
3054         swp_entry_t swp;
3055
3056         if (huge_pte_none(pte) || pte_present(pte))
3057                 return 0;
3058         swp = pte_to_swp_entry(pte);
3059         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3060                 return 1;
3061         else
3062                 return 0;
3063 }
3064
3065 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3066                             struct vm_area_struct *vma)
3067 {
3068         pte_t *src_pte, *dst_pte, entry;
3069         struct page *ptepage;
3070         unsigned long addr;
3071         int cow;
3072         struct hstate *h = hstate_vma(vma);
3073         unsigned long sz = huge_page_size(h);
3074         unsigned long mmun_start;       /* For mmu_notifiers */
3075         unsigned long mmun_end;         /* For mmu_notifiers */
3076         int ret = 0;
3077
3078         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3079
3080         mmun_start = vma->vm_start;
3081         mmun_end = vma->vm_end;
3082         if (cow)
3083                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3084
3085         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3086                 spinlock_t *src_ptl, *dst_ptl;
3087                 src_pte = huge_pte_offset(src, addr);
3088                 if (!src_pte)
3089                         continue;
3090                 dst_pte = huge_pte_alloc(dst, addr, sz);
3091                 if (!dst_pte) {
3092                         ret = -ENOMEM;
3093                         break;
3094                 }
3095
3096                 /* If the pagetables are shared don't copy or take references */
3097                 if (dst_pte == src_pte)
3098                         continue;
3099
3100                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3101                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3102                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3103                 entry = huge_ptep_get(src_pte);
3104                 if (huge_pte_none(entry)) { /* skip none entry */
3105                         ;
3106                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3107                                     is_hugetlb_entry_hwpoisoned(entry))) {
3108                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3109
3110                         if (is_write_migration_entry(swp_entry) && cow) {
3111                                 /*
3112                                  * COW mappings require pages in both
3113                                  * parent and child to be set to read.
3114                                  */
3115                                 make_migration_entry_read(&swp_entry);
3116                                 entry = swp_entry_to_pte(swp_entry);
3117                                 set_huge_pte_at(src, addr, src_pte, entry);
3118                         }
3119                         set_huge_pte_at(dst, addr, dst_pte, entry);
3120                 } else {
3121                         if (cow) {
3122                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3123                                 mmu_notifier_invalidate_range(src, mmun_start,
3124                                                                    mmun_end);
3125                         }
3126                         entry = huge_ptep_get(src_pte);
3127                         ptepage = pte_page(entry);
3128                         get_page(ptepage);
3129                         page_dup_rmap(ptepage);
3130                         set_huge_pte_at(dst, addr, dst_pte, entry);
3131                         hugetlb_count_add(pages_per_huge_page(h), dst);
3132                 }
3133                 spin_unlock(src_ptl);
3134                 spin_unlock(dst_ptl);
3135         }
3136
3137         if (cow)
3138                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3139
3140         return ret;
3141 }
3142
3143 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3144                             unsigned long start, unsigned long end,
3145                             struct page *ref_page)
3146 {
3147         int force_flush = 0;
3148         struct mm_struct *mm = vma->vm_mm;
3149         unsigned long address;
3150         pte_t *ptep;
3151         pte_t pte;
3152         spinlock_t *ptl;
3153         struct page *page;
3154         struct hstate *h = hstate_vma(vma);
3155         unsigned long sz = huge_page_size(h);
3156         const unsigned long mmun_start = start; /* For mmu_notifiers */
3157         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3158
3159         WARN_ON(!is_vm_hugetlb_page(vma));
3160         BUG_ON(start & ~huge_page_mask(h));
3161         BUG_ON(end & ~huge_page_mask(h));
3162
3163         tlb_start_vma(tlb, vma);
3164         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3165         address = start;
3166 again:
3167         for (; address < end; address += sz) {
3168                 ptep = huge_pte_offset(mm, address);
3169                 if (!ptep)
3170                         continue;
3171
3172                 ptl = huge_pte_lock(h, mm, ptep);
3173                 if (huge_pmd_unshare(mm, &address, ptep))
3174                         goto unlock;
3175
3176                 pte = huge_ptep_get(ptep);
3177                 if (huge_pte_none(pte))
3178                         goto unlock;
3179
3180                 /*
3181                  * Migrating hugepage or HWPoisoned hugepage is already
3182                  * unmapped and its refcount is dropped, so just clear pte here.
3183                  */
3184                 if (unlikely(!pte_present(pte))) {
3185                         huge_pte_clear(mm, address, ptep);
3186                         goto unlock;
3187                 }
3188
3189                 page = pte_page(pte);
3190                 /*
3191                  * If a reference page is supplied, it is because a specific
3192                  * page is being unmapped, not a range. Ensure the page we
3193                  * are about to unmap is the actual page of interest.
3194                  */
3195                 if (ref_page) {
3196                         if (page != ref_page)
3197                                 goto unlock;
3198
3199                         /*
3200                          * Mark the VMA as having unmapped its page so that
3201                          * future faults in this VMA will fail rather than
3202                          * looking like data was lost
3203                          */
3204                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3205                 }
3206
3207                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3208                 tlb_remove_tlb_entry(tlb, ptep, address);
3209                 if (huge_pte_dirty(pte))
3210                         set_page_dirty(page);
3211
3212                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3213                 page_remove_rmap(page);
3214                 force_flush = !__tlb_remove_page(tlb, page);
3215                 if (force_flush) {
3216                         address += sz;
3217                         spin_unlock(ptl);
3218                         break;
3219                 }
3220                 /* Bail out after unmapping reference page if supplied */
3221                 if (ref_page) {
3222                         spin_unlock(ptl);
3223                         break;
3224                 }
3225 unlock:
3226                 spin_unlock(ptl);
3227         }
3228         /*
3229          * mmu_gather ran out of room to batch pages, we break out of
3230          * the PTE lock to avoid doing the potential expensive TLB invalidate
3231          * and page-free while holding it.
3232          */
3233         if (force_flush) {
3234                 force_flush = 0;
3235                 tlb_flush_mmu(tlb);
3236                 if (address < end && !ref_page)
3237                         goto again;
3238         }
3239         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3240         tlb_end_vma(tlb, vma);
3241 }
3242
3243 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3244                           struct vm_area_struct *vma, unsigned long start,
3245                           unsigned long end, struct page *ref_page)
3246 {
3247         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3248
3249         /*
3250          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3251          * test will fail on a vma being torn down, and not grab a page table
3252          * on its way out.  We're lucky that the flag has such an appropriate
3253          * name, and can in fact be safely cleared here. We could clear it
3254          * before the __unmap_hugepage_range above, but all that's necessary
3255          * is to clear it before releasing the i_mmap_rwsem. This works
3256          * because in the context this is called, the VMA is about to be
3257          * destroyed and the i_mmap_rwsem is held.
3258          */
3259         vma->vm_flags &= ~VM_MAYSHARE;
3260 }
3261
3262 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3263                           unsigned long end, struct page *ref_page)
3264 {
3265         struct mm_struct *mm;
3266         struct mmu_gather tlb;
3267
3268         mm = vma->vm_mm;
3269
3270         tlb_gather_mmu(&tlb, mm, start, end);
3271         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3272         tlb_finish_mmu(&tlb, start, end);
3273 }
3274
3275 /*
3276  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3277  * mappping it owns the reserve page for. The intention is to unmap the page
3278  * from other VMAs and let the children be SIGKILLed if they are faulting the
3279  * same region.
3280  */
3281 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3282                               struct page *page, unsigned long address)
3283 {
3284         struct hstate *h = hstate_vma(vma);
3285         struct vm_area_struct *iter_vma;
3286         struct address_space *mapping;
3287         pgoff_t pgoff;
3288
3289         /*
3290          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3291          * from page cache lookup which is in HPAGE_SIZE units.
3292          */
3293         address = address & huge_page_mask(h);
3294         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3295                         vma->vm_pgoff;
3296         mapping = file_inode(vma->vm_file)->i_mapping;
3297
3298         /*
3299          * Take the mapping lock for the duration of the table walk. As
3300          * this mapping should be shared between all the VMAs,
3301          * __unmap_hugepage_range() is called as the lock is already held
3302          */
3303         i_mmap_lock_write(mapping);
3304         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3305                 /* Do not unmap the current VMA */
3306                 if (iter_vma == vma)
3307                         continue;
3308
3309                 /*
3310                  * Shared VMAs have their own reserves and do not affect
3311                  * MAP_PRIVATE accounting but it is possible that a shared
3312                  * VMA is using the same page so check and skip such VMAs.
3313                  */
3314                 if (iter_vma->vm_flags & VM_MAYSHARE)
3315                         continue;
3316
3317                 /*
3318                  * Unmap the page from other VMAs without their own reserves.
3319                  * They get marked to be SIGKILLed if they fault in these
3320                  * areas. This is because a future no-page fault on this VMA
3321                  * could insert a zeroed page instead of the data existing
3322                  * from the time of fork. This would look like data corruption
3323                  */
3324                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3325                         unmap_hugepage_range(iter_vma, address,
3326                                              address + huge_page_size(h), page);
3327         }
3328         i_mmap_unlock_write(mapping);
3329 }
3330
3331 /*
3332  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3333  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3334  * cannot race with other handlers or page migration.
3335  * Keep the pte_same checks anyway to make transition from the mutex easier.
3336  */
3337 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3338                         unsigned long address, pte_t *ptep, pte_t pte,
3339                         struct page *pagecache_page, spinlock_t *ptl)
3340 {
3341         struct hstate *h = hstate_vma(vma);
3342         struct page *old_page, *new_page;
3343         int ret = 0, outside_reserve = 0;
3344         unsigned long mmun_start;       /* For mmu_notifiers */
3345         unsigned long mmun_end;         /* For mmu_notifiers */
3346
3347         old_page = pte_page(pte);
3348
3349 retry_avoidcopy:
3350         /* If no-one else is actually using this page, avoid the copy
3351          * and just make the page writable */
3352         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3353                 page_move_anon_rmap(old_page, vma, address);
3354                 set_huge_ptep_writable(vma, address, ptep);
3355                 return 0;
3356         }
3357
3358         /*
3359          * If the process that created a MAP_PRIVATE mapping is about to
3360          * perform a COW due to a shared page count, attempt to satisfy
3361          * the allocation without using the existing reserves. The pagecache
3362          * page is used to determine if the reserve at this address was
3363          * consumed or not. If reserves were used, a partial faulted mapping
3364          * at the time of fork() could consume its reserves on COW instead
3365          * of the full address range.
3366          */
3367         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3368                         old_page != pagecache_page)
3369                 outside_reserve = 1;
3370
3371         page_cache_get(old_page);
3372
3373         /*
3374          * Drop page table lock as buddy allocator may be called. It will
3375          * be acquired again before returning to the caller, as expected.
3376          */
3377         spin_unlock(ptl);
3378         new_page = alloc_huge_page(vma, address, outside_reserve);
3379
3380         if (IS_ERR(new_page)) {
3381                 /*
3382                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3383                  * it is due to references held by a child and an insufficient
3384                  * huge page pool. To guarantee the original mappers
3385                  * reliability, unmap the page from child processes. The child
3386                  * may get SIGKILLed if it later faults.
3387                  */
3388                 if (outside_reserve) {
3389                         page_cache_release(old_page);
3390                         BUG_ON(huge_pte_none(pte));
3391                         unmap_ref_private(mm, vma, old_page, address);
3392                         BUG_ON(huge_pte_none(pte));
3393                         spin_lock(ptl);
3394                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3395                         if (likely(ptep &&
3396                                    pte_same(huge_ptep_get(ptep), pte)))
3397                                 goto retry_avoidcopy;
3398                         /*
3399                          * race occurs while re-acquiring page table
3400                          * lock, and our job is done.
3401                          */
3402                         return 0;
3403                 }
3404
3405                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3406                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3407                 goto out_release_old;
3408         }
3409
3410         /*
3411          * When the original hugepage is shared one, it does not have
3412          * anon_vma prepared.
3413          */
3414         if (unlikely(anon_vma_prepare(vma))) {
3415                 ret = VM_FAULT_OOM;
3416                 goto out_release_all;
3417         }
3418
3419         copy_user_huge_page(new_page, old_page, address, vma,
3420                             pages_per_huge_page(h));
3421         __SetPageUptodate(new_page);
3422         set_page_huge_active(new_page);
3423
3424         mmun_start = address & huge_page_mask(h);
3425         mmun_end = mmun_start + huge_page_size(h);
3426         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3427
3428         /*
3429          * Retake the page table lock to check for racing updates
3430          * before the page tables are altered
3431          */
3432         spin_lock(ptl);
3433         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3434         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3435                 ClearPagePrivate(new_page);
3436
3437                 /* Break COW */
3438                 huge_ptep_clear_flush(vma, address, ptep);
3439                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3440                 set_huge_pte_at(mm, address, ptep,
3441                                 make_huge_pte(vma, new_page, 1));
3442                 page_remove_rmap(old_page);
3443                 hugepage_add_new_anon_rmap(new_page, vma, address);
3444                 /* Make the old page be freed below */
3445                 new_page = old_page;
3446         }
3447         spin_unlock(ptl);
3448         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3449 out_release_all:
3450         page_cache_release(new_page);
3451 out_release_old:
3452         page_cache_release(old_page);
3453
3454         spin_lock(ptl); /* Caller expects lock to be held */
3455         return ret;
3456 }
3457
3458 /* Return the pagecache page at a given address within a VMA */
3459 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3460                         struct vm_area_struct *vma, unsigned long address)
3461 {
3462         struct address_space *mapping;
3463         pgoff_t idx;
3464
3465         mapping = vma->vm_file->f_mapping;
3466         idx = vma_hugecache_offset(h, vma, address);
3467
3468         return find_lock_page(mapping, idx);
3469 }
3470
3471 /*
3472  * Return whether there is a pagecache page to back given address within VMA.
3473  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3474  */
3475 static bool hugetlbfs_pagecache_present(struct hstate *h,
3476                         struct vm_area_struct *vma, unsigned long address)
3477 {
3478         struct address_space *mapping;
3479         pgoff_t idx;
3480         struct page *page;
3481
3482         mapping = vma->vm_file->f_mapping;
3483         idx = vma_hugecache_offset(h, vma, address);
3484
3485         page = find_get_page(mapping, idx);
3486         if (page)
3487                 put_page(page);
3488         return page != NULL;
3489 }
3490
3491 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3492                            pgoff_t idx)
3493 {
3494         struct inode *inode = mapping->host;
3495         struct hstate *h = hstate_inode(inode);
3496         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3497
3498         if (err)
3499                 return err;
3500         ClearPagePrivate(page);
3501
3502         spin_lock(&inode->i_lock);
3503         inode->i_blocks += blocks_per_huge_page(h);
3504         spin_unlock(&inode->i_lock);
3505         return 0;
3506 }
3507
3508 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3509                            struct address_space *mapping, pgoff_t idx,
3510                            unsigned long address, pte_t *ptep, unsigned int flags)
3511 {
3512         struct hstate *h = hstate_vma(vma);
3513         int ret = VM_FAULT_SIGBUS;
3514         int anon_rmap = 0;
3515         unsigned long size;
3516         struct page *page;
3517         pte_t new_pte;
3518         spinlock_t *ptl;
3519
3520         /*
3521          * Currently, we are forced to kill the process in the event the
3522          * original mapper has unmapped pages from the child due to a failed
3523          * COW. Warn that such a situation has occurred as it may not be obvious
3524          */
3525         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3526                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3527                            current->pid);
3528                 return ret;
3529         }
3530
3531         /*
3532          * Use page lock to guard against racing truncation
3533          * before we get page_table_lock.
3534          */
3535 retry:
3536         page = find_lock_page(mapping, idx);
3537         if (!page) {
3538                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3539                 if (idx >= size)
3540                         goto out;
3541                 page = alloc_huge_page(vma, address, 0);
3542                 if (IS_ERR(page)) {
3543                         ret = PTR_ERR(page);
3544                         if (ret == -ENOMEM)
3545                                 ret = VM_FAULT_OOM;
3546                         else
3547                                 ret = VM_FAULT_SIGBUS;
3548                         goto out;
3549                 }
3550                 clear_huge_page(page, address, pages_per_huge_page(h));
3551                 __SetPageUptodate(page);
3552                 set_page_huge_active(page);
3553
3554                 if (vma->vm_flags & VM_MAYSHARE) {
3555                         int err = huge_add_to_page_cache(page, mapping, idx);
3556                         if (err) {
3557                                 put_page(page);
3558                                 if (err == -EEXIST)
3559                                         goto retry;
3560                                 goto out;
3561                         }
3562                 } else {
3563                         lock_page(page);
3564                         if (unlikely(anon_vma_prepare(vma))) {
3565                                 ret = VM_FAULT_OOM;
3566                                 goto backout_unlocked;
3567                         }
3568                         anon_rmap = 1;
3569                 }
3570         } else {
3571                 /*
3572                  * If memory error occurs between mmap() and fault, some process
3573                  * don't have hwpoisoned swap entry for errored virtual address.
3574                  * So we need to block hugepage fault by PG_hwpoison bit check.
3575                  */
3576                 if (unlikely(PageHWPoison(page))) {
3577                         ret = VM_FAULT_HWPOISON |
3578                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3579                         goto backout_unlocked;
3580                 }
3581         }
3582
3583         /*
3584          * If we are going to COW a private mapping later, we examine the
3585          * pending reservations for this page now. This will ensure that
3586          * any allocations necessary to record that reservation occur outside
3587          * the spinlock.
3588          */
3589         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3590                 if (vma_needs_reservation(h, vma, address) < 0) {
3591                         ret = VM_FAULT_OOM;
3592                         goto backout_unlocked;
3593                 }
3594                 /* Just decrements count, does not deallocate */
3595                 vma_end_reservation(h, vma, address);
3596         }
3597
3598         ptl = huge_pte_lockptr(h, mm, ptep);
3599         spin_lock(ptl);
3600         size = i_size_read(mapping->host) >> huge_page_shift(h);
3601         if (idx >= size)
3602                 goto backout;
3603
3604         ret = 0;
3605         if (!huge_pte_none(huge_ptep_get(ptep)))
3606                 goto backout;
3607
3608         if (anon_rmap) {
3609                 ClearPagePrivate(page);
3610                 hugepage_add_new_anon_rmap(page, vma, address);
3611         } else
3612                 page_dup_rmap(page);
3613         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3614                                 && (vma->vm_flags & VM_SHARED)));
3615         set_huge_pte_at(mm, address, ptep, new_pte);
3616
3617         hugetlb_count_add(pages_per_huge_page(h), mm);
3618         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3619                 /* Optimization, do the COW without a second fault */
3620                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3621         }
3622
3623         spin_unlock(ptl);
3624         unlock_page(page);
3625 out:
3626         return ret;
3627
3628 backout:
3629         spin_unlock(ptl);
3630 backout_unlocked:
3631         unlock_page(page);
3632         put_page(page);
3633         goto out;
3634 }
3635
3636 #ifdef CONFIG_SMP
3637 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3638                             struct vm_area_struct *vma,
3639                             struct address_space *mapping,
3640                             pgoff_t idx, unsigned long address)
3641 {
3642         unsigned long key[2];
3643         u32 hash;
3644
3645         if (vma->vm_flags & VM_SHARED) {
3646                 key[0] = (unsigned long) mapping;
3647                 key[1] = idx;
3648         } else {
3649                 key[0] = (unsigned long) mm;
3650                 key[1] = address >> huge_page_shift(h);
3651         }
3652
3653         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3654
3655         return hash & (num_fault_mutexes - 1);
3656 }
3657 #else
3658 /*
3659  * For uniprocesor systems we always use a single mutex, so just
3660  * return 0 and avoid the hashing overhead.
3661  */
3662 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3663                             struct vm_area_struct *vma,
3664                             struct address_space *mapping,
3665                             pgoff_t idx, unsigned long address)
3666 {
3667         return 0;
3668 }
3669 #endif
3670
3671 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3672                         unsigned long address, unsigned int flags)
3673 {
3674         pte_t *ptep, entry;
3675         spinlock_t *ptl;
3676         int ret;
3677         u32 hash;
3678         pgoff_t idx;
3679         struct page *page = NULL;
3680         struct page *pagecache_page = NULL;
3681         struct hstate *h = hstate_vma(vma);
3682         struct address_space *mapping;
3683         int need_wait_lock = 0;
3684
3685         address &= huge_page_mask(h);
3686
3687         ptep = huge_pte_offset(mm, address);
3688         if (ptep) {
3689                 entry = huge_ptep_get(ptep);
3690                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3691                         migration_entry_wait_huge(vma, mm, ptep);
3692                         return 0;
3693                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3694                         return VM_FAULT_HWPOISON_LARGE |
3695                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3696         }
3697
3698         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3699         if (!ptep)
3700                 return VM_FAULT_OOM;
3701
3702         mapping = vma->vm_file->f_mapping;
3703         idx = vma_hugecache_offset(h, vma, address);
3704
3705         /*
3706          * Serialize hugepage allocation and instantiation, so that we don't
3707          * get spurious allocation failures if two CPUs race to instantiate
3708          * the same page in the page cache.
3709          */
3710         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3711         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3712
3713         entry = huge_ptep_get(ptep);
3714         if (huge_pte_none(entry)) {
3715                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3716                 goto out_mutex;
3717         }
3718
3719         ret = 0;
3720
3721         /*
3722          * entry could be a migration/hwpoison entry at this point, so this
3723          * check prevents the kernel from going below assuming that we have
3724          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3725          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3726          * handle it.
3727          */
3728         if (!pte_present(entry))
3729                 goto out_mutex;
3730
3731         /*
3732          * If we are going to COW the mapping later, we examine the pending
3733          * reservations for this page now. This will ensure that any
3734          * allocations necessary to record that reservation occur outside the
3735          * spinlock. For private mappings, we also lookup the pagecache
3736          * page now as it is used to determine if a reservation has been
3737          * consumed.
3738          */
3739         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3740                 if (vma_needs_reservation(h, vma, address) < 0) {
3741                         ret = VM_FAULT_OOM;
3742                         goto out_mutex;
3743                 }
3744                 /* Just decrements count, does not deallocate */
3745                 vma_end_reservation(h, vma, address);
3746
3747                 if (!(vma->vm_flags & VM_MAYSHARE))
3748                         pagecache_page = hugetlbfs_pagecache_page(h,
3749                                                                 vma, address);
3750         }
3751
3752         ptl = huge_pte_lock(h, mm, ptep);
3753
3754         /* Check for a racing update before calling hugetlb_cow */
3755         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3756                 goto out_ptl;
3757
3758         /*
3759          * hugetlb_cow() requires page locks of pte_page(entry) and
3760          * pagecache_page, so here we need take the former one
3761          * when page != pagecache_page or !pagecache_page.
3762          */
3763         page = pte_page(entry);
3764         if (page != pagecache_page)
3765                 if (!trylock_page(page)) {
3766                         need_wait_lock = 1;
3767                         goto out_ptl;
3768                 }
3769
3770         get_page(page);
3771
3772         if (flags & FAULT_FLAG_WRITE) {
3773                 if (!huge_pte_write(entry)) {
3774                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3775                                         pagecache_page, ptl);
3776                         goto out_put_page;
3777                 }
3778                 entry = huge_pte_mkdirty(entry);
3779         }
3780         entry = pte_mkyoung(entry);
3781         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3782                                                 flags & FAULT_FLAG_WRITE))
3783                 update_mmu_cache(vma, address, ptep);
3784 out_put_page:
3785         if (page != pagecache_page)
3786                 unlock_page(page);
3787         put_page(page);
3788 out_ptl:
3789         spin_unlock(ptl);
3790
3791         if (pagecache_page) {
3792                 unlock_page(pagecache_page);
3793                 put_page(pagecache_page);
3794         }
3795 out_mutex:
3796         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3797         /*
3798          * Generally it's safe to hold refcount during waiting page lock. But
3799          * here we just wait to defer the next page fault to avoid busy loop and
3800          * the page is not used after unlocked before returning from the current
3801          * page fault. So we are safe from accessing freed page, even if we wait
3802          * here without taking refcount.
3803          */
3804         if (need_wait_lock)
3805                 wait_on_page_locked(page);
3806         return ret;
3807 }
3808
3809 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3810                          struct page **pages, struct vm_area_struct **vmas,
3811                          unsigned long *position, unsigned long *nr_pages,
3812                          long i, unsigned int flags)
3813 {
3814         unsigned long pfn_offset;
3815         unsigned long vaddr = *position;
3816         unsigned long remainder = *nr_pages;
3817         struct hstate *h = hstate_vma(vma);
3818
3819         while (vaddr < vma->vm_end && remainder) {
3820                 pte_t *pte;
3821                 spinlock_t *ptl = NULL;
3822                 int absent;
3823                 struct page *page;
3824
3825                 /*
3826                  * If we have a pending SIGKILL, don't keep faulting pages and
3827                  * potentially allocating memory.
3828                  */
3829                 if (unlikely(fatal_signal_pending(current))) {
3830                         remainder = 0;
3831                         break;
3832                 }
3833
3834                 /*
3835                  * Some archs (sparc64, sh*) have multiple pte_ts to
3836                  * each hugepage.  We have to make sure we get the
3837                  * first, for the page indexing below to work.
3838                  *
3839                  * Note that page table lock is not held when pte is null.
3840                  */
3841                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3842                 if (pte)
3843                         ptl = huge_pte_lock(h, mm, pte);
3844                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3845
3846                 /*
3847                  * When coredumping, it suits get_dump_page if we just return
3848                  * an error where there's an empty slot with no huge pagecache
3849                  * to back it.  This way, we avoid allocating a hugepage, and
3850                  * the sparse dumpfile avoids allocating disk blocks, but its
3851                  * huge holes still show up with zeroes where they need to be.
3852                  */
3853                 if (absent && (flags & FOLL_DUMP) &&
3854                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3855                         if (pte)
3856                                 spin_unlock(ptl);
3857                         remainder = 0;
3858                         break;
3859                 }
3860
3861                 /*
3862                  * We need call hugetlb_fault for both hugepages under migration
3863                  * (in which case hugetlb_fault waits for the migration,) and
3864                  * hwpoisoned hugepages (in which case we need to prevent the
3865                  * caller from accessing to them.) In order to do this, we use
3866                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3867                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3868                  * both cases, and because we can't follow correct pages
3869                  * directly from any kind of swap entries.
3870                  */
3871                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3872                     ((flags & FOLL_WRITE) &&
3873                       !huge_pte_write(huge_ptep_get(pte)))) {
3874                         int ret;
3875
3876                         if (pte)
3877                                 spin_unlock(ptl);
3878                         ret = hugetlb_fault(mm, vma, vaddr,
3879                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3880                         if (!(ret & VM_FAULT_ERROR))
3881                                 continue;
3882
3883                         remainder = 0;
3884                         break;
3885                 }
3886
3887                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3888                 page = pte_page(huge_ptep_get(pte));
3889 same_page:
3890                 if (pages) {
3891                         pages[i] = mem_map_offset(page, pfn_offset);
3892                         get_page_foll(pages[i]);
3893                 }
3894
3895                 if (vmas)
3896                         vmas[i] = vma;
3897
3898                 vaddr += PAGE_SIZE;
3899                 ++pfn_offset;
3900                 --remainder;
3901                 ++i;
3902                 if (vaddr < vma->vm_end && remainder &&
3903                                 pfn_offset < pages_per_huge_page(h)) {
3904                         /*
3905                          * We use pfn_offset to avoid touching the pageframes
3906                          * of this compound page.
3907                          */
3908                         goto same_page;
3909                 }
3910                 spin_unlock(ptl);
3911         }
3912         *nr_pages = remainder;
3913         *position = vaddr;
3914
3915         return i ? i : -EFAULT;
3916 }
3917
3918 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3919                 unsigned long address, unsigned long end, pgprot_t newprot)
3920 {
3921         struct mm_struct *mm = vma->vm_mm;
3922         unsigned long start = address;
3923         pte_t *ptep;
3924         pte_t pte;
3925         struct hstate *h = hstate_vma(vma);
3926         unsigned long pages = 0;
3927
3928         BUG_ON(address >= end);
3929         flush_cache_range(vma, address, end);
3930
3931         mmu_notifier_invalidate_range_start(mm, start, end);
3932         i_mmap_lock_write(vma->vm_file->f_mapping);
3933         for (; address < end; address += huge_page_size(h)) {
3934                 spinlock_t *ptl;
3935                 ptep = huge_pte_offset(mm, address);
3936                 if (!ptep)
3937                         continue;
3938                 ptl = huge_pte_lock(h, mm, ptep);
3939                 if (huge_pmd_unshare(mm, &address, ptep)) {
3940                         pages++;
3941                         spin_unlock(ptl);
3942                         continue;
3943                 }
3944                 pte = huge_ptep_get(ptep);
3945                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3946                         spin_unlock(ptl);
3947                         continue;
3948                 }
3949                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3950                         swp_entry_t entry = pte_to_swp_entry(pte);
3951
3952                         if (is_write_migration_entry(entry)) {
3953                                 pte_t newpte;
3954
3955                                 make_migration_entry_read(&entry);
3956                                 newpte = swp_entry_to_pte(entry);
3957                                 set_huge_pte_at(mm, address, ptep, newpte);
3958                                 pages++;
3959                         }
3960                         spin_unlock(ptl);
3961                         continue;
3962                 }
3963                 if (!huge_pte_none(pte)) {
3964                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3965                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3966                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3967                         set_huge_pte_at(mm, address, ptep, pte);
3968                         pages++;
3969                 }
3970                 spin_unlock(ptl);
3971         }
3972         /*
3973          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3974          * may have cleared our pud entry and done put_page on the page table:
3975          * once we release i_mmap_rwsem, another task can do the final put_page
3976          * and that page table be reused and filled with junk.
3977          */
3978         flush_tlb_range(vma, start, end);
3979         mmu_notifier_invalidate_range(mm, start, end);
3980         i_mmap_unlock_write(vma->vm_file->f_mapping);
3981         mmu_notifier_invalidate_range_end(mm, start, end);
3982
3983         return pages << h->order;
3984 }
3985
3986 int hugetlb_reserve_pages(struct inode *inode,
3987                                         long from, long to,
3988                                         struct vm_area_struct *vma,
3989                                         vm_flags_t vm_flags)
3990 {
3991         long ret, chg;
3992         struct hstate *h = hstate_inode(inode);
3993         struct hugepage_subpool *spool = subpool_inode(inode);
3994         struct resv_map *resv_map;
3995         long gbl_reserve;
3996
3997         /*
3998          * Only apply hugepage reservation if asked. At fault time, an
3999          * attempt will be made for VM_NORESERVE to allocate a page
4000          * without using reserves
4001          */
4002         if (vm_flags & VM_NORESERVE)
4003                 return 0;
4004
4005         /*
4006          * Shared mappings base their reservation on the number of pages that
4007          * are already allocated on behalf of the file. Private mappings need
4008          * to reserve the full area even if read-only as mprotect() may be
4009          * called to make the mapping read-write. Assume !vma is a shm mapping
4010          */
4011         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4012                 resv_map = inode_resv_map(inode);
4013
4014                 chg = region_chg(resv_map, from, to);
4015
4016         } else {
4017                 resv_map = resv_map_alloc();
4018                 if (!resv_map)
4019                         return -ENOMEM;
4020
4021                 chg = to - from;
4022
4023                 set_vma_resv_map(vma, resv_map);
4024                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4025         }
4026
4027         if (chg < 0) {
4028                 ret = chg;
4029                 goto out_err;
4030         }
4031
4032         /*
4033          * There must be enough pages in the subpool for the mapping. If
4034          * the subpool has a minimum size, there may be some global
4035          * reservations already in place (gbl_reserve).
4036          */
4037         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4038         if (gbl_reserve < 0) {
4039                 ret = -ENOSPC;
4040                 goto out_err;
4041         }
4042
4043         /*
4044          * Check enough hugepages are available for the reservation.
4045          * Hand the pages back to the subpool if there are not
4046          */
4047         ret = hugetlb_acct_memory(h, gbl_reserve);
4048         if (ret < 0) {
4049                 /* put back original number of pages, chg */
4050                 (void)hugepage_subpool_put_pages(spool, chg);
4051                 goto out_err;
4052         }
4053
4054         /*
4055          * Account for the reservations made. Shared mappings record regions
4056          * that have reservations as they are shared by multiple VMAs.
4057          * When the last VMA disappears, the region map says how much
4058          * the reservation was and the page cache tells how much of
4059          * the reservation was consumed. Private mappings are per-VMA and
4060          * only the consumed reservations are tracked. When the VMA
4061          * disappears, the original reservation is the VMA size and the
4062          * consumed reservations are stored in the map. Hence, nothing
4063          * else has to be done for private mappings here
4064          */
4065         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4066                 long add = region_add(resv_map, from, to);
4067
4068                 if (unlikely(chg > add)) {
4069                         /*
4070                          * pages in this range were added to the reserve
4071                          * map between region_chg and region_add.  This
4072                          * indicates a race with alloc_huge_page.  Adjust
4073                          * the subpool and reserve counts modified above
4074                          * based on the difference.
4075                          */
4076                         long rsv_adjust;
4077
4078                         rsv_adjust = hugepage_subpool_put_pages(spool,
4079                                                                 chg - add);
4080                         hugetlb_acct_memory(h, -rsv_adjust);
4081                 }
4082         }
4083         return 0;
4084 out_err:
4085         if (!vma || vma->vm_flags & VM_MAYSHARE)
4086                 region_abort(resv_map, from, to);
4087         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4088                 kref_put(&resv_map->refs, resv_map_release);
4089         return ret;
4090 }
4091
4092 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4093                                                                 long freed)
4094 {
4095         struct hstate *h = hstate_inode(inode);
4096         struct resv_map *resv_map = inode_resv_map(inode);
4097         long chg = 0;
4098         struct hugepage_subpool *spool = subpool_inode(inode);
4099         long gbl_reserve;
4100
4101         if (resv_map) {
4102                 chg = region_del(resv_map, start, end);
4103                 /*
4104                  * region_del() can fail in the rare case where a region
4105                  * must be split and another region descriptor can not be
4106                  * allocated.  If end == LONG_MAX, it will not fail.
4107                  */
4108                 if (chg < 0)
4109                         return chg;
4110         }
4111
4112         spin_lock(&inode->i_lock);
4113         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4114         spin_unlock(&inode->i_lock);
4115
4116         /*
4117          * If the subpool has a minimum size, the number of global
4118          * reservations to be released may be adjusted.
4119          */
4120         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4121         hugetlb_acct_memory(h, -gbl_reserve);
4122
4123         return 0;
4124 }
4125
4126 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4127 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4128                                 struct vm_area_struct *vma,
4129                                 unsigned long addr, pgoff_t idx)
4130 {
4131         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4132                                 svma->vm_start;
4133         unsigned long sbase = saddr & PUD_MASK;
4134         unsigned long s_end = sbase + PUD_SIZE;
4135
4136         /* Allow segments to share if only one is marked locked */
4137         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4138         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4139
4140         /*
4141          * match the virtual addresses, permission and the alignment of the
4142          * page table page.
4143          */
4144         if (pmd_index(addr) != pmd_index(saddr) ||
4145             vm_flags != svm_flags ||
4146             sbase < svma->vm_start || svma->vm_end < s_end)
4147                 return 0;
4148
4149         return saddr;
4150 }
4151
4152 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4153 {
4154         unsigned long base = addr & PUD_MASK;
4155         unsigned long end = base + PUD_SIZE;
4156
4157         /*
4158          * check on proper vm_flags and page table alignment
4159          */
4160         if (vma->vm_flags & VM_MAYSHARE &&
4161             vma->vm_start <= base && end <= vma->vm_end)
4162                 return true;
4163         return false;
4164 }
4165
4166 /*
4167  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4168  * and returns the corresponding pte. While this is not necessary for the
4169  * !shared pmd case because we can allocate the pmd later as well, it makes the
4170  * code much cleaner. pmd allocation is essential for the shared case because
4171  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4172  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4173  * bad pmd for sharing.
4174  */
4175 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4176 {
4177         struct vm_area_struct *vma = find_vma(mm, addr);
4178         struct address_space *mapping = vma->vm_file->f_mapping;
4179         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4180                         vma->vm_pgoff;
4181         struct vm_area_struct *svma;
4182         unsigned long saddr;
4183         pte_t *spte = NULL;
4184         pte_t *pte;
4185         spinlock_t *ptl;
4186
4187         if (!vma_shareable(vma, addr))
4188                 return (pte_t *)pmd_alloc(mm, pud, addr);
4189
4190         i_mmap_lock_write(mapping);
4191         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4192                 if (svma == vma)
4193                         continue;
4194
4195                 saddr = page_table_shareable(svma, vma, addr, idx);
4196                 if (saddr) {
4197                         spte = huge_pte_offset(svma->vm_mm, saddr);
4198                         if (spte) {
4199                                 mm_inc_nr_pmds(mm);
4200                                 get_page(virt_to_page(spte));
4201                                 break;
4202                         }
4203                 }
4204         }
4205
4206         if (!spte)
4207                 goto out;
4208
4209         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4210         spin_lock(ptl);
4211         if (pud_none(*pud)) {
4212                 pud_populate(mm, pud,
4213                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4214         } else {
4215                 put_page(virt_to_page(spte));
4216                 mm_inc_nr_pmds(mm);
4217         }
4218         spin_unlock(ptl);
4219 out:
4220         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4221         i_mmap_unlock_write(mapping);
4222         return pte;
4223 }
4224
4225 /*
4226  * unmap huge page backed by shared pte.
4227  *
4228  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4229  * indicated by page_count > 1, unmap is achieved by clearing pud and
4230  * decrementing the ref count. If count == 1, the pte page is not shared.
4231  *
4232  * called with page table lock held.
4233  *
4234  * returns: 1 successfully unmapped a shared pte page
4235  *          0 the underlying pte page is not shared, or it is the last user
4236  */
4237 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4238 {
4239         pgd_t *pgd = pgd_offset(mm, *addr);
4240         pud_t *pud = pud_offset(pgd, *addr);
4241
4242         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4243         if (page_count(virt_to_page(ptep)) == 1)
4244                 return 0;
4245
4246         pud_clear(pud);
4247         put_page(virt_to_page(ptep));
4248         mm_dec_nr_pmds(mm);
4249         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4250         return 1;
4251 }
4252 #define want_pmd_share()        (1)
4253 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4254 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4255 {
4256         return NULL;
4257 }
4258
4259 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4260 {
4261         return 0;
4262 }
4263 #define want_pmd_share()        (0)
4264 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4265
4266 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4267 pte_t *huge_pte_alloc(struct mm_struct *mm,
4268                         unsigned long addr, unsigned long sz)
4269 {
4270         pgd_t *pgd;
4271         pud_t *pud;
4272         pte_t *pte = NULL;
4273
4274         pgd = pgd_offset(mm, addr);
4275         pud = pud_alloc(mm, pgd, addr);
4276         if (pud) {
4277                 if (sz == PUD_SIZE) {
4278                         pte = (pte_t *)pud;
4279                 } else {
4280                         BUG_ON(sz != PMD_SIZE);
4281                         if (want_pmd_share() && pud_none(*pud))
4282                                 pte = huge_pmd_share(mm, addr, pud);
4283                         else
4284                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4285                 }
4286         }
4287         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4288
4289         return pte;
4290 }
4291
4292 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4293 {
4294         pgd_t *pgd;
4295         pud_t *pud;
4296         pmd_t *pmd = NULL;
4297
4298         pgd = pgd_offset(mm, addr);
4299         if (pgd_present(*pgd)) {
4300                 pud = pud_offset(pgd, addr);
4301                 if (pud_present(*pud)) {
4302                         if (pud_huge(*pud))
4303                                 return (pte_t *)pud;
4304                         pmd = pmd_offset(pud, addr);
4305                 }
4306         }
4307         return (pte_t *) pmd;
4308 }
4309
4310 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4311
4312 /*
4313  * These functions are overwritable if your architecture needs its own
4314  * behavior.
4315  */
4316 struct page * __weak
4317 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4318                               int write)
4319 {
4320         return ERR_PTR(-EINVAL);
4321 }
4322
4323 struct page * __weak
4324 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4325                 pmd_t *pmd, int flags)
4326 {
4327         struct page *page = NULL;
4328         spinlock_t *ptl;
4329 retry:
4330         ptl = pmd_lockptr(mm, pmd);
4331         spin_lock(ptl);
4332         /*
4333          * make sure that the address range covered by this pmd is not
4334          * unmapped from other threads.
4335          */
4336         if (!pmd_huge(*pmd))
4337                 goto out;
4338         if (pmd_present(*pmd)) {
4339                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4340                 if (flags & FOLL_GET)
4341                         get_page(page);
4342         } else {
4343                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4344                         spin_unlock(ptl);
4345                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4346                         goto retry;
4347                 }
4348                 /*
4349                  * hwpoisoned entry is treated as no_page_table in
4350                  * follow_page_mask().
4351                  */
4352         }
4353 out:
4354         spin_unlock(ptl);
4355         return page;
4356 }
4357
4358 struct page * __weak
4359 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4360                 pud_t *pud, int flags)
4361 {
4362         if (flags & FOLL_GET)
4363                 return NULL;
4364
4365         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4366 }
4367
4368 #ifdef CONFIG_MEMORY_FAILURE
4369
4370 /*
4371  * This function is called from memory failure code.
4372  * Assume the caller holds page lock of the head page.
4373  */
4374 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4375 {
4376         struct hstate *h = page_hstate(hpage);
4377         int nid = page_to_nid(hpage);
4378         int ret = -EBUSY;
4379
4380         spin_lock(&hugetlb_lock);
4381         /*
4382          * Just checking !page_huge_active is not enough, because that could be
4383          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4384          */
4385         if (!page_huge_active(hpage) && !page_count(hpage)) {
4386                 /*
4387                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4388                  * but dangling hpage->lru can trigger list-debug warnings
4389                  * (this happens when we call unpoison_memory() on it),
4390                  * so let it point to itself with list_del_init().
4391                  */
4392                 list_del_init(&hpage->lru);
4393                 set_page_refcounted(hpage);
4394                 h->free_huge_pages--;
4395                 h->free_huge_pages_node[nid]--;
4396                 ret = 0;
4397         }
4398         spin_unlock(&hugetlb_lock);
4399         return ret;
4400 }
4401 #endif
4402
4403 bool isolate_huge_page(struct page *page, struct list_head *list)
4404 {
4405         bool ret = true;
4406
4407         VM_BUG_ON_PAGE(!PageHead(page), page);
4408         spin_lock(&hugetlb_lock);
4409         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4410                 ret = false;
4411                 goto unlock;
4412         }
4413         clear_page_huge_active(page);
4414         list_move_tail(&page->lru, list);
4415 unlock:
4416         spin_unlock(&hugetlb_lock);
4417         return ret;
4418 }
4419
4420 void putback_active_hugepage(struct page *page)
4421 {
4422         VM_BUG_ON_PAGE(!PageHead(page), page);
4423         spin_lock(&hugetlb_lock);
4424         set_page_huge_active(page);
4425         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4426         spin_unlock(&hugetlb_lock);
4427         put_page(page);
4428 }