]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/ksm.c
Merge tag 'powerpc-4.11-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[karo-tx-linux.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201         .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 /* Checksum of an empty (zeroed) page */
227 static unsigned int zero_checksum __read_mostly;
228
229 /* Whether to merge empty (zeroed) pages with actual zero pages */
230 static bool ksm_use_zero_pages __read_mostly;
231
232 #ifdef CONFIG_NUMA
233 /* Zeroed when merging across nodes is not allowed */
234 static unsigned int ksm_merge_across_nodes = 1;
235 static int ksm_nr_node_ids = 1;
236 #else
237 #define ksm_merge_across_nodes  1U
238 #define ksm_nr_node_ids         1
239 #endif
240
241 #define KSM_RUN_STOP    0
242 #define KSM_RUN_MERGE   1
243 #define KSM_RUN_UNMERGE 2
244 #define KSM_RUN_OFFLINE 4
245 static unsigned long ksm_run = KSM_RUN_STOP;
246 static void wait_while_offlining(void);
247
248 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
249 static DEFINE_MUTEX(ksm_thread_mutex);
250 static DEFINE_SPINLOCK(ksm_mmlist_lock);
251
252 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
253                 sizeof(struct __struct), __alignof__(struct __struct),\
254                 (__flags), NULL)
255
256 static int __init ksm_slab_init(void)
257 {
258         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
259         if (!rmap_item_cache)
260                 goto out;
261
262         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
263         if (!stable_node_cache)
264                 goto out_free1;
265
266         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
267         if (!mm_slot_cache)
268                 goto out_free2;
269
270         return 0;
271
272 out_free2:
273         kmem_cache_destroy(stable_node_cache);
274 out_free1:
275         kmem_cache_destroy(rmap_item_cache);
276 out:
277         return -ENOMEM;
278 }
279
280 static void __init ksm_slab_free(void)
281 {
282         kmem_cache_destroy(mm_slot_cache);
283         kmem_cache_destroy(stable_node_cache);
284         kmem_cache_destroy(rmap_item_cache);
285         mm_slot_cache = NULL;
286 }
287
288 static inline struct rmap_item *alloc_rmap_item(void)
289 {
290         struct rmap_item *rmap_item;
291
292         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
293                                                 __GFP_NORETRY | __GFP_NOWARN);
294         if (rmap_item)
295                 ksm_rmap_items++;
296         return rmap_item;
297 }
298
299 static inline void free_rmap_item(struct rmap_item *rmap_item)
300 {
301         ksm_rmap_items--;
302         rmap_item->mm = NULL;   /* debug safety */
303         kmem_cache_free(rmap_item_cache, rmap_item);
304 }
305
306 static inline struct stable_node *alloc_stable_node(void)
307 {
308         /*
309          * The allocation can take too long with GFP_KERNEL when memory is under
310          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
311          * grants access to memory reserves, helping to avoid this problem.
312          */
313         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
314 }
315
316 static inline void free_stable_node(struct stable_node *stable_node)
317 {
318         kmem_cache_free(stable_node_cache, stable_node);
319 }
320
321 static inline struct mm_slot *alloc_mm_slot(void)
322 {
323         if (!mm_slot_cache)     /* initialization failed */
324                 return NULL;
325         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
326 }
327
328 static inline void free_mm_slot(struct mm_slot *mm_slot)
329 {
330         kmem_cache_free(mm_slot_cache, mm_slot);
331 }
332
333 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
334 {
335         struct mm_slot *slot;
336
337         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
338                 if (slot->mm == mm)
339                         return slot;
340
341         return NULL;
342 }
343
344 static void insert_to_mm_slots_hash(struct mm_struct *mm,
345                                     struct mm_slot *mm_slot)
346 {
347         mm_slot->mm = mm;
348         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
349 }
350
351 /*
352  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
353  * page tables after it has passed through ksm_exit() - which, if necessary,
354  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
355  * a special flag: they can just back out as soon as mm_users goes to zero.
356  * ksm_test_exit() is used throughout to make this test for exit: in some
357  * places for correctness, in some places just to avoid unnecessary work.
358  */
359 static inline bool ksm_test_exit(struct mm_struct *mm)
360 {
361         return atomic_read(&mm->mm_users) == 0;
362 }
363
364 /*
365  * We use break_ksm to break COW on a ksm page: it's a stripped down
366  *
367  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
368  *              put_page(page);
369  *
370  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
371  * in case the application has unmapped and remapped mm,addr meanwhile.
372  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
373  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
374  *
375  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
376  * of the process that owns 'vma'.  We also do not want to enforce
377  * protection keys here anyway.
378  */
379 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
380 {
381         struct page *page;
382         int ret = 0;
383
384         do {
385                 cond_resched();
386                 page = follow_page(vma, addr,
387                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
388                 if (IS_ERR_OR_NULL(page))
389                         break;
390                 if (PageKsm(page))
391                         ret = handle_mm_fault(vma, addr,
392                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
393                 else
394                         ret = VM_FAULT_WRITE;
395                 put_page(page);
396         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
397         /*
398          * We must loop because handle_mm_fault() may back out if there's
399          * any difficulty e.g. if pte accessed bit gets updated concurrently.
400          *
401          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
402          * COW has been broken, even if the vma does not permit VM_WRITE;
403          * but note that a concurrent fault might break PageKsm for us.
404          *
405          * VM_FAULT_SIGBUS could occur if we race with truncation of the
406          * backing file, which also invalidates anonymous pages: that's
407          * okay, that truncation will have unmapped the PageKsm for us.
408          *
409          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
410          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
411          * current task has TIF_MEMDIE set, and will be OOM killed on return
412          * to user; and ksmd, having no mm, would never be chosen for that.
413          *
414          * But if the mm is in a limited mem_cgroup, then the fault may fail
415          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
416          * even ksmd can fail in this way - though it's usually breaking ksm
417          * just to undo a merge it made a moment before, so unlikely to oom.
418          *
419          * That's a pity: we might therefore have more kernel pages allocated
420          * than we're counting as nodes in the stable tree; but ksm_do_scan
421          * will retry to break_cow on each pass, so should recover the page
422          * in due course.  The important thing is to not let VM_MERGEABLE
423          * be cleared while any such pages might remain in the area.
424          */
425         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
426 }
427
428 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
429                 unsigned long addr)
430 {
431         struct vm_area_struct *vma;
432         if (ksm_test_exit(mm))
433                 return NULL;
434         vma = find_vma(mm, addr);
435         if (!vma || vma->vm_start > addr)
436                 return NULL;
437         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
438                 return NULL;
439         return vma;
440 }
441
442 static void break_cow(struct rmap_item *rmap_item)
443 {
444         struct mm_struct *mm = rmap_item->mm;
445         unsigned long addr = rmap_item->address;
446         struct vm_area_struct *vma;
447
448         /*
449          * It is not an accident that whenever we want to break COW
450          * to undo, we also need to drop a reference to the anon_vma.
451          */
452         put_anon_vma(rmap_item->anon_vma);
453
454         down_read(&mm->mmap_sem);
455         vma = find_mergeable_vma(mm, addr);
456         if (vma)
457                 break_ksm(vma, addr);
458         up_read(&mm->mmap_sem);
459 }
460
461 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
462 {
463         struct mm_struct *mm = rmap_item->mm;
464         unsigned long addr = rmap_item->address;
465         struct vm_area_struct *vma;
466         struct page *page;
467
468         down_read(&mm->mmap_sem);
469         vma = find_mergeable_vma(mm, addr);
470         if (!vma)
471                 goto out;
472
473         page = follow_page(vma, addr, FOLL_GET);
474         if (IS_ERR_OR_NULL(page))
475                 goto out;
476         if (PageAnon(page)) {
477                 flush_anon_page(vma, page, addr);
478                 flush_dcache_page(page);
479         } else {
480                 put_page(page);
481 out:
482                 page = NULL;
483         }
484         up_read(&mm->mmap_sem);
485         return page;
486 }
487
488 /*
489  * This helper is used for getting right index into array of tree roots.
490  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
491  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
492  * every node has its own stable and unstable tree.
493  */
494 static inline int get_kpfn_nid(unsigned long kpfn)
495 {
496         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
497 }
498
499 static void remove_node_from_stable_tree(struct stable_node *stable_node)
500 {
501         struct rmap_item *rmap_item;
502
503         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
504                 if (rmap_item->hlist.next)
505                         ksm_pages_sharing--;
506                 else
507                         ksm_pages_shared--;
508                 put_anon_vma(rmap_item->anon_vma);
509                 rmap_item->address &= PAGE_MASK;
510                 cond_resched();
511         }
512
513         if (stable_node->head == &migrate_nodes)
514                 list_del(&stable_node->list);
515         else
516                 rb_erase(&stable_node->node,
517                          root_stable_tree + NUMA(stable_node->nid));
518         free_stable_node(stable_node);
519 }
520
521 /*
522  * get_ksm_page: checks if the page indicated by the stable node
523  * is still its ksm page, despite having held no reference to it.
524  * In which case we can trust the content of the page, and it
525  * returns the gotten page; but if the page has now been zapped,
526  * remove the stale node from the stable tree and return NULL.
527  * But beware, the stable node's page might be being migrated.
528  *
529  * You would expect the stable_node to hold a reference to the ksm page.
530  * But if it increments the page's count, swapping out has to wait for
531  * ksmd to come around again before it can free the page, which may take
532  * seconds or even minutes: much too unresponsive.  So instead we use a
533  * "keyhole reference": access to the ksm page from the stable node peeps
534  * out through its keyhole to see if that page still holds the right key,
535  * pointing back to this stable node.  This relies on freeing a PageAnon
536  * page to reset its page->mapping to NULL, and relies on no other use of
537  * a page to put something that might look like our key in page->mapping.
538  * is on its way to being freed; but it is an anomaly to bear in mind.
539  */
540 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
541 {
542         struct page *page;
543         void *expected_mapping;
544         unsigned long kpfn;
545
546         expected_mapping = (void *)((unsigned long)stable_node |
547                                         PAGE_MAPPING_KSM);
548 again:
549         kpfn = READ_ONCE(stable_node->kpfn);
550         page = pfn_to_page(kpfn);
551
552         /*
553          * page is computed from kpfn, so on most architectures reading
554          * page->mapping is naturally ordered after reading node->kpfn,
555          * but on Alpha we need to be more careful.
556          */
557         smp_read_barrier_depends();
558         if (READ_ONCE(page->mapping) != expected_mapping)
559                 goto stale;
560
561         /*
562          * We cannot do anything with the page while its refcount is 0.
563          * Usually 0 means free, or tail of a higher-order page: in which
564          * case this node is no longer referenced, and should be freed;
565          * however, it might mean that the page is under page_freeze_refs().
566          * The __remove_mapping() case is easy, again the node is now stale;
567          * but if page is swapcache in migrate_page_move_mapping(), it might
568          * still be our page, in which case it's essential to keep the node.
569          */
570         while (!get_page_unless_zero(page)) {
571                 /*
572                  * Another check for page->mapping != expected_mapping would
573                  * work here too.  We have chosen the !PageSwapCache test to
574                  * optimize the common case, when the page is or is about to
575                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
576                  * in the freeze_refs section of __remove_mapping(); but Anon
577                  * page->mapping reset to NULL later, in free_pages_prepare().
578                  */
579                 if (!PageSwapCache(page))
580                         goto stale;
581                 cpu_relax();
582         }
583
584         if (READ_ONCE(page->mapping) != expected_mapping) {
585                 put_page(page);
586                 goto stale;
587         }
588
589         if (lock_it) {
590                 lock_page(page);
591                 if (READ_ONCE(page->mapping) != expected_mapping) {
592                         unlock_page(page);
593                         put_page(page);
594                         goto stale;
595                 }
596         }
597         return page;
598
599 stale:
600         /*
601          * We come here from above when page->mapping or !PageSwapCache
602          * suggests that the node is stale; but it might be under migration.
603          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
604          * before checking whether node->kpfn has been changed.
605          */
606         smp_rmb();
607         if (READ_ONCE(stable_node->kpfn) != kpfn)
608                 goto again;
609         remove_node_from_stable_tree(stable_node);
610         return NULL;
611 }
612
613 /*
614  * Removing rmap_item from stable or unstable tree.
615  * This function will clean the information from the stable/unstable tree.
616  */
617 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
618 {
619         if (rmap_item->address & STABLE_FLAG) {
620                 struct stable_node *stable_node;
621                 struct page *page;
622
623                 stable_node = rmap_item->head;
624                 page = get_ksm_page(stable_node, true);
625                 if (!page)
626                         goto out;
627
628                 hlist_del(&rmap_item->hlist);
629                 unlock_page(page);
630                 put_page(page);
631
632                 if (!hlist_empty(&stable_node->hlist))
633                         ksm_pages_sharing--;
634                 else
635                         ksm_pages_shared--;
636
637                 put_anon_vma(rmap_item->anon_vma);
638                 rmap_item->address &= PAGE_MASK;
639
640         } else if (rmap_item->address & UNSTABLE_FLAG) {
641                 unsigned char age;
642                 /*
643                  * Usually ksmd can and must skip the rb_erase, because
644                  * root_unstable_tree was already reset to RB_ROOT.
645                  * But be careful when an mm is exiting: do the rb_erase
646                  * if this rmap_item was inserted by this scan, rather
647                  * than left over from before.
648                  */
649                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
650                 BUG_ON(age > 1);
651                 if (!age)
652                         rb_erase(&rmap_item->node,
653                                  root_unstable_tree + NUMA(rmap_item->nid));
654                 ksm_pages_unshared--;
655                 rmap_item->address &= PAGE_MASK;
656         }
657 out:
658         cond_resched();         /* we're called from many long loops */
659 }
660
661 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
662                                        struct rmap_item **rmap_list)
663 {
664         while (*rmap_list) {
665                 struct rmap_item *rmap_item = *rmap_list;
666                 *rmap_list = rmap_item->rmap_list;
667                 remove_rmap_item_from_tree(rmap_item);
668                 free_rmap_item(rmap_item);
669         }
670 }
671
672 /*
673  * Though it's very tempting to unmerge rmap_items from stable tree rather
674  * than check every pte of a given vma, the locking doesn't quite work for
675  * that - an rmap_item is assigned to the stable tree after inserting ksm
676  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
677  * rmap_items from parent to child at fork time (so as not to waste time
678  * if exit comes before the next scan reaches it).
679  *
680  * Similarly, although we'd like to remove rmap_items (so updating counts
681  * and freeing memory) when unmerging an area, it's easier to leave that
682  * to the next pass of ksmd - consider, for example, how ksmd might be
683  * in cmp_and_merge_page on one of the rmap_items we would be removing.
684  */
685 static int unmerge_ksm_pages(struct vm_area_struct *vma,
686                              unsigned long start, unsigned long end)
687 {
688         unsigned long addr;
689         int err = 0;
690
691         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
692                 if (ksm_test_exit(vma->vm_mm))
693                         break;
694                 if (signal_pending(current))
695                         err = -ERESTARTSYS;
696                 else
697                         err = break_ksm(vma, addr);
698         }
699         return err;
700 }
701
702 #ifdef CONFIG_SYSFS
703 /*
704  * Only called through the sysfs control interface:
705  */
706 static int remove_stable_node(struct stable_node *stable_node)
707 {
708         struct page *page;
709         int err;
710
711         page = get_ksm_page(stable_node, true);
712         if (!page) {
713                 /*
714                  * get_ksm_page did remove_node_from_stable_tree itself.
715                  */
716                 return 0;
717         }
718
719         if (WARN_ON_ONCE(page_mapped(page))) {
720                 /*
721                  * This should not happen: but if it does, just refuse to let
722                  * merge_across_nodes be switched - there is no need to panic.
723                  */
724                 err = -EBUSY;
725         } else {
726                 /*
727                  * The stable node did not yet appear stale to get_ksm_page(),
728                  * since that allows for an unmapped ksm page to be recognized
729                  * right up until it is freed; but the node is safe to remove.
730                  * This page might be in a pagevec waiting to be freed,
731                  * or it might be PageSwapCache (perhaps under writeback),
732                  * or it might have been removed from swapcache a moment ago.
733                  */
734                 set_page_stable_node(page, NULL);
735                 remove_node_from_stable_tree(stable_node);
736                 err = 0;
737         }
738
739         unlock_page(page);
740         put_page(page);
741         return err;
742 }
743
744 static int remove_all_stable_nodes(void)
745 {
746         struct stable_node *stable_node, *next;
747         int nid;
748         int err = 0;
749
750         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
751                 while (root_stable_tree[nid].rb_node) {
752                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
753                                                 struct stable_node, node);
754                         if (remove_stable_node(stable_node)) {
755                                 err = -EBUSY;
756                                 break;  /* proceed to next nid */
757                         }
758                         cond_resched();
759                 }
760         }
761         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
762                 if (remove_stable_node(stable_node))
763                         err = -EBUSY;
764                 cond_resched();
765         }
766         return err;
767 }
768
769 static int unmerge_and_remove_all_rmap_items(void)
770 {
771         struct mm_slot *mm_slot;
772         struct mm_struct *mm;
773         struct vm_area_struct *vma;
774         int err = 0;
775
776         spin_lock(&ksm_mmlist_lock);
777         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
778                                                 struct mm_slot, mm_list);
779         spin_unlock(&ksm_mmlist_lock);
780
781         for (mm_slot = ksm_scan.mm_slot;
782                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
783                 mm = mm_slot->mm;
784                 down_read(&mm->mmap_sem);
785                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
786                         if (ksm_test_exit(mm))
787                                 break;
788                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789                                 continue;
790                         err = unmerge_ksm_pages(vma,
791                                                 vma->vm_start, vma->vm_end);
792                         if (err)
793                                 goto error;
794                 }
795
796                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
797                 up_read(&mm->mmap_sem);
798
799                 spin_lock(&ksm_mmlist_lock);
800                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
801                                                 struct mm_slot, mm_list);
802                 if (ksm_test_exit(mm)) {
803                         hash_del(&mm_slot->link);
804                         list_del(&mm_slot->mm_list);
805                         spin_unlock(&ksm_mmlist_lock);
806
807                         free_mm_slot(mm_slot);
808                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
809                         mmdrop(mm);
810                 } else
811                         spin_unlock(&ksm_mmlist_lock);
812         }
813
814         /* Clean up stable nodes, but don't worry if some are still busy */
815         remove_all_stable_nodes();
816         ksm_scan.seqnr = 0;
817         return 0;
818
819 error:
820         up_read(&mm->mmap_sem);
821         spin_lock(&ksm_mmlist_lock);
822         ksm_scan.mm_slot = &ksm_mm_head;
823         spin_unlock(&ksm_mmlist_lock);
824         return err;
825 }
826 #endif /* CONFIG_SYSFS */
827
828 static u32 calc_checksum(struct page *page)
829 {
830         u32 checksum;
831         void *addr = kmap_atomic(page);
832         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
833         kunmap_atomic(addr);
834         return checksum;
835 }
836
837 static int memcmp_pages(struct page *page1, struct page *page2)
838 {
839         char *addr1, *addr2;
840         int ret;
841
842         addr1 = kmap_atomic(page1);
843         addr2 = kmap_atomic(page2);
844         ret = memcmp(addr1, addr2, PAGE_SIZE);
845         kunmap_atomic(addr2);
846         kunmap_atomic(addr1);
847         return ret;
848 }
849
850 static inline int pages_identical(struct page *page1, struct page *page2)
851 {
852         return !memcmp_pages(page1, page2);
853 }
854
855 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
856                               pte_t *orig_pte)
857 {
858         struct mm_struct *mm = vma->vm_mm;
859         struct page_vma_mapped_walk pvmw = {
860                 .page = page,
861                 .vma = vma,
862         };
863         int swapped;
864         int err = -EFAULT;
865         unsigned long mmun_start;       /* For mmu_notifiers */
866         unsigned long mmun_end;         /* For mmu_notifiers */
867
868         pvmw.address = page_address_in_vma(page, vma);
869         if (pvmw.address == -EFAULT)
870                 goto out;
871
872         BUG_ON(PageTransCompound(page));
873
874         mmun_start = pvmw.address;
875         mmun_end   = pvmw.address + PAGE_SIZE;
876         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
877
878         if (!page_vma_mapped_walk(&pvmw))
879                 goto out_mn;
880         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
881                 goto out_unlock;
882
883         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
884             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
885                 pte_t entry;
886
887                 swapped = PageSwapCache(page);
888                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
889                 /*
890                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
891                  * take any lock, therefore the check that we are going to make
892                  * with the pagecount against the mapcount is racey and
893                  * O_DIRECT can happen right after the check.
894                  * So we clear the pte and flush the tlb before the check
895                  * this assure us that no O_DIRECT can happen after the check
896                  * or in the middle of the check.
897                  */
898                 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
899                 /*
900                  * Check that no O_DIRECT or similar I/O is in progress on the
901                  * page
902                  */
903                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
904                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
905                         goto out_unlock;
906                 }
907                 if (pte_dirty(entry))
908                         set_page_dirty(page);
909
910                 if (pte_protnone(entry))
911                         entry = pte_mkclean(pte_clear_savedwrite(entry));
912                 else
913                         entry = pte_mkclean(pte_wrprotect(entry));
914                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
915         }
916         *orig_pte = *pvmw.pte;
917         err = 0;
918
919 out_unlock:
920         page_vma_mapped_walk_done(&pvmw);
921 out_mn:
922         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
923 out:
924         return err;
925 }
926
927 /**
928  * replace_page - replace page in vma by new ksm page
929  * @vma:      vma that holds the pte pointing to page
930  * @page:     the page we are replacing by kpage
931  * @kpage:    the ksm page we replace page by
932  * @orig_pte: the original value of the pte
933  *
934  * Returns 0 on success, -EFAULT on failure.
935  */
936 static int replace_page(struct vm_area_struct *vma, struct page *page,
937                         struct page *kpage, pte_t orig_pte)
938 {
939         struct mm_struct *mm = vma->vm_mm;
940         pmd_t *pmd;
941         pte_t *ptep;
942         pte_t newpte;
943         spinlock_t *ptl;
944         unsigned long addr;
945         int err = -EFAULT;
946         unsigned long mmun_start;       /* For mmu_notifiers */
947         unsigned long mmun_end;         /* For mmu_notifiers */
948
949         addr = page_address_in_vma(page, vma);
950         if (addr == -EFAULT)
951                 goto out;
952
953         pmd = mm_find_pmd(mm, addr);
954         if (!pmd)
955                 goto out;
956
957         mmun_start = addr;
958         mmun_end   = addr + PAGE_SIZE;
959         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
960
961         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
962         if (!pte_same(*ptep, orig_pte)) {
963                 pte_unmap_unlock(ptep, ptl);
964                 goto out_mn;
965         }
966
967         /*
968          * No need to check ksm_use_zero_pages here: we can only have a
969          * zero_page here if ksm_use_zero_pages was enabled alreaady.
970          */
971         if (!is_zero_pfn(page_to_pfn(kpage))) {
972                 get_page(kpage);
973                 page_add_anon_rmap(kpage, vma, addr, false);
974                 newpte = mk_pte(kpage, vma->vm_page_prot);
975         } else {
976                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
977                                                vma->vm_page_prot));
978         }
979
980         flush_cache_page(vma, addr, pte_pfn(*ptep));
981         ptep_clear_flush_notify(vma, addr, ptep);
982         set_pte_at_notify(mm, addr, ptep, newpte);
983
984         page_remove_rmap(page, false);
985         if (!page_mapped(page))
986                 try_to_free_swap(page);
987         put_page(page);
988
989         pte_unmap_unlock(ptep, ptl);
990         err = 0;
991 out_mn:
992         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
993 out:
994         return err;
995 }
996
997 /*
998  * try_to_merge_one_page - take two pages and merge them into one
999  * @vma: the vma that holds the pte pointing to page
1000  * @page: the PageAnon page that we want to replace with kpage
1001  * @kpage: the PageKsm page that we want to map instead of page,
1002  *         or NULL the first time when we want to use page as kpage.
1003  *
1004  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1005  */
1006 static int try_to_merge_one_page(struct vm_area_struct *vma,
1007                                  struct page *page, struct page *kpage)
1008 {
1009         pte_t orig_pte = __pte(0);
1010         int err = -EFAULT;
1011
1012         if (page == kpage)                      /* ksm page forked */
1013                 return 0;
1014
1015         if (!PageAnon(page))
1016                 goto out;
1017
1018         /*
1019          * We need the page lock to read a stable PageSwapCache in
1020          * write_protect_page().  We use trylock_page() instead of
1021          * lock_page() because we don't want to wait here - we
1022          * prefer to continue scanning and merging different pages,
1023          * then come back to this page when it is unlocked.
1024          */
1025         if (!trylock_page(page))
1026                 goto out;
1027
1028         if (PageTransCompound(page)) {
1029                 err = split_huge_page(page);
1030                 if (err)
1031                         goto out_unlock;
1032         }
1033
1034         /*
1035          * If this anonymous page is mapped only here, its pte may need
1036          * to be write-protected.  If it's mapped elsewhere, all of its
1037          * ptes are necessarily already write-protected.  But in either
1038          * case, we need to lock and check page_count is not raised.
1039          */
1040         if (write_protect_page(vma, page, &orig_pte) == 0) {
1041                 if (!kpage) {
1042                         /*
1043                          * While we hold page lock, upgrade page from
1044                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1045                          * stable_tree_insert() will update stable_node.
1046                          */
1047                         set_page_stable_node(page, NULL);
1048                         mark_page_accessed(page);
1049                         /*
1050                          * Page reclaim just frees a clean page with no dirty
1051                          * ptes: make sure that the ksm page would be swapped.
1052                          */
1053                         if (!PageDirty(page))
1054                                 SetPageDirty(page);
1055                         err = 0;
1056                 } else if (pages_identical(page, kpage))
1057                         err = replace_page(vma, page, kpage, orig_pte);
1058         }
1059
1060         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1061                 munlock_vma_page(page);
1062                 if (!PageMlocked(kpage)) {
1063                         unlock_page(page);
1064                         lock_page(kpage);
1065                         mlock_vma_page(kpage);
1066                         page = kpage;           /* for final unlock */
1067                 }
1068         }
1069
1070 out_unlock:
1071         unlock_page(page);
1072 out:
1073         return err;
1074 }
1075
1076 /*
1077  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1078  * but no new kernel page is allocated: kpage must already be a ksm page.
1079  *
1080  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1081  */
1082 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1083                                       struct page *page, struct page *kpage)
1084 {
1085         struct mm_struct *mm = rmap_item->mm;
1086         struct vm_area_struct *vma;
1087         int err = -EFAULT;
1088
1089         down_read(&mm->mmap_sem);
1090         vma = find_mergeable_vma(mm, rmap_item->address);
1091         if (!vma)
1092                 goto out;
1093
1094         err = try_to_merge_one_page(vma, page, kpage);
1095         if (err)
1096                 goto out;
1097
1098         /* Unstable nid is in union with stable anon_vma: remove first */
1099         remove_rmap_item_from_tree(rmap_item);
1100
1101         /* Must get reference to anon_vma while still holding mmap_sem */
1102         rmap_item->anon_vma = vma->anon_vma;
1103         get_anon_vma(vma->anon_vma);
1104 out:
1105         up_read(&mm->mmap_sem);
1106         return err;
1107 }
1108
1109 /*
1110  * try_to_merge_two_pages - take two identical pages and prepare them
1111  * to be merged into one page.
1112  *
1113  * This function returns the kpage if we successfully merged two identical
1114  * pages into one ksm page, NULL otherwise.
1115  *
1116  * Note that this function upgrades page to ksm page: if one of the pages
1117  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1118  */
1119 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1120                                            struct page *page,
1121                                            struct rmap_item *tree_rmap_item,
1122                                            struct page *tree_page)
1123 {
1124         int err;
1125
1126         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1127         if (!err) {
1128                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1129                                                         tree_page, page);
1130                 /*
1131                  * If that fails, we have a ksm page with only one pte
1132                  * pointing to it: so break it.
1133                  */
1134                 if (err)
1135                         break_cow(rmap_item);
1136         }
1137         return err ? NULL : page;
1138 }
1139
1140 /*
1141  * stable_tree_search - search for page inside the stable tree
1142  *
1143  * This function checks if there is a page inside the stable tree
1144  * with identical content to the page that we are scanning right now.
1145  *
1146  * This function returns the stable tree node of identical content if found,
1147  * NULL otherwise.
1148  */
1149 static struct page *stable_tree_search(struct page *page)
1150 {
1151         int nid;
1152         struct rb_root *root;
1153         struct rb_node **new;
1154         struct rb_node *parent;
1155         struct stable_node *stable_node;
1156         struct stable_node *page_node;
1157
1158         page_node = page_stable_node(page);
1159         if (page_node && page_node->head != &migrate_nodes) {
1160                 /* ksm page forked */
1161                 get_page(page);
1162                 return page;
1163         }
1164
1165         nid = get_kpfn_nid(page_to_pfn(page));
1166         root = root_stable_tree + nid;
1167 again:
1168         new = &root->rb_node;
1169         parent = NULL;
1170
1171         while (*new) {
1172                 struct page *tree_page;
1173                 int ret;
1174
1175                 cond_resched();
1176                 stable_node = rb_entry(*new, struct stable_node, node);
1177                 tree_page = get_ksm_page(stable_node, false);
1178                 if (!tree_page) {
1179                         /*
1180                          * If we walked over a stale stable_node,
1181                          * get_ksm_page() will call rb_erase() and it
1182                          * may rebalance the tree from under us. So
1183                          * restart the search from scratch. Returning
1184                          * NULL would be safe too, but we'd generate
1185                          * false negative insertions just because some
1186                          * stable_node was stale.
1187                          */
1188                         goto again;
1189                 }
1190
1191                 ret = memcmp_pages(page, tree_page);
1192                 put_page(tree_page);
1193
1194                 parent = *new;
1195                 if (ret < 0)
1196                         new = &parent->rb_left;
1197                 else if (ret > 0)
1198                         new = &parent->rb_right;
1199                 else {
1200                         /*
1201                          * Lock and unlock the stable_node's page (which
1202                          * might already have been migrated) so that page
1203                          * migration is sure to notice its raised count.
1204                          * It would be more elegant to return stable_node
1205                          * than kpage, but that involves more changes.
1206                          */
1207                         tree_page = get_ksm_page(stable_node, true);
1208                         if (tree_page) {
1209                                 unlock_page(tree_page);
1210                                 if (get_kpfn_nid(stable_node->kpfn) !=
1211                                                 NUMA(stable_node->nid)) {
1212                                         put_page(tree_page);
1213                                         goto replace;
1214                                 }
1215                                 return tree_page;
1216                         }
1217                         /*
1218                          * There is now a place for page_node, but the tree may
1219                          * have been rebalanced, so re-evaluate parent and new.
1220                          */
1221                         if (page_node)
1222                                 goto again;
1223                         return NULL;
1224                 }
1225         }
1226
1227         if (!page_node)
1228                 return NULL;
1229
1230         list_del(&page_node->list);
1231         DO_NUMA(page_node->nid = nid);
1232         rb_link_node(&page_node->node, parent, new);
1233         rb_insert_color(&page_node->node, root);
1234         get_page(page);
1235         return page;
1236
1237 replace:
1238         if (page_node) {
1239                 list_del(&page_node->list);
1240                 DO_NUMA(page_node->nid = nid);
1241                 rb_replace_node(&stable_node->node, &page_node->node, root);
1242                 get_page(page);
1243         } else {
1244                 rb_erase(&stable_node->node, root);
1245                 page = NULL;
1246         }
1247         stable_node->head = &migrate_nodes;
1248         list_add(&stable_node->list, stable_node->head);
1249         return page;
1250 }
1251
1252 /*
1253  * stable_tree_insert - insert stable tree node pointing to new ksm page
1254  * into the stable tree.
1255  *
1256  * This function returns the stable tree node just allocated on success,
1257  * NULL otherwise.
1258  */
1259 static struct stable_node *stable_tree_insert(struct page *kpage)
1260 {
1261         int nid;
1262         unsigned long kpfn;
1263         struct rb_root *root;
1264         struct rb_node **new;
1265         struct rb_node *parent;
1266         struct stable_node *stable_node;
1267
1268         kpfn = page_to_pfn(kpage);
1269         nid = get_kpfn_nid(kpfn);
1270         root = root_stable_tree + nid;
1271 again:
1272         parent = NULL;
1273         new = &root->rb_node;
1274
1275         while (*new) {
1276                 struct page *tree_page;
1277                 int ret;
1278
1279                 cond_resched();
1280                 stable_node = rb_entry(*new, struct stable_node, node);
1281                 tree_page = get_ksm_page(stable_node, false);
1282                 if (!tree_page) {
1283                         /*
1284                          * If we walked over a stale stable_node,
1285                          * get_ksm_page() will call rb_erase() and it
1286                          * may rebalance the tree from under us. So
1287                          * restart the search from scratch. Returning
1288                          * NULL would be safe too, but we'd generate
1289                          * false negative insertions just because some
1290                          * stable_node was stale.
1291                          */
1292                         goto again;
1293                 }
1294
1295                 ret = memcmp_pages(kpage, tree_page);
1296                 put_page(tree_page);
1297
1298                 parent = *new;
1299                 if (ret < 0)
1300                         new = &parent->rb_left;
1301                 else if (ret > 0)
1302                         new = &parent->rb_right;
1303                 else {
1304                         /*
1305                          * It is not a bug that stable_tree_search() didn't
1306                          * find this node: because at that time our page was
1307                          * not yet write-protected, so may have changed since.
1308                          */
1309                         return NULL;
1310                 }
1311         }
1312
1313         stable_node = alloc_stable_node();
1314         if (!stable_node)
1315                 return NULL;
1316
1317         INIT_HLIST_HEAD(&stable_node->hlist);
1318         stable_node->kpfn = kpfn;
1319         set_page_stable_node(kpage, stable_node);
1320         DO_NUMA(stable_node->nid = nid);
1321         rb_link_node(&stable_node->node, parent, new);
1322         rb_insert_color(&stable_node->node, root);
1323
1324         return stable_node;
1325 }
1326
1327 /*
1328  * unstable_tree_search_insert - search for identical page,
1329  * else insert rmap_item into the unstable tree.
1330  *
1331  * This function searches for a page in the unstable tree identical to the
1332  * page currently being scanned; and if no identical page is found in the
1333  * tree, we insert rmap_item as a new object into the unstable tree.
1334  *
1335  * This function returns pointer to rmap_item found to be identical
1336  * to the currently scanned page, NULL otherwise.
1337  *
1338  * This function does both searching and inserting, because they share
1339  * the same walking algorithm in an rbtree.
1340  */
1341 static
1342 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1343                                               struct page *page,
1344                                               struct page **tree_pagep)
1345 {
1346         struct rb_node **new;
1347         struct rb_root *root;
1348         struct rb_node *parent = NULL;
1349         int nid;
1350
1351         nid = get_kpfn_nid(page_to_pfn(page));
1352         root = root_unstable_tree + nid;
1353         new = &root->rb_node;
1354
1355         while (*new) {
1356                 struct rmap_item *tree_rmap_item;
1357                 struct page *tree_page;
1358                 int ret;
1359
1360                 cond_resched();
1361                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1362                 tree_page = get_mergeable_page(tree_rmap_item);
1363                 if (!tree_page)
1364                         return NULL;
1365
1366                 /*
1367                  * Don't substitute a ksm page for a forked page.
1368                  */
1369                 if (page == tree_page) {
1370                         put_page(tree_page);
1371                         return NULL;
1372                 }
1373
1374                 ret = memcmp_pages(page, tree_page);
1375
1376                 parent = *new;
1377                 if (ret < 0) {
1378                         put_page(tree_page);
1379                         new = &parent->rb_left;
1380                 } else if (ret > 0) {
1381                         put_page(tree_page);
1382                         new = &parent->rb_right;
1383                 } else if (!ksm_merge_across_nodes &&
1384                            page_to_nid(tree_page) != nid) {
1385                         /*
1386                          * If tree_page has been migrated to another NUMA node,
1387                          * it will be flushed out and put in the right unstable
1388                          * tree next time: only merge with it when across_nodes.
1389                          */
1390                         put_page(tree_page);
1391                         return NULL;
1392                 } else {
1393                         *tree_pagep = tree_page;
1394                         return tree_rmap_item;
1395                 }
1396         }
1397
1398         rmap_item->address |= UNSTABLE_FLAG;
1399         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1400         DO_NUMA(rmap_item->nid = nid);
1401         rb_link_node(&rmap_item->node, parent, new);
1402         rb_insert_color(&rmap_item->node, root);
1403
1404         ksm_pages_unshared++;
1405         return NULL;
1406 }
1407
1408 /*
1409  * stable_tree_append - add another rmap_item to the linked list of
1410  * rmap_items hanging off a given node of the stable tree, all sharing
1411  * the same ksm page.
1412  */
1413 static void stable_tree_append(struct rmap_item *rmap_item,
1414                                struct stable_node *stable_node)
1415 {
1416         rmap_item->head = stable_node;
1417         rmap_item->address |= STABLE_FLAG;
1418         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1419
1420         if (rmap_item->hlist.next)
1421                 ksm_pages_sharing++;
1422         else
1423                 ksm_pages_shared++;
1424 }
1425
1426 /*
1427  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1428  * if not, compare checksum to previous and if it's the same, see if page can
1429  * be inserted into the unstable tree, or merged with a page already there and
1430  * both transferred to the stable tree.
1431  *
1432  * @page: the page that we are searching identical page to.
1433  * @rmap_item: the reverse mapping into the virtual address of this page
1434  */
1435 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1436 {
1437         struct rmap_item *tree_rmap_item;
1438         struct page *tree_page = NULL;
1439         struct stable_node *stable_node;
1440         struct page *kpage;
1441         unsigned int checksum;
1442         int err;
1443
1444         stable_node = page_stable_node(page);
1445         if (stable_node) {
1446                 if (stable_node->head != &migrate_nodes &&
1447                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1448                         rb_erase(&stable_node->node,
1449                                  root_stable_tree + NUMA(stable_node->nid));
1450                         stable_node->head = &migrate_nodes;
1451                         list_add(&stable_node->list, stable_node->head);
1452                 }
1453                 if (stable_node->head != &migrate_nodes &&
1454                     rmap_item->head == stable_node)
1455                         return;
1456         }
1457
1458         /* We first start with searching the page inside the stable tree */
1459         kpage = stable_tree_search(page);
1460         if (kpage == page && rmap_item->head == stable_node) {
1461                 put_page(kpage);
1462                 return;
1463         }
1464
1465         remove_rmap_item_from_tree(rmap_item);
1466
1467         if (kpage) {
1468                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1469                 if (!err) {
1470                         /*
1471                          * The page was successfully merged:
1472                          * add its rmap_item to the stable tree.
1473                          */
1474                         lock_page(kpage);
1475                         stable_tree_append(rmap_item, page_stable_node(kpage));
1476                         unlock_page(kpage);
1477                 }
1478                 put_page(kpage);
1479                 return;
1480         }
1481
1482         /*
1483          * If the hash value of the page has changed from the last time
1484          * we calculated it, this page is changing frequently: therefore we
1485          * don't want to insert it in the unstable tree, and we don't want
1486          * to waste our time searching for something identical to it there.
1487          */
1488         checksum = calc_checksum(page);
1489         if (rmap_item->oldchecksum != checksum) {
1490                 rmap_item->oldchecksum = checksum;
1491                 return;
1492         }
1493
1494         /*
1495          * Same checksum as an empty page. We attempt to merge it with the
1496          * appropriate zero page if the user enabled this via sysfs.
1497          */
1498         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1499                 struct vm_area_struct *vma;
1500
1501                 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1502                 err = try_to_merge_one_page(vma, page,
1503                                             ZERO_PAGE(rmap_item->address));
1504                 /*
1505                  * In case of failure, the page was not really empty, so we
1506                  * need to continue. Otherwise we're done.
1507                  */
1508                 if (!err)
1509                         return;
1510         }
1511         tree_rmap_item =
1512                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1513         if (tree_rmap_item) {
1514                 kpage = try_to_merge_two_pages(rmap_item, page,
1515                                                 tree_rmap_item, tree_page);
1516                 put_page(tree_page);
1517                 if (kpage) {
1518                         /*
1519                          * The pages were successfully merged: insert new
1520                          * node in the stable tree and add both rmap_items.
1521                          */
1522                         lock_page(kpage);
1523                         stable_node = stable_tree_insert(kpage);
1524                         if (stable_node) {
1525                                 stable_tree_append(tree_rmap_item, stable_node);
1526                                 stable_tree_append(rmap_item, stable_node);
1527                         }
1528                         unlock_page(kpage);
1529
1530                         /*
1531                          * If we fail to insert the page into the stable tree,
1532                          * we will have 2 virtual addresses that are pointing
1533                          * to a ksm page left outside the stable tree,
1534                          * in which case we need to break_cow on both.
1535                          */
1536                         if (!stable_node) {
1537                                 break_cow(tree_rmap_item);
1538                                 break_cow(rmap_item);
1539                         }
1540                 }
1541         }
1542 }
1543
1544 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1545                                             struct rmap_item **rmap_list,
1546                                             unsigned long addr)
1547 {
1548         struct rmap_item *rmap_item;
1549
1550         while (*rmap_list) {
1551                 rmap_item = *rmap_list;
1552                 if ((rmap_item->address & PAGE_MASK) == addr)
1553                         return rmap_item;
1554                 if (rmap_item->address > addr)
1555                         break;
1556                 *rmap_list = rmap_item->rmap_list;
1557                 remove_rmap_item_from_tree(rmap_item);
1558                 free_rmap_item(rmap_item);
1559         }
1560
1561         rmap_item = alloc_rmap_item();
1562         if (rmap_item) {
1563                 /* It has already been zeroed */
1564                 rmap_item->mm = mm_slot->mm;
1565                 rmap_item->address = addr;
1566                 rmap_item->rmap_list = *rmap_list;
1567                 *rmap_list = rmap_item;
1568         }
1569         return rmap_item;
1570 }
1571
1572 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1573 {
1574         struct mm_struct *mm;
1575         struct mm_slot *slot;
1576         struct vm_area_struct *vma;
1577         struct rmap_item *rmap_item;
1578         int nid;
1579
1580         if (list_empty(&ksm_mm_head.mm_list))
1581                 return NULL;
1582
1583         slot = ksm_scan.mm_slot;
1584         if (slot == &ksm_mm_head) {
1585                 /*
1586                  * A number of pages can hang around indefinitely on per-cpu
1587                  * pagevecs, raised page count preventing write_protect_page
1588                  * from merging them.  Though it doesn't really matter much,
1589                  * it is puzzling to see some stuck in pages_volatile until
1590                  * other activity jostles them out, and they also prevented
1591                  * LTP's KSM test from succeeding deterministically; so drain
1592                  * them here (here rather than on entry to ksm_do_scan(),
1593                  * so we don't IPI too often when pages_to_scan is set low).
1594                  */
1595                 lru_add_drain_all();
1596
1597                 /*
1598                  * Whereas stale stable_nodes on the stable_tree itself
1599                  * get pruned in the regular course of stable_tree_search(),
1600                  * those moved out to the migrate_nodes list can accumulate:
1601                  * so prune them once before each full scan.
1602                  */
1603                 if (!ksm_merge_across_nodes) {
1604                         struct stable_node *stable_node, *next;
1605                         struct page *page;
1606
1607                         list_for_each_entry_safe(stable_node, next,
1608                                                  &migrate_nodes, list) {
1609                                 page = get_ksm_page(stable_node, false);
1610                                 if (page)
1611                                         put_page(page);
1612                                 cond_resched();
1613                         }
1614                 }
1615
1616                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1617                         root_unstable_tree[nid] = RB_ROOT;
1618
1619                 spin_lock(&ksm_mmlist_lock);
1620                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1621                 ksm_scan.mm_slot = slot;
1622                 spin_unlock(&ksm_mmlist_lock);
1623                 /*
1624                  * Although we tested list_empty() above, a racing __ksm_exit
1625                  * of the last mm on the list may have removed it since then.
1626                  */
1627                 if (slot == &ksm_mm_head)
1628                         return NULL;
1629 next_mm:
1630                 ksm_scan.address = 0;
1631                 ksm_scan.rmap_list = &slot->rmap_list;
1632         }
1633
1634         mm = slot->mm;
1635         down_read(&mm->mmap_sem);
1636         if (ksm_test_exit(mm))
1637                 vma = NULL;
1638         else
1639                 vma = find_vma(mm, ksm_scan.address);
1640
1641         for (; vma; vma = vma->vm_next) {
1642                 if (!(vma->vm_flags & VM_MERGEABLE))
1643                         continue;
1644                 if (ksm_scan.address < vma->vm_start)
1645                         ksm_scan.address = vma->vm_start;
1646                 if (!vma->anon_vma)
1647                         ksm_scan.address = vma->vm_end;
1648
1649                 while (ksm_scan.address < vma->vm_end) {
1650                         if (ksm_test_exit(mm))
1651                                 break;
1652                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1653                         if (IS_ERR_OR_NULL(*page)) {
1654                                 ksm_scan.address += PAGE_SIZE;
1655                                 cond_resched();
1656                                 continue;
1657                         }
1658                         if (PageAnon(*page)) {
1659                                 flush_anon_page(vma, *page, ksm_scan.address);
1660                                 flush_dcache_page(*page);
1661                                 rmap_item = get_next_rmap_item(slot,
1662                                         ksm_scan.rmap_list, ksm_scan.address);
1663                                 if (rmap_item) {
1664                                         ksm_scan.rmap_list =
1665                                                         &rmap_item->rmap_list;
1666                                         ksm_scan.address += PAGE_SIZE;
1667                                 } else
1668                                         put_page(*page);
1669                                 up_read(&mm->mmap_sem);
1670                                 return rmap_item;
1671                         }
1672                         put_page(*page);
1673                         ksm_scan.address += PAGE_SIZE;
1674                         cond_resched();
1675                 }
1676         }
1677
1678         if (ksm_test_exit(mm)) {
1679                 ksm_scan.address = 0;
1680                 ksm_scan.rmap_list = &slot->rmap_list;
1681         }
1682         /*
1683          * Nuke all the rmap_items that are above this current rmap:
1684          * because there were no VM_MERGEABLE vmas with such addresses.
1685          */
1686         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1687
1688         spin_lock(&ksm_mmlist_lock);
1689         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1690                                                 struct mm_slot, mm_list);
1691         if (ksm_scan.address == 0) {
1692                 /*
1693                  * We've completed a full scan of all vmas, holding mmap_sem
1694                  * throughout, and found no VM_MERGEABLE: so do the same as
1695                  * __ksm_exit does to remove this mm from all our lists now.
1696                  * This applies either when cleaning up after __ksm_exit
1697                  * (but beware: we can reach here even before __ksm_exit),
1698                  * or when all VM_MERGEABLE areas have been unmapped (and
1699                  * mmap_sem then protects against race with MADV_MERGEABLE).
1700                  */
1701                 hash_del(&slot->link);
1702                 list_del(&slot->mm_list);
1703                 spin_unlock(&ksm_mmlist_lock);
1704
1705                 free_mm_slot(slot);
1706                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1707                 up_read(&mm->mmap_sem);
1708                 mmdrop(mm);
1709         } else {
1710                 up_read(&mm->mmap_sem);
1711                 /*
1712                  * up_read(&mm->mmap_sem) first because after
1713                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1714                  * already have been freed under us by __ksm_exit()
1715                  * because the "mm_slot" is still hashed and
1716                  * ksm_scan.mm_slot doesn't point to it anymore.
1717                  */
1718                 spin_unlock(&ksm_mmlist_lock);
1719         }
1720
1721         /* Repeat until we've completed scanning the whole list */
1722         slot = ksm_scan.mm_slot;
1723         if (slot != &ksm_mm_head)
1724                 goto next_mm;
1725
1726         ksm_scan.seqnr++;
1727         return NULL;
1728 }
1729
1730 /**
1731  * ksm_do_scan  - the ksm scanner main worker function.
1732  * @scan_npages - number of pages we want to scan before we return.
1733  */
1734 static void ksm_do_scan(unsigned int scan_npages)
1735 {
1736         struct rmap_item *rmap_item;
1737         struct page *uninitialized_var(page);
1738
1739         while (scan_npages-- && likely(!freezing(current))) {
1740                 cond_resched();
1741                 rmap_item = scan_get_next_rmap_item(&page);
1742                 if (!rmap_item)
1743                         return;
1744                 cmp_and_merge_page(page, rmap_item);
1745                 put_page(page);
1746         }
1747 }
1748
1749 static int ksmd_should_run(void)
1750 {
1751         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1752 }
1753
1754 static int ksm_scan_thread(void *nothing)
1755 {
1756         set_freezable();
1757         set_user_nice(current, 5);
1758
1759         while (!kthread_should_stop()) {
1760                 mutex_lock(&ksm_thread_mutex);
1761                 wait_while_offlining();
1762                 if (ksmd_should_run())
1763                         ksm_do_scan(ksm_thread_pages_to_scan);
1764                 mutex_unlock(&ksm_thread_mutex);
1765
1766                 try_to_freeze();
1767
1768                 if (ksmd_should_run()) {
1769                         schedule_timeout_interruptible(
1770                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1771                 } else {
1772                         wait_event_freezable(ksm_thread_wait,
1773                                 ksmd_should_run() || kthread_should_stop());
1774                 }
1775         }
1776         return 0;
1777 }
1778
1779 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1780                 unsigned long end, int advice, unsigned long *vm_flags)
1781 {
1782         struct mm_struct *mm = vma->vm_mm;
1783         int err;
1784
1785         switch (advice) {
1786         case MADV_MERGEABLE:
1787                 /*
1788                  * Be somewhat over-protective for now!
1789                  */
1790                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1791                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1792                                  VM_HUGETLB | VM_MIXEDMAP))
1793                         return 0;               /* just ignore the advice */
1794
1795 #ifdef VM_SAO
1796                 if (*vm_flags & VM_SAO)
1797                         return 0;
1798 #endif
1799
1800                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1801                         err = __ksm_enter(mm);
1802                         if (err)
1803                                 return err;
1804                 }
1805
1806                 *vm_flags |= VM_MERGEABLE;
1807                 break;
1808
1809         case MADV_UNMERGEABLE:
1810                 if (!(*vm_flags & VM_MERGEABLE))
1811                         return 0;               /* just ignore the advice */
1812
1813                 if (vma->anon_vma) {
1814                         err = unmerge_ksm_pages(vma, start, end);
1815                         if (err)
1816                                 return err;
1817                 }
1818
1819                 *vm_flags &= ~VM_MERGEABLE;
1820                 break;
1821         }
1822
1823         return 0;
1824 }
1825
1826 int __ksm_enter(struct mm_struct *mm)
1827 {
1828         struct mm_slot *mm_slot;
1829         int needs_wakeup;
1830
1831         mm_slot = alloc_mm_slot();
1832         if (!mm_slot)
1833                 return -ENOMEM;
1834
1835         /* Check ksm_run too?  Would need tighter locking */
1836         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1837
1838         spin_lock(&ksm_mmlist_lock);
1839         insert_to_mm_slots_hash(mm, mm_slot);
1840         /*
1841          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1842          * insert just behind the scanning cursor, to let the area settle
1843          * down a little; when fork is followed by immediate exec, we don't
1844          * want ksmd to waste time setting up and tearing down an rmap_list.
1845          *
1846          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1847          * scanning cursor, otherwise KSM pages in newly forked mms will be
1848          * missed: then we might as well insert at the end of the list.
1849          */
1850         if (ksm_run & KSM_RUN_UNMERGE)
1851                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1852         else
1853                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1854         spin_unlock(&ksm_mmlist_lock);
1855
1856         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1857         mmgrab(mm);
1858
1859         if (needs_wakeup)
1860                 wake_up_interruptible(&ksm_thread_wait);
1861
1862         return 0;
1863 }
1864
1865 void __ksm_exit(struct mm_struct *mm)
1866 {
1867         struct mm_slot *mm_slot;
1868         int easy_to_free = 0;
1869
1870         /*
1871          * This process is exiting: if it's straightforward (as is the
1872          * case when ksmd was never running), free mm_slot immediately.
1873          * But if it's at the cursor or has rmap_items linked to it, use
1874          * mmap_sem to synchronize with any break_cows before pagetables
1875          * are freed, and leave the mm_slot on the list for ksmd to free.
1876          * Beware: ksm may already have noticed it exiting and freed the slot.
1877          */
1878
1879         spin_lock(&ksm_mmlist_lock);
1880         mm_slot = get_mm_slot(mm);
1881         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1882                 if (!mm_slot->rmap_list) {
1883                         hash_del(&mm_slot->link);
1884                         list_del(&mm_slot->mm_list);
1885                         easy_to_free = 1;
1886                 } else {
1887                         list_move(&mm_slot->mm_list,
1888                                   &ksm_scan.mm_slot->mm_list);
1889                 }
1890         }
1891         spin_unlock(&ksm_mmlist_lock);
1892
1893         if (easy_to_free) {
1894                 free_mm_slot(mm_slot);
1895                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1896                 mmdrop(mm);
1897         } else if (mm_slot) {
1898                 down_write(&mm->mmap_sem);
1899                 up_write(&mm->mmap_sem);
1900         }
1901 }
1902
1903 struct page *ksm_might_need_to_copy(struct page *page,
1904                         struct vm_area_struct *vma, unsigned long address)
1905 {
1906         struct anon_vma *anon_vma = page_anon_vma(page);
1907         struct page *new_page;
1908
1909         if (PageKsm(page)) {
1910                 if (page_stable_node(page) &&
1911                     !(ksm_run & KSM_RUN_UNMERGE))
1912                         return page;    /* no need to copy it */
1913         } else if (!anon_vma) {
1914                 return page;            /* no need to copy it */
1915         } else if (anon_vma->root == vma->anon_vma->root &&
1916                  page->index == linear_page_index(vma, address)) {
1917                 return page;            /* still no need to copy it */
1918         }
1919         if (!PageUptodate(page))
1920                 return page;            /* let do_swap_page report the error */
1921
1922         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1923         if (new_page) {
1924                 copy_user_highpage(new_page, page, address, vma);
1925
1926                 SetPageDirty(new_page);
1927                 __SetPageUptodate(new_page);
1928                 __SetPageLocked(new_page);
1929         }
1930
1931         return new_page;
1932 }
1933
1934 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1935 {
1936         struct stable_node *stable_node;
1937         struct rmap_item *rmap_item;
1938         int ret = SWAP_AGAIN;
1939         int search_new_forks = 0;
1940
1941         VM_BUG_ON_PAGE(!PageKsm(page), page);
1942
1943         /*
1944          * Rely on the page lock to protect against concurrent modifications
1945          * to that page's node of the stable tree.
1946          */
1947         VM_BUG_ON_PAGE(!PageLocked(page), page);
1948
1949         stable_node = page_stable_node(page);
1950         if (!stable_node)
1951                 return ret;
1952 again:
1953         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1954                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1955                 struct anon_vma_chain *vmac;
1956                 struct vm_area_struct *vma;
1957
1958                 cond_resched();
1959                 anon_vma_lock_read(anon_vma);
1960                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1961                                                0, ULONG_MAX) {
1962                         cond_resched();
1963                         vma = vmac->vma;
1964                         if (rmap_item->address < vma->vm_start ||
1965                             rmap_item->address >= vma->vm_end)
1966                                 continue;
1967                         /*
1968                          * Initially we examine only the vma which covers this
1969                          * rmap_item; but later, if there is still work to do,
1970                          * we examine covering vmas in other mms: in case they
1971                          * were forked from the original since ksmd passed.
1972                          */
1973                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1974                                 continue;
1975
1976                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1977                                 continue;
1978
1979                         ret = rwc->rmap_one(page, vma,
1980                                         rmap_item->address, rwc->arg);
1981                         if (ret != SWAP_AGAIN) {
1982                                 anon_vma_unlock_read(anon_vma);
1983                                 goto out;
1984                         }
1985                         if (rwc->done && rwc->done(page)) {
1986                                 anon_vma_unlock_read(anon_vma);
1987                                 goto out;
1988                         }
1989                 }
1990                 anon_vma_unlock_read(anon_vma);
1991         }
1992         if (!search_new_forks++)
1993                 goto again;
1994 out:
1995         return ret;
1996 }
1997
1998 #ifdef CONFIG_MIGRATION
1999 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2000 {
2001         struct stable_node *stable_node;
2002
2003         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2004         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2005         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2006
2007         stable_node = page_stable_node(newpage);
2008         if (stable_node) {
2009                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2010                 stable_node->kpfn = page_to_pfn(newpage);
2011                 /*
2012                  * newpage->mapping was set in advance; now we need smp_wmb()
2013                  * to make sure that the new stable_node->kpfn is visible
2014                  * to get_ksm_page() before it can see that oldpage->mapping
2015                  * has gone stale (or that PageSwapCache has been cleared).
2016                  */
2017                 smp_wmb();
2018                 set_page_stable_node(oldpage, NULL);
2019         }
2020 }
2021 #endif /* CONFIG_MIGRATION */
2022
2023 #ifdef CONFIG_MEMORY_HOTREMOVE
2024 static void wait_while_offlining(void)
2025 {
2026         while (ksm_run & KSM_RUN_OFFLINE) {
2027                 mutex_unlock(&ksm_thread_mutex);
2028                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2029                             TASK_UNINTERRUPTIBLE);
2030                 mutex_lock(&ksm_thread_mutex);
2031         }
2032 }
2033
2034 static void ksm_check_stable_tree(unsigned long start_pfn,
2035                                   unsigned long end_pfn)
2036 {
2037         struct stable_node *stable_node, *next;
2038         struct rb_node *node;
2039         int nid;
2040
2041         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2042                 node = rb_first(root_stable_tree + nid);
2043                 while (node) {
2044                         stable_node = rb_entry(node, struct stable_node, node);
2045                         if (stable_node->kpfn >= start_pfn &&
2046                             stable_node->kpfn < end_pfn) {
2047                                 /*
2048                                  * Don't get_ksm_page, page has already gone:
2049                                  * which is why we keep kpfn instead of page*
2050                                  */
2051                                 remove_node_from_stable_tree(stable_node);
2052                                 node = rb_first(root_stable_tree + nid);
2053                         } else
2054                                 node = rb_next(node);
2055                         cond_resched();
2056                 }
2057         }
2058         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2059                 if (stable_node->kpfn >= start_pfn &&
2060                     stable_node->kpfn < end_pfn)
2061                         remove_node_from_stable_tree(stable_node);
2062                 cond_resched();
2063         }
2064 }
2065
2066 static int ksm_memory_callback(struct notifier_block *self,
2067                                unsigned long action, void *arg)
2068 {
2069         struct memory_notify *mn = arg;
2070
2071         switch (action) {
2072         case MEM_GOING_OFFLINE:
2073                 /*
2074                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2075                  * and remove_all_stable_nodes() while memory is going offline:
2076                  * it is unsafe for them to touch the stable tree at this time.
2077                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2078                  * which do not need the ksm_thread_mutex are all safe.
2079                  */
2080                 mutex_lock(&ksm_thread_mutex);
2081                 ksm_run |= KSM_RUN_OFFLINE;
2082                 mutex_unlock(&ksm_thread_mutex);
2083                 break;
2084
2085         case MEM_OFFLINE:
2086                 /*
2087                  * Most of the work is done by page migration; but there might
2088                  * be a few stable_nodes left over, still pointing to struct
2089                  * pages which have been offlined: prune those from the tree,
2090                  * otherwise get_ksm_page() might later try to access a
2091                  * non-existent struct page.
2092                  */
2093                 ksm_check_stable_tree(mn->start_pfn,
2094                                       mn->start_pfn + mn->nr_pages);
2095                 /* fallthrough */
2096
2097         case MEM_CANCEL_OFFLINE:
2098                 mutex_lock(&ksm_thread_mutex);
2099                 ksm_run &= ~KSM_RUN_OFFLINE;
2100                 mutex_unlock(&ksm_thread_mutex);
2101
2102                 smp_mb();       /* wake_up_bit advises this */
2103                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2104                 break;
2105         }
2106         return NOTIFY_OK;
2107 }
2108 #else
2109 static void wait_while_offlining(void)
2110 {
2111 }
2112 #endif /* CONFIG_MEMORY_HOTREMOVE */
2113
2114 #ifdef CONFIG_SYSFS
2115 /*
2116  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2117  */
2118
2119 #define KSM_ATTR_RO(_name) \
2120         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2121 #define KSM_ATTR(_name) \
2122         static struct kobj_attribute _name##_attr = \
2123                 __ATTR(_name, 0644, _name##_show, _name##_store)
2124
2125 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2126                                     struct kobj_attribute *attr, char *buf)
2127 {
2128         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2129 }
2130
2131 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2132                                      struct kobj_attribute *attr,
2133                                      const char *buf, size_t count)
2134 {
2135         unsigned long msecs;
2136         int err;
2137
2138         err = kstrtoul(buf, 10, &msecs);
2139         if (err || msecs > UINT_MAX)
2140                 return -EINVAL;
2141
2142         ksm_thread_sleep_millisecs = msecs;
2143
2144         return count;
2145 }
2146 KSM_ATTR(sleep_millisecs);
2147
2148 static ssize_t pages_to_scan_show(struct kobject *kobj,
2149                                   struct kobj_attribute *attr, char *buf)
2150 {
2151         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2152 }
2153
2154 static ssize_t pages_to_scan_store(struct kobject *kobj,
2155                                    struct kobj_attribute *attr,
2156                                    const char *buf, size_t count)
2157 {
2158         int err;
2159         unsigned long nr_pages;
2160
2161         err = kstrtoul(buf, 10, &nr_pages);
2162         if (err || nr_pages > UINT_MAX)
2163                 return -EINVAL;
2164
2165         ksm_thread_pages_to_scan = nr_pages;
2166
2167         return count;
2168 }
2169 KSM_ATTR(pages_to_scan);
2170
2171 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2172                         char *buf)
2173 {
2174         return sprintf(buf, "%lu\n", ksm_run);
2175 }
2176
2177 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2178                          const char *buf, size_t count)
2179 {
2180         int err;
2181         unsigned long flags;
2182
2183         err = kstrtoul(buf, 10, &flags);
2184         if (err || flags > UINT_MAX)
2185                 return -EINVAL;
2186         if (flags > KSM_RUN_UNMERGE)
2187                 return -EINVAL;
2188
2189         /*
2190          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2191          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2192          * breaking COW to free the pages_shared (but leaves mm_slots
2193          * on the list for when ksmd may be set running again).
2194          */
2195
2196         mutex_lock(&ksm_thread_mutex);
2197         wait_while_offlining();
2198         if (ksm_run != flags) {
2199                 ksm_run = flags;
2200                 if (flags & KSM_RUN_UNMERGE) {
2201                         set_current_oom_origin();
2202                         err = unmerge_and_remove_all_rmap_items();
2203                         clear_current_oom_origin();
2204                         if (err) {
2205                                 ksm_run = KSM_RUN_STOP;
2206                                 count = err;
2207                         }
2208                 }
2209         }
2210         mutex_unlock(&ksm_thread_mutex);
2211
2212         if (flags & KSM_RUN_MERGE)
2213                 wake_up_interruptible(&ksm_thread_wait);
2214
2215         return count;
2216 }
2217 KSM_ATTR(run);
2218
2219 #ifdef CONFIG_NUMA
2220 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2221                                 struct kobj_attribute *attr, char *buf)
2222 {
2223         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2224 }
2225
2226 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2227                                    struct kobj_attribute *attr,
2228                                    const char *buf, size_t count)
2229 {
2230         int err;
2231         unsigned long knob;
2232
2233         err = kstrtoul(buf, 10, &knob);
2234         if (err)
2235                 return err;
2236         if (knob > 1)
2237                 return -EINVAL;
2238
2239         mutex_lock(&ksm_thread_mutex);
2240         wait_while_offlining();
2241         if (ksm_merge_across_nodes != knob) {
2242                 if (ksm_pages_shared || remove_all_stable_nodes())
2243                         err = -EBUSY;
2244                 else if (root_stable_tree == one_stable_tree) {
2245                         struct rb_root *buf;
2246                         /*
2247                          * This is the first time that we switch away from the
2248                          * default of merging across nodes: must now allocate
2249                          * a buffer to hold as many roots as may be needed.
2250                          * Allocate stable and unstable together:
2251                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2252                          */
2253                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2254                                       GFP_KERNEL);
2255                         /* Let us assume that RB_ROOT is NULL is zero */
2256                         if (!buf)
2257                                 err = -ENOMEM;
2258                         else {
2259                                 root_stable_tree = buf;
2260                                 root_unstable_tree = buf + nr_node_ids;
2261                                 /* Stable tree is empty but not the unstable */
2262                                 root_unstable_tree[0] = one_unstable_tree[0];
2263                         }
2264                 }
2265                 if (!err) {
2266                         ksm_merge_across_nodes = knob;
2267                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2268                 }
2269         }
2270         mutex_unlock(&ksm_thread_mutex);
2271
2272         return err ? err : count;
2273 }
2274 KSM_ATTR(merge_across_nodes);
2275 #endif
2276
2277 static ssize_t use_zero_pages_show(struct kobject *kobj,
2278                                 struct kobj_attribute *attr, char *buf)
2279 {
2280         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2281 }
2282 static ssize_t use_zero_pages_store(struct kobject *kobj,
2283                                    struct kobj_attribute *attr,
2284                                    const char *buf, size_t count)
2285 {
2286         int err;
2287         bool value;
2288
2289         err = kstrtobool(buf, &value);
2290         if (err)
2291                 return -EINVAL;
2292
2293         ksm_use_zero_pages = value;
2294
2295         return count;
2296 }
2297 KSM_ATTR(use_zero_pages);
2298
2299 static ssize_t pages_shared_show(struct kobject *kobj,
2300                                  struct kobj_attribute *attr, char *buf)
2301 {
2302         return sprintf(buf, "%lu\n", ksm_pages_shared);
2303 }
2304 KSM_ATTR_RO(pages_shared);
2305
2306 static ssize_t pages_sharing_show(struct kobject *kobj,
2307                                   struct kobj_attribute *attr, char *buf)
2308 {
2309         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2310 }
2311 KSM_ATTR_RO(pages_sharing);
2312
2313 static ssize_t pages_unshared_show(struct kobject *kobj,
2314                                    struct kobj_attribute *attr, char *buf)
2315 {
2316         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2317 }
2318 KSM_ATTR_RO(pages_unshared);
2319
2320 static ssize_t pages_volatile_show(struct kobject *kobj,
2321                                    struct kobj_attribute *attr, char *buf)
2322 {
2323         long ksm_pages_volatile;
2324
2325         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2326                                 - ksm_pages_sharing - ksm_pages_unshared;
2327         /*
2328          * It was not worth any locking to calculate that statistic,
2329          * but it might therefore sometimes be negative: conceal that.
2330          */
2331         if (ksm_pages_volatile < 0)
2332                 ksm_pages_volatile = 0;
2333         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2334 }
2335 KSM_ATTR_RO(pages_volatile);
2336
2337 static ssize_t full_scans_show(struct kobject *kobj,
2338                                struct kobj_attribute *attr, char *buf)
2339 {
2340         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2341 }
2342 KSM_ATTR_RO(full_scans);
2343
2344 static struct attribute *ksm_attrs[] = {
2345         &sleep_millisecs_attr.attr,
2346         &pages_to_scan_attr.attr,
2347         &run_attr.attr,
2348         &pages_shared_attr.attr,
2349         &pages_sharing_attr.attr,
2350         &pages_unshared_attr.attr,
2351         &pages_volatile_attr.attr,
2352         &full_scans_attr.attr,
2353 #ifdef CONFIG_NUMA
2354         &merge_across_nodes_attr.attr,
2355 #endif
2356         &use_zero_pages_attr.attr,
2357         NULL,
2358 };
2359
2360 static struct attribute_group ksm_attr_group = {
2361         .attrs = ksm_attrs,
2362         .name = "ksm",
2363 };
2364 #endif /* CONFIG_SYSFS */
2365
2366 static int __init ksm_init(void)
2367 {
2368         struct task_struct *ksm_thread;
2369         int err;
2370
2371         /* The correct value depends on page size and endianness */
2372         zero_checksum = calc_checksum(ZERO_PAGE(0));
2373         /* Default to false for backwards compatibility */
2374         ksm_use_zero_pages = false;
2375
2376         err = ksm_slab_init();
2377         if (err)
2378                 goto out;
2379
2380         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2381         if (IS_ERR(ksm_thread)) {
2382                 pr_err("ksm: creating kthread failed\n");
2383                 err = PTR_ERR(ksm_thread);
2384                 goto out_free;
2385         }
2386
2387 #ifdef CONFIG_SYSFS
2388         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2389         if (err) {
2390                 pr_err("ksm: register sysfs failed\n");
2391                 kthread_stop(ksm_thread);
2392                 goto out_free;
2393         }
2394 #else
2395         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2396
2397 #endif /* CONFIG_SYSFS */
2398
2399 #ifdef CONFIG_MEMORY_HOTREMOVE
2400         /* There is no significance to this priority 100 */
2401         hotplug_memory_notifier(ksm_memory_callback, 100);
2402 #endif
2403         return 0;
2404
2405 out_free:
2406         ksm_slab_free();
2407 out:
2408         return err;
2409 }
2410 subsys_initcall(ksm_init);