]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/memory.c
Merge branch 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66
67 #include <asm/io.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/tlb.h>
71 #include <asm/tlbflush.h>
72 #include <asm/pgtable.h>
73
74 #include "internal.h"
75
76 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
77 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #endif
79
80 #ifndef CONFIG_NEED_MULTIPLE_NODES
81 /* use the per-pgdat data instead for discontigmem - mbligh */
82 unsigned long max_mapnr;
83 struct page *mem_map;
84
85 EXPORT_SYMBOL(max_mapnr);
86 EXPORT_SYMBOL(mem_map);
87 #endif
88
89 /*
90  * A number of key systems in x86 including ioremap() rely on the assumption
91  * that high_memory defines the upper bound on direct map memory, then end
92  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
93  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94  * and ZONE_HIGHMEM.
95  */
96 void * high_memory;
97
98 EXPORT_SYMBOL(high_memory);
99
100 /*
101  * Randomize the address space (stacks, mmaps, brk, etc.).
102  *
103  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104  *   as ancient (libc5 based) binaries can segfault. )
105  */
106 int randomize_va_space __read_mostly =
107 #ifdef CONFIG_COMPAT_BRK
108                                         1;
109 #else
110                                         2;
111 #endif
112
113 static int __init disable_randmaps(char *s)
114 {
115         randomize_va_space = 0;
116         return 1;
117 }
118 __setup("norandmaps", disable_randmaps);
119
120 unsigned long zero_pfn __read_mostly;
121 unsigned long highest_memmap_pfn __read_mostly;
122
123 EXPORT_SYMBOL(zero_pfn);
124
125 /*
126  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127  */
128 static int __init init_zero_pfn(void)
129 {
130         zero_pfn = page_to_pfn(ZERO_PAGE(0));
131         return 0;
132 }
133 core_initcall(init_zero_pfn);
134
135
136 #if defined(SPLIT_RSS_COUNTING)
137
138 void sync_mm_rss(struct mm_struct *mm)
139 {
140         int i;
141
142         for (i = 0; i < NR_MM_COUNTERS; i++) {
143                 if (current->rss_stat.count[i]) {
144                         add_mm_counter(mm, i, current->rss_stat.count[i]);
145                         current->rss_stat.count[i] = 0;
146                 }
147         }
148         current->rss_stat.events = 0;
149 }
150
151 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
152 {
153         struct task_struct *task = current;
154
155         if (likely(task->mm == mm))
156                 task->rss_stat.count[member] += val;
157         else
158                 add_mm_counter(mm, member, val);
159 }
160 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
161 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162
163 /* sync counter once per 64 page faults */
164 #define TASK_RSS_EVENTS_THRESH  (64)
165 static void check_sync_rss_stat(struct task_struct *task)
166 {
167         if (unlikely(task != current))
168                 return;
169         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
170                 sync_mm_rss(task->mm);
171 }
172 #else /* SPLIT_RSS_COUNTING */
173
174 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
175 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176
177 static void check_sync_rss_stat(struct task_struct *task)
178 {
179 }
180
181 #endif /* SPLIT_RSS_COUNTING */
182
183 #ifdef HAVE_GENERIC_MMU_GATHER
184
185 static bool tlb_next_batch(struct mmu_gather *tlb)
186 {
187         struct mmu_gather_batch *batch;
188
189         batch = tlb->active;
190         if (batch->next) {
191                 tlb->active = batch->next;
192                 return true;
193         }
194
195         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
196                 return false;
197
198         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199         if (!batch)
200                 return false;
201
202         tlb->batch_count++;
203         batch->next = NULL;
204         batch->nr   = 0;
205         batch->max  = MAX_GATHER_BATCH;
206
207         tlb->active->next = batch;
208         tlb->active = batch;
209
210         return true;
211 }
212
213 /* tlb_gather_mmu
214  *      Called to initialize an (on-stack) mmu_gather structure for page-table
215  *      tear-down from @mm. The @fullmm argument is used when @mm is without
216  *      users and we're going to destroy the full address space (exit/execve).
217  */
218 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
219 {
220         tlb->mm = mm;
221
222         /* Is it from 0 to ~0? */
223         tlb->fullmm     = !(start | (end+1));
224         tlb->need_flush_all = 0;
225         tlb->local.next = NULL;
226         tlb->local.nr   = 0;
227         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
228         tlb->active     = &tlb->local;
229         tlb->batch_count = 0;
230
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232         tlb->batch = NULL;
233 #endif
234
235         __tlb_reset_range(tlb);
236 }
237
238 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
239 {
240         if (!tlb->end)
241                 return;
242
243         tlb_flush(tlb);
244         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246         tlb_table_flush(tlb);
247 #endif
248         __tlb_reset_range(tlb);
249 }
250
251 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252 {
253         struct mmu_gather_batch *batch;
254
255         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
256                 free_pages_and_swap_cache(batch->pages, batch->nr);
257                 batch->nr = 0;
258         }
259         tlb->active = &tlb->local;
260 }
261
262 void tlb_flush_mmu(struct mmu_gather *tlb)
263 {
264         tlb_flush_mmu_tlbonly(tlb);
265         tlb_flush_mmu_free(tlb);
266 }
267
268 /* tlb_finish_mmu
269  *      Called at the end of the shootdown operation to free up any resources
270  *      that were required.
271  */
272 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
273 {
274         struct mmu_gather_batch *batch, *next;
275
276         tlb_flush_mmu(tlb);
277
278         /* keep the page table cache within bounds */
279         check_pgt_cache();
280
281         for (batch = tlb->local.next; batch; batch = next) {
282                 next = batch->next;
283                 free_pages((unsigned long)batch, 0);
284         }
285         tlb->local.next = NULL;
286 }
287
288 /* __tlb_remove_page
289  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
290  *      handling the additional races in SMP caused by other CPUs caching valid
291  *      mappings in their TLBs. Returns the number of free page slots left.
292  *      When out of page slots we must call tlb_flush_mmu().
293  */
294 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
295 {
296         struct mmu_gather_batch *batch;
297
298         VM_BUG_ON(!tlb->end);
299
300         batch = tlb->active;
301         batch->pages[batch->nr++] = page;
302         if (batch->nr == batch->max) {
303                 if (!tlb_next_batch(tlb))
304                         return 0;
305                 batch = tlb->active;
306         }
307         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
308
309         return batch->max - batch->nr;
310 }
311
312 #endif /* HAVE_GENERIC_MMU_GATHER */
313
314 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315
316 /*
317  * See the comment near struct mmu_table_batch.
318  */
319
320 static void tlb_remove_table_smp_sync(void *arg)
321 {
322         /* Simply deliver the interrupt */
323 }
324
325 static void tlb_remove_table_one(void *table)
326 {
327         /*
328          * This isn't an RCU grace period and hence the page-tables cannot be
329          * assumed to be actually RCU-freed.
330          *
331          * It is however sufficient for software page-table walkers that rely on
332          * IRQ disabling. See the comment near struct mmu_table_batch.
333          */
334         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
335         __tlb_remove_table(table);
336 }
337
338 static void tlb_remove_table_rcu(struct rcu_head *head)
339 {
340         struct mmu_table_batch *batch;
341         int i;
342
343         batch = container_of(head, struct mmu_table_batch, rcu);
344
345         for (i = 0; i < batch->nr; i++)
346                 __tlb_remove_table(batch->tables[i]);
347
348         free_page((unsigned long)batch);
349 }
350
351 void tlb_table_flush(struct mmu_gather *tlb)
352 {
353         struct mmu_table_batch **batch = &tlb->batch;
354
355         if (*batch) {
356                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
357                 *batch = NULL;
358         }
359 }
360
361 void tlb_remove_table(struct mmu_gather *tlb, void *table)
362 {
363         struct mmu_table_batch **batch = &tlb->batch;
364
365         /*
366          * When there's less then two users of this mm there cannot be a
367          * concurrent page-table walk.
368          */
369         if (atomic_read(&tlb->mm->mm_users) < 2) {
370                 __tlb_remove_table(table);
371                 return;
372         }
373
374         if (*batch == NULL) {
375                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376                 if (*batch == NULL) {
377                         tlb_remove_table_one(table);
378                         return;
379                 }
380                 (*batch)->nr = 0;
381         }
382         (*batch)->tables[(*batch)->nr++] = table;
383         if ((*batch)->nr == MAX_TABLE_BATCH)
384                 tlb_table_flush(tlb);
385 }
386
387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388
389 /*
390  * Note: this doesn't free the actual pages themselves. That
391  * has been handled earlier when unmapping all the memory regions.
392  */
393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394                            unsigned long addr)
395 {
396         pgtable_t token = pmd_pgtable(*pmd);
397         pmd_clear(pmd);
398         pte_free_tlb(tlb, token, addr);
399         atomic_long_dec(&tlb->mm->nr_ptes);
400 }
401
402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403                                 unsigned long addr, unsigned long end,
404                                 unsigned long floor, unsigned long ceiling)
405 {
406         pmd_t *pmd;
407         unsigned long next;
408         unsigned long start;
409
410         start = addr;
411         pmd = pmd_offset(pud, addr);
412         do {
413                 next = pmd_addr_end(addr, end);
414                 if (pmd_none_or_clear_bad(pmd))
415                         continue;
416                 free_pte_range(tlb, pmd, addr);
417         } while (pmd++, addr = next, addr != end);
418
419         start &= PUD_MASK;
420         if (start < floor)
421                 return;
422         if (ceiling) {
423                 ceiling &= PUD_MASK;
424                 if (!ceiling)
425                         return;
426         }
427         if (end - 1 > ceiling - 1)
428                 return;
429
430         pmd = pmd_offset(pud, start);
431         pud_clear(pud);
432         pmd_free_tlb(tlb, pmd, start);
433         mm_dec_nr_pmds(tlb->mm);
434 }
435
436 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
437                                 unsigned long addr, unsigned long end,
438                                 unsigned long floor, unsigned long ceiling)
439 {
440         pud_t *pud;
441         unsigned long next;
442         unsigned long start;
443
444         start = addr;
445         pud = pud_offset(pgd, addr);
446         do {
447                 next = pud_addr_end(addr, end);
448                 if (pud_none_or_clear_bad(pud))
449                         continue;
450                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
451         } while (pud++, addr = next, addr != end);
452
453         start &= PGDIR_MASK;
454         if (start < floor)
455                 return;
456         if (ceiling) {
457                 ceiling &= PGDIR_MASK;
458                 if (!ceiling)
459                         return;
460         }
461         if (end - 1 > ceiling - 1)
462                 return;
463
464         pud = pud_offset(pgd, start);
465         pgd_clear(pgd);
466         pud_free_tlb(tlb, pud, start);
467 }
468
469 /*
470  * This function frees user-level page tables of a process.
471  */
472 void free_pgd_range(struct mmu_gather *tlb,
473                         unsigned long addr, unsigned long end,
474                         unsigned long floor, unsigned long ceiling)
475 {
476         pgd_t *pgd;
477         unsigned long next;
478
479         /*
480          * The next few lines have given us lots of grief...
481          *
482          * Why are we testing PMD* at this top level?  Because often
483          * there will be no work to do at all, and we'd prefer not to
484          * go all the way down to the bottom just to discover that.
485          *
486          * Why all these "- 1"s?  Because 0 represents both the bottom
487          * of the address space and the top of it (using -1 for the
488          * top wouldn't help much: the masks would do the wrong thing).
489          * The rule is that addr 0 and floor 0 refer to the bottom of
490          * the address space, but end 0 and ceiling 0 refer to the top
491          * Comparisons need to use "end - 1" and "ceiling - 1" (though
492          * that end 0 case should be mythical).
493          *
494          * Wherever addr is brought up or ceiling brought down, we must
495          * be careful to reject "the opposite 0" before it confuses the
496          * subsequent tests.  But what about where end is brought down
497          * by PMD_SIZE below? no, end can't go down to 0 there.
498          *
499          * Whereas we round start (addr) and ceiling down, by different
500          * masks at different levels, in order to test whether a table
501          * now has no other vmas using it, so can be freed, we don't
502          * bother to round floor or end up - the tests don't need that.
503          */
504
505         addr &= PMD_MASK;
506         if (addr < floor) {
507                 addr += PMD_SIZE;
508                 if (!addr)
509                         return;
510         }
511         if (ceiling) {
512                 ceiling &= PMD_MASK;
513                 if (!ceiling)
514                         return;
515         }
516         if (end - 1 > ceiling - 1)
517                 end -= PMD_SIZE;
518         if (addr > end - 1)
519                 return;
520
521         pgd = pgd_offset(tlb->mm, addr);
522         do {
523                 next = pgd_addr_end(addr, end);
524                 if (pgd_none_or_clear_bad(pgd))
525                         continue;
526                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
527         } while (pgd++, addr = next, addr != end);
528 }
529
530 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
531                 unsigned long floor, unsigned long ceiling)
532 {
533         while (vma) {
534                 struct vm_area_struct *next = vma->vm_next;
535                 unsigned long addr = vma->vm_start;
536
537                 /*
538                  * Hide vma from rmap and truncate_pagecache before freeing
539                  * pgtables
540                  */
541                 unlink_anon_vmas(vma);
542                 unlink_file_vma(vma);
543
544                 if (is_vm_hugetlb_page(vma)) {
545                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
546                                 floor, next? next->vm_start: ceiling);
547                 } else {
548                         /*
549                          * Optimization: gather nearby vmas into one call down
550                          */
551                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
552                                && !is_vm_hugetlb_page(next)) {
553                                 vma = next;
554                                 next = vma->vm_next;
555                                 unlink_anon_vmas(vma);
556                                 unlink_file_vma(vma);
557                         }
558                         free_pgd_range(tlb, addr, vma->vm_end,
559                                 floor, next? next->vm_start: ceiling);
560                 }
561                 vma = next;
562         }
563 }
564
565 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
566 {
567         spinlock_t *ptl;
568         pgtable_t new = pte_alloc_one(mm, address);
569         if (!new)
570                 return -ENOMEM;
571
572         /*
573          * Ensure all pte setup (eg. pte page lock and page clearing) are
574          * visible before the pte is made visible to other CPUs by being
575          * put into page tables.
576          *
577          * The other side of the story is the pointer chasing in the page
578          * table walking code (when walking the page table without locking;
579          * ie. most of the time). Fortunately, these data accesses consist
580          * of a chain of data-dependent loads, meaning most CPUs (alpha
581          * being the notable exception) will already guarantee loads are
582          * seen in-order. See the alpha page table accessors for the
583          * smp_read_barrier_depends() barriers in page table walking code.
584          */
585         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
587         ptl = pmd_lock(mm, pmd);
588         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
589                 atomic_long_inc(&mm->nr_ptes);
590                 pmd_populate(mm, pmd, new);
591                 new = NULL;
592         }
593         spin_unlock(ptl);
594         if (new)
595                 pte_free(mm, new);
596         return 0;
597 }
598
599 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
600 {
601         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
602         if (!new)
603                 return -ENOMEM;
604
605         smp_wmb(); /* See comment in __pte_alloc */
606
607         spin_lock(&init_mm.page_table_lock);
608         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
609                 pmd_populate_kernel(&init_mm, pmd, new);
610                 new = NULL;
611         }
612         spin_unlock(&init_mm.page_table_lock);
613         if (new)
614                 pte_free_kernel(&init_mm, new);
615         return 0;
616 }
617
618 static inline void init_rss_vec(int *rss)
619 {
620         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
621 }
622
623 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
624 {
625         int i;
626
627         if (current->mm == mm)
628                 sync_mm_rss(mm);
629         for (i = 0; i < NR_MM_COUNTERS; i++)
630                 if (rss[i])
631                         add_mm_counter(mm, i, rss[i]);
632 }
633
634 /*
635  * This function is called to print an error when a bad pte
636  * is found. For example, we might have a PFN-mapped pte in
637  * a region that doesn't allow it.
638  *
639  * The calling function must still handle the error.
640  */
641 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
642                           pte_t pte, struct page *page)
643 {
644         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
645         pud_t *pud = pud_offset(pgd, addr);
646         pmd_t *pmd = pmd_offset(pud, addr);
647         struct address_space *mapping;
648         pgoff_t index;
649         static unsigned long resume;
650         static unsigned long nr_shown;
651         static unsigned long nr_unshown;
652
653         /*
654          * Allow a burst of 60 reports, then keep quiet for that minute;
655          * or allow a steady drip of one report per second.
656          */
657         if (nr_shown == 60) {
658                 if (time_before(jiffies, resume)) {
659                         nr_unshown++;
660                         return;
661                 }
662                 if (nr_unshown) {
663                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
664                                  nr_unshown);
665                         nr_unshown = 0;
666                 }
667                 nr_shown = 0;
668         }
669         if (nr_shown++ == 0)
670                 resume = jiffies + 60 * HZ;
671
672         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
673         index = linear_page_index(vma, addr);
674
675         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
676                  current->comm,
677                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
678         if (page)
679                 dump_page(page, "bad pte");
680         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
681                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
682         /*
683          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
684          */
685         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
686                  vma->vm_file,
687                  vma->vm_ops ? vma->vm_ops->fault : NULL,
688                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
689                  mapping ? mapping->a_ops->readpage : NULL);
690         dump_stack();
691         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
692 }
693
694 /*
695  * vm_normal_page -- This function gets the "struct page" associated with a pte.
696  *
697  * "Special" mappings do not wish to be associated with a "struct page" (either
698  * it doesn't exist, or it exists but they don't want to touch it). In this
699  * case, NULL is returned here. "Normal" mappings do have a struct page.
700  *
701  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
702  * pte bit, in which case this function is trivial. Secondly, an architecture
703  * may not have a spare pte bit, which requires a more complicated scheme,
704  * described below.
705  *
706  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
707  * special mapping (even if there are underlying and valid "struct pages").
708  * COWed pages of a VM_PFNMAP are always normal.
709  *
710  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
711  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
712  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
713  * mapping will always honor the rule
714  *
715  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
716  *
717  * And for normal mappings this is false.
718  *
719  * This restricts such mappings to be a linear translation from virtual address
720  * to pfn. To get around this restriction, we allow arbitrary mappings so long
721  * as the vma is not a COW mapping; in that case, we know that all ptes are
722  * special (because none can have been COWed).
723  *
724  *
725  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
726  *
727  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
728  * page" backing, however the difference is that _all_ pages with a struct
729  * page (that is, those where pfn_valid is true) are refcounted and considered
730  * normal pages by the VM. The disadvantage is that pages are refcounted
731  * (which can be slower and simply not an option for some PFNMAP users). The
732  * advantage is that we don't have to follow the strict linearity rule of
733  * PFNMAP mappings in order to support COWable mappings.
734  *
735  */
736 #ifdef __HAVE_ARCH_PTE_SPECIAL
737 # define HAVE_PTE_SPECIAL 1
738 #else
739 # define HAVE_PTE_SPECIAL 0
740 #endif
741 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
742                                 pte_t pte)
743 {
744         unsigned long pfn = pte_pfn(pte);
745
746         if (HAVE_PTE_SPECIAL) {
747                 if (likely(!pte_special(pte)))
748                         goto check_pfn;
749                 if (vma->vm_ops && vma->vm_ops->find_special_page)
750                         return vma->vm_ops->find_special_page(vma, addr);
751                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752                         return NULL;
753                 if (!is_zero_pfn(pfn))
754                         print_bad_pte(vma, addr, pte, NULL);
755                 return NULL;
756         }
757
758         /* !HAVE_PTE_SPECIAL case follows: */
759
760         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761                 if (vma->vm_flags & VM_MIXEDMAP) {
762                         if (!pfn_valid(pfn))
763                                 return NULL;
764                         goto out;
765                 } else {
766                         unsigned long off;
767                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
768                         if (pfn == vma->vm_pgoff + off)
769                                 return NULL;
770                         if (!is_cow_mapping(vma->vm_flags))
771                                 return NULL;
772                 }
773         }
774
775         if (is_zero_pfn(pfn))
776                 return NULL;
777 check_pfn:
778         if (unlikely(pfn > highest_memmap_pfn)) {
779                 print_bad_pte(vma, addr, pte, NULL);
780                 return NULL;
781         }
782
783         /*
784          * NOTE! We still have PageReserved() pages in the page tables.
785          * eg. VDSO mappings can cause them to exist.
786          */
787 out:
788         return pfn_to_page(pfn);
789 }
790
791 /*
792  * copy one vm_area from one task to the other. Assumes the page tables
793  * already present in the new task to be cleared in the whole range
794  * covered by this vma.
795  */
796
797 static inline unsigned long
798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
799                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
800                 unsigned long addr, int *rss)
801 {
802         unsigned long vm_flags = vma->vm_flags;
803         pte_t pte = *src_pte;
804         struct page *page;
805
806         /* pte contains position in swap or file, so copy. */
807         if (unlikely(!pte_present(pte))) {
808                 swp_entry_t entry = pte_to_swp_entry(pte);
809
810                 if (likely(!non_swap_entry(entry))) {
811                         if (swap_duplicate(entry) < 0)
812                                 return entry.val;
813
814                         /* make sure dst_mm is on swapoff's mmlist. */
815                         if (unlikely(list_empty(&dst_mm->mmlist))) {
816                                 spin_lock(&mmlist_lock);
817                                 if (list_empty(&dst_mm->mmlist))
818                                         list_add(&dst_mm->mmlist,
819                                                         &src_mm->mmlist);
820                                 spin_unlock(&mmlist_lock);
821                         }
822                         rss[MM_SWAPENTS]++;
823                 } else if (is_migration_entry(entry)) {
824                         page = migration_entry_to_page(entry);
825
826                         rss[mm_counter(page)]++;
827
828                         if (is_write_migration_entry(entry) &&
829                                         is_cow_mapping(vm_flags)) {
830                                 /*
831                                  * COW mappings require pages in both
832                                  * parent and child to be set to read.
833                                  */
834                                 make_migration_entry_read(&entry);
835                                 pte = swp_entry_to_pte(entry);
836                                 if (pte_swp_soft_dirty(*src_pte))
837                                         pte = pte_swp_mksoft_dirty(pte);
838                                 set_pte_at(src_mm, addr, src_pte, pte);
839                         }
840                 }
841                 goto out_set_pte;
842         }
843
844         /*
845          * If it's a COW mapping, write protect it both
846          * in the parent and the child
847          */
848         if (is_cow_mapping(vm_flags)) {
849                 ptep_set_wrprotect(src_mm, addr, src_pte);
850                 pte = pte_wrprotect(pte);
851         }
852
853         /*
854          * If it's a shared mapping, mark it clean in
855          * the child
856          */
857         if (vm_flags & VM_SHARED)
858                 pte = pte_mkclean(pte);
859         pte = pte_mkold(pte);
860
861         page = vm_normal_page(vma, addr, pte);
862         if (page) {
863                 get_page(page);
864                 page_dup_rmap(page, false);
865                 rss[mm_counter(page)]++;
866         }
867
868 out_set_pte:
869         set_pte_at(dst_mm, addr, dst_pte, pte);
870         return 0;
871 }
872
873 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
874                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
875                    unsigned long addr, unsigned long end)
876 {
877         pte_t *orig_src_pte, *orig_dst_pte;
878         pte_t *src_pte, *dst_pte;
879         spinlock_t *src_ptl, *dst_ptl;
880         int progress = 0;
881         int rss[NR_MM_COUNTERS];
882         swp_entry_t entry = (swp_entry_t){0};
883
884 again:
885         init_rss_vec(rss);
886
887         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
888         if (!dst_pte)
889                 return -ENOMEM;
890         src_pte = pte_offset_map(src_pmd, addr);
891         src_ptl = pte_lockptr(src_mm, src_pmd);
892         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
893         orig_src_pte = src_pte;
894         orig_dst_pte = dst_pte;
895         arch_enter_lazy_mmu_mode();
896
897         do {
898                 /*
899                  * We are holding two locks at this point - either of them
900                  * could generate latencies in another task on another CPU.
901                  */
902                 if (progress >= 32) {
903                         progress = 0;
904                         if (need_resched() ||
905                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
906                                 break;
907                 }
908                 if (pte_none(*src_pte)) {
909                         progress++;
910                         continue;
911                 }
912                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
913                                                         vma, addr, rss);
914                 if (entry.val)
915                         break;
916                 progress += 8;
917         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
918
919         arch_leave_lazy_mmu_mode();
920         spin_unlock(src_ptl);
921         pte_unmap(orig_src_pte);
922         add_mm_rss_vec(dst_mm, rss);
923         pte_unmap_unlock(orig_dst_pte, dst_ptl);
924         cond_resched();
925
926         if (entry.val) {
927                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
928                         return -ENOMEM;
929                 progress = 0;
930         }
931         if (addr != end)
932                 goto again;
933         return 0;
934 }
935
936 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
937                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
938                 unsigned long addr, unsigned long end)
939 {
940         pmd_t *src_pmd, *dst_pmd;
941         unsigned long next;
942
943         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
944         if (!dst_pmd)
945                 return -ENOMEM;
946         src_pmd = pmd_offset(src_pud, addr);
947         do {
948                 next = pmd_addr_end(addr, end);
949                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
950                         int err;
951                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
952                         err = copy_huge_pmd(dst_mm, src_mm,
953                                             dst_pmd, src_pmd, addr, vma);
954                         if (err == -ENOMEM)
955                                 return -ENOMEM;
956                         if (!err)
957                                 continue;
958                         /* fall through */
959                 }
960                 if (pmd_none_or_clear_bad(src_pmd))
961                         continue;
962                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
963                                                 vma, addr, next))
964                         return -ENOMEM;
965         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
966         return 0;
967 }
968
969 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
971                 unsigned long addr, unsigned long end)
972 {
973         pud_t *src_pud, *dst_pud;
974         unsigned long next;
975
976         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
977         if (!dst_pud)
978                 return -ENOMEM;
979         src_pud = pud_offset(src_pgd, addr);
980         do {
981                 next = pud_addr_end(addr, end);
982                 if (pud_none_or_clear_bad(src_pud))
983                         continue;
984                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
985                                                 vma, addr, next))
986                         return -ENOMEM;
987         } while (dst_pud++, src_pud++, addr = next, addr != end);
988         return 0;
989 }
990
991 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992                 struct vm_area_struct *vma)
993 {
994         pgd_t *src_pgd, *dst_pgd;
995         unsigned long next;
996         unsigned long addr = vma->vm_start;
997         unsigned long end = vma->vm_end;
998         unsigned long mmun_start;       /* For mmu_notifiers */
999         unsigned long mmun_end;         /* For mmu_notifiers */
1000         bool is_cow;
1001         int ret;
1002
1003         /*
1004          * Don't copy ptes where a page fault will fill them correctly.
1005          * Fork becomes much lighter when there are big shared or private
1006          * readonly mappings. The tradeoff is that copy_page_range is more
1007          * efficient than faulting.
1008          */
1009         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1010                         !vma->anon_vma)
1011                 return 0;
1012
1013         if (is_vm_hugetlb_page(vma))
1014                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1015
1016         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1017                 /*
1018                  * We do not free on error cases below as remove_vma
1019                  * gets called on error from higher level routine
1020                  */
1021                 ret = track_pfn_copy(vma);
1022                 if (ret)
1023                         return ret;
1024         }
1025
1026         /*
1027          * We need to invalidate the secondary MMU mappings only when
1028          * there could be a permission downgrade on the ptes of the
1029          * parent mm. And a permission downgrade will only happen if
1030          * is_cow_mapping() returns true.
1031          */
1032         is_cow = is_cow_mapping(vma->vm_flags);
1033         mmun_start = addr;
1034         mmun_end   = end;
1035         if (is_cow)
1036                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1037                                                     mmun_end);
1038
1039         ret = 0;
1040         dst_pgd = pgd_offset(dst_mm, addr);
1041         src_pgd = pgd_offset(src_mm, addr);
1042         do {
1043                 next = pgd_addr_end(addr, end);
1044                 if (pgd_none_or_clear_bad(src_pgd))
1045                         continue;
1046                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1047                                             vma, addr, next))) {
1048                         ret = -ENOMEM;
1049                         break;
1050                 }
1051         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1052
1053         if (is_cow)
1054                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1055         return ret;
1056 }
1057
1058 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1059                                 struct vm_area_struct *vma, pmd_t *pmd,
1060                                 unsigned long addr, unsigned long end,
1061                                 struct zap_details *details)
1062 {
1063         struct mm_struct *mm = tlb->mm;
1064         int force_flush = 0;
1065         int rss[NR_MM_COUNTERS];
1066         spinlock_t *ptl;
1067         pte_t *start_pte;
1068         pte_t *pte;
1069         swp_entry_t entry;
1070
1071 again:
1072         init_rss_vec(rss);
1073         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1074         pte = start_pte;
1075         arch_enter_lazy_mmu_mode();
1076         do {
1077                 pte_t ptent = *pte;
1078                 if (pte_none(ptent)) {
1079                         continue;
1080                 }
1081
1082                 if (pte_present(ptent)) {
1083                         struct page *page;
1084
1085                         page = vm_normal_page(vma, addr, ptent);
1086                         if (unlikely(details) && page) {
1087                                 /*
1088                                  * unmap_shared_mapping_pages() wants to
1089                                  * invalidate cache without truncating:
1090                                  * unmap shared but keep private pages.
1091                                  */
1092                                 if (details->check_mapping &&
1093                                     details->check_mapping != page->mapping)
1094                                         continue;
1095                         }
1096                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1097                                                         tlb->fullmm);
1098                         tlb_remove_tlb_entry(tlb, pte, addr);
1099                         if (unlikely(!page))
1100                                 continue;
1101
1102                         if (!PageAnon(page)) {
1103                                 if (pte_dirty(ptent)) {
1104                                         force_flush = 1;
1105                                         set_page_dirty(page);
1106                                 }
1107                                 if (pte_young(ptent) &&
1108                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1109                                         mark_page_accessed(page);
1110                         }
1111                         rss[mm_counter(page)]--;
1112                         page_remove_rmap(page, false);
1113                         if (unlikely(page_mapcount(page) < 0))
1114                                 print_bad_pte(vma, addr, ptent, page);
1115                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1116                                 force_flush = 1;
1117                                 addr += PAGE_SIZE;
1118                                 break;
1119                         }
1120                         continue;
1121                 }
1122                 /* If details->check_mapping, we leave swap entries. */
1123                 if (unlikely(details))
1124                         continue;
1125
1126                 entry = pte_to_swp_entry(ptent);
1127                 if (!non_swap_entry(entry))
1128                         rss[MM_SWAPENTS]--;
1129                 else if (is_migration_entry(entry)) {
1130                         struct page *page;
1131
1132                         page = migration_entry_to_page(entry);
1133                         rss[mm_counter(page)]--;
1134                 }
1135                 if (unlikely(!free_swap_and_cache(entry)))
1136                         print_bad_pte(vma, addr, ptent, NULL);
1137                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1138         } while (pte++, addr += PAGE_SIZE, addr != end);
1139
1140         add_mm_rss_vec(mm, rss);
1141         arch_leave_lazy_mmu_mode();
1142
1143         /* Do the actual TLB flush before dropping ptl */
1144         if (force_flush)
1145                 tlb_flush_mmu_tlbonly(tlb);
1146         pte_unmap_unlock(start_pte, ptl);
1147
1148         /*
1149          * If we forced a TLB flush (either due to running out of
1150          * batch buffers or because we needed to flush dirty TLB
1151          * entries before releasing the ptl), free the batched
1152          * memory too. Restart if we didn't do everything.
1153          */
1154         if (force_flush) {
1155                 force_flush = 0;
1156                 tlb_flush_mmu_free(tlb);
1157
1158                 if (addr != end)
1159                         goto again;
1160         }
1161
1162         return addr;
1163 }
1164
1165 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1166                                 struct vm_area_struct *vma, pud_t *pud,
1167                                 unsigned long addr, unsigned long end,
1168                                 struct zap_details *details)
1169 {
1170         pmd_t *pmd;
1171         unsigned long next;
1172
1173         pmd = pmd_offset(pud, addr);
1174         do {
1175                 next = pmd_addr_end(addr, end);
1176                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1177                         if (next - addr != HPAGE_PMD_SIZE) {
1178 #ifdef CONFIG_DEBUG_VM
1179                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1180                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1181                                                 __func__, addr, end,
1182                                                 vma->vm_start,
1183                                                 vma->vm_end);
1184                                         BUG();
1185                                 }
1186 #endif
1187                                 split_huge_pmd(vma, pmd, addr);
1188                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1189                                 goto next;
1190                         /* fall through */
1191                 }
1192                 /*
1193                  * Here there can be other concurrent MADV_DONTNEED or
1194                  * trans huge page faults running, and if the pmd is
1195                  * none or trans huge it can change under us. This is
1196                  * because MADV_DONTNEED holds the mmap_sem in read
1197                  * mode.
1198                  */
1199                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1200                         goto next;
1201                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1202 next:
1203                 cond_resched();
1204         } while (pmd++, addr = next, addr != end);
1205
1206         return addr;
1207 }
1208
1209 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1210                                 struct vm_area_struct *vma, pgd_t *pgd,
1211                                 unsigned long addr, unsigned long end,
1212                                 struct zap_details *details)
1213 {
1214         pud_t *pud;
1215         unsigned long next;
1216
1217         pud = pud_offset(pgd, addr);
1218         do {
1219                 next = pud_addr_end(addr, end);
1220                 if (pud_none_or_clear_bad(pud))
1221                         continue;
1222                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223         } while (pud++, addr = next, addr != end);
1224
1225         return addr;
1226 }
1227
1228 static void unmap_page_range(struct mmu_gather *tlb,
1229                              struct vm_area_struct *vma,
1230                              unsigned long addr, unsigned long end,
1231                              struct zap_details *details)
1232 {
1233         pgd_t *pgd;
1234         unsigned long next;
1235
1236         if (details && !details->check_mapping)
1237                 details = NULL;
1238
1239         BUG_ON(addr >= end);
1240         tlb_start_vma(tlb, vma);
1241         pgd = pgd_offset(vma->vm_mm, addr);
1242         do {
1243                 next = pgd_addr_end(addr, end);
1244                 if (pgd_none_or_clear_bad(pgd))
1245                         continue;
1246                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1247         } while (pgd++, addr = next, addr != end);
1248         tlb_end_vma(tlb, vma);
1249 }
1250
1251
1252 static void unmap_single_vma(struct mmu_gather *tlb,
1253                 struct vm_area_struct *vma, unsigned long start_addr,
1254                 unsigned long end_addr,
1255                 struct zap_details *details)
1256 {
1257         unsigned long start = max(vma->vm_start, start_addr);
1258         unsigned long end;
1259
1260         if (start >= vma->vm_end)
1261                 return;
1262         end = min(vma->vm_end, end_addr);
1263         if (end <= vma->vm_start)
1264                 return;
1265
1266         if (vma->vm_file)
1267                 uprobe_munmap(vma, start, end);
1268
1269         if (unlikely(vma->vm_flags & VM_PFNMAP))
1270                 untrack_pfn(vma, 0, 0);
1271
1272         if (start != end) {
1273                 if (unlikely(is_vm_hugetlb_page(vma))) {
1274                         /*
1275                          * It is undesirable to test vma->vm_file as it
1276                          * should be non-null for valid hugetlb area.
1277                          * However, vm_file will be NULL in the error
1278                          * cleanup path of mmap_region. When
1279                          * hugetlbfs ->mmap method fails,
1280                          * mmap_region() nullifies vma->vm_file
1281                          * before calling this function to clean up.
1282                          * Since no pte has actually been setup, it is
1283                          * safe to do nothing in this case.
1284                          */
1285                         if (vma->vm_file) {
1286                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1287                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1288                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1289                         }
1290                 } else
1291                         unmap_page_range(tlb, vma, start, end, details);
1292         }
1293 }
1294
1295 /**
1296  * unmap_vmas - unmap a range of memory covered by a list of vma's
1297  * @tlb: address of the caller's struct mmu_gather
1298  * @vma: the starting vma
1299  * @start_addr: virtual address at which to start unmapping
1300  * @end_addr: virtual address at which to end unmapping
1301  *
1302  * Unmap all pages in the vma list.
1303  *
1304  * Only addresses between `start' and `end' will be unmapped.
1305  *
1306  * The VMA list must be sorted in ascending virtual address order.
1307  *
1308  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1309  * range after unmap_vmas() returns.  So the only responsibility here is to
1310  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1311  * drops the lock and schedules.
1312  */
1313 void unmap_vmas(struct mmu_gather *tlb,
1314                 struct vm_area_struct *vma, unsigned long start_addr,
1315                 unsigned long end_addr)
1316 {
1317         struct mm_struct *mm = vma->vm_mm;
1318
1319         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1320         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1321                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1322         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1323 }
1324
1325 /**
1326  * zap_page_range - remove user pages in a given range
1327  * @vma: vm_area_struct holding the applicable pages
1328  * @start: starting address of pages to zap
1329  * @size: number of bytes to zap
1330  * @details: details of shared cache invalidation
1331  *
1332  * Caller must protect the VMA list
1333  */
1334 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1335                 unsigned long size, struct zap_details *details)
1336 {
1337         struct mm_struct *mm = vma->vm_mm;
1338         struct mmu_gather tlb;
1339         unsigned long end = start + size;
1340
1341         lru_add_drain();
1342         tlb_gather_mmu(&tlb, mm, start, end);
1343         update_hiwater_rss(mm);
1344         mmu_notifier_invalidate_range_start(mm, start, end);
1345         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1346                 unmap_single_vma(&tlb, vma, start, end, details);
1347         mmu_notifier_invalidate_range_end(mm, start, end);
1348         tlb_finish_mmu(&tlb, start, end);
1349 }
1350
1351 /**
1352  * zap_page_range_single - remove user pages in a given range
1353  * @vma: vm_area_struct holding the applicable pages
1354  * @address: starting address of pages to zap
1355  * @size: number of bytes to zap
1356  * @details: details of shared cache invalidation
1357  *
1358  * The range must fit into one VMA.
1359  */
1360 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1361                 unsigned long size, struct zap_details *details)
1362 {
1363         struct mm_struct *mm = vma->vm_mm;
1364         struct mmu_gather tlb;
1365         unsigned long end = address + size;
1366
1367         lru_add_drain();
1368         tlb_gather_mmu(&tlb, mm, address, end);
1369         update_hiwater_rss(mm);
1370         mmu_notifier_invalidate_range_start(mm, address, end);
1371         unmap_single_vma(&tlb, vma, address, end, details);
1372         mmu_notifier_invalidate_range_end(mm, address, end);
1373         tlb_finish_mmu(&tlb, address, end);
1374 }
1375
1376 /**
1377  * zap_vma_ptes - remove ptes mapping the vma
1378  * @vma: vm_area_struct holding ptes to be zapped
1379  * @address: starting address of pages to zap
1380  * @size: number of bytes to zap
1381  *
1382  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1383  *
1384  * The entire address range must be fully contained within the vma.
1385  *
1386  * Returns 0 if successful.
1387  */
1388 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1389                 unsigned long size)
1390 {
1391         if (address < vma->vm_start || address + size > vma->vm_end ||
1392                         !(vma->vm_flags & VM_PFNMAP))
1393                 return -1;
1394         zap_page_range_single(vma, address, size, NULL);
1395         return 0;
1396 }
1397 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1398
1399 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1400                         spinlock_t **ptl)
1401 {
1402         pgd_t * pgd = pgd_offset(mm, addr);
1403         pud_t * pud = pud_alloc(mm, pgd, addr);
1404         if (pud) {
1405                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1406                 if (pmd) {
1407                         VM_BUG_ON(pmd_trans_huge(*pmd));
1408                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1409                 }
1410         }
1411         return NULL;
1412 }
1413
1414 /*
1415  * This is the old fallback for page remapping.
1416  *
1417  * For historical reasons, it only allows reserved pages. Only
1418  * old drivers should use this, and they needed to mark their
1419  * pages reserved for the old functions anyway.
1420  */
1421 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1422                         struct page *page, pgprot_t prot)
1423 {
1424         struct mm_struct *mm = vma->vm_mm;
1425         int retval;
1426         pte_t *pte;
1427         spinlock_t *ptl;
1428
1429         retval = -EINVAL;
1430         if (PageAnon(page))
1431                 goto out;
1432         retval = -ENOMEM;
1433         flush_dcache_page(page);
1434         pte = get_locked_pte(mm, addr, &ptl);
1435         if (!pte)
1436                 goto out;
1437         retval = -EBUSY;
1438         if (!pte_none(*pte))
1439                 goto out_unlock;
1440
1441         /* Ok, finally just insert the thing.. */
1442         get_page(page);
1443         inc_mm_counter_fast(mm, mm_counter_file(page));
1444         page_add_file_rmap(page);
1445         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1446
1447         retval = 0;
1448         pte_unmap_unlock(pte, ptl);
1449         return retval;
1450 out_unlock:
1451         pte_unmap_unlock(pte, ptl);
1452 out:
1453         return retval;
1454 }
1455
1456 /**
1457  * vm_insert_page - insert single page into user vma
1458  * @vma: user vma to map to
1459  * @addr: target user address of this page
1460  * @page: source kernel page
1461  *
1462  * This allows drivers to insert individual pages they've allocated
1463  * into a user vma.
1464  *
1465  * The page has to be a nice clean _individual_ kernel allocation.
1466  * If you allocate a compound page, you need to have marked it as
1467  * such (__GFP_COMP), or manually just split the page up yourself
1468  * (see split_page()).
1469  *
1470  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1471  * took an arbitrary page protection parameter. This doesn't allow
1472  * that. Your vma protection will have to be set up correctly, which
1473  * means that if you want a shared writable mapping, you'd better
1474  * ask for a shared writable mapping!
1475  *
1476  * The page does not need to be reserved.
1477  *
1478  * Usually this function is called from f_op->mmap() handler
1479  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1480  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1481  * function from other places, for example from page-fault handler.
1482  */
1483 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1484                         struct page *page)
1485 {
1486         if (addr < vma->vm_start || addr >= vma->vm_end)
1487                 return -EFAULT;
1488         if (!page_count(page))
1489                 return -EINVAL;
1490         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1491                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1492                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1493                 vma->vm_flags |= VM_MIXEDMAP;
1494         }
1495         return insert_page(vma, addr, page, vma->vm_page_prot);
1496 }
1497 EXPORT_SYMBOL(vm_insert_page);
1498
1499 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1500                         pfn_t pfn, pgprot_t prot)
1501 {
1502         struct mm_struct *mm = vma->vm_mm;
1503         int retval;
1504         pte_t *pte, entry;
1505         spinlock_t *ptl;
1506
1507         retval = -ENOMEM;
1508         pte = get_locked_pte(mm, addr, &ptl);
1509         if (!pte)
1510                 goto out;
1511         retval = -EBUSY;
1512         if (!pte_none(*pte))
1513                 goto out_unlock;
1514
1515         /* Ok, finally just insert the thing.. */
1516         if (pfn_t_devmap(pfn))
1517                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1518         else
1519                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1520         set_pte_at(mm, addr, pte, entry);
1521         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1522
1523         retval = 0;
1524 out_unlock:
1525         pte_unmap_unlock(pte, ptl);
1526 out:
1527         return retval;
1528 }
1529
1530 /**
1531  * vm_insert_pfn - insert single pfn into user vma
1532  * @vma: user vma to map to
1533  * @addr: target user address of this page
1534  * @pfn: source kernel pfn
1535  *
1536  * Similar to vm_insert_page, this allows drivers to insert individual pages
1537  * they've allocated into a user vma. Same comments apply.
1538  *
1539  * This function should only be called from a vm_ops->fault handler, and
1540  * in that case the handler should return NULL.
1541  *
1542  * vma cannot be a COW mapping.
1543  *
1544  * As this is called only for pages that do not currently exist, we
1545  * do not need to flush old virtual caches or the TLB.
1546  */
1547 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1548                         unsigned long pfn)
1549 {
1550         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1551 }
1552 EXPORT_SYMBOL(vm_insert_pfn);
1553
1554 /**
1555  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1556  * @vma: user vma to map to
1557  * @addr: target user address of this page
1558  * @pfn: source kernel pfn
1559  * @pgprot: pgprot flags for the inserted page
1560  *
1561  * This is exactly like vm_insert_pfn, except that it allows drivers to
1562  * to override pgprot on a per-page basis.
1563  *
1564  * This only makes sense for IO mappings, and it makes no sense for
1565  * cow mappings.  In general, using multiple vmas is preferable;
1566  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1567  * impractical.
1568  */
1569 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1570                         unsigned long pfn, pgprot_t pgprot)
1571 {
1572         int ret;
1573         /*
1574          * Technically, architectures with pte_special can avoid all these
1575          * restrictions (same for remap_pfn_range).  However we would like
1576          * consistency in testing and feature parity among all, so we should
1577          * try to keep these invariants in place for everybody.
1578          */
1579         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1580         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1581                                                 (VM_PFNMAP|VM_MIXEDMAP));
1582         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1583         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1584
1585         if (addr < vma->vm_start || addr >= vma->vm_end)
1586                 return -EFAULT;
1587         if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1588                 return -EINVAL;
1589
1590         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1591
1592         return ret;
1593 }
1594 EXPORT_SYMBOL(vm_insert_pfn_prot);
1595
1596 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1597                         pfn_t pfn)
1598 {
1599         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1600
1601         if (addr < vma->vm_start || addr >= vma->vm_end)
1602                 return -EFAULT;
1603
1604         /*
1605          * If we don't have pte special, then we have to use the pfn_valid()
1606          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1607          * refcount the page if pfn_valid is true (hence insert_page rather
1608          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1609          * without pte special, it would there be refcounted as a normal page.
1610          */
1611         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1612                 struct page *page;
1613
1614                 /*
1615                  * At this point we are committed to insert_page()
1616                  * regardless of whether the caller specified flags that
1617                  * result in pfn_t_has_page() == false.
1618                  */
1619                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1620                 return insert_page(vma, addr, page, vma->vm_page_prot);
1621         }
1622         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1623 }
1624 EXPORT_SYMBOL(vm_insert_mixed);
1625
1626 /*
1627  * maps a range of physical memory into the requested pages. the old
1628  * mappings are removed. any references to nonexistent pages results
1629  * in null mappings (currently treated as "copy-on-access")
1630  */
1631 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1632                         unsigned long addr, unsigned long end,
1633                         unsigned long pfn, pgprot_t prot)
1634 {
1635         pte_t *pte;
1636         spinlock_t *ptl;
1637
1638         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1639         if (!pte)
1640                 return -ENOMEM;
1641         arch_enter_lazy_mmu_mode();
1642         do {
1643                 BUG_ON(!pte_none(*pte));
1644                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1645                 pfn++;
1646         } while (pte++, addr += PAGE_SIZE, addr != end);
1647         arch_leave_lazy_mmu_mode();
1648         pte_unmap_unlock(pte - 1, ptl);
1649         return 0;
1650 }
1651
1652 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1653                         unsigned long addr, unsigned long end,
1654                         unsigned long pfn, pgprot_t prot)
1655 {
1656         pmd_t *pmd;
1657         unsigned long next;
1658
1659         pfn -= addr >> PAGE_SHIFT;
1660         pmd = pmd_alloc(mm, pud, addr);
1661         if (!pmd)
1662                 return -ENOMEM;
1663         VM_BUG_ON(pmd_trans_huge(*pmd));
1664         do {
1665                 next = pmd_addr_end(addr, end);
1666                 if (remap_pte_range(mm, pmd, addr, next,
1667                                 pfn + (addr >> PAGE_SHIFT), prot))
1668                         return -ENOMEM;
1669         } while (pmd++, addr = next, addr != end);
1670         return 0;
1671 }
1672
1673 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1674                         unsigned long addr, unsigned long end,
1675                         unsigned long pfn, pgprot_t prot)
1676 {
1677         pud_t *pud;
1678         unsigned long next;
1679
1680         pfn -= addr >> PAGE_SHIFT;
1681         pud = pud_alloc(mm, pgd, addr);
1682         if (!pud)
1683                 return -ENOMEM;
1684         do {
1685                 next = pud_addr_end(addr, end);
1686                 if (remap_pmd_range(mm, pud, addr, next,
1687                                 pfn + (addr >> PAGE_SHIFT), prot))
1688                         return -ENOMEM;
1689         } while (pud++, addr = next, addr != end);
1690         return 0;
1691 }
1692
1693 /**
1694  * remap_pfn_range - remap kernel memory to userspace
1695  * @vma: user vma to map to
1696  * @addr: target user address to start at
1697  * @pfn: physical address of kernel memory
1698  * @size: size of map area
1699  * @prot: page protection flags for this mapping
1700  *
1701  *  Note: this is only safe if the mm semaphore is held when called.
1702  */
1703 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1704                     unsigned long pfn, unsigned long size, pgprot_t prot)
1705 {
1706         pgd_t *pgd;
1707         unsigned long next;
1708         unsigned long end = addr + PAGE_ALIGN(size);
1709         struct mm_struct *mm = vma->vm_mm;
1710         int err;
1711
1712         /*
1713          * Physically remapped pages are special. Tell the
1714          * rest of the world about it:
1715          *   VM_IO tells people not to look at these pages
1716          *      (accesses can have side effects).
1717          *   VM_PFNMAP tells the core MM that the base pages are just
1718          *      raw PFN mappings, and do not have a "struct page" associated
1719          *      with them.
1720          *   VM_DONTEXPAND
1721          *      Disable vma merging and expanding with mremap().
1722          *   VM_DONTDUMP
1723          *      Omit vma from core dump, even when VM_IO turned off.
1724          *
1725          * There's a horrible special case to handle copy-on-write
1726          * behaviour that some programs depend on. We mark the "original"
1727          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1728          * See vm_normal_page() for details.
1729          */
1730         if (is_cow_mapping(vma->vm_flags)) {
1731                 if (addr != vma->vm_start || end != vma->vm_end)
1732                         return -EINVAL;
1733                 vma->vm_pgoff = pfn;
1734         }
1735
1736         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1737         if (err)
1738                 return -EINVAL;
1739
1740         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1741
1742         BUG_ON(addr >= end);
1743         pfn -= addr >> PAGE_SHIFT;
1744         pgd = pgd_offset(mm, addr);
1745         flush_cache_range(vma, addr, end);
1746         do {
1747                 next = pgd_addr_end(addr, end);
1748                 err = remap_pud_range(mm, pgd, addr, next,
1749                                 pfn + (addr >> PAGE_SHIFT), prot);
1750                 if (err)
1751                         break;
1752         } while (pgd++, addr = next, addr != end);
1753
1754         if (err)
1755                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1756
1757         return err;
1758 }
1759 EXPORT_SYMBOL(remap_pfn_range);
1760
1761 /**
1762  * vm_iomap_memory - remap memory to userspace
1763  * @vma: user vma to map to
1764  * @start: start of area
1765  * @len: size of area
1766  *
1767  * This is a simplified io_remap_pfn_range() for common driver use. The
1768  * driver just needs to give us the physical memory range to be mapped,
1769  * we'll figure out the rest from the vma information.
1770  *
1771  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1772  * whatever write-combining details or similar.
1773  */
1774 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1775 {
1776         unsigned long vm_len, pfn, pages;
1777
1778         /* Check that the physical memory area passed in looks valid */
1779         if (start + len < start)
1780                 return -EINVAL;
1781         /*
1782          * You *really* shouldn't map things that aren't page-aligned,
1783          * but we've historically allowed it because IO memory might
1784          * just have smaller alignment.
1785          */
1786         len += start & ~PAGE_MASK;
1787         pfn = start >> PAGE_SHIFT;
1788         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1789         if (pfn + pages < pfn)
1790                 return -EINVAL;
1791
1792         /* We start the mapping 'vm_pgoff' pages into the area */
1793         if (vma->vm_pgoff > pages)
1794                 return -EINVAL;
1795         pfn += vma->vm_pgoff;
1796         pages -= vma->vm_pgoff;
1797
1798         /* Can we fit all of the mapping? */
1799         vm_len = vma->vm_end - vma->vm_start;
1800         if (vm_len >> PAGE_SHIFT > pages)
1801                 return -EINVAL;
1802
1803         /* Ok, let it rip */
1804         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1805 }
1806 EXPORT_SYMBOL(vm_iomap_memory);
1807
1808 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1809                                      unsigned long addr, unsigned long end,
1810                                      pte_fn_t fn, void *data)
1811 {
1812         pte_t *pte;
1813         int err;
1814         pgtable_t token;
1815         spinlock_t *uninitialized_var(ptl);
1816
1817         pte = (mm == &init_mm) ?
1818                 pte_alloc_kernel(pmd, addr) :
1819                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1820         if (!pte)
1821                 return -ENOMEM;
1822
1823         BUG_ON(pmd_huge(*pmd));
1824
1825         arch_enter_lazy_mmu_mode();
1826
1827         token = pmd_pgtable(*pmd);
1828
1829         do {
1830                 err = fn(pte++, token, addr, data);
1831                 if (err)
1832                         break;
1833         } while (addr += PAGE_SIZE, addr != end);
1834
1835         arch_leave_lazy_mmu_mode();
1836
1837         if (mm != &init_mm)
1838                 pte_unmap_unlock(pte-1, ptl);
1839         return err;
1840 }
1841
1842 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1843                                      unsigned long addr, unsigned long end,
1844                                      pte_fn_t fn, void *data)
1845 {
1846         pmd_t *pmd;
1847         unsigned long next;
1848         int err;
1849
1850         BUG_ON(pud_huge(*pud));
1851
1852         pmd = pmd_alloc(mm, pud, addr);
1853         if (!pmd)
1854                 return -ENOMEM;
1855         do {
1856                 next = pmd_addr_end(addr, end);
1857                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1858                 if (err)
1859                         break;
1860         } while (pmd++, addr = next, addr != end);
1861         return err;
1862 }
1863
1864 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1865                                      unsigned long addr, unsigned long end,
1866                                      pte_fn_t fn, void *data)
1867 {
1868         pud_t *pud;
1869         unsigned long next;
1870         int err;
1871
1872         pud = pud_alloc(mm, pgd, addr);
1873         if (!pud)
1874                 return -ENOMEM;
1875         do {
1876                 next = pud_addr_end(addr, end);
1877                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1878                 if (err)
1879                         break;
1880         } while (pud++, addr = next, addr != end);
1881         return err;
1882 }
1883
1884 /*
1885  * Scan a region of virtual memory, filling in page tables as necessary
1886  * and calling a provided function on each leaf page table.
1887  */
1888 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1889                         unsigned long size, pte_fn_t fn, void *data)
1890 {
1891         pgd_t *pgd;
1892         unsigned long next;
1893         unsigned long end = addr + size;
1894         int err;
1895
1896         if (WARN_ON(addr >= end))
1897                 return -EINVAL;
1898
1899         pgd = pgd_offset(mm, addr);
1900         do {
1901                 next = pgd_addr_end(addr, end);
1902                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1903                 if (err)
1904                         break;
1905         } while (pgd++, addr = next, addr != end);
1906
1907         return err;
1908 }
1909 EXPORT_SYMBOL_GPL(apply_to_page_range);
1910
1911 /*
1912  * handle_pte_fault chooses page fault handler according to an entry which was
1913  * read non-atomically.  Before making any commitment, on those architectures
1914  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1915  * parts, do_swap_page must check under lock before unmapping the pte and
1916  * proceeding (but do_wp_page is only called after already making such a check;
1917  * and do_anonymous_page can safely check later on).
1918  */
1919 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1920                                 pte_t *page_table, pte_t orig_pte)
1921 {
1922         int same = 1;
1923 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1924         if (sizeof(pte_t) > sizeof(unsigned long)) {
1925                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1926                 spin_lock(ptl);
1927                 same = pte_same(*page_table, orig_pte);
1928                 spin_unlock(ptl);
1929         }
1930 #endif
1931         pte_unmap(page_table);
1932         return same;
1933 }
1934
1935 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1936 {
1937         debug_dma_assert_idle(src);
1938
1939         /*
1940          * If the source page was a PFN mapping, we don't have
1941          * a "struct page" for it. We do a best-effort copy by
1942          * just copying from the original user address. If that
1943          * fails, we just zero-fill it. Live with it.
1944          */
1945         if (unlikely(!src)) {
1946                 void *kaddr = kmap_atomic(dst);
1947                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1948
1949                 /*
1950                  * This really shouldn't fail, because the page is there
1951                  * in the page tables. But it might just be unreadable,
1952                  * in which case we just give up and fill the result with
1953                  * zeroes.
1954                  */
1955                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1956                         clear_page(kaddr);
1957                 kunmap_atomic(kaddr);
1958                 flush_dcache_page(dst);
1959         } else
1960                 copy_user_highpage(dst, src, va, vma);
1961 }
1962
1963 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1964 {
1965         struct file *vm_file = vma->vm_file;
1966
1967         if (vm_file)
1968                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1969
1970         /*
1971          * Special mappings (e.g. VDSO) do not have any file so fake
1972          * a default GFP_KERNEL for them.
1973          */
1974         return GFP_KERNEL;
1975 }
1976
1977 /*
1978  * Notify the address space that the page is about to become writable so that
1979  * it can prohibit this or wait for the page to get into an appropriate state.
1980  *
1981  * We do this without the lock held, so that it can sleep if it needs to.
1982  */
1983 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1984                unsigned long address)
1985 {
1986         struct vm_fault vmf;
1987         int ret;
1988
1989         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1990         vmf.pgoff = page->index;
1991         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1992         vmf.gfp_mask = __get_fault_gfp_mask(vma);
1993         vmf.page = page;
1994         vmf.cow_page = NULL;
1995
1996         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1997         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1998                 return ret;
1999         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2000                 lock_page(page);
2001                 if (!page->mapping) {
2002                         unlock_page(page);
2003                         return 0; /* retry */
2004                 }
2005                 ret |= VM_FAULT_LOCKED;
2006         } else
2007                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2008         return ret;
2009 }
2010
2011 /*
2012  * Handle write page faults for pages that can be reused in the current vma
2013  *
2014  * This can happen either due to the mapping being with the VM_SHARED flag,
2015  * or due to us being the last reference standing to the page. In either
2016  * case, all we need to do here is to mark the page as writable and update
2017  * any related book-keeping.
2018  */
2019 static inline int wp_page_reuse(struct mm_struct *mm,
2020                         struct vm_area_struct *vma, unsigned long address,
2021                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2022                         struct page *page, int page_mkwrite,
2023                         int dirty_shared)
2024         __releases(ptl)
2025 {
2026         pte_t entry;
2027         /*
2028          * Clear the pages cpupid information as the existing
2029          * information potentially belongs to a now completely
2030          * unrelated process.
2031          */
2032         if (page)
2033                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2034
2035         flush_cache_page(vma, address, pte_pfn(orig_pte));
2036         entry = pte_mkyoung(orig_pte);
2037         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2038         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2039                 update_mmu_cache(vma, address, page_table);
2040         pte_unmap_unlock(page_table, ptl);
2041
2042         if (dirty_shared) {
2043                 struct address_space *mapping;
2044                 int dirtied;
2045
2046                 if (!page_mkwrite)
2047                         lock_page(page);
2048
2049                 dirtied = set_page_dirty(page);
2050                 VM_BUG_ON_PAGE(PageAnon(page), page);
2051                 mapping = page->mapping;
2052                 unlock_page(page);
2053                 page_cache_release(page);
2054
2055                 if ((dirtied || page_mkwrite) && mapping) {
2056                         /*
2057                          * Some device drivers do not set page.mapping
2058                          * but still dirty their pages
2059                          */
2060                         balance_dirty_pages_ratelimited(mapping);
2061                 }
2062
2063                 if (!page_mkwrite)
2064                         file_update_time(vma->vm_file);
2065         }
2066
2067         return VM_FAULT_WRITE;
2068 }
2069
2070 /*
2071  * Handle the case of a page which we actually need to copy to a new page.
2072  *
2073  * Called with mmap_sem locked and the old page referenced, but
2074  * without the ptl held.
2075  *
2076  * High level logic flow:
2077  *
2078  * - Allocate a page, copy the content of the old page to the new one.
2079  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2080  * - Take the PTL. If the pte changed, bail out and release the allocated page
2081  * - If the pte is still the way we remember it, update the page table and all
2082  *   relevant references. This includes dropping the reference the page-table
2083  *   held to the old page, as well as updating the rmap.
2084  * - In any case, unlock the PTL and drop the reference we took to the old page.
2085  */
2086 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2087                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2088                         pte_t orig_pte, struct page *old_page)
2089 {
2090         struct page *new_page = NULL;
2091         spinlock_t *ptl = NULL;
2092         pte_t entry;
2093         int page_copied = 0;
2094         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2095         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2096         struct mem_cgroup *memcg;
2097
2098         if (unlikely(anon_vma_prepare(vma)))
2099                 goto oom;
2100
2101         if (is_zero_pfn(pte_pfn(orig_pte))) {
2102                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2103                 if (!new_page)
2104                         goto oom;
2105         } else {
2106                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2107                 if (!new_page)
2108                         goto oom;
2109                 cow_user_page(new_page, old_page, address, vma);
2110         }
2111
2112         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2113                 goto oom_free_new;
2114
2115         __SetPageUptodate(new_page);
2116
2117         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2118
2119         /*
2120          * Re-check the pte - we dropped the lock
2121          */
2122         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2123         if (likely(pte_same(*page_table, orig_pte))) {
2124                 if (old_page) {
2125                         if (!PageAnon(old_page)) {
2126                                 dec_mm_counter_fast(mm,
2127                                                 mm_counter_file(old_page));
2128                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2129                         }
2130                 } else {
2131                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2132                 }
2133                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2134                 entry = mk_pte(new_page, vma->vm_page_prot);
2135                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2136                 /*
2137                  * Clear the pte entry and flush it first, before updating the
2138                  * pte with the new entry. This will avoid a race condition
2139                  * seen in the presence of one thread doing SMC and another
2140                  * thread doing COW.
2141                  */
2142                 ptep_clear_flush_notify(vma, address, page_table);
2143                 page_add_new_anon_rmap(new_page, vma, address, false);
2144                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2145                 lru_cache_add_active_or_unevictable(new_page, vma);
2146                 /*
2147                  * We call the notify macro here because, when using secondary
2148                  * mmu page tables (such as kvm shadow page tables), we want the
2149                  * new page to be mapped directly into the secondary page table.
2150                  */
2151                 set_pte_at_notify(mm, address, page_table, entry);
2152                 update_mmu_cache(vma, address, page_table);
2153                 if (old_page) {
2154                         /*
2155                          * Only after switching the pte to the new page may
2156                          * we remove the mapcount here. Otherwise another
2157                          * process may come and find the rmap count decremented
2158                          * before the pte is switched to the new page, and
2159                          * "reuse" the old page writing into it while our pte
2160                          * here still points into it and can be read by other
2161                          * threads.
2162                          *
2163                          * The critical issue is to order this
2164                          * page_remove_rmap with the ptp_clear_flush above.
2165                          * Those stores are ordered by (if nothing else,)
2166                          * the barrier present in the atomic_add_negative
2167                          * in page_remove_rmap.
2168                          *
2169                          * Then the TLB flush in ptep_clear_flush ensures that
2170                          * no process can access the old page before the
2171                          * decremented mapcount is visible. And the old page
2172                          * cannot be reused until after the decremented
2173                          * mapcount is visible. So transitively, TLBs to
2174                          * old page will be flushed before it can be reused.
2175                          */
2176                         page_remove_rmap(old_page, false);
2177                 }
2178
2179                 /* Free the old page.. */
2180                 new_page = old_page;
2181                 page_copied = 1;
2182         } else {
2183                 mem_cgroup_cancel_charge(new_page, memcg, false);
2184         }
2185
2186         if (new_page)
2187                 page_cache_release(new_page);
2188
2189         pte_unmap_unlock(page_table, ptl);
2190         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2191         if (old_page) {
2192                 /*
2193                  * Don't let another task, with possibly unlocked vma,
2194                  * keep the mlocked page.
2195                  */
2196                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2197                         lock_page(old_page);    /* LRU manipulation */
2198                         if (PageMlocked(old_page))
2199                                 munlock_vma_page(old_page);
2200                         unlock_page(old_page);
2201                 }
2202                 page_cache_release(old_page);
2203         }
2204         return page_copied ? VM_FAULT_WRITE : 0;
2205 oom_free_new:
2206         page_cache_release(new_page);
2207 oom:
2208         if (old_page)
2209                 page_cache_release(old_page);
2210         return VM_FAULT_OOM;
2211 }
2212
2213 /*
2214  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2215  * mapping
2216  */
2217 static int wp_pfn_shared(struct mm_struct *mm,
2218                         struct vm_area_struct *vma, unsigned long address,
2219                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2220                         pmd_t *pmd)
2221 {
2222         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2223                 struct vm_fault vmf = {
2224                         .page = NULL,
2225                         .pgoff = linear_page_index(vma, address),
2226                         .virtual_address = (void __user *)(address & PAGE_MASK),
2227                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2228                 };
2229                 int ret;
2230
2231                 pte_unmap_unlock(page_table, ptl);
2232                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2233                 if (ret & VM_FAULT_ERROR)
2234                         return ret;
2235                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2236                 /*
2237                  * We might have raced with another page fault while we
2238                  * released the pte_offset_map_lock.
2239                  */
2240                 if (!pte_same(*page_table, orig_pte)) {
2241                         pte_unmap_unlock(page_table, ptl);
2242                         return 0;
2243                 }
2244         }
2245         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2246                              NULL, 0, 0);
2247 }
2248
2249 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2250                           unsigned long address, pte_t *page_table,
2251                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2252                           struct page *old_page)
2253         __releases(ptl)
2254 {
2255         int page_mkwrite = 0;
2256
2257         page_cache_get(old_page);
2258
2259         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2260                 int tmp;
2261
2262                 pte_unmap_unlock(page_table, ptl);
2263                 tmp = do_page_mkwrite(vma, old_page, address);
2264                 if (unlikely(!tmp || (tmp &
2265                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2266                         page_cache_release(old_page);
2267                         return tmp;
2268                 }
2269                 /*
2270                  * Since we dropped the lock we need to revalidate
2271                  * the PTE as someone else may have changed it.  If
2272                  * they did, we just return, as we can count on the
2273                  * MMU to tell us if they didn't also make it writable.
2274                  */
2275                 page_table = pte_offset_map_lock(mm, pmd, address,
2276                                                  &ptl);
2277                 if (!pte_same(*page_table, orig_pte)) {
2278                         unlock_page(old_page);
2279                         pte_unmap_unlock(page_table, ptl);
2280                         page_cache_release(old_page);
2281                         return 0;
2282                 }
2283                 page_mkwrite = 1;
2284         }
2285
2286         return wp_page_reuse(mm, vma, address, page_table, ptl,
2287                              orig_pte, old_page, page_mkwrite, 1);
2288 }
2289
2290 /*
2291  * This routine handles present pages, when users try to write
2292  * to a shared page. It is done by copying the page to a new address
2293  * and decrementing the shared-page counter for the old page.
2294  *
2295  * Note that this routine assumes that the protection checks have been
2296  * done by the caller (the low-level page fault routine in most cases).
2297  * Thus we can safely just mark it writable once we've done any necessary
2298  * COW.
2299  *
2300  * We also mark the page dirty at this point even though the page will
2301  * change only once the write actually happens. This avoids a few races,
2302  * and potentially makes it more efficient.
2303  *
2304  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2305  * but allow concurrent faults), with pte both mapped and locked.
2306  * We return with mmap_sem still held, but pte unmapped and unlocked.
2307  */
2308 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2309                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2310                 spinlock_t *ptl, pte_t orig_pte)
2311         __releases(ptl)
2312 {
2313         struct page *old_page;
2314
2315         old_page = vm_normal_page(vma, address, orig_pte);
2316         if (!old_page) {
2317                 /*
2318                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2319                  * VM_PFNMAP VMA.
2320                  *
2321                  * We should not cow pages in a shared writeable mapping.
2322                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2323                  */
2324                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2325                                      (VM_WRITE|VM_SHARED))
2326                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2327                                              orig_pte, pmd);
2328
2329                 pte_unmap_unlock(page_table, ptl);
2330                 return wp_page_copy(mm, vma, address, page_table, pmd,
2331                                     orig_pte, old_page);
2332         }
2333
2334         /*
2335          * Take out anonymous pages first, anonymous shared vmas are
2336          * not dirty accountable.
2337          */
2338         if (PageAnon(old_page) && !PageKsm(old_page)) {
2339                 if (!trylock_page(old_page)) {
2340                         page_cache_get(old_page);
2341                         pte_unmap_unlock(page_table, ptl);
2342                         lock_page(old_page);
2343                         page_table = pte_offset_map_lock(mm, pmd, address,
2344                                                          &ptl);
2345                         if (!pte_same(*page_table, orig_pte)) {
2346                                 unlock_page(old_page);
2347                                 pte_unmap_unlock(page_table, ptl);
2348                                 page_cache_release(old_page);
2349                                 return 0;
2350                         }
2351                         page_cache_release(old_page);
2352                 }
2353                 if (reuse_swap_page(old_page)) {
2354                         /*
2355                          * The page is all ours.  Move it to our anon_vma so
2356                          * the rmap code will not search our parent or siblings.
2357                          * Protected against the rmap code by the page lock.
2358                          */
2359                         page_move_anon_rmap(old_page, vma, address);
2360                         unlock_page(old_page);
2361                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2362                                              orig_pte, old_page, 0, 0);
2363                 }
2364                 unlock_page(old_page);
2365         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2366                                         (VM_WRITE|VM_SHARED))) {
2367                 return wp_page_shared(mm, vma, address, page_table, pmd,
2368                                       ptl, orig_pte, old_page);
2369         }
2370
2371         /*
2372          * Ok, we need to copy. Oh, well..
2373          */
2374         page_cache_get(old_page);
2375
2376         pte_unmap_unlock(page_table, ptl);
2377         return wp_page_copy(mm, vma, address, page_table, pmd,
2378                             orig_pte, old_page);
2379 }
2380
2381 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2382                 unsigned long start_addr, unsigned long end_addr,
2383                 struct zap_details *details)
2384 {
2385         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2386 }
2387
2388 static inline void unmap_mapping_range_tree(struct rb_root *root,
2389                                             struct zap_details *details)
2390 {
2391         struct vm_area_struct *vma;
2392         pgoff_t vba, vea, zba, zea;
2393
2394         vma_interval_tree_foreach(vma, root,
2395                         details->first_index, details->last_index) {
2396
2397                 vba = vma->vm_pgoff;
2398                 vea = vba + vma_pages(vma) - 1;
2399                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2400                 zba = details->first_index;
2401                 if (zba < vba)
2402                         zba = vba;
2403                 zea = details->last_index;
2404                 if (zea > vea)
2405                         zea = vea;
2406
2407                 unmap_mapping_range_vma(vma,
2408                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2409                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2410                                 details);
2411         }
2412 }
2413
2414 /**
2415  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2416  * address_space corresponding to the specified page range in the underlying
2417  * file.
2418  *
2419  * @mapping: the address space containing mmaps to be unmapped.
2420  * @holebegin: byte in first page to unmap, relative to the start of
2421  * the underlying file.  This will be rounded down to a PAGE_SIZE
2422  * boundary.  Note that this is different from truncate_pagecache(), which
2423  * must keep the partial page.  In contrast, we must get rid of
2424  * partial pages.
2425  * @holelen: size of prospective hole in bytes.  This will be rounded
2426  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2427  * end of the file.
2428  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2429  * but 0 when invalidating pagecache, don't throw away private data.
2430  */
2431 void unmap_mapping_range(struct address_space *mapping,
2432                 loff_t const holebegin, loff_t const holelen, int even_cows)
2433 {
2434         struct zap_details details;
2435         pgoff_t hba = holebegin >> PAGE_SHIFT;
2436         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2437
2438         /* Check for overflow. */
2439         if (sizeof(holelen) > sizeof(hlen)) {
2440                 long long holeend =
2441                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2442                 if (holeend & ~(long long)ULONG_MAX)
2443                         hlen = ULONG_MAX - hba + 1;
2444         }
2445
2446         details.check_mapping = even_cows? NULL: mapping;
2447         details.first_index = hba;
2448         details.last_index = hba + hlen - 1;
2449         if (details.last_index < details.first_index)
2450                 details.last_index = ULONG_MAX;
2451
2452
2453         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2454         i_mmap_lock_write(mapping);
2455         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2456                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2457         i_mmap_unlock_write(mapping);
2458 }
2459 EXPORT_SYMBOL(unmap_mapping_range);
2460
2461 /*
2462  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2463  * but allow concurrent faults), and pte mapped but not yet locked.
2464  * We return with pte unmapped and unlocked.
2465  *
2466  * We return with the mmap_sem locked or unlocked in the same cases
2467  * as does filemap_fault().
2468  */
2469 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2470                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2471                 unsigned int flags, pte_t orig_pte)
2472 {
2473         spinlock_t *ptl;
2474         struct page *page, *swapcache;
2475         struct mem_cgroup *memcg;
2476         swp_entry_t entry;
2477         pte_t pte;
2478         int locked;
2479         int exclusive = 0;
2480         int ret = 0;
2481
2482         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2483                 goto out;
2484
2485         entry = pte_to_swp_entry(orig_pte);
2486         if (unlikely(non_swap_entry(entry))) {
2487                 if (is_migration_entry(entry)) {
2488                         migration_entry_wait(mm, pmd, address);
2489                 } else if (is_hwpoison_entry(entry)) {
2490                         ret = VM_FAULT_HWPOISON;
2491                 } else {
2492                         print_bad_pte(vma, address, orig_pte, NULL);
2493                         ret = VM_FAULT_SIGBUS;
2494                 }
2495                 goto out;
2496         }
2497         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2498         page = lookup_swap_cache(entry);
2499         if (!page) {
2500                 page = swapin_readahead(entry,
2501                                         GFP_HIGHUSER_MOVABLE, vma, address);
2502                 if (!page) {
2503                         /*
2504                          * Back out if somebody else faulted in this pte
2505                          * while we released the pte lock.
2506                          */
2507                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2508                         if (likely(pte_same(*page_table, orig_pte)))
2509                                 ret = VM_FAULT_OOM;
2510                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2511                         goto unlock;
2512                 }
2513
2514                 /* Had to read the page from swap area: Major fault */
2515                 ret = VM_FAULT_MAJOR;
2516                 count_vm_event(PGMAJFAULT);
2517                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2518         } else if (PageHWPoison(page)) {
2519                 /*
2520                  * hwpoisoned dirty swapcache pages are kept for killing
2521                  * owner processes (which may be unknown at hwpoison time)
2522                  */
2523                 ret = VM_FAULT_HWPOISON;
2524                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2525                 swapcache = page;
2526                 goto out_release;
2527         }
2528
2529         swapcache = page;
2530         locked = lock_page_or_retry(page, mm, flags);
2531
2532         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2533         if (!locked) {
2534                 ret |= VM_FAULT_RETRY;
2535                 goto out_release;
2536         }
2537
2538         /*
2539          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2540          * release the swapcache from under us.  The page pin, and pte_same
2541          * test below, are not enough to exclude that.  Even if it is still
2542          * swapcache, we need to check that the page's swap has not changed.
2543          */
2544         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2545                 goto out_page;
2546
2547         page = ksm_might_need_to_copy(page, vma, address);
2548         if (unlikely(!page)) {
2549                 ret = VM_FAULT_OOM;
2550                 page = swapcache;
2551                 goto out_page;
2552         }
2553
2554         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2555                 ret = VM_FAULT_OOM;
2556                 goto out_page;
2557         }
2558
2559         /*
2560          * Back out if somebody else already faulted in this pte.
2561          */
2562         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2563         if (unlikely(!pte_same(*page_table, orig_pte)))
2564                 goto out_nomap;
2565
2566         if (unlikely(!PageUptodate(page))) {
2567                 ret = VM_FAULT_SIGBUS;
2568                 goto out_nomap;
2569         }
2570
2571         /*
2572          * The page isn't present yet, go ahead with the fault.
2573          *
2574          * Be careful about the sequence of operations here.
2575          * To get its accounting right, reuse_swap_page() must be called
2576          * while the page is counted on swap but not yet in mapcount i.e.
2577          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2578          * must be called after the swap_free(), or it will never succeed.
2579          */
2580
2581         inc_mm_counter_fast(mm, MM_ANONPAGES);
2582         dec_mm_counter_fast(mm, MM_SWAPENTS);
2583         pte = mk_pte(page, vma->vm_page_prot);
2584         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2585                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2586                 flags &= ~FAULT_FLAG_WRITE;
2587                 ret |= VM_FAULT_WRITE;
2588                 exclusive = RMAP_EXCLUSIVE;
2589         }
2590         flush_icache_page(vma, page);
2591         if (pte_swp_soft_dirty(orig_pte))
2592                 pte = pte_mksoft_dirty(pte);
2593         set_pte_at(mm, address, page_table, pte);
2594         if (page == swapcache) {
2595                 do_page_add_anon_rmap(page, vma, address, exclusive);
2596                 mem_cgroup_commit_charge(page, memcg, true, false);
2597         } else { /* ksm created a completely new copy */
2598                 page_add_new_anon_rmap(page, vma, address, false);
2599                 mem_cgroup_commit_charge(page, memcg, false, false);
2600                 lru_cache_add_active_or_unevictable(page, vma);
2601         }
2602
2603         swap_free(entry);
2604         if (mem_cgroup_swap_full(page) ||
2605             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2606                 try_to_free_swap(page);
2607         unlock_page(page);
2608         if (page != swapcache) {
2609                 /*
2610                  * Hold the lock to avoid the swap entry to be reused
2611                  * until we take the PT lock for the pte_same() check
2612                  * (to avoid false positives from pte_same). For
2613                  * further safety release the lock after the swap_free
2614                  * so that the swap count won't change under a
2615                  * parallel locked swapcache.
2616                  */
2617                 unlock_page(swapcache);
2618                 page_cache_release(swapcache);
2619         }
2620
2621         if (flags & FAULT_FLAG_WRITE) {
2622                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2623                 if (ret & VM_FAULT_ERROR)
2624                         ret &= VM_FAULT_ERROR;
2625                 goto out;
2626         }
2627
2628         /* No need to invalidate - it was non-present before */
2629         update_mmu_cache(vma, address, page_table);
2630 unlock:
2631         pte_unmap_unlock(page_table, ptl);
2632 out:
2633         return ret;
2634 out_nomap:
2635         mem_cgroup_cancel_charge(page, memcg, false);
2636         pte_unmap_unlock(page_table, ptl);
2637 out_page:
2638         unlock_page(page);
2639 out_release:
2640         page_cache_release(page);
2641         if (page != swapcache) {
2642                 unlock_page(swapcache);
2643                 page_cache_release(swapcache);
2644         }
2645         return ret;
2646 }
2647
2648 /*
2649  * This is like a special single-page "expand_{down|up}wards()",
2650  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2651  * doesn't hit another vma.
2652  */
2653 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2654 {
2655         address &= PAGE_MASK;
2656         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2657                 struct vm_area_struct *prev = vma->vm_prev;
2658
2659                 /*
2660                  * Is there a mapping abutting this one below?
2661                  *
2662                  * That's only ok if it's the same stack mapping
2663                  * that has gotten split..
2664                  */
2665                 if (prev && prev->vm_end == address)
2666                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2667
2668                 return expand_downwards(vma, address - PAGE_SIZE);
2669         }
2670         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2671                 struct vm_area_struct *next = vma->vm_next;
2672
2673                 /* As VM_GROWSDOWN but s/below/above/ */
2674                 if (next && next->vm_start == address + PAGE_SIZE)
2675                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2676
2677                 return expand_upwards(vma, address + PAGE_SIZE);
2678         }
2679         return 0;
2680 }
2681
2682 /*
2683  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2684  * but allow concurrent faults), and pte mapped but not yet locked.
2685  * We return with mmap_sem still held, but pte unmapped and unlocked.
2686  */
2687 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2688                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2689                 unsigned int flags)
2690 {
2691         struct mem_cgroup *memcg;
2692         struct page *page;
2693         spinlock_t *ptl;
2694         pte_t entry;
2695
2696         pte_unmap(page_table);
2697
2698         /* File mapping without ->vm_ops ? */
2699         if (vma->vm_flags & VM_SHARED)
2700                 return VM_FAULT_SIGBUS;
2701
2702         /* Check if we need to add a guard page to the stack */
2703         if (check_stack_guard_page(vma, address) < 0)
2704                 return VM_FAULT_SIGSEGV;
2705
2706         /* Use the zero-page for reads */
2707         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2708                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2709                                                 vma->vm_page_prot));
2710                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2711                 if (!pte_none(*page_table))
2712                         goto unlock;
2713                 /* Deliver the page fault to userland, check inside PT lock */
2714                 if (userfaultfd_missing(vma)) {
2715                         pte_unmap_unlock(page_table, ptl);
2716                         return handle_userfault(vma, address, flags,
2717                                                 VM_UFFD_MISSING);
2718                 }
2719                 goto setpte;
2720         }
2721
2722         /* Allocate our own private page. */
2723         if (unlikely(anon_vma_prepare(vma)))
2724                 goto oom;
2725         page = alloc_zeroed_user_highpage_movable(vma, address);
2726         if (!page)
2727                 goto oom;
2728
2729         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2730                 goto oom_free_page;
2731
2732         /*
2733          * The memory barrier inside __SetPageUptodate makes sure that
2734          * preceeding stores to the page contents become visible before
2735          * the set_pte_at() write.
2736          */
2737         __SetPageUptodate(page);
2738
2739         entry = mk_pte(page, vma->vm_page_prot);
2740         if (vma->vm_flags & VM_WRITE)
2741                 entry = pte_mkwrite(pte_mkdirty(entry));
2742
2743         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2744         if (!pte_none(*page_table))
2745                 goto release;
2746
2747         /* Deliver the page fault to userland, check inside PT lock */
2748         if (userfaultfd_missing(vma)) {
2749                 pte_unmap_unlock(page_table, ptl);
2750                 mem_cgroup_cancel_charge(page, memcg, false);
2751                 page_cache_release(page);
2752                 return handle_userfault(vma, address, flags,
2753                                         VM_UFFD_MISSING);
2754         }
2755
2756         inc_mm_counter_fast(mm, MM_ANONPAGES);
2757         page_add_new_anon_rmap(page, vma, address, false);
2758         mem_cgroup_commit_charge(page, memcg, false, false);
2759         lru_cache_add_active_or_unevictable(page, vma);
2760 setpte:
2761         set_pte_at(mm, address, page_table, entry);
2762
2763         /* No need to invalidate - it was non-present before */
2764         update_mmu_cache(vma, address, page_table);
2765 unlock:
2766         pte_unmap_unlock(page_table, ptl);
2767         return 0;
2768 release:
2769         mem_cgroup_cancel_charge(page, memcg, false);
2770         page_cache_release(page);
2771         goto unlock;
2772 oom_free_page:
2773         page_cache_release(page);
2774 oom:
2775         return VM_FAULT_OOM;
2776 }
2777
2778 /*
2779  * The mmap_sem must have been held on entry, and may have been
2780  * released depending on flags and vma->vm_ops->fault() return value.
2781  * See filemap_fault() and __lock_page_retry().
2782  */
2783 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2784                         pgoff_t pgoff, unsigned int flags,
2785                         struct page *cow_page, struct page **page)
2786 {
2787         struct vm_fault vmf;
2788         int ret;
2789
2790         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2791         vmf.pgoff = pgoff;
2792         vmf.flags = flags;
2793         vmf.page = NULL;
2794         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2795         vmf.cow_page = cow_page;
2796
2797         ret = vma->vm_ops->fault(vma, &vmf);
2798         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2799                 return ret;
2800         if (!vmf.page)
2801                 goto out;
2802
2803         if (unlikely(PageHWPoison(vmf.page))) {
2804                 if (ret & VM_FAULT_LOCKED)
2805                         unlock_page(vmf.page);
2806                 page_cache_release(vmf.page);
2807                 return VM_FAULT_HWPOISON;
2808         }
2809
2810         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2811                 lock_page(vmf.page);
2812         else
2813                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2814
2815  out:
2816         *page = vmf.page;
2817         return ret;
2818 }
2819
2820 /**
2821  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2822  *
2823  * @vma: virtual memory area
2824  * @address: user virtual address
2825  * @page: page to map
2826  * @pte: pointer to target page table entry
2827  * @write: true, if new entry is writable
2828  * @anon: true, if it's anonymous page
2829  *
2830  * Caller must hold page table lock relevant for @pte.
2831  *
2832  * Target users are page handler itself and implementations of
2833  * vm_ops->map_pages.
2834  */
2835 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2836                 struct page *page, pte_t *pte, bool write, bool anon)
2837 {
2838         pte_t entry;
2839
2840         flush_icache_page(vma, page);
2841         entry = mk_pte(page, vma->vm_page_prot);
2842         if (write)
2843                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2844         if (anon) {
2845                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2846                 page_add_new_anon_rmap(page, vma, address, false);
2847         } else {
2848                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2849                 page_add_file_rmap(page);
2850         }
2851         set_pte_at(vma->vm_mm, address, pte, entry);
2852
2853         /* no need to invalidate: a not-present page won't be cached */
2854         update_mmu_cache(vma, address, pte);
2855 }
2856
2857 static unsigned long fault_around_bytes __read_mostly =
2858         rounddown_pow_of_two(65536);
2859
2860 #ifdef CONFIG_DEBUG_FS
2861 static int fault_around_bytes_get(void *data, u64 *val)
2862 {
2863         *val = fault_around_bytes;
2864         return 0;
2865 }
2866
2867 /*
2868  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2869  * rounded down to nearest page order. It's what do_fault_around() expects to
2870  * see.
2871  */
2872 static int fault_around_bytes_set(void *data, u64 val)
2873 {
2874         if (val / PAGE_SIZE > PTRS_PER_PTE)
2875                 return -EINVAL;
2876         if (val > PAGE_SIZE)
2877                 fault_around_bytes = rounddown_pow_of_two(val);
2878         else
2879                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2880         return 0;
2881 }
2882 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2883                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2884
2885 static int __init fault_around_debugfs(void)
2886 {
2887         void *ret;
2888
2889         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2890                         &fault_around_bytes_fops);
2891         if (!ret)
2892                 pr_warn("Failed to create fault_around_bytes in debugfs");
2893         return 0;
2894 }
2895 late_initcall(fault_around_debugfs);
2896 #endif
2897
2898 /*
2899  * do_fault_around() tries to map few pages around the fault address. The hope
2900  * is that the pages will be needed soon and this will lower the number of
2901  * faults to handle.
2902  *
2903  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2904  * not ready to be mapped: not up-to-date, locked, etc.
2905  *
2906  * This function is called with the page table lock taken. In the split ptlock
2907  * case the page table lock only protects only those entries which belong to
2908  * the page table corresponding to the fault address.
2909  *
2910  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2911  * only once.
2912  *
2913  * fault_around_pages() defines how many pages we'll try to map.
2914  * do_fault_around() expects it to return a power of two less than or equal to
2915  * PTRS_PER_PTE.
2916  *
2917  * The virtual address of the area that we map is naturally aligned to the
2918  * fault_around_pages() value (and therefore to page order).  This way it's
2919  * easier to guarantee that we don't cross page table boundaries.
2920  */
2921 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2922                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2923 {
2924         unsigned long start_addr, nr_pages, mask;
2925         pgoff_t max_pgoff;
2926         struct vm_fault vmf;
2927         int off;
2928
2929         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2930         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2931
2932         start_addr = max(address & mask, vma->vm_start);
2933         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2934         pte -= off;
2935         pgoff -= off;
2936
2937         /*
2938          *  max_pgoff is either end of page table or end of vma
2939          *  or fault_around_pages() from pgoff, depending what is nearest.
2940          */
2941         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2942                 PTRS_PER_PTE - 1;
2943         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2944                         pgoff + nr_pages - 1);
2945
2946         /* Check if it makes any sense to call ->map_pages */
2947         while (!pte_none(*pte)) {
2948                 if (++pgoff > max_pgoff)
2949                         return;
2950                 start_addr += PAGE_SIZE;
2951                 if (start_addr >= vma->vm_end)
2952                         return;
2953                 pte++;
2954         }
2955
2956         vmf.virtual_address = (void __user *) start_addr;
2957         vmf.pte = pte;
2958         vmf.pgoff = pgoff;
2959         vmf.max_pgoff = max_pgoff;
2960         vmf.flags = flags;
2961         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2962         vma->vm_ops->map_pages(vma, &vmf);
2963 }
2964
2965 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2966                 unsigned long address, pmd_t *pmd,
2967                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2968 {
2969         struct page *fault_page;
2970         spinlock_t *ptl;
2971         pte_t *pte;
2972         int ret = 0;
2973
2974         /*
2975          * Let's call ->map_pages() first and use ->fault() as fallback
2976          * if page by the offset is not ready to be mapped (cold cache or
2977          * something).
2978          */
2979         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2980                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2981                 do_fault_around(vma, address, pte, pgoff, flags);
2982                 if (!pte_same(*pte, orig_pte))
2983                         goto unlock_out;
2984                 pte_unmap_unlock(pte, ptl);
2985         }
2986
2987         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2988         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2989                 return ret;
2990
2991         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2992         if (unlikely(!pte_same(*pte, orig_pte))) {
2993                 pte_unmap_unlock(pte, ptl);
2994                 unlock_page(fault_page);
2995                 page_cache_release(fault_page);
2996                 return ret;
2997         }
2998         do_set_pte(vma, address, fault_page, pte, false, false);
2999         unlock_page(fault_page);
3000 unlock_out:
3001         pte_unmap_unlock(pte, ptl);
3002         return ret;
3003 }
3004
3005 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3006                 unsigned long address, pmd_t *pmd,
3007                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3008 {
3009         struct page *fault_page, *new_page;
3010         struct mem_cgroup *memcg;
3011         spinlock_t *ptl;
3012         pte_t *pte;
3013         int ret;
3014
3015         if (unlikely(anon_vma_prepare(vma)))
3016                 return VM_FAULT_OOM;
3017
3018         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3019         if (!new_page)
3020                 return VM_FAULT_OOM;
3021
3022         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3023                 page_cache_release(new_page);
3024                 return VM_FAULT_OOM;
3025         }
3026
3027         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3028         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3029                 goto uncharge_out;
3030
3031         if (fault_page)
3032                 copy_user_highpage(new_page, fault_page, address, vma);
3033         __SetPageUptodate(new_page);
3034
3035         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3036         if (unlikely(!pte_same(*pte, orig_pte))) {
3037                 pte_unmap_unlock(pte, ptl);
3038                 if (fault_page) {
3039                         unlock_page(fault_page);
3040                         page_cache_release(fault_page);
3041                 } else {
3042                         /*
3043                          * The fault handler has no page to lock, so it holds
3044                          * i_mmap_lock for read to protect against truncate.
3045                          */
3046                         i_mmap_unlock_read(vma->vm_file->f_mapping);
3047                 }
3048                 goto uncharge_out;
3049         }
3050         do_set_pte(vma, address, new_page, pte, true, true);
3051         mem_cgroup_commit_charge(new_page, memcg, false, false);
3052         lru_cache_add_active_or_unevictable(new_page, vma);
3053         pte_unmap_unlock(pte, ptl);
3054         if (fault_page) {
3055                 unlock_page(fault_page);
3056                 page_cache_release(fault_page);
3057         } else {
3058                 /*
3059                  * The fault handler has no page to lock, so it holds
3060                  * i_mmap_lock for read to protect against truncate.
3061                  */
3062                 i_mmap_unlock_read(vma->vm_file->f_mapping);
3063         }
3064         return ret;
3065 uncharge_out:
3066         mem_cgroup_cancel_charge(new_page, memcg, false);
3067         page_cache_release(new_page);
3068         return ret;
3069 }
3070
3071 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3072                 unsigned long address, pmd_t *pmd,
3073                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3074 {
3075         struct page *fault_page;
3076         struct address_space *mapping;
3077         spinlock_t *ptl;
3078         pte_t *pte;
3079         int dirtied = 0;
3080         int ret, tmp;
3081
3082         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3083         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3084                 return ret;
3085
3086         /*
3087          * Check if the backing address space wants to know that the page is
3088          * about to become writable
3089          */
3090         if (vma->vm_ops->page_mkwrite) {
3091                 unlock_page(fault_page);
3092                 tmp = do_page_mkwrite(vma, fault_page, address);
3093                 if (unlikely(!tmp ||
3094                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3095                         page_cache_release(fault_page);
3096                         return tmp;
3097                 }
3098         }
3099
3100         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3101         if (unlikely(!pte_same(*pte, orig_pte))) {
3102                 pte_unmap_unlock(pte, ptl);
3103                 unlock_page(fault_page);
3104                 page_cache_release(fault_page);
3105                 return ret;
3106         }
3107         do_set_pte(vma, address, fault_page, pte, true, false);
3108         pte_unmap_unlock(pte, ptl);
3109
3110         if (set_page_dirty(fault_page))
3111                 dirtied = 1;
3112         /*
3113          * Take a local copy of the address_space - page.mapping may be zeroed
3114          * by truncate after unlock_page().   The address_space itself remains
3115          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3116          * release semantics to prevent the compiler from undoing this copying.
3117          */
3118         mapping = page_rmapping(fault_page);
3119         unlock_page(fault_page);
3120         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3121                 /*
3122                  * Some device drivers do not set page.mapping but still
3123                  * dirty their pages
3124                  */
3125                 balance_dirty_pages_ratelimited(mapping);
3126         }
3127
3128         if (!vma->vm_ops->page_mkwrite)
3129                 file_update_time(vma->vm_file);
3130
3131         return ret;
3132 }
3133
3134 /*
3135  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3136  * but allow concurrent faults).
3137  * The mmap_sem may have been released depending on flags and our
3138  * return value.  See filemap_fault() and __lock_page_or_retry().
3139  */
3140 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3141                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3142                 unsigned int flags, pte_t orig_pte)
3143 {
3144         pgoff_t pgoff = linear_page_index(vma, address);
3145
3146         pte_unmap(page_table);
3147         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3148         if (!vma->vm_ops->fault)
3149                 return VM_FAULT_SIGBUS;
3150         if (!(flags & FAULT_FLAG_WRITE))
3151                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3152                                 orig_pte);
3153         if (!(vma->vm_flags & VM_SHARED))
3154                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3155                                 orig_pte);
3156         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3157 }
3158
3159 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3160                                 unsigned long addr, int page_nid,
3161                                 int *flags)
3162 {
3163         get_page(page);
3164
3165         count_vm_numa_event(NUMA_HINT_FAULTS);
3166         if (page_nid == numa_node_id()) {
3167                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3168                 *flags |= TNF_FAULT_LOCAL;
3169         }
3170
3171         return mpol_misplaced(page, vma, addr);
3172 }
3173
3174 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3175                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3176 {
3177         struct page *page = NULL;
3178         spinlock_t *ptl;
3179         int page_nid = -1;
3180         int last_cpupid;
3181         int target_nid;
3182         bool migrated = false;
3183         bool was_writable = pte_write(pte);
3184         int flags = 0;
3185
3186         /* A PROT_NONE fault should not end up here */
3187         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3188
3189         /*
3190         * The "pte" at this point cannot be used safely without
3191         * validation through pte_unmap_same(). It's of NUMA type but
3192         * the pfn may be screwed if the read is non atomic.
3193         *
3194         * We can safely just do a "set_pte_at()", because the old
3195         * page table entry is not accessible, so there would be no
3196         * concurrent hardware modifications to the PTE.
3197         */
3198         ptl = pte_lockptr(mm, pmd);
3199         spin_lock(ptl);
3200         if (unlikely(!pte_same(*ptep, pte))) {
3201                 pte_unmap_unlock(ptep, ptl);
3202                 goto out;
3203         }
3204
3205         /* Make it present again */
3206         pte = pte_modify(pte, vma->vm_page_prot);
3207         pte = pte_mkyoung(pte);
3208         if (was_writable)
3209                 pte = pte_mkwrite(pte);
3210         set_pte_at(mm, addr, ptep, pte);
3211         update_mmu_cache(vma, addr, ptep);
3212
3213         page = vm_normal_page(vma, addr, pte);
3214         if (!page) {
3215                 pte_unmap_unlock(ptep, ptl);
3216                 return 0;
3217         }
3218
3219         /* TODO: handle PTE-mapped THP */
3220         if (PageCompound(page)) {
3221                 pte_unmap_unlock(ptep, ptl);
3222                 return 0;
3223         }
3224
3225         /*
3226          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3227          * much anyway since they can be in shared cache state. This misses
3228          * the case where a mapping is writable but the process never writes
3229          * to it but pte_write gets cleared during protection updates and
3230          * pte_dirty has unpredictable behaviour between PTE scan updates,
3231          * background writeback, dirty balancing and application behaviour.
3232          */
3233         if (!(vma->vm_flags & VM_WRITE))
3234                 flags |= TNF_NO_GROUP;
3235
3236         /*
3237          * Flag if the page is shared between multiple address spaces. This
3238          * is later used when determining whether to group tasks together
3239          */
3240         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3241                 flags |= TNF_SHARED;
3242
3243         last_cpupid = page_cpupid_last(page);
3244         page_nid = page_to_nid(page);
3245         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3246         pte_unmap_unlock(ptep, ptl);
3247         if (target_nid == -1) {
3248                 put_page(page);
3249                 goto out;
3250         }
3251
3252         /* Migrate to the requested node */
3253         migrated = migrate_misplaced_page(page, vma, target_nid);
3254         if (migrated) {
3255                 page_nid = target_nid;
3256                 flags |= TNF_MIGRATED;
3257         } else
3258                 flags |= TNF_MIGRATE_FAIL;
3259
3260 out:
3261         if (page_nid != -1)
3262                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3263         return 0;
3264 }
3265
3266 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3267                         unsigned long address, pmd_t *pmd, unsigned int flags)
3268 {
3269         if (vma_is_anonymous(vma))
3270                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3271         if (vma->vm_ops->pmd_fault)
3272                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3273         return VM_FAULT_FALLBACK;
3274 }
3275
3276 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3277                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3278                         unsigned int flags)
3279 {
3280         if (vma_is_anonymous(vma))
3281                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3282         if (vma->vm_ops->pmd_fault)
3283                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3284         return VM_FAULT_FALLBACK;
3285 }
3286
3287 /*
3288  * These routines also need to handle stuff like marking pages dirty
3289  * and/or accessed for architectures that don't do it in hardware (most
3290  * RISC architectures).  The early dirtying is also good on the i386.
3291  *
3292  * There is also a hook called "update_mmu_cache()" that architectures
3293  * with external mmu caches can use to update those (ie the Sparc or
3294  * PowerPC hashed page tables that act as extended TLBs).
3295  *
3296  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3297  * but allow concurrent faults), and pte mapped but not yet locked.
3298  * We return with pte unmapped and unlocked.
3299  *
3300  * The mmap_sem may have been released depending on flags and our
3301  * return value.  See filemap_fault() and __lock_page_or_retry().
3302  */
3303 static int handle_pte_fault(struct mm_struct *mm,
3304                      struct vm_area_struct *vma, unsigned long address,
3305                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3306 {
3307         pte_t entry;
3308         spinlock_t *ptl;
3309
3310         /*
3311          * some architectures can have larger ptes than wordsize,
3312          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3313          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3314          * The code below just needs a consistent view for the ifs and
3315          * we later double check anyway with the ptl lock held. So here
3316          * a barrier will do.
3317          */
3318         entry = *pte;
3319         barrier();
3320         if (!pte_present(entry)) {
3321                 if (pte_none(entry)) {
3322                         if (vma_is_anonymous(vma))
3323                                 return do_anonymous_page(mm, vma, address,
3324                                                          pte, pmd, flags);
3325                         else
3326                                 return do_fault(mm, vma, address, pte, pmd,
3327                                                 flags, entry);
3328                 }
3329                 return do_swap_page(mm, vma, address,
3330                                         pte, pmd, flags, entry);
3331         }
3332
3333         if (pte_protnone(entry))
3334                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3335
3336         ptl = pte_lockptr(mm, pmd);
3337         spin_lock(ptl);
3338         if (unlikely(!pte_same(*pte, entry)))
3339                 goto unlock;
3340         if (flags & FAULT_FLAG_WRITE) {
3341                 if (!pte_write(entry))
3342                         return do_wp_page(mm, vma, address,
3343                                         pte, pmd, ptl, entry);
3344                 entry = pte_mkdirty(entry);
3345         }
3346         entry = pte_mkyoung(entry);
3347         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3348                 update_mmu_cache(vma, address, pte);
3349         } else {
3350                 /*
3351                  * This is needed only for protection faults but the arch code
3352                  * is not yet telling us if this is a protection fault or not.
3353                  * This still avoids useless tlb flushes for .text page faults
3354                  * with threads.
3355                  */
3356                 if (flags & FAULT_FLAG_WRITE)
3357                         flush_tlb_fix_spurious_fault(vma, address);
3358         }
3359 unlock:
3360         pte_unmap_unlock(pte, ptl);
3361         return 0;
3362 }
3363
3364 /*
3365  * By the time we get here, we already hold the mm semaphore
3366  *
3367  * The mmap_sem may have been released depending on flags and our
3368  * return value.  See filemap_fault() and __lock_page_or_retry().
3369  */
3370 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3371                              unsigned long address, unsigned int flags)
3372 {
3373         pgd_t *pgd;
3374         pud_t *pud;
3375         pmd_t *pmd;
3376         pte_t *pte;
3377
3378         if (unlikely(is_vm_hugetlb_page(vma)))
3379                 return hugetlb_fault(mm, vma, address, flags);
3380
3381         pgd = pgd_offset(mm, address);
3382         pud = pud_alloc(mm, pgd, address);
3383         if (!pud)
3384                 return VM_FAULT_OOM;
3385         pmd = pmd_alloc(mm, pud, address);
3386         if (!pmd)
3387                 return VM_FAULT_OOM;
3388         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3389                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3390                 if (!(ret & VM_FAULT_FALLBACK))
3391                         return ret;
3392         } else {
3393                 pmd_t orig_pmd = *pmd;
3394                 int ret;
3395
3396                 barrier();
3397                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3398                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3399
3400                         if (pmd_protnone(orig_pmd))
3401                                 return do_huge_pmd_numa_page(mm, vma, address,
3402                                                              orig_pmd, pmd);
3403
3404                         if (dirty && !pmd_write(orig_pmd)) {
3405                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3406                                                         orig_pmd, flags);
3407                                 if (!(ret & VM_FAULT_FALLBACK))
3408                                         return ret;
3409                         } else {
3410                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3411                                                       orig_pmd, dirty);
3412                                 return 0;
3413                         }
3414                 }
3415         }
3416
3417         /*
3418          * Use pte_alloc() instead of pte_alloc_map, because we can't
3419          * run pte_offset_map on the pmd, if an huge pmd could
3420          * materialize from under us from a different thread.
3421          */
3422         if (unlikely(pte_alloc(mm, pmd, address)))
3423                 return VM_FAULT_OOM;
3424         /*
3425          * If a huge pmd materialized under us just retry later.  Use
3426          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3427          * didn't become pmd_trans_huge under us and then back to pmd_none, as
3428          * a result of MADV_DONTNEED running immediately after a huge pmd fault
3429          * in a different thread of this mm, in turn leading to a misleading
3430          * pmd_trans_huge() retval.  All we have to ensure is that it is a
3431          * regular pmd that we can walk with pte_offset_map() and we can do that
3432          * through an atomic read in C, which is what pmd_trans_unstable()
3433          * provides.
3434          */
3435         if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3436                 return 0;
3437         /*
3438          * A regular pmd is established and it can't morph into a huge pmd
3439          * from under us anymore at this point because we hold the mmap_sem
3440          * read mode and khugepaged takes it in write mode. So now it's
3441          * safe to run pte_offset_map().
3442          */
3443         pte = pte_offset_map(pmd, address);
3444
3445         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3446 }
3447
3448 /*
3449  * By the time we get here, we already hold the mm semaphore
3450  *
3451  * The mmap_sem may have been released depending on flags and our
3452  * return value.  See filemap_fault() and __lock_page_or_retry().
3453  */
3454 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3455                     unsigned long address, unsigned int flags)
3456 {
3457         int ret;
3458
3459         __set_current_state(TASK_RUNNING);
3460
3461         count_vm_event(PGFAULT);
3462         mem_cgroup_count_vm_event(mm, PGFAULT);
3463
3464         /* do counter updates before entering really critical section. */
3465         check_sync_rss_stat(current);
3466
3467         /*
3468          * Enable the memcg OOM handling for faults triggered in user
3469          * space.  Kernel faults are handled more gracefully.
3470          */
3471         if (flags & FAULT_FLAG_USER)
3472                 mem_cgroup_oom_enable();
3473
3474         ret = __handle_mm_fault(mm, vma, address, flags);
3475
3476         if (flags & FAULT_FLAG_USER) {
3477                 mem_cgroup_oom_disable();
3478                 /*
3479                  * The task may have entered a memcg OOM situation but
3480                  * if the allocation error was handled gracefully (no
3481                  * VM_FAULT_OOM), there is no need to kill anything.
3482                  * Just clean up the OOM state peacefully.
3483                  */
3484                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3485                         mem_cgroup_oom_synchronize(false);
3486         }
3487
3488         return ret;
3489 }
3490 EXPORT_SYMBOL_GPL(handle_mm_fault);
3491
3492 #ifndef __PAGETABLE_PUD_FOLDED
3493 /*
3494  * Allocate page upper directory.
3495  * We've already handled the fast-path in-line.
3496  */
3497 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3498 {
3499         pud_t *new = pud_alloc_one(mm, address);
3500         if (!new)
3501                 return -ENOMEM;
3502
3503         smp_wmb(); /* See comment in __pte_alloc */
3504
3505         spin_lock(&mm->page_table_lock);
3506         if (pgd_present(*pgd))          /* Another has populated it */
3507                 pud_free(mm, new);
3508         else
3509                 pgd_populate(mm, pgd, new);
3510         spin_unlock(&mm->page_table_lock);
3511         return 0;
3512 }
3513 #endif /* __PAGETABLE_PUD_FOLDED */
3514
3515 #ifndef __PAGETABLE_PMD_FOLDED
3516 /*
3517  * Allocate page middle directory.
3518  * We've already handled the fast-path in-line.
3519  */
3520 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3521 {
3522         pmd_t *new = pmd_alloc_one(mm, address);
3523         if (!new)
3524                 return -ENOMEM;
3525
3526         smp_wmb(); /* See comment in __pte_alloc */
3527
3528         spin_lock(&mm->page_table_lock);
3529 #ifndef __ARCH_HAS_4LEVEL_HACK
3530         if (!pud_present(*pud)) {
3531                 mm_inc_nr_pmds(mm);
3532                 pud_populate(mm, pud, new);
3533         } else  /* Another has populated it */
3534                 pmd_free(mm, new);
3535 #else
3536         if (!pgd_present(*pud)) {
3537                 mm_inc_nr_pmds(mm);
3538                 pgd_populate(mm, pud, new);
3539         } else /* Another has populated it */
3540                 pmd_free(mm, new);
3541 #endif /* __ARCH_HAS_4LEVEL_HACK */
3542         spin_unlock(&mm->page_table_lock);
3543         return 0;
3544 }
3545 #endif /* __PAGETABLE_PMD_FOLDED */
3546
3547 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3548                 pte_t **ptepp, spinlock_t **ptlp)
3549 {
3550         pgd_t *pgd;
3551         pud_t *pud;
3552         pmd_t *pmd;
3553         pte_t *ptep;
3554
3555         pgd = pgd_offset(mm, address);
3556         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3557                 goto out;
3558
3559         pud = pud_offset(pgd, address);
3560         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3561                 goto out;
3562
3563         pmd = pmd_offset(pud, address);
3564         VM_BUG_ON(pmd_trans_huge(*pmd));
3565         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3566                 goto out;
3567
3568         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3569         if (pmd_huge(*pmd))
3570                 goto out;
3571
3572         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3573         if (!ptep)
3574                 goto out;
3575         if (!pte_present(*ptep))
3576                 goto unlock;
3577         *ptepp = ptep;
3578         return 0;
3579 unlock:
3580         pte_unmap_unlock(ptep, *ptlp);
3581 out:
3582         return -EINVAL;
3583 }
3584
3585 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3586                              pte_t **ptepp, spinlock_t **ptlp)
3587 {
3588         int res;
3589
3590         /* (void) is needed to make gcc happy */
3591         (void) __cond_lock(*ptlp,
3592                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3593         return res;
3594 }
3595
3596 /**
3597  * follow_pfn - look up PFN at a user virtual address
3598  * @vma: memory mapping
3599  * @address: user virtual address
3600  * @pfn: location to store found PFN
3601  *
3602  * Only IO mappings and raw PFN mappings are allowed.
3603  *
3604  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3605  */
3606 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3607         unsigned long *pfn)
3608 {
3609         int ret = -EINVAL;
3610         spinlock_t *ptl;
3611         pte_t *ptep;
3612
3613         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3614                 return ret;
3615
3616         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3617         if (ret)
3618                 return ret;
3619         *pfn = pte_pfn(*ptep);
3620         pte_unmap_unlock(ptep, ptl);
3621         return 0;
3622 }
3623 EXPORT_SYMBOL(follow_pfn);
3624
3625 #ifdef CONFIG_HAVE_IOREMAP_PROT
3626 int follow_phys(struct vm_area_struct *vma,
3627                 unsigned long address, unsigned int flags,
3628                 unsigned long *prot, resource_size_t *phys)
3629 {
3630         int ret = -EINVAL;
3631         pte_t *ptep, pte;
3632         spinlock_t *ptl;
3633
3634         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3635                 goto out;
3636
3637         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3638                 goto out;
3639         pte = *ptep;
3640
3641         if ((flags & FOLL_WRITE) && !pte_write(pte))
3642                 goto unlock;
3643
3644         *prot = pgprot_val(pte_pgprot(pte));
3645         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3646
3647         ret = 0;
3648 unlock:
3649         pte_unmap_unlock(ptep, ptl);
3650 out:
3651         return ret;
3652 }
3653
3654 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3655                         void *buf, int len, int write)
3656 {
3657         resource_size_t phys_addr;
3658         unsigned long prot = 0;
3659         void __iomem *maddr;
3660         int offset = addr & (PAGE_SIZE-1);
3661
3662         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3663                 return -EINVAL;
3664
3665         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3666         if (write)
3667                 memcpy_toio(maddr + offset, buf, len);
3668         else
3669                 memcpy_fromio(buf, maddr + offset, len);
3670         iounmap(maddr);
3671
3672         return len;
3673 }
3674 EXPORT_SYMBOL_GPL(generic_access_phys);
3675 #endif
3676
3677 /*
3678  * Access another process' address space as given in mm.  If non-NULL, use the
3679  * given task for page fault accounting.
3680  */
3681 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3682                 unsigned long addr, void *buf, int len, int write)
3683 {
3684         struct vm_area_struct *vma;
3685         void *old_buf = buf;
3686
3687         down_read(&mm->mmap_sem);
3688         /* ignore errors, just check how much was successfully transferred */
3689         while (len) {
3690                 int bytes, ret, offset;
3691                 void *maddr;
3692                 struct page *page = NULL;
3693
3694                 ret = get_user_pages(tsk, mm, addr, 1,
3695                                 write, 1, &page, &vma);
3696                 if (ret <= 0) {
3697 #ifndef CONFIG_HAVE_IOREMAP_PROT
3698                         break;
3699 #else
3700                         /*
3701                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3702                          * we can access using slightly different code.
3703                          */
3704                         vma = find_vma(mm, addr);
3705                         if (!vma || vma->vm_start > addr)
3706                                 break;
3707                         if (vma->vm_ops && vma->vm_ops->access)
3708                                 ret = vma->vm_ops->access(vma, addr, buf,
3709                                                           len, write);
3710                         if (ret <= 0)
3711                                 break;
3712                         bytes = ret;
3713 #endif
3714                 } else {
3715                         bytes = len;
3716                         offset = addr & (PAGE_SIZE-1);
3717                         if (bytes > PAGE_SIZE-offset)
3718                                 bytes = PAGE_SIZE-offset;
3719
3720                         maddr = kmap(page);
3721                         if (write) {
3722                                 copy_to_user_page(vma, page, addr,
3723                                                   maddr + offset, buf, bytes);
3724                                 set_page_dirty_lock(page);
3725                         } else {
3726                                 copy_from_user_page(vma, page, addr,
3727                                                     buf, maddr + offset, bytes);
3728                         }
3729                         kunmap(page);
3730                         page_cache_release(page);
3731                 }
3732                 len -= bytes;
3733                 buf += bytes;
3734                 addr += bytes;
3735         }
3736         up_read(&mm->mmap_sem);
3737
3738         return buf - old_buf;
3739 }
3740
3741 /**
3742  * access_remote_vm - access another process' address space
3743  * @mm:         the mm_struct of the target address space
3744  * @addr:       start address to access
3745  * @buf:        source or destination buffer
3746  * @len:        number of bytes to transfer
3747  * @write:      whether the access is a write
3748  *
3749  * The caller must hold a reference on @mm.
3750  */
3751 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3752                 void *buf, int len, int write)
3753 {
3754         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3755 }
3756
3757 /*
3758  * Access another process' address space.
3759  * Source/target buffer must be kernel space,
3760  * Do not walk the page table directly, use get_user_pages
3761  */
3762 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3763                 void *buf, int len, int write)
3764 {
3765         struct mm_struct *mm;
3766         int ret;
3767
3768         mm = get_task_mm(tsk);
3769         if (!mm)
3770                 return 0;
3771
3772         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3773         mmput(mm);
3774
3775         return ret;
3776 }
3777
3778 /*
3779  * Print the name of a VMA.
3780  */
3781 void print_vma_addr(char *prefix, unsigned long ip)
3782 {
3783         struct mm_struct *mm = current->mm;
3784         struct vm_area_struct *vma;
3785
3786         /*
3787          * Do not print if we are in atomic
3788          * contexts (in exception stacks, etc.):
3789          */
3790         if (preempt_count())
3791                 return;
3792
3793         down_read(&mm->mmap_sem);
3794         vma = find_vma(mm, ip);
3795         if (vma && vma->vm_file) {
3796                 struct file *f = vma->vm_file;
3797                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3798                 if (buf) {
3799                         char *p;
3800
3801                         p = file_path(f, buf, PAGE_SIZE);
3802                         if (IS_ERR(p))
3803                                 p = "?";
3804                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3805                                         vma->vm_start,
3806                                         vma->vm_end - vma->vm_start);
3807                         free_page((unsigned long)buf);
3808                 }
3809         }
3810         up_read(&mm->mmap_sem);
3811 }
3812
3813 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3814 void __might_fault(const char *file, int line)
3815 {
3816         /*
3817          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3818          * holding the mmap_sem, this is safe because kernel memory doesn't
3819          * get paged out, therefore we'll never actually fault, and the
3820          * below annotations will generate false positives.
3821          */
3822         if (segment_eq(get_fs(), KERNEL_DS))
3823                 return;
3824         if (pagefault_disabled())
3825                 return;
3826         __might_sleep(file, line, 0);
3827 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3828         if (current->mm)
3829                 might_lock_read(&current->mm->mmap_sem);
3830 #endif
3831 }
3832 EXPORT_SYMBOL(__might_fault);
3833 #endif
3834
3835 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3836 static void clear_gigantic_page(struct page *page,
3837                                 unsigned long addr,
3838                                 unsigned int pages_per_huge_page)
3839 {
3840         int i;
3841         struct page *p = page;
3842
3843         might_sleep();
3844         for (i = 0; i < pages_per_huge_page;
3845              i++, p = mem_map_next(p, page, i)) {
3846                 cond_resched();
3847                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3848         }
3849 }
3850 void clear_huge_page(struct page *page,
3851                      unsigned long addr, unsigned int pages_per_huge_page)
3852 {
3853         int i;
3854
3855         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3856                 clear_gigantic_page(page, addr, pages_per_huge_page);
3857                 return;
3858         }
3859
3860         might_sleep();
3861         for (i = 0; i < pages_per_huge_page; i++) {
3862                 cond_resched();
3863                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3864         }
3865 }
3866
3867 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3868                                     unsigned long addr,
3869                                     struct vm_area_struct *vma,
3870                                     unsigned int pages_per_huge_page)
3871 {
3872         int i;
3873         struct page *dst_base = dst;
3874         struct page *src_base = src;
3875
3876         for (i = 0; i < pages_per_huge_page; ) {
3877                 cond_resched();
3878                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3879
3880                 i++;
3881                 dst = mem_map_next(dst, dst_base, i);
3882                 src = mem_map_next(src, src_base, i);
3883         }
3884 }
3885
3886 void copy_user_huge_page(struct page *dst, struct page *src,
3887                          unsigned long addr, struct vm_area_struct *vma,
3888                          unsigned int pages_per_huge_page)
3889 {
3890         int i;
3891
3892         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3893                 copy_user_gigantic_page(dst, src, addr, vma,
3894                                         pages_per_huge_page);
3895                 return;
3896         }
3897
3898         might_sleep();
3899         for (i = 0; i < pages_per_huge_page; i++) {
3900                 cond_resched();
3901                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3902         }
3903 }
3904 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3905
3906 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3907
3908 static struct kmem_cache *page_ptl_cachep;
3909
3910 void __init ptlock_cache_init(void)
3911 {
3912         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3913                         SLAB_PANIC, NULL);
3914 }
3915
3916 bool ptlock_alloc(struct page *page)
3917 {
3918         spinlock_t *ptl;
3919
3920         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3921         if (!ptl)
3922                 return false;
3923         page->ptl = ptl;
3924         return true;
3925 }
3926
3927 void ptlock_free(struct page *page)
3928 {
3929         kmem_cache_free(page_ptl_cachep, page->ptl);
3930 }
3931 #endif