]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/migrate.c
8119fdc563f8fa5303706db09bbef48b3b0c4856
[karo-tx-linux.git] / mm / migrate.c
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43
44 #include <asm/tlbflush.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/migrate.h>
48
49 #include "internal.h"
50
51 /*
52  * migrate_prep() needs to be called before we start compiling a list of pages
53  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54  * undesirable, use migrate_prep_local()
55  */
56 int migrate_prep(void)
57 {
58         /*
59          * Clear the LRU lists so pages can be isolated.
60          * Note that pages may be moved off the LRU after we have
61          * drained them. Those pages will fail to migrate like other
62          * pages that may be busy.
63          */
64         lru_add_drain_all();
65
66         return 0;
67 }
68
69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
70 int migrate_prep_local(void)
71 {
72         lru_add_drain();
73
74         return 0;
75 }
76
77 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
78 {
79         struct address_space *mapping;
80
81         /*
82          * Avoid burning cycles with pages that are yet under __free_pages(),
83          * or just got freed under us.
84          *
85          * In case we 'win' a race for a movable page being freed under us and
86          * raise its refcount preventing __free_pages() from doing its job
87          * the put_page() at the end of this block will take care of
88          * release this page, thus avoiding a nasty leakage.
89          */
90         if (unlikely(!get_page_unless_zero(page)))
91                 goto out;
92
93         /*
94          * Check PageMovable before holding a PG_lock because page's owner
95          * assumes anybody doesn't touch PG_lock of newly allocated page
96          * so unconditionally grapping the lock ruins page's owner side.
97          */
98         if (unlikely(!__PageMovable(page)))
99                 goto out_putpage;
100         /*
101          * As movable pages are not isolated from LRU lists, concurrent
102          * compaction threads can race against page migration functions
103          * as well as race against the releasing a page.
104          *
105          * In order to avoid having an already isolated movable page
106          * being (wrongly) re-isolated while it is under migration,
107          * or to avoid attempting to isolate pages being released,
108          * lets be sure we have the page lock
109          * before proceeding with the movable page isolation steps.
110          */
111         if (unlikely(!trylock_page(page)))
112                 goto out_putpage;
113
114         if (!PageMovable(page) || PageIsolated(page))
115                 goto out_no_isolated;
116
117         mapping = page_mapping(page);
118         VM_BUG_ON_PAGE(!mapping, page);
119
120         if (!mapping->a_ops->isolate_page(page, mode))
121                 goto out_no_isolated;
122
123         /* Driver shouldn't use PG_isolated bit of page->flags */
124         WARN_ON_ONCE(PageIsolated(page));
125         __SetPageIsolated(page);
126         unlock_page(page);
127
128         return true;
129
130 out_no_isolated:
131         unlock_page(page);
132 out_putpage:
133         put_page(page);
134 out:
135         return false;
136 }
137
138 /* It should be called on page which is PG_movable */
139 void putback_movable_page(struct page *page)
140 {
141         struct address_space *mapping;
142
143         VM_BUG_ON_PAGE(!PageLocked(page), page);
144         VM_BUG_ON_PAGE(!PageMovable(page), page);
145         VM_BUG_ON_PAGE(!PageIsolated(page), page);
146
147         mapping = page_mapping(page);
148         mapping->a_ops->putback_page(page);
149         __ClearPageIsolated(page);
150 }
151
152 /*
153  * Put previously isolated pages back onto the appropriate lists
154  * from where they were once taken off for compaction/migration.
155  *
156  * This function shall be used whenever the isolated pageset has been
157  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158  * and isolate_huge_page().
159  */
160 void putback_movable_pages(struct list_head *l)
161 {
162         struct page *page;
163         struct page *page2;
164
165         list_for_each_entry_safe(page, page2, l, lru) {
166                 if (unlikely(PageHuge(page))) {
167                         putback_active_hugepage(page);
168                         continue;
169                 }
170                 list_del(&page->lru);
171                 dec_zone_page_state(page, NR_ISOLATED_ANON +
172                                 page_is_file_cache(page));
173                 if (unlikely(isolated_balloon_page(page))) {
174                         balloon_page_putback(page);
175                 /*
176                  * We isolated non-lru movable page so here we can use
177                  * __PageMovable because LRU page's mapping cannot have
178                  * PAGE_MAPPING_MOVABLE.
179                  */
180                 } else if (unlikely(__PageMovable(page))) {
181                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
182                         lock_page(page);
183                         if (PageMovable(page))
184                                 putback_movable_page(page);
185                         else
186                                 __ClearPageIsolated(page);
187                         unlock_page(page);
188                         put_page(page);
189                 } else {
190                         putback_lru_page(page);
191                 }
192         }
193 }
194
195 /*
196  * Restore a potential migration pte to a working pte entry
197  */
198 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
199                                  unsigned long addr, void *old)
200 {
201         struct mm_struct *mm = vma->vm_mm;
202         swp_entry_t entry;
203         pmd_t *pmd;
204         pte_t *ptep, pte;
205         spinlock_t *ptl;
206
207         if (unlikely(PageHuge(new))) {
208                 ptep = huge_pte_offset(mm, addr);
209                 if (!ptep)
210                         goto out;
211                 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
212         } else {
213                 pmd = mm_find_pmd(mm, addr);
214                 if (!pmd)
215                         goto out;
216
217                 ptep = pte_offset_map(pmd, addr);
218
219                 /*
220                  * Peek to check is_swap_pte() before taking ptlock?  No, we
221                  * can race mremap's move_ptes(), which skips anon_vma lock.
222                  */
223
224                 ptl = pte_lockptr(mm, pmd);
225         }
226
227         spin_lock(ptl);
228         pte = *ptep;
229         if (!is_swap_pte(pte))
230                 goto unlock;
231
232         entry = pte_to_swp_entry(pte);
233
234         if (!is_migration_entry(entry) ||
235             migration_entry_to_page(entry) != old)
236                 goto unlock;
237
238         get_page(new);
239         pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
240         if (pte_swp_soft_dirty(*ptep))
241                 pte = pte_mksoft_dirty(pte);
242
243         /* Recheck VMA as permissions can change since migration started  */
244         if (is_write_migration_entry(entry))
245                 pte = maybe_mkwrite(pte, vma);
246
247 #ifdef CONFIG_HUGETLB_PAGE
248         if (PageHuge(new)) {
249                 pte = pte_mkhuge(pte);
250                 pte = arch_make_huge_pte(pte, vma, new, 0);
251         }
252 #endif
253         flush_dcache_page(new);
254         set_pte_at(mm, addr, ptep, pte);
255
256         if (PageHuge(new)) {
257                 if (PageAnon(new))
258                         hugepage_add_anon_rmap(new, vma, addr);
259                 else
260                         page_dup_rmap(new, true);
261         } else if (PageAnon(new))
262                 page_add_anon_rmap(new, vma, addr, false);
263         else
264                 page_add_file_rmap(new);
265
266         if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
267                 mlock_vma_page(new);
268
269         /* No need to invalidate - it was non-present before */
270         update_mmu_cache(vma, addr, ptep);
271 unlock:
272         pte_unmap_unlock(ptep, ptl);
273 out:
274         return SWAP_AGAIN;
275 }
276
277 /*
278  * Get rid of all migration entries and replace them by
279  * references to the indicated page.
280  */
281 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
282 {
283         struct rmap_walk_control rwc = {
284                 .rmap_one = remove_migration_pte,
285                 .arg = old,
286         };
287
288         if (locked)
289                 rmap_walk_locked(new, &rwc);
290         else
291                 rmap_walk(new, &rwc);
292 }
293
294 /*
295  * Something used the pte of a page under migration. We need to
296  * get to the page and wait until migration is finished.
297  * When we return from this function the fault will be retried.
298  */
299 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
300                                 spinlock_t *ptl)
301 {
302         pte_t pte;
303         swp_entry_t entry;
304         struct page *page;
305
306         spin_lock(ptl);
307         pte = *ptep;
308         if (!is_swap_pte(pte))
309                 goto out;
310
311         entry = pte_to_swp_entry(pte);
312         if (!is_migration_entry(entry))
313                 goto out;
314
315         page = migration_entry_to_page(entry);
316
317         /*
318          * Once radix-tree replacement of page migration started, page_count
319          * *must* be zero. And, we don't want to call wait_on_page_locked()
320          * against a page without get_page().
321          * So, we use get_page_unless_zero(), here. Even failed, page fault
322          * will occur again.
323          */
324         if (!get_page_unless_zero(page))
325                 goto out;
326         pte_unmap_unlock(ptep, ptl);
327         wait_on_page_locked(page);
328         put_page(page);
329         return;
330 out:
331         pte_unmap_unlock(ptep, ptl);
332 }
333
334 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
335                                 unsigned long address)
336 {
337         spinlock_t *ptl = pte_lockptr(mm, pmd);
338         pte_t *ptep = pte_offset_map(pmd, address);
339         __migration_entry_wait(mm, ptep, ptl);
340 }
341
342 void migration_entry_wait_huge(struct vm_area_struct *vma,
343                 struct mm_struct *mm, pte_t *pte)
344 {
345         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
346         __migration_entry_wait(mm, pte, ptl);
347 }
348
349 #ifdef CONFIG_BLOCK
350 /* Returns true if all buffers are successfully locked */
351 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
352                                                         enum migrate_mode mode)
353 {
354         struct buffer_head *bh = head;
355
356         /* Simple case, sync compaction */
357         if (mode != MIGRATE_ASYNC) {
358                 do {
359                         get_bh(bh);
360                         lock_buffer(bh);
361                         bh = bh->b_this_page;
362
363                 } while (bh != head);
364
365                 return true;
366         }
367
368         /* async case, we cannot block on lock_buffer so use trylock_buffer */
369         do {
370                 get_bh(bh);
371                 if (!trylock_buffer(bh)) {
372                         /*
373                          * We failed to lock the buffer and cannot stall in
374                          * async migration. Release the taken locks
375                          */
376                         struct buffer_head *failed_bh = bh;
377                         put_bh(failed_bh);
378                         bh = head;
379                         while (bh != failed_bh) {
380                                 unlock_buffer(bh);
381                                 put_bh(bh);
382                                 bh = bh->b_this_page;
383                         }
384                         return false;
385                 }
386
387                 bh = bh->b_this_page;
388         } while (bh != head);
389         return true;
390 }
391 #else
392 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
393                                                         enum migrate_mode mode)
394 {
395         return true;
396 }
397 #endif /* CONFIG_BLOCK */
398
399 /*
400  * Replace the page in the mapping.
401  *
402  * The number of remaining references must be:
403  * 1 for anonymous pages without a mapping
404  * 2 for pages with a mapping
405  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
406  */
407 int migrate_page_move_mapping(struct address_space *mapping,
408                 struct page *newpage, struct page *page,
409                 struct buffer_head *head, enum migrate_mode mode,
410                 int extra_count)
411 {
412         struct zone *oldzone, *newzone;
413         int dirty;
414         int expected_count = 1 + extra_count;
415         void **pslot;
416
417         if (!mapping) {
418                 /* Anonymous page without mapping */
419                 if (page_count(page) != expected_count)
420                         return -EAGAIN;
421
422                 /* No turning back from here */
423                 newpage->index = page->index;
424                 newpage->mapping = page->mapping;
425                 if (PageSwapBacked(page))
426                         __SetPageSwapBacked(newpage);
427
428                 return MIGRATEPAGE_SUCCESS;
429         }
430
431         oldzone = page_zone(page);
432         newzone = page_zone(newpage);
433
434         spin_lock_irq(&mapping->tree_lock);
435
436         pslot = radix_tree_lookup_slot(&mapping->page_tree,
437                                         page_index(page));
438
439         expected_count += 1 + page_has_private(page);
440         if (page_count(page) != expected_count ||
441                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
442                 spin_unlock_irq(&mapping->tree_lock);
443                 return -EAGAIN;
444         }
445
446         if (!page_ref_freeze(page, expected_count)) {
447                 spin_unlock_irq(&mapping->tree_lock);
448                 return -EAGAIN;
449         }
450
451         /*
452          * In the async migration case of moving a page with buffers, lock the
453          * buffers using trylock before the mapping is moved. If the mapping
454          * was moved, we later failed to lock the buffers and could not move
455          * the mapping back due to an elevated page count, we would have to
456          * block waiting on other references to be dropped.
457          */
458         if (mode == MIGRATE_ASYNC && head &&
459                         !buffer_migrate_lock_buffers(head, mode)) {
460                 page_ref_unfreeze(page, expected_count);
461                 spin_unlock_irq(&mapping->tree_lock);
462                 return -EAGAIN;
463         }
464
465         /*
466          * Now we know that no one else is looking at the page:
467          * no turning back from here.
468          */
469         newpage->index = page->index;
470         newpage->mapping = page->mapping;
471         if (PageSwapBacked(page))
472                 __SetPageSwapBacked(newpage);
473
474         get_page(newpage);      /* add cache reference */
475         if (PageSwapCache(page)) {
476                 SetPageSwapCache(newpage);
477                 set_page_private(newpage, page_private(page));
478         }
479
480         /* Move dirty while page refs frozen and newpage not yet exposed */
481         dirty = PageDirty(page);
482         if (dirty) {
483                 ClearPageDirty(page);
484                 SetPageDirty(newpage);
485         }
486
487         radix_tree_replace_slot(pslot, newpage);
488
489         /*
490          * Drop cache reference from old page by unfreezing
491          * to one less reference.
492          * We know this isn't the last reference.
493          */
494         page_ref_unfreeze(page, expected_count - 1);
495
496         spin_unlock(&mapping->tree_lock);
497         /* Leave irq disabled to prevent preemption while updating stats */
498
499         /*
500          * If moved to a different zone then also account
501          * the page for that zone. Other VM counters will be
502          * taken care of when we establish references to the
503          * new page and drop references to the old page.
504          *
505          * Note that anonymous pages are accounted for
506          * via NR_FILE_PAGES and NR_ANON_PAGES if they
507          * are mapped to swap space.
508          */
509         if (newzone != oldzone) {
510                 __dec_zone_state(oldzone, NR_FILE_PAGES);
511                 __inc_zone_state(newzone, NR_FILE_PAGES);
512                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
513                         __dec_zone_state(oldzone, NR_SHMEM);
514                         __inc_zone_state(newzone, NR_SHMEM);
515                 }
516                 if (dirty && mapping_cap_account_dirty(mapping)) {
517                         __dec_zone_state(oldzone, NR_FILE_DIRTY);
518                         __inc_zone_state(newzone, NR_FILE_DIRTY);
519                 }
520         }
521         local_irq_enable();
522
523         return MIGRATEPAGE_SUCCESS;
524 }
525 EXPORT_SYMBOL(migrate_page_move_mapping);
526
527 /*
528  * The expected number of remaining references is the same as that
529  * of migrate_page_move_mapping().
530  */
531 int migrate_huge_page_move_mapping(struct address_space *mapping,
532                                    struct page *newpage, struct page *page)
533 {
534         int expected_count;
535         void **pslot;
536
537         spin_lock_irq(&mapping->tree_lock);
538
539         pslot = radix_tree_lookup_slot(&mapping->page_tree,
540                                         page_index(page));
541
542         expected_count = 2 + page_has_private(page);
543         if (page_count(page) != expected_count ||
544                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
545                 spin_unlock_irq(&mapping->tree_lock);
546                 return -EAGAIN;
547         }
548
549         if (!page_ref_freeze(page, expected_count)) {
550                 spin_unlock_irq(&mapping->tree_lock);
551                 return -EAGAIN;
552         }
553
554         newpage->index = page->index;
555         newpage->mapping = page->mapping;
556
557         get_page(newpage);
558
559         radix_tree_replace_slot(pslot, newpage);
560
561         page_ref_unfreeze(page, expected_count - 1);
562
563         spin_unlock_irq(&mapping->tree_lock);
564
565         return MIGRATEPAGE_SUCCESS;
566 }
567
568 /*
569  * Gigantic pages are so large that we do not guarantee that page++ pointer
570  * arithmetic will work across the entire page.  We need something more
571  * specialized.
572  */
573 static void __copy_gigantic_page(struct page *dst, struct page *src,
574                                 int nr_pages)
575 {
576         int i;
577         struct page *dst_base = dst;
578         struct page *src_base = src;
579
580         for (i = 0; i < nr_pages; ) {
581                 cond_resched();
582                 copy_highpage(dst, src);
583
584                 i++;
585                 dst = mem_map_next(dst, dst_base, i);
586                 src = mem_map_next(src, src_base, i);
587         }
588 }
589
590 static void copy_huge_page(struct page *dst, struct page *src)
591 {
592         int i;
593         int nr_pages;
594
595         if (PageHuge(src)) {
596                 /* hugetlbfs page */
597                 struct hstate *h = page_hstate(src);
598                 nr_pages = pages_per_huge_page(h);
599
600                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
601                         __copy_gigantic_page(dst, src, nr_pages);
602                         return;
603                 }
604         } else {
605                 /* thp page */
606                 BUG_ON(!PageTransHuge(src));
607                 nr_pages = hpage_nr_pages(src);
608         }
609
610         for (i = 0; i < nr_pages; i++) {
611                 cond_resched();
612                 copy_highpage(dst + i, src + i);
613         }
614 }
615
616 /*
617  * Copy the page to its new location
618  */
619 void migrate_page_copy(struct page *newpage, struct page *page)
620 {
621         int cpupid;
622
623         if (PageHuge(page) || PageTransHuge(page))
624                 copy_huge_page(newpage, page);
625         else
626                 copy_highpage(newpage, page);
627
628         if (PageError(page))
629                 SetPageError(newpage);
630         if (PageReferenced(page))
631                 SetPageReferenced(newpage);
632         if (PageUptodate(page))
633                 SetPageUptodate(newpage);
634         if (TestClearPageActive(page)) {
635                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
636                 SetPageActive(newpage);
637         } else if (TestClearPageUnevictable(page))
638                 SetPageUnevictable(newpage);
639         if (PageChecked(page))
640                 SetPageChecked(newpage);
641         if (PageMappedToDisk(page))
642                 SetPageMappedToDisk(newpage);
643
644         /* Move dirty on pages not done by migrate_page_move_mapping() */
645         if (PageDirty(page))
646                 SetPageDirty(newpage);
647
648         if (page_is_young(page))
649                 set_page_young(newpage);
650         if (page_is_idle(page))
651                 set_page_idle(newpage);
652
653         /*
654          * Copy NUMA information to the new page, to prevent over-eager
655          * future migrations of this same page.
656          */
657         cpupid = page_cpupid_xchg_last(page, -1);
658         page_cpupid_xchg_last(newpage, cpupid);
659
660         ksm_migrate_page(newpage, page);
661         /*
662          * Please do not reorder this without considering how mm/ksm.c's
663          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
664          */
665         if (PageSwapCache(page))
666                 ClearPageSwapCache(page);
667         ClearPagePrivate(page);
668         set_page_private(page, 0);
669
670         /*
671          * If any waiters have accumulated on the new page then
672          * wake them up.
673          */
674         if (PageWriteback(newpage))
675                 end_page_writeback(newpage);
676
677         copy_page_owner(page, newpage);
678
679         mem_cgroup_migrate(page, newpage);
680 }
681 EXPORT_SYMBOL(migrate_page_copy);
682
683 /************************************************************
684  *                    Migration functions
685  ***********************************************************/
686
687 /*
688  * Common logic to directly migrate a single LRU page suitable for
689  * pages that do not use PagePrivate/PagePrivate2.
690  *
691  * Pages are locked upon entry and exit.
692  */
693 int migrate_page(struct address_space *mapping,
694                 struct page *newpage, struct page *page,
695                 enum migrate_mode mode)
696 {
697         int rc;
698
699         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
700
701         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
702
703         if (rc != MIGRATEPAGE_SUCCESS)
704                 return rc;
705
706         migrate_page_copy(newpage, page);
707         return MIGRATEPAGE_SUCCESS;
708 }
709 EXPORT_SYMBOL(migrate_page);
710
711 #ifdef CONFIG_BLOCK
712 /*
713  * Migration function for pages with buffers. This function can only be used
714  * if the underlying filesystem guarantees that no other references to "page"
715  * exist.
716  */
717 int buffer_migrate_page(struct address_space *mapping,
718                 struct page *newpage, struct page *page, enum migrate_mode mode)
719 {
720         struct buffer_head *bh, *head;
721         int rc;
722
723         if (!page_has_buffers(page))
724                 return migrate_page(mapping, newpage, page, mode);
725
726         head = page_buffers(page);
727
728         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
729
730         if (rc != MIGRATEPAGE_SUCCESS)
731                 return rc;
732
733         /*
734          * In the async case, migrate_page_move_mapping locked the buffers
735          * with an IRQ-safe spinlock held. In the sync case, the buffers
736          * need to be locked now
737          */
738         if (mode != MIGRATE_ASYNC)
739                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
740
741         ClearPagePrivate(page);
742         set_page_private(newpage, page_private(page));
743         set_page_private(page, 0);
744         put_page(page);
745         get_page(newpage);
746
747         bh = head;
748         do {
749                 set_bh_page(bh, newpage, bh_offset(bh));
750                 bh = bh->b_this_page;
751
752         } while (bh != head);
753
754         SetPagePrivate(newpage);
755
756         migrate_page_copy(newpage, page);
757
758         bh = head;
759         do {
760                 unlock_buffer(bh);
761                 put_bh(bh);
762                 bh = bh->b_this_page;
763
764         } while (bh != head);
765
766         return MIGRATEPAGE_SUCCESS;
767 }
768 EXPORT_SYMBOL(buffer_migrate_page);
769 #endif
770
771 /*
772  * Writeback a page to clean the dirty state
773  */
774 static int writeout(struct address_space *mapping, struct page *page)
775 {
776         struct writeback_control wbc = {
777                 .sync_mode = WB_SYNC_NONE,
778                 .nr_to_write = 1,
779                 .range_start = 0,
780                 .range_end = LLONG_MAX,
781                 .for_reclaim = 1
782         };
783         int rc;
784
785         if (!mapping->a_ops->writepage)
786                 /* No write method for the address space */
787                 return -EINVAL;
788
789         if (!clear_page_dirty_for_io(page))
790                 /* Someone else already triggered a write */
791                 return -EAGAIN;
792
793         /*
794          * A dirty page may imply that the underlying filesystem has
795          * the page on some queue. So the page must be clean for
796          * migration. Writeout may mean we loose the lock and the
797          * page state is no longer what we checked for earlier.
798          * At this point we know that the migration attempt cannot
799          * be successful.
800          */
801         remove_migration_ptes(page, page, false);
802
803         rc = mapping->a_ops->writepage(page, &wbc);
804
805         if (rc != AOP_WRITEPAGE_ACTIVATE)
806                 /* unlocked. Relock */
807                 lock_page(page);
808
809         return (rc < 0) ? -EIO : -EAGAIN;
810 }
811
812 /*
813  * Default handling if a filesystem does not provide a migration function.
814  */
815 static int fallback_migrate_page(struct address_space *mapping,
816         struct page *newpage, struct page *page, enum migrate_mode mode)
817 {
818         if (PageDirty(page)) {
819                 /* Only writeback pages in full synchronous migration */
820                 if (mode != MIGRATE_SYNC)
821                         return -EBUSY;
822                 return writeout(mapping, page);
823         }
824
825         /*
826          * Buffers may be managed in a filesystem specific way.
827          * We must have no buffers or drop them.
828          */
829         if (page_has_private(page) &&
830             !try_to_release_page(page, GFP_KERNEL))
831                 return -EAGAIN;
832
833         return migrate_page(mapping, newpage, page, mode);
834 }
835
836 /*
837  * Move a page to a newly allocated page
838  * The page is locked and all ptes have been successfully removed.
839  *
840  * The new page will have replaced the old page if this function
841  * is successful.
842  *
843  * Return value:
844  *   < 0 - error code
845  *  MIGRATEPAGE_SUCCESS - success
846  */
847 static int move_to_new_page(struct page *newpage, struct page *page,
848                                 enum migrate_mode mode)
849 {
850         struct address_space *mapping;
851         int rc = -EAGAIN;
852         bool is_lru = !__PageMovable(page);
853
854         VM_BUG_ON_PAGE(!PageLocked(page), page);
855         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
856
857         mapping = page_mapping(page);
858
859         if (likely(is_lru)) {
860                 if (!mapping)
861                         rc = migrate_page(mapping, newpage, page, mode);
862                 else if (mapping->a_ops->migratepage)
863                         /*
864                          * Most pages have a mapping and most filesystems
865                          * provide a migratepage callback. Anonymous pages
866                          * are part of swap space which also has its own
867                          * migratepage callback. This is the most common path
868                          * for page migration.
869                          */
870                         rc = mapping->a_ops->migratepage(mapping, newpage,
871                                                         page, mode);
872                 else
873                         rc = fallback_migrate_page(mapping, newpage,
874                                                         page, mode);
875         } else {
876                 /*
877                  * In case of non-lru page, it could be released after
878                  * isolation step. In that case, we shouldn't try migration.
879                  */
880                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
881                 if (!PageMovable(page)) {
882                         rc = MIGRATEPAGE_SUCCESS;
883                         __ClearPageIsolated(page);
884                         goto out;
885                 }
886
887                 rc = mapping->a_ops->migratepage(mapping, newpage,
888                                                 page, mode);
889                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
890                         !PageIsolated(page));
891         }
892
893         /*
894          * When successful, old pagecache page->mapping must be cleared before
895          * page is freed; but stats require that PageAnon be left as PageAnon.
896          */
897         if (rc == MIGRATEPAGE_SUCCESS) {
898                 if (__PageMovable(page)) {
899                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
900
901                         /*
902                          * We clear PG_movable under page_lock so any compactor
903                          * cannot try to migrate this page.
904                          */
905                         __ClearPageIsolated(page);
906                 }
907
908                 /*
909                  * Anonymous and movable page->mapping will be cleard by
910                  * free_pages_prepare so don't reset it here for keeping
911                  * the type to work PageAnon, for example.
912                  */
913                 if (!PageMappingFlags(page))
914                         page->mapping = NULL;
915         }
916 out:
917         return rc;
918 }
919
920 static int __unmap_and_move(struct page *page, struct page *newpage,
921                                 int force, enum migrate_mode mode)
922 {
923         int rc = -EAGAIN;
924         int page_was_mapped = 0;
925         struct anon_vma *anon_vma = NULL;
926         bool is_lru = !__PageMovable(page);
927
928         if (!trylock_page(page)) {
929                 if (!force || mode == MIGRATE_ASYNC)
930                         goto out;
931
932                 /*
933                  * It's not safe for direct compaction to call lock_page.
934                  * For example, during page readahead pages are added locked
935                  * to the LRU. Later, when the IO completes the pages are
936                  * marked uptodate and unlocked. However, the queueing
937                  * could be merging multiple pages for one bio (e.g.
938                  * mpage_readpages). If an allocation happens for the
939                  * second or third page, the process can end up locking
940                  * the same page twice and deadlocking. Rather than
941                  * trying to be clever about what pages can be locked,
942                  * avoid the use of lock_page for direct compaction
943                  * altogether.
944                  */
945                 if (current->flags & PF_MEMALLOC)
946                         goto out;
947
948                 lock_page(page);
949         }
950
951         if (PageWriteback(page)) {
952                 /*
953                  * Only in the case of a full synchronous migration is it
954                  * necessary to wait for PageWriteback. In the async case,
955                  * the retry loop is too short and in the sync-light case,
956                  * the overhead of stalling is too much
957                  */
958                 if (mode != MIGRATE_SYNC) {
959                         rc = -EBUSY;
960                         goto out_unlock;
961                 }
962                 if (!force)
963                         goto out_unlock;
964                 wait_on_page_writeback(page);
965         }
966
967         /*
968          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
969          * we cannot notice that anon_vma is freed while we migrates a page.
970          * This get_anon_vma() delays freeing anon_vma pointer until the end
971          * of migration. File cache pages are no problem because of page_lock()
972          * File Caches may use write_page() or lock_page() in migration, then,
973          * just care Anon page here.
974          *
975          * Only page_get_anon_vma() understands the subtleties of
976          * getting a hold on an anon_vma from outside one of its mms.
977          * But if we cannot get anon_vma, then we won't need it anyway,
978          * because that implies that the anon page is no longer mapped
979          * (and cannot be remapped so long as we hold the page lock).
980          */
981         if (PageAnon(page) && !PageKsm(page))
982                 anon_vma = page_get_anon_vma(page);
983
984         /*
985          * Block others from accessing the new page when we get around to
986          * establishing additional references. We are usually the only one
987          * holding a reference to newpage at this point. We used to have a BUG
988          * here if trylock_page(newpage) fails, but would like to allow for
989          * cases where there might be a race with the previous use of newpage.
990          * This is much like races on refcount of oldpage: just don't BUG().
991          */
992         if (unlikely(!trylock_page(newpage)))
993                 goto out_unlock;
994
995         if (unlikely(isolated_balloon_page(page))) {
996                 /*
997                  * A ballooned page does not need any special attention from
998                  * physical to virtual reverse mapping procedures.
999                  * Skip any attempt to unmap PTEs or to remap swap cache,
1000                  * in order to avoid burning cycles at rmap level, and perform
1001                  * the page migration right away (proteced by page lock).
1002                  */
1003                 rc = balloon_page_migrate(newpage, page, mode);
1004                 goto out_unlock_both;
1005         }
1006
1007         if (unlikely(!is_lru)) {
1008                 rc = move_to_new_page(newpage, page, mode);
1009                 goto out_unlock_both;
1010         }
1011
1012         /*
1013          * Corner case handling:
1014          * 1. When a new swap-cache page is read into, it is added to the LRU
1015          * and treated as swapcache but it has no rmap yet.
1016          * Calling try_to_unmap() against a page->mapping==NULL page will
1017          * trigger a BUG.  So handle it here.
1018          * 2. An orphaned page (see truncate_complete_page) might have
1019          * fs-private metadata. The page can be picked up due to memory
1020          * offlining.  Everywhere else except page reclaim, the page is
1021          * invisible to the vm, so the page can not be migrated.  So try to
1022          * free the metadata, so the page can be freed.
1023          */
1024         if (!page->mapping) {
1025                 VM_BUG_ON_PAGE(PageAnon(page), page);
1026                 if (page_has_private(page)) {
1027                         try_to_free_buffers(page);
1028                         goto out_unlock_both;
1029                 }
1030         } else if (page_mapped(page)) {
1031                 /* Establish migration ptes */
1032                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1033                                 page);
1034                 try_to_unmap(page,
1035                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1036                 page_was_mapped = 1;
1037         }
1038
1039         if (!page_mapped(page))
1040                 rc = move_to_new_page(newpage, page, mode);
1041
1042         if (page_was_mapped)
1043                 remove_migration_ptes(page,
1044                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1045
1046 out_unlock_both:
1047         unlock_page(newpage);
1048 out_unlock:
1049         /* Drop an anon_vma reference if we took one */
1050         if (anon_vma)
1051                 put_anon_vma(anon_vma);
1052         unlock_page(page);
1053 out:
1054         /*
1055          * If migration is successful, decrease refcount of the newpage
1056          * which will not free the page because new page owner increased
1057          * refcounter. As well, if it is LRU page, add the page to LRU
1058          * list in here.
1059          */
1060         if (rc == MIGRATEPAGE_SUCCESS) {
1061                 if (unlikely(__is_movable_balloon_page(newpage) ||
1062                                 __PageMovable(newpage)))
1063                         put_page(newpage);
1064                 else
1065                         putback_lru_page(newpage);
1066         }
1067
1068         return rc;
1069 }
1070
1071 /*
1072  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1073  * around it.
1074  */
1075 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1076 #define ICE_noinline noinline
1077 #else
1078 #define ICE_noinline
1079 #endif
1080
1081 /*
1082  * Obtain the lock on page, remove all ptes and migrate the page
1083  * to the newly allocated page in newpage.
1084  */
1085 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1086                                    free_page_t put_new_page,
1087                                    unsigned long private, struct page *page,
1088                                    int force, enum migrate_mode mode,
1089                                    enum migrate_reason reason)
1090 {
1091         int rc = MIGRATEPAGE_SUCCESS;
1092         int *result = NULL;
1093         struct page *newpage;
1094
1095         newpage = get_new_page(page, private, &result);
1096         if (!newpage)
1097                 return -ENOMEM;
1098
1099         if (page_count(page) == 1) {
1100                 /* page was freed from under us. So we are done. */
1101                 ClearPageActive(page);
1102                 ClearPageUnevictable(page);
1103                 if (unlikely(__PageMovable(page))) {
1104                         lock_page(page);
1105                         if (!PageMovable(page))
1106                                 __ClearPageIsolated(page);
1107                         unlock_page(page);
1108                 }
1109                 if (put_new_page)
1110                         put_new_page(newpage, private);
1111                 else
1112                         put_page(newpage);
1113                 goto out;
1114         }
1115
1116         if (unlikely(PageTransHuge(page))) {
1117                 lock_page(page);
1118                 rc = split_huge_page(page);
1119                 unlock_page(page);
1120                 if (rc)
1121                         goto out;
1122         }
1123
1124         rc = __unmap_and_move(page, newpage, force, mode);
1125         if (rc == MIGRATEPAGE_SUCCESS)
1126                 set_page_owner_migrate_reason(newpage, reason);
1127
1128 out:
1129         if (rc != -EAGAIN) {
1130                 /*
1131                  * A page that has been migrated has all references
1132                  * removed and will be freed. A page that has not been
1133                  * migrated will have kepts its references and be
1134                  * restored.
1135                  */
1136                 list_del(&page->lru);
1137                 dec_zone_page_state(page, NR_ISOLATED_ANON +
1138                                 page_is_file_cache(page));
1139         }
1140
1141         /*
1142          * If migration is successful, releases reference grabbed during
1143          * isolation. Otherwise, restore the page to right list unless
1144          * we want to retry.
1145          */
1146         if (rc == MIGRATEPAGE_SUCCESS) {
1147                 put_page(page);
1148                 if (reason == MR_MEMORY_FAILURE) {
1149                         /*
1150                          * Set PG_HWPoison on just freed page
1151                          * intentionally. Although it's rather weird,
1152                          * it's how HWPoison flag works at the moment.
1153                          */
1154                         if (!test_set_page_hwpoison(page))
1155                                 num_poisoned_pages_inc();
1156                 }
1157         } else {
1158                 if (rc != -EAGAIN) {
1159                         if (likely(!__PageMovable(page))) {
1160                                 putback_lru_page(page);
1161                                 goto put_new;
1162                         }
1163
1164                         lock_page(page);
1165                         if (PageMovable(page))
1166                                 putback_movable_page(page);
1167                         else
1168                                 __ClearPageIsolated(page);
1169                         unlock_page(page);
1170                         put_page(page);
1171                 }
1172 put_new:
1173                 if (put_new_page)
1174                         put_new_page(newpage, private);
1175                 else
1176                         put_page(newpage);
1177         }
1178
1179         if (result) {
1180                 if (rc)
1181                         *result = rc;
1182                 else
1183                         *result = page_to_nid(newpage);
1184         }
1185         return rc;
1186 }
1187
1188 /*
1189  * Counterpart of unmap_and_move_page() for hugepage migration.
1190  *
1191  * This function doesn't wait the completion of hugepage I/O
1192  * because there is no race between I/O and migration for hugepage.
1193  * Note that currently hugepage I/O occurs only in direct I/O
1194  * where no lock is held and PG_writeback is irrelevant,
1195  * and writeback status of all subpages are counted in the reference
1196  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1197  * under direct I/O, the reference of the head page is 512 and a bit more.)
1198  * This means that when we try to migrate hugepage whose subpages are
1199  * doing direct I/O, some references remain after try_to_unmap() and
1200  * hugepage migration fails without data corruption.
1201  *
1202  * There is also no race when direct I/O is issued on the page under migration,
1203  * because then pte is replaced with migration swap entry and direct I/O code
1204  * will wait in the page fault for migration to complete.
1205  */
1206 static int unmap_and_move_huge_page(new_page_t get_new_page,
1207                                 free_page_t put_new_page, unsigned long private,
1208                                 struct page *hpage, int force,
1209                                 enum migrate_mode mode, int reason)
1210 {
1211         int rc = -EAGAIN;
1212         int *result = NULL;
1213         int page_was_mapped = 0;
1214         struct page *new_hpage;
1215         struct anon_vma *anon_vma = NULL;
1216
1217         /*
1218          * Movability of hugepages depends on architectures and hugepage size.
1219          * This check is necessary because some callers of hugepage migration
1220          * like soft offline and memory hotremove don't walk through page
1221          * tables or check whether the hugepage is pmd-based or not before
1222          * kicking migration.
1223          */
1224         if (!hugepage_migration_supported(page_hstate(hpage))) {
1225                 putback_active_hugepage(hpage);
1226                 return -ENOSYS;
1227         }
1228
1229         new_hpage = get_new_page(hpage, private, &result);
1230         if (!new_hpage)
1231                 return -ENOMEM;
1232
1233         if (!trylock_page(hpage)) {
1234                 if (!force || mode != MIGRATE_SYNC)
1235                         goto out;
1236                 lock_page(hpage);
1237         }
1238
1239         if (PageAnon(hpage))
1240                 anon_vma = page_get_anon_vma(hpage);
1241
1242         if (unlikely(!trylock_page(new_hpage)))
1243                 goto put_anon;
1244
1245         if (page_mapped(hpage)) {
1246                 try_to_unmap(hpage,
1247                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1248                 page_was_mapped = 1;
1249         }
1250
1251         if (!page_mapped(hpage))
1252                 rc = move_to_new_page(new_hpage, hpage, mode);
1253
1254         if (page_was_mapped)
1255                 remove_migration_ptes(hpage,
1256                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1257
1258         unlock_page(new_hpage);
1259
1260 put_anon:
1261         if (anon_vma)
1262                 put_anon_vma(anon_vma);
1263
1264         if (rc == MIGRATEPAGE_SUCCESS) {
1265                 hugetlb_cgroup_migrate(hpage, new_hpage);
1266                 put_new_page = NULL;
1267                 set_page_owner_migrate_reason(new_hpage, reason);
1268         }
1269
1270         unlock_page(hpage);
1271 out:
1272         if (rc != -EAGAIN)
1273                 putback_active_hugepage(hpage);
1274
1275         /*
1276          * If migration was not successful and there's a freeing callback, use
1277          * it.  Otherwise, put_page() will drop the reference grabbed during
1278          * isolation.
1279          */
1280         if (put_new_page)
1281                 put_new_page(new_hpage, private);
1282         else
1283                 putback_active_hugepage(new_hpage);
1284
1285         if (result) {
1286                 if (rc)
1287                         *result = rc;
1288                 else
1289                         *result = page_to_nid(new_hpage);
1290         }
1291         return rc;
1292 }
1293
1294 /*
1295  * migrate_pages - migrate the pages specified in a list, to the free pages
1296  *                 supplied as the target for the page migration
1297  *
1298  * @from:               The list of pages to be migrated.
1299  * @get_new_page:       The function used to allocate free pages to be used
1300  *                      as the target of the page migration.
1301  * @put_new_page:       The function used to free target pages if migration
1302  *                      fails, or NULL if no special handling is necessary.
1303  * @private:            Private data to be passed on to get_new_page()
1304  * @mode:               The migration mode that specifies the constraints for
1305  *                      page migration, if any.
1306  * @reason:             The reason for page migration.
1307  *
1308  * The function returns after 10 attempts or if no pages are movable any more
1309  * because the list has become empty or no retryable pages exist any more.
1310  * The caller should call putback_movable_pages() to return pages to the LRU
1311  * or free list only if ret != 0.
1312  *
1313  * Returns the number of pages that were not migrated, or an error code.
1314  */
1315 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1316                 free_page_t put_new_page, unsigned long private,
1317                 enum migrate_mode mode, int reason)
1318 {
1319         int retry = 1;
1320         int nr_failed = 0;
1321         int nr_succeeded = 0;
1322         int pass = 0;
1323         struct page *page;
1324         struct page *page2;
1325         int swapwrite = current->flags & PF_SWAPWRITE;
1326         int rc;
1327
1328         if (!swapwrite)
1329                 current->flags |= PF_SWAPWRITE;
1330
1331         for(pass = 0; pass < 10 && retry; pass++) {
1332                 retry = 0;
1333
1334                 list_for_each_entry_safe(page, page2, from, lru) {
1335                         cond_resched();
1336
1337                         if (PageHuge(page))
1338                                 rc = unmap_and_move_huge_page(get_new_page,
1339                                                 put_new_page, private, page,
1340                                                 pass > 2, mode, reason);
1341                         else
1342                                 rc = unmap_and_move(get_new_page, put_new_page,
1343                                                 private, page, pass > 2, mode,
1344                                                 reason);
1345
1346                         switch(rc) {
1347                         case -ENOMEM:
1348                                 nr_failed++;
1349                                 goto out;
1350                         case -EAGAIN:
1351                                 retry++;
1352                                 break;
1353                         case MIGRATEPAGE_SUCCESS:
1354                                 nr_succeeded++;
1355                                 break;
1356                         default:
1357                                 /*
1358                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1359                                  * unlike -EAGAIN case, the failed page is
1360                                  * removed from migration page list and not
1361                                  * retried in the next outer loop.
1362                                  */
1363                                 nr_failed++;
1364                                 break;
1365                         }
1366                 }
1367         }
1368         nr_failed += retry;
1369         rc = nr_failed;
1370 out:
1371         if (nr_succeeded)
1372                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1373         if (nr_failed)
1374                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1375         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1376
1377         if (!swapwrite)
1378                 current->flags &= ~PF_SWAPWRITE;
1379
1380         return rc;
1381 }
1382
1383 #ifdef CONFIG_NUMA
1384 /*
1385  * Move a list of individual pages
1386  */
1387 struct page_to_node {
1388         unsigned long addr;
1389         struct page *page;
1390         int node;
1391         int status;
1392 };
1393
1394 static struct page *new_page_node(struct page *p, unsigned long private,
1395                 int **result)
1396 {
1397         struct page_to_node *pm = (struct page_to_node *)private;
1398
1399         while (pm->node != MAX_NUMNODES && pm->page != p)
1400                 pm++;
1401
1402         if (pm->node == MAX_NUMNODES)
1403                 return NULL;
1404
1405         *result = &pm->status;
1406
1407         if (PageHuge(p))
1408                 return alloc_huge_page_node(page_hstate(compound_head(p)),
1409                                         pm->node);
1410         else
1411                 return __alloc_pages_node(pm->node,
1412                                 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1413 }
1414
1415 /*
1416  * Move a set of pages as indicated in the pm array. The addr
1417  * field must be set to the virtual address of the page to be moved
1418  * and the node number must contain a valid target node.
1419  * The pm array ends with node = MAX_NUMNODES.
1420  */
1421 static int do_move_page_to_node_array(struct mm_struct *mm,
1422                                       struct page_to_node *pm,
1423                                       int migrate_all)
1424 {
1425         int err;
1426         struct page_to_node *pp;
1427         LIST_HEAD(pagelist);
1428
1429         down_read(&mm->mmap_sem);
1430
1431         /*
1432          * Build a list of pages to migrate
1433          */
1434         for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1435                 struct vm_area_struct *vma;
1436                 struct page *page;
1437
1438                 err = -EFAULT;
1439                 vma = find_vma(mm, pp->addr);
1440                 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1441                         goto set_status;
1442
1443                 /* FOLL_DUMP to ignore special (like zero) pages */
1444                 page = follow_page(vma, pp->addr,
1445                                 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1446
1447                 err = PTR_ERR(page);
1448                 if (IS_ERR(page))
1449                         goto set_status;
1450
1451                 err = -ENOENT;
1452                 if (!page)
1453                         goto set_status;
1454
1455                 pp->page = page;
1456                 err = page_to_nid(page);
1457
1458                 if (err == pp->node)
1459                         /*
1460                          * Node already in the right place
1461                          */
1462                         goto put_and_set;
1463
1464                 err = -EACCES;
1465                 if (page_mapcount(page) > 1 &&
1466                                 !migrate_all)
1467                         goto put_and_set;
1468
1469                 if (PageHuge(page)) {
1470                         if (PageHead(page))
1471                                 isolate_huge_page(page, &pagelist);
1472                         goto put_and_set;
1473                 }
1474
1475                 err = isolate_lru_page(page);
1476                 if (!err) {
1477                         list_add_tail(&page->lru, &pagelist);
1478                         inc_zone_page_state(page, NR_ISOLATED_ANON +
1479                                             page_is_file_cache(page));
1480                 }
1481 put_and_set:
1482                 /*
1483                  * Either remove the duplicate refcount from
1484                  * isolate_lru_page() or drop the page ref if it was
1485                  * not isolated.
1486                  */
1487                 put_page(page);
1488 set_status:
1489                 pp->status = err;
1490         }
1491
1492         err = 0;
1493         if (!list_empty(&pagelist)) {
1494                 err = migrate_pages(&pagelist, new_page_node, NULL,
1495                                 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1496                 if (err)
1497                         putback_movable_pages(&pagelist);
1498         }
1499
1500         up_read(&mm->mmap_sem);
1501         return err;
1502 }
1503
1504 /*
1505  * Migrate an array of page address onto an array of nodes and fill
1506  * the corresponding array of status.
1507  */
1508 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1509                          unsigned long nr_pages,
1510                          const void __user * __user *pages,
1511                          const int __user *nodes,
1512                          int __user *status, int flags)
1513 {
1514         struct page_to_node *pm;
1515         unsigned long chunk_nr_pages;
1516         unsigned long chunk_start;
1517         int err;
1518
1519         err = -ENOMEM;
1520         pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1521         if (!pm)
1522                 goto out;
1523
1524         migrate_prep();
1525
1526         /*
1527          * Store a chunk of page_to_node array in a page,
1528          * but keep the last one as a marker
1529          */
1530         chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1531
1532         for (chunk_start = 0;
1533              chunk_start < nr_pages;
1534              chunk_start += chunk_nr_pages) {
1535                 int j;
1536
1537                 if (chunk_start + chunk_nr_pages > nr_pages)
1538                         chunk_nr_pages = nr_pages - chunk_start;
1539
1540                 /* fill the chunk pm with addrs and nodes from user-space */
1541                 for (j = 0; j < chunk_nr_pages; j++) {
1542                         const void __user *p;
1543                         int node;
1544
1545                         err = -EFAULT;
1546                         if (get_user(p, pages + j + chunk_start))
1547                                 goto out_pm;
1548                         pm[j].addr = (unsigned long) p;
1549
1550                         if (get_user(node, nodes + j + chunk_start))
1551                                 goto out_pm;
1552
1553                         err = -ENODEV;
1554                         if (node < 0 || node >= MAX_NUMNODES)
1555                                 goto out_pm;
1556
1557                         if (!node_state(node, N_MEMORY))
1558                                 goto out_pm;
1559
1560                         err = -EACCES;
1561                         if (!node_isset(node, task_nodes))
1562                                 goto out_pm;
1563
1564                         pm[j].node = node;
1565                 }
1566
1567                 /* End marker for this chunk */
1568                 pm[chunk_nr_pages].node = MAX_NUMNODES;
1569
1570                 /* Migrate this chunk */
1571                 err = do_move_page_to_node_array(mm, pm,
1572                                                  flags & MPOL_MF_MOVE_ALL);
1573                 if (err < 0)
1574                         goto out_pm;
1575
1576                 /* Return status information */
1577                 for (j = 0; j < chunk_nr_pages; j++)
1578                         if (put_user(pm[j].status, status + j + chunk_start)) {
1579                                 err = -EFAULT;
1580                                 goto out_pm;
1581                         }
1582         }
1583         err = 0;
1584
1585 out_pm:
1586         free_page((unsigned long)pm);
1587 out:
1588         return err;
1589 }
1590
1591 /*
1592  * Determine the nodes of an array of pages and store it in an array of status.
1593  */
1594 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1595                                 const void __user **pages, int *status)
1596 {
1597         unsigned long i;
1598
1599         down_read(&mm->mmap_sem);
1600
1601         for (i = 0; i < nr_pages; i++) {
1602                 unsigned long addr = (unsigned long)(*pages);
1603                 struct vm_area_struct *vma;
1604                 struct page *page;
1605                 int err = -EFAULT;
1606
1607                 vma = find_vma(mm, addr);
1608                 if (!vma || addr < vma->vm_start)
1609                         goto set_status;
1610
1611                 /* FOLL_DUMP to ignore special (like zero) pages */
1612                 page = follow_page(vma, addr, FOLL_DUMP);
1613
1614                 err = PTR_ERR(page);
1615                 if (IS_ERR(page))
1616                         goto set_status;
1617
1618                 err = page ? page_to_nid(page) : -ENOENT;
1619 set_status:
1620                 *status = err;
1621
1622                 pages++;
1623                 status++;
1624         }
1625
1626         up_read(&mm->mmap_sem);
1627 }
1628
1629 /*
1630  * Determine the nodes of a user array of pages and store it in
1631  * a user array of status.
1632  */
1633 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1634                          const void __user * __user *pages,
1635                          int __user *status)
1636 {
1637 #define DO_PAGES_STAT_CHUNK_NR 16
1638         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1639         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1640
1641         while (nr_pages) {
1642                 unsigned long chunk_nr;
1643
1644                 chunk_nr = nr_pages;
1645                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1646                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1647
1648                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1649                         break;
1650
1651                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1652
1653                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1654                         break;
1655
1656                 pages += chunk_nr;
1657                 status += chunk_nr;
1658                 nr_pages -= chunk_nr;
1659         }
1660         return nr_pages ? -EFAULT : 0;
1661 }
1662
1663 /*
1664  * Move a list of pages in the address space of the currently executing
1665  * process.
1666  */
1667 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1668                 const void __user * __user *, pages,
1669                 const int __user *, nodes,
1670                 int __user *, status, int, flags)
1671 {
1672         const struct cred *cred = current_cred(), *tcred;
1673         struct task_struct *task;
1674         struct mm_struct *mm;
1675         int err;
1676         nodemask_t task_nodes;
1677
1678         /* Check flags */
1679         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1680                 return -EINVAL;
1681
1682         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1683                 return -EPERM;
1684
1685         /* Find the mm_struct */
1686         rcu_read_lock();
1687         task = pid ? find_task_by_vpid(pid) : current;
1688         if (!task) {
1689                 rcu_read_unlock();
1690                 return -ESRCH;
1691         }
1692         get_task_struct(task);
1693
1694         /*
1695          * Check if this process has the right to modify the specified
1696          * process. The right exists if the process has administrative
1697          * capabilities, superuser privileges or the same
1698          * userid as the target process.
1699          */
1700         tcred = __task_cred(task);
1701         if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1702             !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1703             !capable(CAP_SYS_NICE)) {
1704                 rcu_read_unlock();
1705                 err = -EPERM;
1706                 goto out;
1707         }
1708         rcu_read_unlock();
1709
1710         err = security_task_movememory(task);
1711         if (err)
1712                 goto out;
1713
1714         task_nodes = cpuset_mems_allowed(task);
1715         mm = get_task_mm(task);
1716         put_task_struct(task);
1717
1718         if (!mm)
1719                 return -EINVAL;
1720
1721         if (nodes)
1722                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1723                                     nodes, status, flags);
1724         else
1725                 err = do_pages_stat(mm, nr_pages, pages, status);
1726
1727         mmput(mm);
1728         return err;
1729
1730 out:
1731         put_task_struct(task);
1732         return err;
1733 }
1734
1735 #ifdef CONFIG_NUMA_BALANCING
1736 /*
1737  * Returns true if this is a safe migration target node for misplaced NUMA
1738  * pages. Currently it only checks the watermarks which crude
1739  */
1740 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1741                                    unsigned long nr_migrate_pages)
1742 {
1743         int z;
1744         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1745                 struct zone *zone = pgdat->node_zones + z;
1746
1747                 if (!populated_zone(zone))
1748                         continue;
1749
1750                 if (!zone_reclaimable(zone))
1751                         continue;
1752
1753                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1754                 if (!zone_watermark_ok(zone, 0,
1755                                        high_wmark_pages(zone) +
1756                                        nr_migrate_pages,
1757                                        0, 0))
1758                         continue;
1759                 return true;
1760         }
1761         return false;
1762 }
1763
1764 static struct page *alloc_misplaced_dst_page(struct page *page,
1765                                            unsigned long data,
1766                                            int **result)
1767 {
1768         int nid = (int) data;
1769         struct page *newpage;
1770
1771         newpage = __alloc_pages_node(nid,
1772                                          (GFP_HIGHUSER_MOVABLE |
1773                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1774                                           __GFP_NORETRY | __GFP_NOWARN) &
1775                                          ~__GFP_RECLAIM, 0);
1776
1777         return newpage;
1778 }
1779
1780 /*
1781  * page migration rate limiting control.
1782  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1783  * window of time. Default here says do not migrate more than 1280M per second.
1784  */
1785 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1786 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1787
1788 /* Returns true if the node is migrate rate-limited after the update */
1789 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1790                                         unsigned long nr_pages)
1791 {
1792         /*
1793          * Rate-limit the amount of data that is being migrated to a node.
1794          * Optimal placement is no good if the memory bus is saturated and
1795          * all the time is being spent migrating!
1796          */
1797         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1798                 spin_lock(&pgdat->numabalancing_migrate_lock);
1799                 pgdat->numabalancing_migrate_nr_pages = 0;
1800                 pgdat->numabalancing_migrate_next_window = jiffies +
1801                         msecs_to_jiffies(migrate_interval_millisecs);
1802                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1803         }
1804         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1805                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1806                                                                 nr_pages);
1807                 return true;
1808         }
1809
1810         /*
1811          * This is an unlocked non-atomic update so errors are possible.
1812          * The consequences are failing to migrate when we potentiall should
1813          * have which is not severe enough to warrant locking. If it is ever
1814          * a problem, it can be converted to a per-cpu counter.
1815          */
1816         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1817         return false;
1818 }
1819
1820 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1821 {
1822         int page_lru;
1823
1824         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1825
1826         /* Avoid migrating to a node that is nearly full */
1827         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1828                 return 0;
1829
1830         if (isolate_lru_page(page))
1831                 return 0;
1832
1833         /*
1834          * migrate_misplaced_transhuge_page() skips page migration's usual
1835          * check on page_count(), so we must do it here, now that the page
1836          * has been isolated: a GUP pin, or any other pin, prevents migration.
1837          * The expected page count is 3: 1 for page's mapcount and 1 for the
1838          * caller's pin and 1 for the reference taken by isolate_lru_page().
1839          */
1840         if (PageTransHuge(page) && page_count(page) != 3) {
1841                 putback_lru_page(page);
1842                 return 0;
1843         }
1844
1845         page_lru = page_is_file_cache(page);
1846         mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1847                                 hpage_nr_pages(page));
1848
1849         /*
1850          * Isolating the page has taken another reference, so the
1851          * caller's reference can be safely dropped without the page
1852          * disappearing underneath us during migration.
1853          */
1854         put_page(page);
1855         return 1;
1856 }
1857
1858 bool pmd_trans_migrating(pmd_t pmd)
1859 {
1860         struct page *page = pmd_page(pmd);
1861         return PageLocked(page);
1862 }
1863
1864 /*
1865  * Attempt to migrate a misplaced page to the specified destination
1866  * node. Caller is expected to have an elevated reference count on
1867  * the page that will be dropped by this function before returning.
1868  */
1869 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1870                            int node)
1871 {
1872         pg_data_t *pgdat = NODE_DATA(node);
1873         int isolated;
1874         int nr_remaining;
1875         LIST_HEAD(migratepages);
1876
1877         /*
1878          * Don't migrate file pages that are mapped in multiple processes
1879          * with execute permissions as they are probably shared libraries.
1880          */
1881         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1882             (vma->vm_flags & VM_EXEC))
1883                 goto out;
1884
1885         /*
1886          * Rate-limit the amount of data that is being migrated to a node.
1887          * Optimal placement is no good if the memory bus is saturated and
1888          * all the time is being spent migrating!
1889          */
1890         if (numamigrate_update_ratelimit(pgdat, 1))
1891                 goto out;
1892
1893         isolated = numamigrate_isolate_page(pgdat, page);
1894         if (!isolated)
1895                 goto out;
1896
1897         list_add(&page->lru, &migratepages);
1898         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1899                                      NULL, node, MIGRATE_ASYNC,
1900                                      MR_NUMA_MISPLACED);
1901         if (nr_remaining) {
1902                 if (!list_empty(&migratepages)) {
1903                         list_del(&page->lru);
1904                         dec_zone_page_state(page, NR_ISOLATED_ANON +
1905                                         page_is_file_cache(page));
1906                         putback_lru_page(page);
1907                 }
1908                 isolated = 0;
1909         } else
1910                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1911         BUG_ON(!list_empty(&migratepages));
1912         return isolated;
1913
1914 out:
1915         put_page(page);
1916         return 0;
1917 }
1918 #endif /* CONFIG_NUMA_BALANCING */
1919
1920 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1921 /*
1922  * Migrates a THP to a given target node. page must be locked and is unlocked
1923  * before returning.
1924  */
1925 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1926                                 struct vm_area_struct *vma,
1927                                 pmd_t *pmd, pmd_t entry,
1928                                 unsigned long address,
1929                                 struct page *page, int node)
1930 {
1931         spinlock_t *ptl;
1932         pg_data_t *pgdat = NODE_DATA(node);
1933         int isolated = 0;
1934         struct page *new_page = NULL;
1935         int page_lru = page_is_file_cache(page);
1936         unsigned long mmun_start = address & HPAGE_PMD_MASK;
1937         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1938         pmd_t orig_entry;
1939
1940         /*
1941          * Rate-limit the amount of data that is being migrated to a node.
1942          * Optimal placement is no good if the memory bus is saturated and
1943          * all the time is being spent migrating!
1944          */
1945         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1946                 goto out_dropref;
1947
1948         new_page = alloc_pages_node(node,
1949                 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1950                 HPAGE_PMD_ORDER);
1951         if (!new_page)
1952                 goto out_fail;
1953         prep_transhuge_page(new_page);
1954
1955         isolated = numamigrate_isolate_page(pgdat, page);
1956         if (!isolated) {
1957                 put_page(new_page);
1958                 goto out_fail;
1959         }
1960         /*
1961          * We are not sure a pending tlb flush here is for a huge page
1962          * mapping or not. Hence use the tlb range variant
1963          */
1964         if (mm_tlb_flush_pending(mm))
1965                 flush_tlb_range(vma, mmun_start, mmun_end);
1966
1967         /* Prepare a page as a migration target */
1968         __SetPageLocked(new_page);
1969         __SetPageSwapBacked(new_page);
1970
1971         /* anon mapping, we can simply copy page->mapping to the new page: */
1972         new_page->mapping = page->mapping;
1973         new_page->index = page->index;
1974         migrate_page_copy(new_page, page);
1975         WARN_ON(PageLRU(new_page));
1976
1977         /* Recheck the target PMD */
1978         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1979         ptl = pmd_lock(mm, pmd);
1980         if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1981 fail_putback:
1982                 spin_unlock(ptl);
1983                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1984
1985                 /* Reverse changes made by migrate_page_copy() */
1986                 if (TestClearPageActive(new_page))
1987                         SetPageActive(page);
1988                 if (TestClearPageUnevictable(new_page))
1989                         SetPageUnevictable(page);
1990
1991                 unlock_page(new_page);
1992                 put_page(new_page);             /* Free it */
1993
1994                 /* Retake the callers reference and putback on LRU */
1995                 get_page(page);
1996                 putback_lru_page(page);
1997                 mod_zone_page_state(page_zone(page),
1998                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1999
2000                 goto out_unlock;
2001         }
2002
2003         orig_entry = *pmd;
2004         entry = mk_pmd(new_page, vma->vm_page_prot);
2005         entry = pmd_mkhuge(entry);
2006         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2007
2008         /*
2009          * Clear the old entry under pagetable lock and establish the new PTE.
2010          * Any parallel GUP will either observe the old page blocking on the
2011          * page lock, block on the page table lock or observe the new page.
2012          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2013          * guarantee the copy is visible before the pagetable update.
2014          */
2015         flush_cache_range(vma, mmun_start, mmun_end);
2016         page_add_anon_rmap(new_page, vma, mmun_start, true);
2017         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2018         set_pmd_at(mm, mmun_start, pmd, entry);
2019         update_mmu_cache_pmd(vma, address, &entry);
2020
2021         if (page_count(page) != 2) {
2022                 set_pmd_at(mm, mmun_start, pmd, orig_entry);
2023                 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2024                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2025                 update_mmu_cache_pmd(vma, address, &entry);
2026                 page_remove_rmap(new_page, true);
2027                 goto fail_putback;
2028         }
2029
2030         mlock_migrate_page(new_page, page);
2031         page_remove_rmap(page, true);
2032         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2033
2034         spin_unlock(ptl);
2035         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2036
2037         /* Take an "isolate" reference and put new page on the LRU. */
2038         get_page(new_page);
2039         putback_lru_page(new_page);
2040
2041         unlock_page(new_page);
2042         unlock_page(page);
2043         put_page(page);                 /* Drop the rmap reference */
2044         put_page(page);                 /* Drop the LRU isolation reference */
2045
2046         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2047         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2048
2049         mod_zone_page_state(page_zone(page),
2050                         NR_ISOLATED_ANON + page_lru,
2051                         -HPAGE_PMD_NR);
2052         return isolated;
2053
2054 out_fail:
2055         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2056 out_dropref:
2057         ptl = pmd_lock(mm, pmd);
2058         if (pmd_same(*pmd, entry)) {
2059                 entry = pmd_modify(entry, vma->vm_page_prot);
2060                 set_pmd_at(mm, mmun_start, pmd, entry);
2061                 update_mmu_cache_pmd(vma, address, &entry);
2062         }
2063         spin_unlock(ptl);
2064
2065 out_unlock:
2066         unlock_page(page);
2067         put_page(page);
2068         return 0;
2069 }
2070 #endif /* CONFIG_NUMA_BALANCING */
2071
2072 #endif /* CONFIG_NUMA */