]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/migrate.c
Merge branch 'i2c-mux/for-current' of https://github.com/peda-r/i2c-mux into i2c...
[karo-tx-linux.git] / mm / migrate.c
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/sched/mm.h>
44
45 #include <asm/tlbflush.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/migrate.h>
49
50 #include "internal.h"
51
52 /*
53  * migrate_prep() needs to be called before we start compiling a list of pages
54  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
55  * undesirable, use migrate_prep_local()
56  */
57 int migrate_prep(void)
58 {
59         /*
60          * Clear the LRU lists so pages can be isolated.
61          * Note that pages may be moved off the LRU after we have
62          * drained them. Those pages will fail to migrate like other
63          * pages that may be busy.
64          */
65         lru_add_drain_all();
66
67         return 0;
68 }
69
70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
71 int migrate_prep_local(void)
72 {
73         lru_add_drain();
74
75         return 0;
76 }
77
78 int isolate_movable_page(struct page *page, isolate_mode_t mode)
79 {
80         struct address_space *mapping;
81
82         /*
83          * Avoid burning cycles with pages that are yet under __free_pages(),
84          * or just got freed under us.
85          *
86          * In case we 'win' a race for a movable page being freed under us and
87          * raise its refcount preventing __free_pages() from doing its job
88          * the put_page() at the end of this block will take care of
89          * release this page, thus avoiding a nasty leakage.
90          */
91         if (unlikely(!get_page_unless_zero(page)))
92                 goto out;
93
94         /*
95          * Check PageMovable before holding a PG_lock because page's owner
96          * assumes anybody doesn't touch PG_lock of newly allocated page
97          * so unconditionally grapping the lock ruins page's owner side.
98          */
99         if (unlikely(!__PageMovable(page)))
100                 goto out_putpage;
101         /*
102          * As movable pages are not isolated from LRU lists, concurrent
103          * compaction threads can race against page migration functions
104          * as well as race against the releasing a page.
105          *
106          * In order to avoid having an already isolated movable page
107          * being (wrongly) re-isolated while it is under migration,
108          * or to avoid attempting to isolate pages being released,
109          * lets be sure we have the page lock
110          * before proceeding with the movable page isolation steps.
111          */
112         if (unlikely(!trylock_page(page)))
113                 goto out_putpage;
114
115         if (!PageMovable(page) || PageIsolated(page))
116                 goto out_no_isolated;
117
118         mapping = page_mapping(page);
119         VM_BUG_ON_PAGE(!mapping, page);
120
121         if (!mapping->a_ops->isolate_page(page, mode))
122                 goto out_no_isolated;
123
124         /* Driver shouldn't use PG_isolated bit of page->flags */
125         WARN_ON_ONCE(PageIsolated(page));
126         __SetPageIsolated(page);
127         unlock_page(page);
128
129         return 0;
130
131 out_no_isolated:
132         unlock_page(page);
133 out_putpage:
134         put_page(page);
135 out:
136         return -EBUSY;
137 }
138
139 /* It should be called on page which is PG_movable */
140 void putback_movable_page(struct page *page)
141 {
142         struct address_space *mapping;
143
144         VM_BUG_ON_PAGE(!PageLocked(page), page);
145         VM_BUG_ON_PAGE(!PageMovable(page), page);
146         VM_BUG_ON_PAGE(!PageIsolated(page), page);
147
148         mapping = page_mapping(page);
149         mapping->a_ops->putback_page(page);
150         __ClearPageIsolated(page);
151 }
152
153 /*
154  * Put previously isolated pages back onto the appropriate lists
155  * from where they were once taken off for compaction/migration.
156  *
157  * This function shall be used whenever the isolated pageset has been
158  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
159  * and isolate_huge_page().
160  */
161 void putback_movable_pages(struct list_head *l)
162 {
163         struct page *page;
164         struct page *page2;
165
166         list_for_each_entry_safe(page, page2, l, lru) {
167                 if (unlikely(PageHuge(page))) {
168                         putback_active_hugepage(page);
169                         continue;
170                 }
171                 list_del(&page->lru);
172                 /*
173                  * We isolated non-lru movable page so here we can use
174                  * __PageMovable because LRU page's mapping cannot have
175                  * PAGE_MAPPING_MOVABLE.
176                  */
177                 if (unlikely(__PageMovable(page))) {
178                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
179                         lock_page(page);
180                         if (PageMovable(page))
181                                 putback_movable_page(page);
182                         else
183                                 __ClearPageIsolated(page);
184                         unlock_page(page);
185                         put_page(page);
186                 } else {
187                         putback_lru_page(page);
188                         dec_node_page_state(page, NR_ISOLATED_ANON +
189                                         page_is_file_cache(page));
190                 }
191         }
192 }
193
194 /*
195  * Restore a potential migration pte to a working pte entry
196  */
197 static int remove_migration_pte(struct page *page, struct vm_area_struct *vma,
198                                  unsigned long addr, void *old)
199 {
200         struct page_vma_mapped_walk pvmw = {
201                 .page = old,
202                 .vma = vma,
203                 .address = addr,
204                 .flags = PVMW_SYNC | PVMW_MIGRATION,
205         };
206         struct page *new;
207         pte_t pte;
208         swp_entry_t entry;
209
210         VM_BUG_ON_PAGE(PageTail(page), page);
211         while (page_vma_mapped_walk(&pvmw)) {
212                 new = page - pvmw.page->index +
213                         linear_page_index(vma, pvmw.address);
214
215                 get_page(new);
216                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
217                 if (pte_swp_soft_dirty(*pvmw.pte))
218                         pte = pte_mksoft_dirty(pte);
219
220                 /*
221                  * Recheck VMA as permissions can change since migration started
222                  */
223                 entry = pte_to_swp_entry(*pvmw.pte);
224                 if (is_write_migration_entry(entry))
225                         pte = maybe_mkwrite(pte, vma);
226
227 #ifdef CONFIG_HUGETLB_PAGE
228                 if (PageHuge(new)) {
229                         pte = pte_mkhuge(pte);
230                         pte = arch_make_huge_pte(pte, vma, new, 0);
231                 }
232 #endif
233                 flush_dcache_page(new);
234                 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
235
236                 if (PageHuge(new)) {
237                         if (PageAnon(new))
238                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
239                         else
240                                 page_dup_rmap(new, true);
241                 } else if (PageAnon(new))
242                         page_add_anon_rmap(new, vma, pvmw.address, false);
243                 else
244                         page_add_file_rmap(new, false);
245
246                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247                         mlock_vma_page(new);
248
249                 /* No need to invalidate - it was non-present before */
250                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
251         }
252
253         return SWAP_AGAIN;
254 }
255
256 /*
257  * Get rid of all migration entries and replace them by
258  * references to the indicated page.
259  */
260 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
261 {
262         struct rmap_walk_control rwc = {
263                 .rmap_one = remove_migration_pte,
264                 .arg = old,
265         };
266
267         if (locked)
268                 rmap_walk_locked(new, &rwc);
269         else
270                 rmap_walk(new, &rwc);
271 }
272
273 /*
274  * Something used the pte of a page under migration. We need to
275  * get to the page and wait until migration is finished.
276  * When we return from this function the fault will be retried.
277  */
278 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
279                                 spinlock_t *ptl)
280 {
281         pte_t pte;
282         swp_entry_t entry;
283         struct page *page;
284
285         spin_lock(ptl);
286         pte = *ptep;
287         if (!is_swap_pte(pte))
288                 goto out;
289
290         entry = pte_to_swp_entry(pte);
291         if (!is_migration_entry(entry))
292                 goto out;
293
294         page = migration_entry_to_page(entry);
295
296         /*
297          * Once radix-tree replacement of page migration started, page_count
298          * *must* be zero. And, we don't want to call wait_on_page_locked()
299          * against a page without get_page().
300          * So, we use get_page_unless_zero(), here. Even failed, page fault
301          * will occur again.
302          */
303         if (!get_page_unless_zero(page))
304                 goto out;
305         pte_unmap_unlock(ptep, ptl);
306         wait_on_page_locked(page);
307         put_page(page);
308         return;
309 out:
310         pte_unmap_unlock(ptep, ptl);
311 }
312
313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
314                                 unsigned long address)
315 {
316         spinlock_t *ptl = pte_lockptr(mm, pmd);
317         pte_t *ptep = pte_offset_map(pmd, address);
318         __migration_entry_wait(mm, ptep, ptl);
319 }
320
321 void migration_entry_wait_huge(struct vm_area_struct *vma,
322                 struct mm_struct *mm, pte_t *pte)
323 {
324         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
325         __migration_entry_wait(mm, pte, ptl);
326 }
327
328 #ifdef CONFIG_BLOCK
329 /* Returns true if all buffers are successfully locked */
330 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
331                                                         enum migrate_mode mode)
332 {
333         struct buffer_head *bh = head;
334
335         /* Simple case, sync compaction */
336         if (mode != MIGRATE_ASYNC) {
337                 do {
338                         get_bh(bh);
339                         lock_buffer(bh);
340                         bh = bh->b_this_page;
341
342                 } while (bh != head);
343
344                 return true;
345         }
346
347         /* async case, we cannot block on lock_buffer so use trylock_buffer */
348         do {
349                 get_bh(bh);
350                 if (!trylock_buffer(bh)) {
351                         /*
352                          * We failed to lock the buffer and cannot stall in
353                          * async migration. Release the taken locks
354                          */
355                         struct buffer_head *failed_bh = bh;
356                         put_bh(failed_bh);
357                         bh = head;
358                         while (bh != failed_bh) {
359                                 unlock_buffer(bh);
360                                 put_bh(bh);
361                                 bh = bh->b_this_page;
362                         }
363                         return false;
364                 }
365
366                 bh = bh->b_this_page;
367         } while (bh != head);
368         return true;
369 }
370 #else
371 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
372                                                         enum migrate_mode mode)
373 {
374         return true;
375 }
376 #endif /* CONFIG_BLOCK */
377
378 /*
379  * Replace the page in the mapping.
380  *
381  * The number of remaining references must be:
382  * 1 for anonymous pages without a mapping
383  * 2 for pages with a mapping
384  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
385  */
386 int migrate_page_move_mapping(struct address_space *mapping,
387                 struct page *newpage, struct page *page,
388                 struct buffer_head *head, enum migrate_mode mode,
389                 int extra_count)
390 {
391         struct zone *oldzone, *newzone;
392         int dirty;
393         int expected_count = 1 + extra_count;
394         void **pslot;
395
396         if (!mapping) {
397                 /* Anonymous page without mapping */
398                 if (page_count(page) != expected_count)
399                         return -EAGAIN;
400
401                 /* No turning back from here */
402                 newpage->index = page->index;
403                 newpage->mapping = page->mapping;
404                 if (PageSwapBacked(page))
405                         __SetPageSwapBacked(newpage);
406
407                 return MIGRATEPAGE_SUCCESS;
408         }
409
410         oldzone = page_zone(page);
411         newzone = page_zone(newpage);
412
413         spin_lock_irq(&mapping->tree_lock);
414
415         pslot = radix_tree_lookup_slot(&mapping->page_tree,
416                                         page_index(page));
417
418         expected_count += 1 + page_has_private(page);
419         if (page_count(page) != expected_count ||
420                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
421                 spin_unlock_irq(&mapping->tree_lock);
422                 return -EAGAIN;
423         }
424
425         if (!page_ref_freeze(page, expected_count)) {
426                 spin_unlock_irq(&mapping->tree_lock);
427                 return -EAGAIN;
428         }
429
430         /*
431          * In the async migration case of moving a page with buffers, lock the
432          * buffers using trylock before the mapping is moved. If the mapping
433          * was moved, we later failed to lock the buffers and could not move
434          * the mapping back due to an elevated page count, we would have to
435          * block waiting on other references to be dropped.
436          */
437         if (mode == MIGRATE_ASYNC && head &&
438                         !buffer_migrate_lock_buffers(head, mode)) {
439                 page_ref_unfreeze(page, expected_count);
440                 spin_unlock_irq(&mapping->tree_lock);
441                 return -EAGAIN;
442         }
443
444         /*
445          * Now we know that no one else is looking at the page:
446          * no turning back from here.
447          */
448         newpage->index = page->index;
449         newpage->mapping = page->mapping;
450         get_page(newpage);      /* add cache reference */
451         if (PageSwapBacked(page)) {
452                 __SetPageSwapBacked(newpage);
453                 if (PageSwapCache(page)) {
454                         SetPageSwapCache(newpage);
455                         set_page_private(newpage, page_private(page));
456                 }
457         } else {
458                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
459         }
460
461         /* Move dirty while page refs frozen and newpage not yet exposed */
462         dirty = PageDirty(page);
463         if (dirty) {
464                 ClearPageDirty(page);
465                 SetPageDirty(newpage);
466         }
467
468         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
469
470         /*
471          * Drop cache reference from old page by unfreezing
472          * to one less reference.
473          * We know this isn't the last reference.
474          */
475         page_ref_unfreeze(page, expected_count - 1);
476
477         spin_unlock(&mapping->tree_lock);
478         /* Leave irq disabled to prevent preemption while updating stats */
479
480         /*
481          * If moved to a different zone then also account
482          * the page for that zone. Other VM counters will be
483          * taken care of when we establish references to the
484          * new page and drop references to the old page.
485          *
486          * Note that anonymous pages are accounted for
487          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
488          * are mapped to swap space.
489          */
490         if (newzone != oldzone) {
491                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
492                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
493                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
494                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
495                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
496                 }
497                 if (dirty && mapping_cap_account_dirty(mapping)) {
498                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
499                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
500                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
501                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
502                 }
503         }
504         local_irq_enable();
505
506         return MIGRATEPAGE_SUCCESS;
507 }
508 EXPORT_SYMBOL(migrate_page_move_mapping);
509
510 /*
511  * The expected number of remaining references is the same as that
512  * of migrate_page_move_mapping().
513  */
514 int migrate_huge_page_move_mapping(struct address_space *mapping,
515                                    struct page *newpage, struct page *page)
516 {
517         int expected_count;
518         void **pslot;
519
520         spin_lock_irq(&mapping->tree_lock);
521
522         pslot = radix_tree_lookup_slot(&mapping->page_tree,
523                                         page_index(page));
524
525         expected_count = 2 + page_has_private(page);
526         if (page_count(page) != expected_count ||
527                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
528                 spin_unlock_irq(&mapping->tree_lock);
529                 return -EAGAIN;
530         }
531
532         if (!page_ref_freeze(page, expected_count)) {
533                 spin_unlock_irq(&mapping->tree_lock);
534                 return -EAGAIN;
535         }
536
537         newpage->index = page->index;
538         newpage->mapping = page->mapping;
539
540         get_page(newpage);
541
542         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
543
544         page_ref_unfreeze(page, expected_count - 1);
545
546         spin_unlock_irq(&mapping->tree_lock);
547
548         return MIGRATEPAGE_SUCCESS;
549 }
550
551 /*
552  * Gigantic pages are so large that we do not guarantee that page++ pointer
553  * arithmetic will work across the entire page.  We need something more
554  * specialized.
555  */
556 static void __copy_gigantic_page(struct page *dst, struct page *src,
557                                 int nr_pages)
558 {
559         int i;
560         struct page *dst_base = dst;
561         struct page *src_base = src;
562
563         for (i = 0; i < nr_pages; ) {
564                 cond_resched();
565                 copy_highpage(dst, src);
566
567                 i++;
568                 dst = mem_map_next(dst, dst_base, i);
569                 src = mem_map_next(src, src_base, i);
570         }
571 }
572
573 static void copy_huge_page(struct page *dst, struct page *src)
574 {
575         int i;
576         int nr_pages;
577
578         if (PageHuge(src)) {
579                 /* hugetlbfs page */
580                 struct hstate *h = page_hstate(src);
581                 nr_pages = pages_per_huge_page(h);
582
583                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
584                         __copy_gigantic_page(dst, src, nr_pages);
585                         return;
586                 }
587         } else {
588                 /* thp page */
589                 BUG_ON(!PageTransHuge(src));
590                 nr_pages = hpage_nr_pages(src);
591         }
592
593         for (i = 0; i < nr_pages; i++) {
594                 cond_resched();
595                 copy_highpage(dst + i, src + i);
596         }
597 }
598
599 /*
600  * Copy the page to its new location
601  */
602 void migrate_page_copy(struct page *newpage, struct page *page)
603 {
604         int cpupid;
605
606         if (PageHuge(page) || PageTransHuge(page))
607                 copy_huge_page(newpage, page);
608         else
609                 copy_highpage(newpage, page);
610
611         if (PageError(page))
612                 SetPageError(newpage);
613         if (PageReferenced(page))
614                 SetPageReferenced(newpage);
615         if (PageUptodate(page))
616                 SetPageUptodate(newpage);
617         if (TestClearPageActive(page)) {
618                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
619                 SetPageActive(newpage);
620         } else if (TestClearPageUnevictable(page))
621                 SetPageUnevictable(newpage);
622         if (PageChecked(page))
623                 SetPageChecked(newpage);
624         if (PageMappedToDisk(page))
625                 SetPageMappedToDisk(newpage);
626
627         /* Move dirty on pages not done by migrate_page_move_mapping() */
628         if (PageDirty(page))
629                 SetPageDirty(newpage);
630
631         if (page_is_young(page))
632                 set_page_young(newpage);
633         if (page_is_idle(page))
634                 set_page_idle(newpage);
635
636         /*
637          * Copy NUMA information to the new page, to prevent over-eager
638          * future migrations of this same page.
639          */
640         cpupid = page_cpupid_xchg_last(page, -1);
641         page_cpupid_xchg_last(newpage, cpupid);
642
643         ksm_migrate_page(newpage, page);
644         /*
645          * Please do not reorder this without considering how mm/ksm.c's
646          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
647          */
648         if (PageSwapCache(page))
649                 ClearPageSwapCache(page);
650         ClearPagePrivate(page);
651         set_page_private(page, 0);
652
653         /*
654          * If any waiters have accumulated on the new page then
655          * wake them up.
656          */
657         if (PageWriteback(newpage))
658                 end_page_writeback(newpage);
659
660         copy_page_owner(page, newpage);
661
662         mem_cgroup_migrate(page, newpage);
663 }
664 EXPORT_SYMBOL(migrate_page_copy);
665
666 /************************************************************
667  *                    Migration functions
668  ***********************************************************/
669
670 /*
671  * Common logic to directly migrate a single LRU page suitable for
672  * pages that do not use PagePrivate/PagePrivate2.
673  *
674  * Pages are locked upon entry and exit.
675  */
676 int migrate_page(struct address_space *mapping,
677                 struct page *newpage, struct page *page,
678                 enum migrate_mode mode)
679 {
680         int rc;
681
682         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
683
684         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
685
686         if (rc != MIGRATEPAGE_SUCCESS)
687                 return rc;
688
689         migrate_page_copy(newpage, page);
690         return MIGRATEPAGE_SUCCESS;
691 }
692 EXPORT_SYMBOL(migrate_page);
693
694 #ifdef CONFIG_BLOCK
695 /*
696  * Migration function for pages with buffers. This function can only be used
697  * if the underlying filesystem guarantees that no other references to "page"
698  * exist.
699  */
700 int buffer_migrate_page(struct address_space *mapping,
701                 struct page *newpage, struct page *page, enum migrate_mode mode)
702 {
703         struct buffer_head *bh, *head;
704         int rc;
705
706         if (!page_has_buffers(page))
707                 return migrate_page(mapping, newpage, page, mode);
708
709         head = page_buffers(page);
710
711         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
712
713         if (rc != MIGRATEPAGE_SUCCESS)
714                 return rc;
715
716         /*
717          * In the async case, migrate_page_move_mapping locked the buffers
718          * with an IRQ-safe spinlock held. In the sync case, the buffers
719          * need to be locked now
720          */
721         if (mode != MIGRATE_ASYNC)
722                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
723
724         ClearPagePrivate(page);
725         set_page_private(newpage, page_private(page));
726         set_page_private(page, 0);
727         put_page(page);
728         get_page(newpage);
729
730         bh = head;
731         do {
732                 set_bh_page(bh, newpage, bh_offset(bh));
733                 bh = bh->b_this_page;
734
735         } while (bh != head);
736
737         SetPagePrivate(newpage);
738
739         migrate_page_copy(newpage, page);
740
741         bh = head;
742         do {
743                 unlock_buffer(bh);
744                 put_bh(bh);
745                 bh = bh->b_this_page;
746
747         } while (bh != head);
748
749         return MIGRATEPAGE_SUCCESS;
750 }
751 EXPORT_SYMBOL(buffer_migrate_page);
752 #endif
753
754 /*
755  * Writeback a page to clean the dirty state
756  */
757 static int writeout(struct address_space *mapping, struct page *page)
758 {
759         struct writeback_control wbc = {
760                 .sync_mode = WB_SYNC_NONE,
761                 .nr_to_write = 1,
762                 .range_start = 0,
763                 .range_end = LLONG_MAX,
764                 .for_reclaim = 1
765         };
766         int rc;
767
768         if (!mapping->a_ops->writepage)
769                 /* No write method for the address space */
770                 return -EINVAL;
771
772         if (!clear_page_dirty_for_io(page))
773                 /* Someone else already triggered a write */
774                 return -EAGAIN;
775
776         /*
777          * A dirty page may imply that the underlying filesystem has
778          * the page on some queue. So the page must be clean for
779          * migration. Writeout may mean we loose the lock and the
780          * page state is no longer what we checked for earlier.
781          * At this point we know that the migration attempt cannot
782          * be successful.
783          */
784         remove_migration_ptes(page, page, false);
785
786         rc = mapping->a_ops->writepage(page, &wbc);
787
788         if (rc != AOP_WRITEPAGE_ACTIVATE)
789                 /* unlocked. Relock */
790                 lock_page(page);
791
792         return (rc < 0) ? -EIO : -EAGAIN;
793 }
794
795 /*
796  * Default handling if a filesystem does not provide a migration function.
797  */
798 static int fallback_migrate_page(struct address_space *mapping,
799         struct page *newpage, struct page *page, enum migrate_mode mode)
800 {
801         if (PageDirty(page)) {
802                 /* Only writeback pages in full synchronous migration */
803                 if (mode != MIGRATE_SYNC)
804                         return -EBUSY;
805                 return writeout(mapping, page);
806         }
807
808         /*
809          * Buffers may be managed in a filesystem specific way.
810          * We must have no buffers or drop them.
811          */
812         if (page_has_private(page) &&
813             !try_to_release_page(page, GFP_KERNEL))
814                 return -EAGAIN;
815
816         return migrate_page(mapping, newpage, page, mode);
817 }
818
819 /*
820  * Move a page to a newly allocated page
821  * The page is locked and all ptes have been successfully removed.
822  *
823  * The new page will have replaced the old page if this function
824  * is successful.
825  *
826  * Return value:
827  *   < 0 - error code
828  *  MIGRATEPAGE_SUCCESS - success
829  */
830 static int move_to_new_page(struct page *newpage, struct page *page,
831                                 enum migrate_mode mode)
832 {
833         struct address_space *mapping;
834         int rc = -EAGAIN;
835         bool is_lru = !__PageMovable(page);
836
837         VM_BUG_ON_PAGE(!PageLocked(page), page);
838         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
839
840         mapping = page_mapping(page);
841
842         if (likely(is_lru)) {
843                 if (!mapping)
844                         rc = migrate_page(mapping, newpage, page, mode);
845                 else if (mapping->a_ops->migratepage)
846                         /*
847                          * Most pages have a mapping and most filesystems
848                          * provide a migratepage callback. Anonymous pages
849                          * are part of swap space which also has its own
850                          * migratepage callback. This is the most common path
851                          * for page migration.
852                          */
853                         rc = mapping->a_ops->migratepage(mapping, newpage,
854                                                         page, mode);
855                 else
856                         rc = fallback_migrate_page(mapping, newpage,
857                                                         page, mode);
858         } else {
859                 /*
860                  * In case of non-lru page, it could be released after
861                  * isolation step. In that case, we shouldn't try migration.
862                  */
863                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
864                 if (!PageMovable(page)) {
865                         rc = MIGRATEPAGE_SUCCESS;
866                         __ClearPageIsolated(page);
867                         goto out;
868                 }
869
870                 rc = mapping->a_ops->migratepage(mapping, newpage,
871                                                 page, mode);
872                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
873                         !PageIsolated(page));
874         }
875
876         /*
877          * When successful, old pagecache page->mapping must be cleared before
878          * page is freed; but stats require that PageAnon be left as PageAnon.
879          */
880         if (rc == MIGRATEPAGE_SUCCESS) {
881                 if (__PageMovable(page)) {
882                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
883
884                         /*
885                          * We clear PG_movable under page_lock so any compactor
886                          * cannot try to migrate this page.
887                          */
888                         __ClearPageIsolated(page);
889                 }
890
891                 /*
892                  * Anonymous and movable page->mapping will be cleard by
893                  * free_pages_prepare so don't reset it here for keeping
894                  * the type to work PageAnon, for example.
895                  */
896                 if (!PageMappingFlags(page))
897                         page->mapping = NULL;
898         }
899 out:
900         return rc;
901 }
902
903 static int __unmap_and_move(struct page *page, struct page *newpage,
904                                 int force, enum migrate_mode mode)
905 {
906         int rc = -EAGAIN;
907         int page_was_mapped = 0;
908         struct anon_vma *anon_vma = NULL;
909         bool is_lru = !__PageMovable(page);
910
911         if (!trylock_page(page)) {
912                 if (!force || mode == MIGRATE_ASYNC)
913                         goto out;
914
915                 /*
916                  * It's not safe for direct compaction to call lock_page.
917                  * For example, during page readahead pages are added locked
918                  * to the LRU. Later, when the IO completes the pages are
919                  * marked uptodate and unlocked. However, the queueing
920                  * could be merging multiple pages for one bio (e.g.
921                  * mpage_readpages). If an allocation happens for the
922                  * second or third page, the process can end up locking
923                  * the same page twice and deadlocking. Rather than
924                  * trying to be clever about what pages can be locked,
925                  * avoid the use of lock_page for direct compaction
926                  * altogether.
927                  */
928                 if (current->flags & PF_MEMALLOC)
929                         goto out;
930
931                 lock_page(page);
932         }
933
934         if (PageWriteback(page)) {
935                 /*
936                  * Only in the case of a full synchronous migration is it
937                  * necessary to wait for PageWriteback. In the async case,
938                  * the retry loop is too short and in the sync-light case,
939                  * the overhead of stalling is too much
940                  */
941                 if (mode != MIGRATE_SYNC) {
942                         rc = -EBUSY;
943                         goto out_unlock;
944                 }
945                 if (!force)
946                         goto out_unlock;
947                 wait_on_page_writeback(page);
948         }
949
950         /*
951          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
952          * we cannot notice that anon_vma is freed while we migrates a page.
953          * This get_anon_vma() delays freeing anon_vma pointer until the end
954          * of migration. File cache pages are no problem because of page_lock()
955          * File Caches may use write_page() or lock_page() in migration, then,
956          * just care Anon page here.
957          *
958          * Only page_get_anon_vma() understands the subtleties of
959          * getting a hold on an anon_vma from outside one of its mms.
960          * But if we cannot get anon_vma, then we won't need it anyway,
961          * because that implies that the anon page is no longer mapped
962          * (and cannot be remapped so long as we hold the page lock).
963          */
964         if (PageAnon(page) && !PageKsm(page))
965                 anon_vma = page_get_anon_vma(page);
966
967         /*
968          * Block others from accessing the new page when we get around to
969          * establishing additional references. We are usually the only one
970          * holding a reference to newpage at this point. We used to have a BUG
971          * here if trylock_page(newpage) fails, but would like to allow for
972          * cases where there might be a race with the previous use of newpage.
973          * This is much like races on refcount of oldpage: just don't BUG().
974          */
975         if (unlikely(!trylock_page(newpage)))
976                 goto out_unlock;
977
978         if (unlikely(!is_lru)) {
979                 rc = move_to_new_page(newpage, page, mode);
980                 goto out_unlock_both;
981         }
982
983         /*
984          * Corner case handling:
985          * 1. When a new swap-cache page is read into, it is added to the LRU
986          * and treated as swapcache but it has no rmap yet.
987          * Calling try_to_unmap() against a page->mapping==NULL page will
988          * trigger a BUG.  So handle it here.
989          * 2. An orphaned page (see truncate_complete_page) might have
990          * fs-private metadata. The page can be picked up due to memory
991          * offlining.  Everywhere else except page reclaim, the page is
992          * invisible to the vm, so the page can not be migrated.  So try to
993          * free the metadata, so the page can be freed.
994          */
995         if (!page->mapping) {
996                 VM_BUG_ON_PAGE(PageAnon(page), page);
997                 if (page_has_private(page)) {
998                         try_to_free_buffers(page);
999                         goto out_unlock_both;
1000                 }
1001         } else if (page_mapped(page)) {
1002                 /* Establish migration ptes */
1003                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1004                                 page);
1005                 try_to_unmap(page,
1006                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1007                 page_was_mapped = 1;
1008         }
1009
1010         if (!page_mapped(page))
1011                 rc = move_to_new_page(newpage, page, mode);
1012
1013         if (page_was_mapped)
1014                 remove_migration_ptes(page,
1015                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1016
1017 out_unlock_both:
1018         unlock_page(newpage);
1019 out_unlock:
1020         /* Drop an anon_vma reference if we took one */
1021         if (anon_vma)
1022                 put_anon_vma(anon_vma);
1023         unlock_page(page);
1024 out:
1025         /*
1026          * If migration is successful, decrease refcount of the newpage
1027          * which will not free the page because new page owner increased
1028          * refcounter. As well, if it is LRU page, add the page to LRU
1029          * list in here.
1030          */
1031         if (rc == MIGRATEPAGE_SUCCESS) {
1032                 if (unlikely(__PageMovable(newpage)))
1033                         put_page(newpage);
1034                 else
1035                         putback_lru_page(newpage);
1036         }
1037
1038         return rc;
1039 }
1040
1041 /*
1042  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1043  * around it.
1044  */
1045 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1046 #define ICE_noinline noinline
1047 #else
1048 #define ICE_noinline
1049 #endif
1050
1051 /*
1052  * Obtain the lock on page, remove all ptes and migrate the page
1053  * to the newly allocated page in newpage.
1054  */
1055 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1056                                    free_page_t put_new_page,
1057                                    unsigned long private, struct page *page,
1058                                    int force, enum migrate_mode mode,
1059                                    enum migrate_reason reason)
1060 {
1061         int rc = MIGRATEPAGE_SUCCESS;
1062         int *result = NULL;
1063         struct page *newpage;
1064
1065         newpage = get_new_page(page, private, &result);
1066         if (!newpage)
1067                 return -ENOMEM;
1068
1069         if (page_count(page) == 1) {
1070                 /* page was freed from under us. So we are done. */
1071                 ClearPageActive(page);
1072                 ClearPageUnevictable(page);
1073                 if (unlikely(__PageMovable(page))) {
1074                         lock_page(page);
1075                         if (!PageMovable(page))
1076                                 __ClearPageIsolated(page);
1077                         unlock_page(page);
1078                 }
1079                 if (put_new_page)
1080                         put_new_page(newpage, private);
1081                 else
1082                         put_page(newpage);
1083                 goto out;
1084         }
1085
1086         if (unlikely(PageTransHuge(page))) {
1087                 lock_page(page);
1088                 rc = split_huge_page(page);
1089                 unlock_page(page);
1090                 if (rc)
1091                         goto out;
1092         }
1093
1094         rc = __unmap_and_move(page, newpage, force, mode);
1095         if (rc == MIGRATEPAGE_SUCCESS)
1096                 set_page_owner_migrate_reason(newpage, reason);
1097
1098 out:
1099         if (rc != -EAGAIN) {
1100                 /*
1101                  * A page that has been migrated has all references
1102                  * removed and will be freed. A page that has not been
1103                  * migrated will have kepts its references and be
1104                  * restored.
1105                  */
1106                 list_del(&page->lru);
1107
1108                 /*
1109                  * Compaction can migrate also non-LRU pages which are
1110                  * not accounted to NR_ISOLATED_*. They can be recognized
1111                  * as __PageMovable
1112                  */
1113                 if (likely(!__PageMovable(page)))
1114                         dec_node_page_state(page, NR_ISOLATED_ANON +
1115                                         page_is_file_cache(page));
1116         }
1117
1118         /*
1119          * If migration is successful, releases reference grabbed during
1120          * isolation. Otherwise, restore the page to right list unless
1121          * we want to retry.
1122          */
1123         if (rc == MIGRATEPAGE_SUCCESS) {
1124                 put_page(page);
1125                 if (reason == MR_MEMORY_FAILURE) {
1126                         /*
1127                          * Set PG_HWPoison on just freed page
1128                          * intentionally. Although it's rather weird,
1129                          * it's how HWPoison flag works at the moment.
1130                          */
1131                         if (!test_set_page_hwpoison(page))
1132                                 num_poisoned_pages_inc();
1133                 }
1134         } else {
1135                 if (rc != -EAGAIN) {
1136                         if (likely(!__PageMovable(page))) {
1137                                 putback_lru_page(page);
1138                                 goto put_new;
1139                         }
1140
1141                         lock_page(page);
1142                         if (PageMovable(page))
1143                                 putback_movable_page(page);
1144                         else
1145                                 __ClearPageIsolated(page);
1146                         unlock_page(page);
1147                         put_page(page);
1148                 }
1149 put_new:
1150                 if (put_new_page)
1151                         put_new_page(newpage, private);
1152                 else
1153                         put_page(newpage);
1154         }
1155
1156         if (result) {
1157                 if (rc)
1158                         *result = rc;
1159                 else
1160                         *result = page_to_nid(newpage);
1161         }
1162         return rc;
1163 }
1164
1165 /*
1166  * Counterpart of unmap_and_move_page() for hugepage migration.
1167  *
1168  * This function doesn't wait the completion of hugepage I/O
1169  * because there is no race between I/O and migration for hugepage.
1170  * Note that currently hugepage I/O occurs only in direct I/O
1171  * where no lock is held and PG_writeback is irrelevant,
1172  * and writeback status of all subpages are counted in the reference
1173  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1174  * under direct I/O, the reference of the head page is 512 and a bit more.)
1175  * This means that when we try to migrate hugepage whose subpages are
1176  * doing direct I/O, some references remain after try_to_unmap() and
1177  * hugepage migration fails without data corruption.
1178  *
1179  * There is also no race when direct I/O is issued on the page under migration,
1180  * because then pte is replaced with migration swap entry and direct I/O code
1181  * will wait in the page fault for migration to complete.
1182  */
1183 static int unmap_and_move_huge_page(new_page_t get_new_page,
1184                                 free_page_t put_new_page, unsigned long private,
1185                                 struct page *hpage, int force,
1186                                 enum migrate_mode mode, int reason)
1187 {
1188         int rc = -EAGAIN;
1189         int *result = NULL;
1190         int page_was_mapped = 0;
1191         struct page *new_hpage;
1192         struct anon_vma *anon_vma = NULL;
1193
1194         /*
1195          * Movability of hugepages depends on architectures and hugepage size.
1196          * This check is necessary because some callers of hugepage migration
1197          * like soft offline and memory hotremove don't walk through page
1198          * tables or check whether the hugepage is pmd-based or not before
1199          * kicking migration.
1200          */
1201         if (!hugepage_migration_supported(page_hstate(hpage))) {
1202                 putback_active_hugepage(hpage);
1203                 return -ENOSYS;
1204         }
1205
1206         new_hpage = get_new_page(hpage, private, &result);
1207         if (!new_hpage)
1208                 return -ENOMEM;
1209
1210         if (!trylock_page(hpage)) {
1211                 if (!force || mode != MIGRATE_SYNC)
1212                         goto out;
1213                 lock_page(hpage);
1214         }
1215
1216         if (PageAnon(hpage))
1217                 anon_vma = page_get_anon_vma(hpage);
1218
1219         if (unlikely(!trylock_page(new_hpage)))
1220                 goto put_anon;
1221
1222         if (page_mapped(hpage)) {
1223                 try_to_unmap(hpage,
1224                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1225                 page_was_mapped = 1;
1226         }
1227
1228         if (!page_mapped(hpage))
1229                 rc = move_to_new_page(new_hpage, hpage, mode);
1230
1231         if (page_was_mapped)
1232                 remove_migration_ptes(hpage,
1233                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1234
1235         unlock_page(new_hpage);
1236
1237 put_anon:
1238         if (anon_vma)
1239                 put_anon_vma(anon_vma);
1240
1241         if (rc == MIGRATEPAGE_SUCCESS) {
1242                 hugetlb_cgroup_migrate(hpage, new_hpage);
1243                 put_new_page = NULL;
1244                 set_page_owner_migrate_reason(new_hpage, reason);
1245         }
1246
1247         unlock_page(hpage);
1248 out:
1249         if (rc != -EAGAIN)
1250                 putback_active_hugepage(hpage);
1251
1252         /*
1253          * If migration was not successful and there's a freeing callback, use
1254          * it.  Otherwise, put_page() will drop the reference grabbed during
1255          * isolation.
1256          */
1257         if (put_new_page)
1258                 put_new_page(new_hpage, private);
1259         else
1260                 putback_active_hugepage(new_hpage);
1261
1262         if (result) {
1263                 if (rc)
1264                         *result = rc;
1265                 else
1266                         *result = page_to_nid(new_hpage);
1267         }
1268         return rc;
1269 }
1270
1271 /*
1272  * migrate_pages - migrate the pages specified in a list, to the free pages
1273  *                 supplied as the target for the page migration
1274  *
1275  * @from:               The list of pages to be migrated.
1276  * @get_new_page:       The function used to allocate free pages to be used
1277  *                      as the target of the page migration.
1278  * @put_new_page:       The function used to free target pages if migration
1279  *                      fails, or NULL if no special handling is necessary.
1280  * @private:            Private data to be passed on to get_new_page()
1281  * @mode:               The migration mode that specifies the constraints for
1282  *                      page migration, if any.
1283  * @reason:             The reason for page migration.
1284  *
1285  * The function returns after 10 attempts or if no pages are movable any more
1286  * because the list has become empty or no retryable pages exist any more.
1287  * The caller should call putback_movable_pages() to return pages to the LRU
1288  * or free list only if ret != 0.
1289  *
1290  * Returns the number of pages that were not migrated, or an error code.
1291  */
1292 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1293                 free_page_t put_new_page, unsigned long private,
1294                 enum migrate_mode mode, int reason)
1295 {
1296         int retry = 1;
1297         int nr_failed = 0;
1298         int nr_succeeded = 0;
1299         int pass = 0;
1300         struct page *page;
1301         struct page *page2;
1302         int swapwrite = current->flags & PF_SWAPWRITE;
1303         int rc;
1304
1305         if (!swapwrite)
1306                 current->flags |= PF_SWAPWRITE;
1307
1308         for(pass = 0; pass < 10 && retry; pass++) {
1309                 retry = 0;
1310
1311                 list_for_each_entry_safe(page, page2, from, lru) {
1312                         cond_resched();
1313
1314                         if (PageHuge(page))
1315                                 rc = unmap_and_move_huge_page(get_new_page,
1316                                                 put_new_page, private, page,
1317                                                 pass > 2, mode, reason);
1318                         else
1319                                 rc = unmap_and_move(get_new_page, put_new_page,
1320                                                 private, page, pass > 2, mode,
1321                                                 reason);
1322
1323                         switch(rc) {
1324                         case -ENOMEM:
1325                                 nr_failed++;
1326                                 goto out;
1327                         case -EAGAIN:
1328                                 retry++;
1329                                 break;
1330                         case MIGRATEPAGE_SUCCESS:
1331                                 nr_succeeded++;
1332                                 break;
1333                         default:
1334                                 /*
1335                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1336                                  * unlike -EAGAIN case, the failed page is
1337                                  * removed from migration page list and not
1338                                  * retried in the next outer loop.
1339                                  */
1340                                 nr_failed++;
1341                                 break;
1342                         }
1343                 }
1344         }
1345         nr_failed += retry;
1346         rc = nr_failed;
1347 out:
1348         if (nr_succeeded)
1349                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1350         if (nr_failed)
1351                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1352         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1353
1354         if (!swapwrite)
1355                 current->flags &= ~PF_SWAPWRITE;
1356
1357         return rc;
1358 }
1359
1360 #ifdef CONFIG_NUMA
1361 /*
1362  * Move a list of individual pages
1363  */
1364 struct page_to_node {
1365         unsigned long addr;
1366         struct page *page;
1367         int node;
1368         int status;
1369 };
1370
1371 static struct page *new_page_node(struct page *p, unsigned long private,
1372                 int **result)
1373 {
1374         struct page_to_node *pm = (struct page_to_node *)private;
1375
1376         while (pm->node != MAX_NUMNODES && pm->page != p)
1377                 pm++;
1378
1379         if (pm->node == MAX_NUMNODES)
1380                 return NULL;
1381
1382         *result = &pm->status;
1383
1384         if (PageHuge(p))
1385                 return alloc_huge_page_node(page_hstate(compound_head(p)),
1386                                         pm->node);
1387         else
1388                 return __alloc_pages_node(pm->node,
1389                                 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1390 }
1391
1392 /*
1393  * Move a set of pages as indicated in the pm array. The addr
1394  * field must be set to the virtual address of the page to be moved
1395  * and the node number must contain a valid target node.
1396  * The pm array ends with node = MAX_NUMNODES.
1397  */
1398 static int do_move_page_to_node_array(struct mm_struct *mm,
1399                                       struct page_to_node *pm,
1400                                       int migrate_all)
1401 {
1402         int err;
1403         struct page_to_node *pp;
1404         LIST_HEAD(pagelist);
1405
1406         down_read(&mm->mmap_sem);
1407
1408         /*
1409          * Build a list of pages to migrate
1410          */
1411         for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1412                 struct vm_area_struct *vma;
1413                 struct page *page;
1414
1415                 err = -EFAULT;
1416                 vma = find_vma(mm, pp->addr);
1417                 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1418                         goto set_status;
1419
1420                 /* FOLL_DUMP to ignore special (like zero) pages */
1421                 page = follow_page(vma, pp->addr,
1422                                 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1423
1424                 err = PTR_ERR(page);
1425                 if (IS_ERR(page))
1426                         goto set_status;
1427
1428                 err = -ENOENT;
1429                 if (!page)
1430                         goto set_status;
1431
1432                 pp->page = page;
1433                 err = page_to_nid(page);
1434
1435                 if (err == pp->node)
1436                         /*
1437                          * Node already in the right place
1438                          */
1439                         goto put_and_set;
1440
1441                 err = -EACCES;
1442                 if (page_mapcount(page) > 1 &&
1443                                 !migrate_all)
1444                         goto put_and_set;
1445
1446                 if (PageHuge(page)) {
1447                         if (PageHead(page))
1448                                 isolate_huge_page(page, &pagelist);
1449                         goto put_and_set;
1450                 }
1451
1452                 err = isolate_lru_page(page);
1453                 if (!err) {
1454                         list_add_tail(&page->lru, &pagelist);
1455                         inc_node_page_state(page, NR_ISOLATED_ANON +
1456                                             page_is_file_cache(page));
1457                 }
1458 put_and_set:
1459                 /*
1460                  * Either remove the duplicate refcount from
1461                  * isolate_lru_page() or drop the page ref if it was
1462                  * not isolated.
1463                  */
1464                 put_page(page);
1465 set_status:
1466                 pp->status = err;
1467         }
1468
1469         err = 0;
1470         if (!list_empty(&pagelist)) {
1471                 err = migrate_pages(&pagelist, new_page_node, NULL,
1472                                 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1473                 if (err)
1474                         putback_movable_pages(&pagelist);
1475         }
1476
1477         up_read(&mm->mmap_sem);
1478         return err;
1479 }
1480
1481 /*
1482  * Migrate an array of page address onto an array of nodes and fill
1483  * the corresponding array of status.
1484  */
1485 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1486                          unsigned long nr_pages,
1487                          const void __user * __user *pages,
1488                          const int __user *nodes,
1489                          int __user *status, int flags)
1490 {
1491         struct page_to_node *pm;
1492         unsigned long chunk_nr_pages;
1493         unsigned long chunk_start;
1494         int err;
1495
1496         err = -ENOMEM;
1497         pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1498         if (!pm)
1499                 goto out;
1500
1501         migrate_prep();
1502
1503         /*
1504          * Store a chunk of page_to_node array in a page,
1505          * but keep the last one as a marker
1506          */
1507         chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1508
1509         for (chunk_start = 0;
1510              chunk_start < nr_pages;
1511              chunk_start += chunk_nr_pages) {
1512                 int j;
1513
1514                 if (chunk_start + chunk_nr_pages > nr_pages)
1515                         chunk_nr_pages = nr_pages - chunk_start;
1516
1517                 /* fill the chunk pm with addrs and nodes from user-space */
1518                 for (j = 0; j < chunk_nr_pages; j++) {
1519                         const void __user *p;
1520                         int node;
1521
1522                         err = -EFAULT;
1523                         if (get_user(p, pages + j + chunk_start))
1524                                 goto out_pm;
1525                         pm[j].addr = (unsigned long) p;
1526
1527                         if (get_user(node, nodes + j + chunk_start))
1528                                 goto out_pm;
1529
1530                         err = -ENODEV;
1531                         if (node < 0 || node >= MAX_NUMNODES)
1532                                 goto out_pm;
1533
1534                         if (!node_state(node, N_MEMORY))
1535                                 goto out_pm;
1536
1537                         err = -EACCES;
1538                         if (!node_isset(node, task_nodes))
1539                                 goto out_pm;
1540
1541                         pm[j].node = node;
1542                 }
1543
1544                 /* End marker for this chunk */
1545                 pm[chunk_nr_pages].node = MAX_NUMNODES;
1546
1547                 /* Migrate this chunk */
1548                 err = do_move_page_to_node_array(mm, pm,
1549                                                  flags & MPOL_MF_MOVE_ALL);
1550                 if (err < 0)
1551                         goto out_pm;
1552
1553                 /* Return status information */
1554                 for (j = 0; j < chunk_nr_pages; j++)
1555                         if (put_user(pm[j].status, status + j + chunk_start)) {
1556                                 err = -EFAULT;
1557                                 goto out_pm;
1558                         }
1559         }
1560         err = 0;
1561
1562 out_pm:
1563         free_page((unsigned long)pm);
1564 out:
1565         return err;
1566 }
1567
1568 /*
1569  * Determine the nodes of an array of pages and store it in an array of status.
1570  */
1571 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1572                                 const void __user **pages, int *status)
1573 {
1574         unsigned long i;
1575
1576         down_read(&mm->mmap_sem);
1577
1578         for (i = 0; i < nr_pages; i++) {
1579                 unsigned long addr = (unsigned long)(*pages);
1580                 struct vm_area_struct *vma;
1581                 struct page *page;
1582                 int err = -EFAULT;
1583
1584                 vma = find_vma(mm, addr);
1585                 if (!vma || addr < vma->vm_start)
1586                         goto set_status;
1587
1588                 /* FOLL_DUMP to ignore special (like zero) pages */
1589                 page = follow_page(vma, addr, FOLL_DUMP);
1590
1591                 err = PTR_ERR(page);
1592                 if (IS_ERR(page))
1593                         goto set_status;
1594
1595                 err = page ? page_to_nid(page) : -ENOENT;
1596 set_status:
1597                 *status = err;
1598
1599                 pages++;
1600                 status++;
1601         }
1602
1603         up_read(&mm->mmap_sem);
1604 }
1605
1606 /*
1607  * Determine the nodes of a user array of pages and store it in
1608  * a user array of status.
1609  */
1610 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1611                          const void __user * __user *pages,
1612                          int __user *status)
1613 {
1614 #define DO_PAGES_STAT_CHUNK_NR 16
1615         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1616         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1617
1618         while (nr_pages) {
1619                 unsigned long chunk_nr;
1620
1621                 chunk_nr = nr_pages;
1622                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1623                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1624
1625                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1626                         break;
1627
1628                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1629
1630                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1631                         break;
1632
1633                 pages += chunk_nr;
1634                 status += chunk_nr;
1635                 nr_pages -= chunk_nr;
1636         }
1637         return nr_pages ? -EFAULT : 0;
1638 }
1639
1640 /*
1641  * Move a list of pages in the address space of the currently executing
1642  * process.
1643  */
1644 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1645                 const void __user * __user *, pages,
1646                 const int __user *, nodes,
1647                 int __user *, status, int, flags)
1648 {
1649         const struct cred *cred = current_cred(), *tcred;
1650         struct task_struct *task;
1651         struct mm_struct *mm;
1652         int err;
1653         nodemask_t task_nodes;
1654
1655         /* Check flags */
1656         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1657                 return -EINVAL;
1658
1659         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1660                 return -EPERM;
1661
1662         /* Find the mm_struct */
1663         rcu_read_lock();
1664         task = pid ? find_task_by_vpid(pid) : current;
1665         if (!task) {
1666                 rcu_read_unlock();
1667                 return -ESRCH;
1668         }
1669         get_task_struct(task);
1670
1671         /*
1672          * Check if this process has the right to modify the specified
1673          * process. The right exists if the process has administrative
1674          * capabilities, superuser privileges or the same
1675          * userid as the target process.
1676          */
1677         tcred = __task_cred(task);
1678         if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1679             !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1680             !capable(CAP_SYS_NICE)) {
1681                 rcu_read_unlock();
1682                 err = -EPERM;
1683                 goto out;
1684         }
1685         rcu_read_unlock();
1686
1687         err = security_task_movememory(task);
1688         if (err)
1689                 goto out;
1690
1691         task_nodes = cpuset_mems_allowed(task);
1692         mm = get_task_mm(task);
1693         put_task_struct(task);
1694
1695         if (!mm)
1696                 return -EINVAL;
1697
1698         if (nodes)
1699                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1700                                     nodes, status, flags);
1701         else
1702                 err = do_pages_stat(mm, nr_pages, pages, status);
1703
1704         mmput(mm);
1705         return err;
1706
1707 out:
1708         put_task_struct(task);
1709         return err;
1710 }
1711
1712 #ifdef CONFIG_NUMA_BALANCING
1713 /*
1714  * Returns true if this is a safe migration target node for misplaced NUMA
1715  * pages. Currently it only checks the watermarks which crude
1716  */
1717 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1718                                    unsigned long nr_migrate_pages)
1719 {
1720         int z;
1721
1722         if (!pgdat_reclaimable(pgdat))
1723                 return false;
1724
1725         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1726                 struct zone *zone = pgdat->node_zones + z;
1727
1728                 if (!populated_zone(zone))
1729                         continue;
1730
1731                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1732                 if (!zone_watermark_ok(zone, 0,
1733                                        high_wmark_pages(zone) +
1734                                        nr_migrate_pages,
1735                                        0, 0))
1736                         continue;
1737                 return true;
1738         }
1739         return false;
1740 }
1741
1742 static struct page *alloc_misplaced_dst_page(struct page *page,
1743                                            unsigned long data,
1744                                            int **result)
1745 {
1746         int nid = (int) data;
1747         struct page *newpage;
1748
1749         newpage = __alloc_pages_node(nid,
1750                                          (GFP_HIGHUSER_MOVABLE |
1751                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1752                                           __GFP_NORETRY | __GFP_NOWARN) &
1753                                          ~__GFP_RECLAIM, 0);
1754
1755         return newpage;
1756 }
1757
1758 /*
1759  * page migration rate limiting control.
1760  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1761  * window of time. Default here says do not migrate more than 1280M per second.
1762  */
1763 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1764 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1765
1766 /* Returns true if the node is migrate rate-limited after the update */
1767 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1768                                         unsigned long nr_pages)
1769 {
1770         /*
1771          * Rate-limit the amount of data that is being migrated to a node.
1772          * Optimal placement is no good if the memory bus is saturated and
1773          * all the time is being spent migrating!
1774          */
1775         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1776                 spin_lock(&pgdat->numabalancing_migrate_lock);
1777                 pgdat->numabalancing_migrate_nr_pages = 0;
1778                 pgdat->numabalancing_migrate_next_window = jiffies +
1779                         msecs_to_jiffies(migrate_interval_millisecs);
1780                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1781         }
1782         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1783                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1784                                                                 nr_pages);
1785                 return true;
1786         }
1787
1788         /*
1789          * This is an unlocked non-atomic update so errors are possible.
1790          * The consequences are failing to migrate when we potentiall should
1791          * have which is not severe enough to warrant locking. If it is ever
1792          * a problem, it can be converted to a per-cpu counter.
1793          */
1794         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1795         return false;
1796 }
1797
1798 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1799 {
1800         int page_lru;
1801
1802         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1803
1804         /* Avoid migrating to a node that is nearly full */
1805         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1806                 return 0;
1807
1808         if (isolate_lru_page(page))
1809                 return 0;
1810
1811         /*
1812          * migrate_misplaced_transhuge_page() skips page migration's usual
1813          * check on page_count(), so we must do it here, now that the page
1814          * has been isolated: a GUP pin, or any other pin, prevents migration.
1815          * The expected page count is 3: 1 for page's mapcount and 1 for the
1816          * caller's pin and 1 for the reference taken by isolate_lru_page().
1817          */
1818         if (PageTransHuge(page) && page_count(page) != 3) {
1819                 putback_lru_page(page);
1820                 return 0;
1821         }
1822
1823         page_lru = page_is_file_cache(page);
1824         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1825                                 hpage_nr_pages(page));
1826
1827         /*
1828          * Isolating the page has taken another reference, so the
1829          * caller's reference can be safely dropped without the page
1830          * disappearing underneath us during migration.
1831          */
1832         put_page(page);
1833         return 1;
1834 }
1835
1836 bool pmd_trans_migrating(pmd_t pmd)
1837 {
1838         struct page *page = pmd_page(pmd);
1839         return PageLocked(page);
1840 }
1841
1842 /*
1843  * Attempt to migrate a misplaced page to the specified destination
1844  * node. Caller is expected to have an elevated reference count on
1845  * the page that will be dropped by this function before returning.
1846  */
1847 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1848                            int node)
1849 {
1850         pg_data_t *pgdat = NODE_DATA(node);
1851         int isolated;
1852         int nr_remaining;
1853         LIST_HEAD(migratepages);
1854
1855         /*
1856          * Don't migrate file pages that are mapped in multiple processes
1857          * with execute permissions as they are probably shared libraries.
1858          */
1859         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1860             (vma->vm_flags & VM_EXEC))
1861                 goto out;
1862
1863         /*
1864          * Rate-limit the amount of data that is being migrated to a node.
1865          * Optimal placement is no good if the memory bus is saturated and
1866          * all the time is being spent migrating!
1867          */
1868         if (numamigrate_update_ratelimit(pgdat, 1))
1869                 goto out;
1870
1871         isolated = numamigrate_isolate_page(pgdat, page);
1872         if (!isolated)
1873                 goto out;
1874
1875         list_add(&page->lru, &migratepages);
1876         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1877                                      NULL, node, MIGRATE_ASYNC,
1878                                      MR_NUMA_MISPLACED);
1879         if (nr_remaining) {
1880                 if (!list_empty(&migratepages)) {
1881                         list_del(&page->lru);
1882                         dec_node_page_state(page, NR_ISOLATED_ANON +
1883                                         page_is_file_cache(page));
1884                         putback_lru_page(page);
1885                 }
1886                 isolated = 0;
1887         } else
1888                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1889         BUG_ON(!list_empty(&migratepages));
1890         return isolated;
1891
1892 out:
1893         put_page(page);
1894         return 0;
1895 }
1896 #endif /* CONFIG_NUMA_BALANCING */
1897
1898 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1899 /*
1900  * Migrates a THP to a given target node. page must be locked and is unlocked
1901  * before returning.
1902  */
1903 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1904                                 struct vm_area_struct *vma,
1905                                 pmd_t *pmd, pmd_t entry,
1906                                 unsigned long address,
1907                                 struct page *page, int node)
1908 {
1909         spinlock_t *ptl;
1910         pg_data_t *pgdat = NODE_DATA(node);
1911         int isolated = 0;
1912         struct page *new_page = NULL;
1913         int page_lru = page_is_file_cache(page);
1914         unsigned long mmun_start = address & HPAGE_PMD_MASK;
1915         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1916         pmd_t orig_entry;
1917
1918         /*
1919          * Rate-limit the amount of data that is being migrated to a node.
1920          * Optimal placement is no good if the memory bus is saturated and
1921          * all the time is being spent migrating!
1922          */
1923         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1924                 goto out_dropref;
1925
1926         new_page = alloc_pages_node(node,
1927                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1928                 HPAGE_PMD_ORDER);
1929         if (!new_page)
1930                 goto out_fail;
1931         prep_transhuge_page(new_page);
1932
1933         isolated = numamigrate_isolate_page(pgdat, page);
1934         if (!isolated) {
1935                 put_page(new_page);
1936                 goto out_fail;
1937         }
1938         /*
1939          * We are not sure a pending tlb flush here is for a huge page
1940          * mapping or not. Hence use the tlb range variant
1941          */
1942         if (mm_tlb_flush_pending(mm))
1943                 flush_tlb_range(vma, mmun_start, mmun_end);
1944
1945         /* Prepare a page as a migration target */
1946         __SetPageLocked(new_page);
1947         __SetPageSwapBacked(new_page);
1948
1949         /* anon mapping, we can simply copy page->mapping to the new page: */
1950         new_page->mapping = page->mapping;
1951         new_page->index = page->index;
1952         migrate_page_copy(new_page, page);
1953         WARN_ON(PageLRU(new_page));
1954
1955         /* Recheck the target PMD */
1956         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1957         ptl = pmd_lock(mm, pmd);
1958         if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1959 fail_putback:
1960                 spin_unlock(ptl);
1961                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1962
1963                 /* Reverse changes made by migrate_page_copy() */
1964                 if (TestClearPageActive(new_page))
1965                         SetPageActive(page);
1966                 if (TestClearPageUnevictable(new_page))
1967                         SetPageUnevictable(page);
1968
1969                 unlock_page(new_page);
1970                 put_page(new_page);             /* Free it */
1971
1972                 /* Retake the callers reference and putback on LRU */
1973                 get_page(page);
1974                 putback_lru_page(page);
1975                 mod_node_page_state(page_pgdat(page),
1976                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1977
1978                 goto out_unlock;
1979         }
1980
1981         orig_entry = *pmd;
1982         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1983         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1984
1985         /*
1986          * Clear the old entry under pagetable lock and establish the new PTE.
1987          * Any parallel GUP will either observe the old page blocking on the
1988          * page lock, block on the page table lock or observe the new page.
1989          * The SetPageUptodate on the new page and page_add_new_anon_rmap
1990          * guarantee the copy is visible before the pagetable update.
1991          */
1992         flush_cache_range(vma, mmun_start, mmun_end);
1993         page_add_anon_rmap(new_page, vma, mmun_start, true);
1994         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1995         set_pmd_at(mm, mmun_start, pmd, entry);
1996         update_mmu_cache_pmd(vma, address, &entry);
1997
1998         if (page_count(page) != 2) {
1999                 set_pmd_at(mm, mmun_start, pmd, orig_entry);
2000                 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2001                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2002                 update_mmu_cache_pmd(vma, address, &entry);
2003                 page_remove_rmap(new_page, true);
2004                 goto fail_putback;
2005         }
2006
2007         mlock_migrate_page(new_page, page);
2008         page_remove_rmap(page, true);
2009         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2010
2011         spin_unlock(ptl);
2012         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2013
2014         /* Take an "isolate" reference and put new page on the LRU. */
2015         get_page(new_page);
2016         putback_lru_page(new_page);
2017
2018         unlock_page(new_page);
2019         unlock_page(page);
2020         put_page(page);                 /* Drop the rmap reference */
2021         put_page(page);                 /* Drop the LRU isolation reference */
2022
2023         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2024         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2025
2026         mod_node_page_state(page_pgdat(page),
2027                         NR_ISOLATED_ANON + page_lru,
2028                         -HPAGE_PMD_NR);
2029         return isolated;
2030
2031 out_fail:
2032         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2033 out_dropref:
2034         ptl = pmd_lock(mm, pmd);
2035         if (pmd_same(*pmd, entry)) {
2036                 entry = pmd_modify(entry, vma->vm_page_prot);
2037                 set_pmd_at(mm, mmun_start, pmd, entry);
2038                 update_mmu_cache_pmd(vma, address, &entry);
2039         }
2040         spin_unlock(ptl);
2041
2042 out_unlock:
2043         unlock_page(page);
2044         put_page(page);
2045         return 0;
2046 }
2047 #endif /* CONFIG_NUMA_BALANCING */
2048
2049 #endif /* CONFIG_NUMA */