]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/mmap.c
ptrace: simplify ptrace_exit()->ignoring_children() path
[karo-tx-linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlb.h>
34 #include <asm/mmu_context.h>
35
36 #include "internal.h"
37
38 #ifndef arch_mmap_check
39 #define arch_mmap_check(addr, len, flags)       (0)
40 #endif
41
42 #ifndef arch_rebalance_pgtables
43 #define arch_rebalance_pgtables(addr, len)              (addr)
44 #endif
45
46 static void unmap_region(struct mm_struct *mm,
47                 struct vm_area_struct *vma, struct vm_area_struct *prev,
48                 unsigned long start, unsigned long end);
49
50 /*
51  * WARNING: the debugging will use recursive algorithms so never enable this
52  * unless you know what you are doing.
53  */
54 #undef DEBUG_MM_RB
55
56 /* description of effects of mapping type and prot in current implementation.
57  * this is due to the limited x86 page protection hardware.  The expected
58  * behavior is in parens:
59  *
60  * map_type     prot
61  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
62  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
63  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
64  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
65  *              
66  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *
70  */
71 pgprot_t protection_map[16] = {
72         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
74 };
75
76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
77 {
78         return __pgprot(pgprot_val(protection_map[vm_flags &
79                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
81 }
82 EXPORT_SYMBOL(vm_get_page_prot);
83
84 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
85 int sysctl_overcommit_ratio = 50;       /* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 struct percpu_counter vm_committed_as;
88
89 /*
90  * Check that a process has enough memory to allocate a new virtual
91  * mapping. 0 means there is enough memory for the allocation to
92  * succeed and -ENOMEM implies there is not.
93  *
94  * We currently support three overcommit policies, which are set via the
95  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
96  *
97  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
98  * Additional code 2002 Jul 20 by Robert Love.
99  *
100  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
101  *
102  * Note this is a helper function intended to be used by LSMs which
103  * wish to use this logic.
104  */
105 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
106 {
107         unsigned long free, allowed;
108
109         vm_acct_memory(pages);
110
111         /*
112          * Sometimes we want to use more memory than we have
113          */
114         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
115                 return 0;
116
117         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
118                 unsigned long n;
119
120                 free = global_page_state(NR_FILE_PAGES);
121                 free += nr_swap_pages;
122
123                 /*
124                  * Any slabs which are created with the
125                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
126                  * which are reclaimable, under pressure.  The dentry
127                  * cache and most inode caches should fall into this
128                  */
129                 free += global_page_state(NR_SLAB_RECLAIMABLE);
130
131                 /*
132                  * Leave the last 3% for root
133                  */
134                 if (!cap_sys_admin)
135                         free -= free / 32;
136
137                 if (free > pages)
138                         return 0;
139
140                 /*
141                  * nr_free_pages() is very expensive on large systems,
142                  * only call if we're about to fail.
143                  */
144                 n = nr_free_pages();
145
146                 /*
147                  * Leave reserved pages. The pages are not for anonymous pages.
148                  */
149                 if (n <= totalreserve_pages)
150                         goto error;
151                 else
152                         n -= totalreserve_pages;
153
154                 /*
155                  * Leave the last 3% for root
156                  */
157                 if (!cap_sys_admin)
158                         n -= n / 32;
159                 free += n;
160
161                 if (free > pages)
162                         return 0;
163
164                 goto error;
165         }
166
167         allowed = (totalram_pages - hugetlb_total_pages())
168                 * sysctl_overcommit_ratio / 100;
169         /*
170          * Leave the last 3% for root
171          */
172         if (!cap_sys_admin)
173                 allowed -= allowed / 32;
174         allowed += total_swap_pages;
175
176         /* Don't let a single process grow too big:
177            leave 3% of the size of this process for other processes */
178         if (mm)
179                 allowed -= mm->total_vm / 32;
180
181         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182                 return 0;
183 error:
184         vm_unacct_memory(pages);
185
186         return -ENOMEM;
187 }
188
189 /*
190  * Requires inode->i_mapping->i_mmap_lock
191  */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193                 struct file *file, struct address_space *mapping)
194 {
195         if (vma->vm_flags & VM_DENYWRITE)
196                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197         if (vma->vm_flags & VM_SHARED)
198                 mapping->i_mmap_writable--;
199
200         flush_dcache_mmap_lock(mapping);
201         if (unlikely(vma->vm_flags & VM_NONLINEAR))
202                 list_del_init(&vma->shared.vm_set.list);
203         else
204                 vma_prio_tree_remove(vma, &mapping->i_mmap);
205         flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209  * Unlink a file-based vm structure from its prio_tree, to hide
210  * vma from rmap and vmtruncate before freeing its page tables.
211  */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214         struct file *file = vma->vm_file;
215
216         if (file) {
217                 struct address_space *mapping = file->f_mapping;
218                 spin_lock(&mapping->i_mmap_lock);
219                 __remove_shared_vm_struct(vma, file, mapping);
220                 spin_unlock(&mapping->i_mmap_lock);
221         }
222 }
223
224 /*
225  * Close a vm structure and free it, returning the next.
226  */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229         struct vm_area_struct *next = vma->vm_next;
230
231         might_sleep();
232         if (vma->vm_ops && vma->vm_ops->close)
233                 vma->vm_ops->close(vma);
234         if (vma->vm_file) {
235                 fput(vma->vm_file);
236                 if (vma->vm_flags & VM_EXECUTABLE)
237                         removed_exe_file_vma(vma->vm_mm);
238         }
239         mpol_put(vma_policy(vma));
240         kmem_cache_free(vm_area_cachep, vma);
241         return next;
242 }
243
244 SYSCALL_DEFINE1(brk, unsigned long, brk)
245 {
246         unsigned long rlim, retval;
247         unsigned long newbrk, oldbrk;
248         struct mm_struct *mm = current->mm;
249         unsigned long min_brk;
250
251         down_write(&mm->mmap_sem);
252
253 #ifdef CONFIG_COMPAT_BRK
254         min_brk = mm->end_code;
255 #else
256         min_brk = mm->start_brk;
257 #endif
258         if (brk < min_brk)
259                 goto out;
260
261         /*
262          * Check against rlimit here. If this check is done later after the test
263          * of oldbrk with newbrk then it can escape the test and let the data
264          * segment grow beyond its set limit the in case where the limit is
265          * not page aligned -Ram Gupta
266          */
267         rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
268         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
269                         (mm->end_data - mm->start_data) > rlim)
270                 goto out;
271
272         newbrk = PAGE_ALIGN(brk);
273         oldbrk = PAGE_ALIGN(mm->brk);
274         if (oldbrk == newbrk)
275                 goto set_brk;
276
277         /* Always allow shrinking brk. */
278         if (brk <= mm->brk) {
279                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
280                         goto set_brk;
281                 goto out;
282         }
283
284         /* Check against existing mmap mappings. */
285         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
286                 goto out;
287
288         /* Ok, looks good - let it rip. */
289         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
290                 goto out;
291 set_brk:
292         mm->brk = brk;
293 out:
294         retval = mm->brk;
295         up_write(&mm->mmap_sem);
296         return retval;
297 }
298
299 #ifdef DEBUG_MM_RB
300 static int browse_rb(struct rb_root *root)
301 {
302         int i = 0, j;
303         struct rb_node *nd, *pn = NULL;
304         unsigned long prev = 0, pend = 0;
305
306         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
307                 struct vm_area_struct *vma;
308                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
309                 if (vma->vm_start < prev)
310                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
311                 if (vma->vm_start < pend)
312                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
313                 if (vma->vm_start > vma->vm_end)
314                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
315                 i++;
316                 pn = nd;
317                 prev = vma->vm_start;
318                 pend = vma->vm_end;
319         }
320         j = 0;
321         for (nd = pn; nd; nd = rb_prev(nd)) {
322                 j++;
323         }
324         if (i != j)
325                 printk("backwards %d, forwards %d\n", j, i), i = 0;
326         return i;
327 }
328
329 void validate_mm(struct mm_struct *mm)
330 {
331         int bug = 0;
332         int i = 0;
333         struct vm_area_struct *tmp = mm->mmap;
334         while (tmp) {
335                 tmp = tmp->vm_next;
336                 i++;
337         }
338         if (i != mm->map_count)
339                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
340         i = browse_rb(&mm->mm_rb);
341         if (i != mm->map_count)
342                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
343         BUG_ON(bug);
344 }
345 #else
346 #define validate_mm(mm) do { } while (0)
347 #endif
348
349 static struct vm_area_struct *
350 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
351                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
352                 struct rb_node ** rb_parent)
353 {
354         struct vm_area_struct * vma;
355         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
356
357         __rb_link = &mm->mm_rb.rb_node;
358         rb_prev = __rb_parent = NULL;
359         vma = NULL;
360
361         while (*__rb_link) {
362                 struct vm_area_struct *vma_tmp;
363
364                 __rb_parent = *__rb_link;
365                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
366
367                 if (vma_tmp->vm_end > addr) {
368                         vma = vma_tmp;
369                         if (vma_tmp->vm_start <= addr)
370                                 break;
371                         __rb_link = &__rb_parent->rb_left;
372                 } else {
373                         rb_prev = __rb_parent;
374                         __rb_link = &__rb_parent->rb_right;
375                 }
376         }
377
378         *pprev = NULL;
379         if (rb_prev)
380                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
381         *rb_link = __rb_link;
382         *rb_parent = __rb_parent;
383         return vma;
384 }
385
386 static inline void
387 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
388                 struct vm_area_struct *prev, struct rb_node *rb_parent)
389 {
390         if (prev) {
391                 vma->vm_next = prev->vm_next;
392                 prev->vm_next = vma;
393         } else {
394                 mm->mmap = vma;
395                 if (rb_parent)
396                         vma->vm_next = rb_entry(rb_parent,
397                                         struct vm_area_struct, vm_rb);
398                 else
399                         vma->vm_next = NULL;
400         }
401 }
402
403 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
404                 struct rb_node **rb_link, struct rb_node *rb_parent)
405 {
406         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
407         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
408 }
409
410 static void __vma_link_file(struct vm_area_struct *vma)
411 {
412         struct file *file;
413
414         file = vma->vm_file;
415         if (file) {
416                 struct address_space *mapping = file->f_mapping;
417
418                 if (vma->vm_flags & VM_DENYWRITE)
419                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
420                 if (vma->vm_flags & VM_SHARED)
421                         mapping->i_mmap_writable++;
422
423                 flush_dcache_mmap_lock(mapping);
424                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
425                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
426                 else
427                         vma_prio_tree_insert(vma, &mapping->i_mmap);
428                 flush_dcache_mmap_unlock(mapping);
429         }
430 }
431
432 static void
433 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
434         struct vm_area_struct *prev, struct rb_node **rb_link,
435         struct rb_node *rb_parent)
436 {
437         __vma_link_list(mm, vma, prev, rb_parent);
438         __vma_link_rb(mm, vma, rb_link, rb_parent);
439         __anon_vma_link(vma);
440 }
441
442 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
443                         struct vm_area_struct *prev, struct rb_node **rb_link,
444                         struct rb_node *rb_parent)
445 {
446         struct address_space *mapping = NULL;
447
448         if (vma->vm_file)
449                 mapping = vma->vm_file->f_mapping;
450
451         if (mapping) {
452                 spin_lock(&mapping->i_mmap_lock);
453                 vma->vm_truncate_count = mapping->truncate_count;
454         }
455         anon_vma_lock(vma);
456
457         __vma_link(mm, vma, prev, rb_link, rb_parent);
458         __vma_link_file(vma);
459
460         anon_vma_unlock(vma);
461         if (mapping)
462                 spin_unlock(&mapping->i_mmap_lock);
463
464         mm->map_count++;
465         validate_mm(mm);
466 }
467
468 /*
469  * Helper for vma_adjust in the split_vma insert case:
470  * insert vm structure into list and rbtree and anon_vma,
471  * but it has already been inserted into prio_tree earlier.
472  */
473 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
474 {
475         struct vm_area_struct *__vma, *prev;
476         struct rb_node **rb_link, *rb_parent;
477
478         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
479         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
480         __vma_link(mm, vma, prev, rb_link, rb_parent);
481         mm->map_count++;
482 }
483
484 static inline void
485 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
486                 struct vm_area_struct *prev)
487 {
488         prev->vm_next = vma->vm_next;
489         rb_erase(&vma->vm_rb, &mm->mm_rb);
490         if (mm->mmap_cache == vma)
491                 mm->mmap_cache = prev;
492 }
493
494 /*
495  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
496  * is already present in an i_mmap tree without adjusting the tree.
497  * The following helper function should be used when such adjustments
498  * are necessary.  The "insert" vma (if any) is to be inserted
499  * before we drop the necessary locks.
500  */
501 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
502         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
503 {
504         struct mm_struct *mm = vma->vm_mm;
505         struct vm_area_struct *next = vma->vm_next;
506         struct vm_area_struct *importer = NULL;
507         struct address_space *mapping = NULL;
508         struct prio_tree_root *root = NULL;
509         struct file *file = vma->vm_file;
510         struct anon_vma *anon_vma = NULL;
511         long adjust_next = 0;
512         int remove_next = 0;
513
514         if (next && !insert) {
515                 if (end >= next->vm_end) {
516                         /*
517                          * vma expands, overlapping all the next, and
518                          * perhaps the one after too (mprotect case 6).
519                          */
520 again:                  remove_next = 1 + (end > next->vm_end);
521                         end = next->vm_end;
522                         anon_vma = next->anon_vma;
523                         importer = vma;
524                 } else if (end > next->vm_start) {
525                         /*
526                          * vma expands, overlapping part of the next:
527                          * mprotect case 5 shifting the boundary up.
528                          */
529                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
530                         anon_vma = next->anon_vma;
531                         importer = vma;
532                 } else if (end < vma->vm_end) {
533                         /*
534                          * vma shrinks, and !insert tells it's not
535                          * split_vma inserting another: so it must be
536                          * mprotect case 4 shifting the boundary down.
537                          */
538                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
539                         anon_vma = next->anon_vma;
540                         importer = next;
541                 }
542         }
543
544         if (file) {
545                 mapping = file->f_mapping;
546                 if (!(vma->vm_flags & VM_NONLINEAR))
547                         root = &mapping->i_mmap;
548                 spin_lock(&mapping->i_mmap_lock);
549                 if (importer &&
550                     vma->vm_truncate_count != next->vm_truncate_count) {
551                         /*
552                          * unmap_mapping_range might be in progress:
553                          * ensure that the expanding vma is rescanned.
554                          */
555                         importer->vm_truncate_count = 0;
556                 }
557                 if (insert) {
558                         insert->vm_truncate_count = vma->vm_truncate_count;
559                         /*
560                          * Put into prio_tree now, so instantiated pages
561                          * are visible to arm/parisc __flush_dcache_page
562                          * throughout; but we cannot insert into address
563                          * space until vma start or end is updated.
564                          */
565                         __vma_link_file(insert);
566                 }
567         }
568
569         /*
570          * When changing only vma->vm_end, we don't really need
571          * anon_vma lock: but is that case worth optimizing out?
572          */
573         if (vma->anon_vma)
574                 anon_vma = vma->anon_vma;
575         if (anon_vma) {
576                 spin_lock(&anon_vma->lock);
577                 /*
578                  * Easily overlooked: when mprotect shifts the boundary,
579                  * make sure the expanding vma has anon_vma set if the
580                  * shrinking vma had, to cover any anon pages imported.
581                  */
582                 if (importer && !importer->anon_vma) {
583                         importer->anon_vma = anon_vma;
584                         __anon_vma_link(importer);
585                 }
586         }
587
588         if (root) {
589                 flush_dcache_mmap_lock(mapping);
590                 vma_prio_tree_remove(vma, root);
591                 if (adjust_next)
592                         vma_prio_tree_remove(next, root);
593         }
594
595         vma->vm_start = start;
596         vma->vm_end = end;
597         vma->vm_pgoff = pgoff;
598         if (adjust_next) {
599                 next->vm_start += adjust_next << PAGE_SHIFT;
600                 next->vm_pgoff += adjust_next;
601         }
602
603         if (root) {
604                 if (adjust_next)
605                         vma_prio_tree_insert(next, root);
606                 vma_prio_tree_insert(vma, root);
607                 flush_dcache_mmap_unlock(mapping);
608         }
609
610         if (remove_next) {
611                 /*
612                  * vma_merge has merged next into vma, and needs
613                  * us to remove next before dropping the locks.
614                  */
615                 __vma_unlink(mm, next, vma);
616                 if (file)
617                         __remove_shared_vm_struct(next, file, mapping);
618                 if (next->anon_vma)
619                         __anon_vma_merge(vma, next);
620         } else if (insert) {
621                 /*
622                  * split_vma has split insert from vma, and needs
623                  * us to insert it before dropping the locks
624                  * (it may either follow vma or precede it).
625                  */
626                 __insert_vm_struct(mm, insert);
627         }
628
629         if (anon_vma)
630                 spin_unlock(&anon_vma->lock);
631         if (mapping)
632                 spin_unlock(&mapping->i_mmap_lock);
633
634         if (remove_next) {
635                 if (file) {
636                         fput(file);
637                         if (next->vm_flags & VM_EXECUTABLE)
638                                 removed_exe_file_vma(mm);
639                 }
640                 mm->map_count--;
641                 mpol_put(vma_policy(next));
642                 kmem_cache_free(vm_area_cachep, next);
643                 /*
644                  * In mprotect's case 6 (see comments on vma_merge),
645                  * we must remove another next too. It would clutter
646                  * up the code too much to do both in one go.
647                  */
648                 if (remove_next == 2) {
649                         next = vma->vm_next;
650                         goto again;
651                 }
652         }
653
654         validate_mm(mm);
655 }
656
657 /* Flags that can be inherited from an existing mapping when merging */
658 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
659
660 /*
661  * If the vma has a ->close operation then the driver probably needs to release
662  * per-vma resources, so we don't attempt to merge those.
663  */
664 static inline int is_mergeable_vma(struct vm_area_struct *vma,
665                         struct file *file, unsigned long vm_flags)
666 {
667         if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
668                 return 0;
669         if (vma->vm_file != file)
670                 return 0;
671         if (vma->vm_ops && vma->vm_ops->close)
672                 return 0;
673         return 1;
674 }
675
676 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
677                                         struct anon_vma *anon_vma2)
678 {
679         return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
680 }
681
682 /*
683  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
684  * in front of (at a lower virtual address and file offset than) the vma.
685  *
686  * We cannot merge two vmas if they have differently assigned (non-NULL)
687  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
688  *
689  * We don't check here for the merged mmap wrapping around the end of pagecache
690  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
691  * wrap, nor mmaps which cover the final page at index -1UL.
692  */
693 static int
694 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
695         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
696 {
697         if (is_mergeable_vma(vma, file, vm_flags) &&
698             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
699                 if (vma->vm_pgoff == vm_pgoff)
700                         return 1;
701         }
702         return 0;
703 }
704
705 /*
706  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
707  * beyond (at a higher virtual address and file offset than) the vma.
708  *
709  * We cannot merge two vmas if they have differently assigned (non-NULL)
710  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
711  */
712 static int
713 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
714         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
715 {
716         if (is_mergeable_vma(vma, file, vm_flags) &&
717             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
718                 pgoff_t vm_pglen;
719                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
720                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
721                         return 1;
722         }
723         return 0;
724 }
725
726 /*
727  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
728  * whether that can be merged with its predecessor or its successor.
729  * Or both (it neatly fills a hole).
730  *
731  * In most cases - when called for mmap, brk or mremap - [addr,end) is
732  * certain not to be mapped by the time vma_merge is called; but when
733  * called for mprotect, it is certain to be already mapped (either at
734  * an offset within prev, or at the start of next), and the flags of
735  * this area are about to be changed to vm_flags - and the no-change
736  * case has already been eliminated.
737  *
738  * The following mprotect cases have to be considered, where AAAA is
739  * the area passed down from mprotect_fixup, never extending beyond one
740  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
741  *
742  *     AAAA             AAAA                AAAA          AAAA
743  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
744  *    cannot merge    might become    might become    might become
745  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
746  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
747  *    mremap move:                                    PPPPNNNNNNNN 8
748  *        AAAA
749  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
750  *    might become    case 1 below    case 2 below    case 3 below
751  *
752  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
753  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
754  */
755 struct vm_area_struct *vma_merge(struct mm_struct *mm,
756                         struct vm_area_struct *prev, unsigned long addr,
757                         unsigned long end, unsigned long vm_flags,
758                         struct anon_vma *anon_vma, struct file *file,
759                         pgoff_t pgoff, struct mempolicy *policy)
760 {
761         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
762         struct vm_area_struct *area, *next;
763
764         /*
765          * We later require that vma->vm_flags == vm_flags,
766          * so this tests vma->vm_flags & VM_SPECIAL, too.
767          */
768         if (vm_flags & VM_SPECIAL)
769                 return NULL;
770
771         if (prev)
772                 next = prev->vm_next;
773         else
774                 next = mm->mmap;
775         area = next;
776         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
777                 next = next->vm_next;
778
779         /*
780          * Can it merge with the predecessor?
781          */
782         if (prev && prev->vm_end == addr &&
783                         mpol_equal(vma_policy(prev), policy) &&
784                         can_vma_merge_after(prev, vm_flags,
785                                                 anon_vma, file, pgoff)) {
786                 /*
787                  * OK, it can.  Can we now merge in the successor as well?
788                  */
789                 if (next && end == next->vm_start &&
790                                 mpol_equal(policy, vma_policy(next)) &&
791                                 can_vma_merge_before(next, vm_flags,
792                                         anon_vma, file, pgoff+pglen) &&
793                                 is_mergeable_anon_vma(prev->anon_vma,
794                                                       next->anon_vma)) {
795                                                         /* cases 1, 6 */
796                         vma_adjust(prev, prev->vm_start,
797                                 next->vm_end, prev->vm_pgoff, NULL);
798                 } else                                  /* cases 2, 5, 7 */
799                         vma_adjust(prev, prev->vm_start,
800                                 end, prev->vm_pgoff, NULL);
801                 return prev;
802         }
803
804         /*
805          * Can this new request be merged in front of next?
806          */
807         if (next && end == next->vm_start &&
808                         mpol_equal(policy, vma_policy(next)) &&
809                         can_vma_merge_before(next, vm_flags,
810                                         anon_vma, file, pgoff+pglen)) {
811                 if (prev && addr < prev->vm_end)        /* case 4 */
812                         vma_adjust(prev, prev->vm_start,
813                                 addr, prev->vm_pgoff, NULL);
814                 else                                    /* cases 3, 8 */
815                         vma_adjust(area, addr, next->vm_end,
816                                 next->vm_pgoff - pglen, NULL);
817                 return area;
818         }
819
820         return NULL;
821 }
822
823 /*
824  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
825  * neighbouring vmas for a suitable anon_vma, before it goes off
826  * to allocate a new anon_vma.  It checks because a repetitive
827  * sequence of mprotects and faults may otherwise lead to distinct
828  * anon_vmas being allocated, preventing vma merge in subsequent
829  * mprotect.
830  */
831 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
832 {
833         struct vm_area_struct *near;
834         unsigned long vm_flags;
835
836         near = vma->vm_next;
837         if (!near)
838                 goto try_prev;
839
840         /*
841          * Since only mprotect tries to remerge vmas, match flags
842          * which might be mprotected into each other later on.
843          * Neither mlock nor madvise tries to remerge at present,
844          * so leave their flags as obstructing a merge.
845          */
846         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
847         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
848
849         if (near->anon_vma && vma->vm_end == near->vm_start &&
850                         mpol_equal(vma_policy(vma), vma_policy(near)) &&
851                         can_vma_merge_before(near, vm_flags,
852                                 NULL, vma->vm_file, vma->vm_pgoff +
853                                 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
854                 return near->anon_vma;
855 try_prev:
856         /*
857          * It is potentially slow to have to call find_vma_prev here.
858          * But it's only on the first write fault on the vma, not
859          * every time, and we could devise a way to avoid it later
860          * (e.g. stash info in next's anon_vma_node when assigning
861          * an anon_vma, or when trying vma_merge).  Another time.
862          */
863         BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
864         if (!near)
865                 goto none;
866
867         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
868         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
869
870         if (near->anon_vma && near->vm_end == vma->vm_start &&
871                         mpol_equal(vma_policy(near), vma_policy(vma)) &&
872                         can_vma_merge_after(near, vm_flags,
873                                 NULL, vma->vm_file, vma->vm_pgoff))
874                 return near->anon_vma;
875 none:
876         /*
877          * There's no absolute need to look only at touching neighbours:
878          * we could search further afield for "compatible" anon_vmas.
879          * But it would probably just be a waste of time searching,
880          * or lead to too many vmas hanging off the same anon_vma.
881          * We're trying to allow mprotect remerging later on,
882          * not trying to minimize memory used for anon_vmas.
883          */
884         return NULL;
885 }
886
887 #ifdef CONFIG_PROC_FS
888 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
889                                                 struct file *file, long pages)
890 {
891         const unsigned long stack_flags
892                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
893
894         if (file) {
895                 mm->shared_vm += pages;
896                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
897                         mm->exec_vm += pages;
898         } else if (flags & stack_flags)
899                 mm->stack_vm += pages;
900         if (flags & (VM_RESERVED|VM_IO))
901                 mm->reserved_vm += pages;
902 }
903 #endif /* CONFIG_PROC_FS */
904
905 /*
906  * The caller must hold down_write(current->mm->mmap_sem).
907  */
908
909 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
910                         unsigned long len, unsigned long prot,
911                         unsigned long flags, unsigned long pgoff)
912 {
913         struct mm_struct * mm = current->mm;
914         struct inode *inode;
915         unsigned int vm_flags;
916         int error;
917         unsigned long reqprot = prot;
918
919         /*
920          * Does the application expect PROT_READ to imply PROT_EXEC?
921          *
922          * (the exception is when the underlying filesystem is noexec
923          *  mounted, in which case we dont add PROT_EXEC.)
924          */
925         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
926                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
927                         prot |= PROT_EXEC;
928
929         if (!len)
930                 return -EINVAL;
931
932         if (!(flags & MAP_FIXED))
933                 addr = round_hint_to_min(addr);
934
935         error = arch_mmap_check(addr, len, flags);
936         if (error)
937                 return error;
938
939         /* Careful about overflows.. */
940         len = PAGE_ALIGN(len);
941         if (!len || len > TASK_SIZE)
942                 return -ENOMEM;
943
944         /* offset overflow? */
945         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
946                return -EOVERFLOW;
947
948         /* Too many mappings? */
949         if (mm->map_count > sysctl_max_map_count)
950                 return -ENOMEM;
951
952         /* Obtain the address to map to. we verify (or select) it and ensure
953          * that it represents a valid section of the address space.
954          */
955         addr = get_unmapped_area(file, addr, len, pgoff, flags);
956         if (addr & ~PAGE_MASK)
957                 return addr;
958
959         /* Do simple checking here so the lower-level routines won't have
960          * to. we assume access permissions have been handled by the open
961          * of the memory object, so we don't do any here.
962          */
963         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
964                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
965
966         if (flags & MAP_LOCKED) {
967                 if (!can_do_mlock())
968                         return -EPERM;
969                 vm_flags |= VM_LOCKED;
970         }
971
972         /* mlock MCL_FUTURE? */
973         if (vm_flags & VM_LOCKED) {
974                 unsigned long locked, lock_limit;
975                 locked = len >> PAGE_SHIFT;
976                 locked += mm->locked_vm;
977                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
978                 lock_limit >>= PAGE_SHIFT;
979                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
980                         return -EAGAIN;
981         }
982
983         inode = file ? file->f_path.dentry->d_inode : NULL;
984
985         if (file) {
986                 switch (flags & MAP_TYPE) {
987                 case MAP_SHARED:
988                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
989                                 return -EACCES;
990
991                         /*
992                          * Make sure we don't allow writing to an append-only
993                          * file..
994                          */
995                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
996                                 return -EACCES;
997
998                         /*
999                          * Make sure there are no mandatory locks on the file.
1000                          */
1001                         if (locks_verify_locked(inode))
1002                                 return -EAGAIN;
1003
1004                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1005                         if (!(file->f_mode & FMODE_WRITE))
1006                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1007
1008                         /* fall through */
1009                 case MAP_PRIVATE:
1010                         if (!(file->f_mode & FMODE_READ))
1011                                 return -EACCES;
1012                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1013                                 if (vm_flags & VM_EXEC)
1014                                         return -EPERM;
1015                                 vm_flags &= ~VM_MAYEXEC;
1016                         }
1017
1018                         if (!file->f_op || !file->f_op->mmap)
1019                                 return -ENODEV;
1020                         break;
1021
1022                 default:
1023                         return -EINVAL;
1024                 }
1025         } else {
1026                 switch (flags & MAP_TYPE) {
1027                 case MAP_SHARED:
1028                         /*
1029                          * Ignore pgoff.
1030                          */
1031                         pgoff = 0;
1032                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1033                         break;
1034                 case MAP_PRIVATE:
1035                         /*
1036                          * Set pgoff according to addr for anon_vma.
1037                          */
1038                         pgoff = addr >> PAGE_SHIFT;
1039                         break;
1040                 default:
1041                         return -EINVAL;
1042                 }
1043         }
1044
1045         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1046         if (error)
1047                 return error;
1048
1049         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1050 }
1051 EXPORT_SYMBOL(do_mmap_pgoff);
1052
1053 /*
1054  * Some shared mappigns will want the pages marked read-only
1055  * to track write events. If so, we'll downgrade vm_page_prot
1056  * to the private version (using protection_map[] without the
1057  * VM_SHARED bit).
1058  */
1059 int vma_wants_writenotify(struct vm_area_struct *vma)
1060 {
1061         unsigned int vm_flags = vma->vm_flags;
1062
1063         /* If it was private or non-writable, the write bit is already clear */
1064         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1065                 return 0;
1066
1067         /* The backer wishes to know when pages are first written to? */
1068         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1069                 return 1;
1070
1071         /* The open routine did something to the protections already? */
1072         if (pgprot_val(vma->vm_page_prot) !=
1073             pgprot_val(vm_get_page_prot(vm_flags)))
1074                 return 0;
1075
1076         /* Specialty mapping? */
1077         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1078                 return 0;
1079
1080         /* Can the mapping track the dirty pages? */
1081         return vma->vm_file && vma->vm_file->f_mapping &&
1082                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1083 }
1084
1085 /*
1086  * We account for memory if it's a private writeable mapping,
1087  * not hugepages and VM_NORESERVE wasn't set.
1088  */
1089 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1090 {
1091         /*
1092          * hugetlb has its own accounting separate from the core VM
1093          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1094          */
1095         if (file && is_file_hugepages(file))
1096                 return 0;
1097
1098         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1099 }
1100
1101 unsigned long mmap_region(struct file *file, unsigned long addr,
1102                           unsigned long len, unsigned long flags,
1103                           unsigned int vm_flags, unsigned long pgoff)
1104 {
1105         struct mm_struct *mm = current->mm;
1106         struct vm_area_struct *vma, *prev;
1107         int correct_wcount = 0;
1108         int error;
1109         struct rb_node **rb_link, *rb_parent;
1110         unsigned long charged = 0;
1111         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1112
1113         /* Clear old maps */
1114         error = -ENOMEM;
1115 munmap_back:
1116         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1117         if (vma && vma->vm_start < addr + len) {
1118                 if (do_munmap(mm, addr, len))
1119                         return -ENOMEM;
1120                 goto munmap_back;
1121         }
1122
1123         /* Check against address space limit. */
1124         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1125                 return -ENOMEM;
1126
1127         /*
1128          * Set 'VM_NORESERVE' if we should not account for the
1129          * memory use of this mapping.
1130          */
1131         if ((flags & MAP_NORESERVE)) {
1132                 /* We honor MAP_NORESERVE if allowed to overcommit */
1133                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1134                         vm_flags |= VM_NORESERVE;
1135
1136                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1137                 if (file && is_file_hugepages(file))
1138                         vm_flags |= VM_NORESERVE;
1139         }
1140
1141         /*
1142          * Private writable mapping: check memory availability
1143          */
1144         if (accountable_mapping(file, vm_flags)) {
1145                 charged = len >> PAGE_SHIFT;
1146                 if (security_vm_enough_memory(charged))
1147                         return -ENOMEM;
1148                 vm_flags |= VM_ACCOUNT;
1149         }
1150
1151         /*
1152          * Can we just expand an old mapping?
1153          */
1154         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1155         if (vma)
1156                 goto out;
1157
1158         /*
1159          * Determine the object being mapped and call the appropriate
1160          * specific mapper. the address has already been validated, but
1161          * not unmapped, but the maps are removed from the list.
1162          */
1163         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1164         if (!vma) {
1165                 error = -ENOMEM;
1166                 goto unacct_error;
1167         }
1168
1169         vma->vm_mm = mm;
1170         vma->vm_start = addr;
1171         vma->vm_end = addr + len;
1172         vma->vm_flags = vm_flags;
1173         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1174         vma->vm_pgoff = pgoff;
1175
1176         if (file) {
1177                 error = -EINVAL;
1178                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1179                         goto free_vma;
1180                 if (vm_flags & VM_DENYWRITE) {
1181                         error = deny_write_access(file);
1182                         if (error)
1183                                 goto free_vma;
1184                         correct_wcount = 1;
1185                 }
1186                 vma->vm_file = file;
1187                 get_file(file);
1188                 error = file->f_op->mmap(file, vma);
1189                 if (error)
1190                         goto unmap_and_free_vma;
1191                 if (vm_flags & VM_EXECUTABLE)
1192                         added_exe_file_vma(mm);
1193         } else if (vm_flags & VM_SHARED) {
1194                 error = shmem_zero_setup(vma);
1195                 if (error)
1196                         goto free_vma;
1197         }
1198
1199         /* Can addr have changed??
1200          *
1201          * Answer: Yes, several device drivers can do it in their
1202          *         f_op->mmap method. -DaveM
1203          */
1204         addr = vma->vm_start;
1205         pgoff = vma->vm_pgoff;
1206         vm_flags = vma->vm_flags;
1207
1208         if (vma_wants_writenotify(vma))
1209                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1210
1211         vma_link(mm, vma, prev, rb_link, rb_parent);
1212         file = vma->vm_file;
1213
1214         /* Once vma denies write, undo our temporary denial count */
1215         if (correct_wcount)
1216                 atomic_inc(&inode->i_writecount);
1217 out:
1218         mm->total_vm += len >> PAGE_SHIFT;
1219         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1220         if (vm_flags & VM_LOCKED) {
1221                 /*
1222                  * makes pages present; downgrades, drops, reacquires mmap_sem
1223                  */
1224                 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1225                 if (nr_pages < 0)
1226                         return nr_pages;        /* vma gone! */
1227                 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1228         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1229                 make_pages_present(addr, addr + len);
1230         return addr;
1231
1232 unmap_and_free_vma:
1233         if (correct_wcount)
1234                 atomic_inc(&inode->i_writecount);
1235         vma->vm_file = NULL;
1236         fput(file);
1237
1238         /* Undo any partial mapping done by a device driver. */
1239         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1240         charged = 0;
1241 free_vma:
1242         kmem_cache_free(vm_area_cachep, vma);
1243 unacct_error:
1244         if (charged)
1245                 vm_unacct_memory(charged);
1246         return error;
1247 }
1248
1249 /* Get an address range which is currently unmapped.
1250  * For shmat() with addr=0.
1251  *
1252  * Ugly calling convention alert:
1253  * Return value with the low bits set means error value,
1254  * ie
1255  *      if (ret & ~PAGE_MASK)
1256  *              error = ret;
1257  *
1258  * This function "knows" that -ENOMEM has the bits set.
1259  */
1260 #ifndef HAVE_ARCH_UNMAPPED_AREA
1261 unsigned long
1262 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1263                 unsigned long len, unsigned long pgoff, unsigned long flags)
1264 {
1265         struct mm_struct *mm = current->mm;
1266         struct vm_area_struct *vma;
1267         unsigned long start_addr;
1268
1269         if (len > TASK_SIZE)
1270                 return -ENOMEM;
1271
1272         if (flags & MAP_FIXED)
1273                 return addr;
1274
1275         if (addr) {
1276                 addr = PAGE_ALIGN(addr);
1277                 vma = find_vma(mm, addr);
1278                 if (TASK_SIZE - len >= addr &&
1279                     (!vma || addr + len <= vma->vm_start))
1280                         return addr;
1281         }
1282         if (len > mm->cached_hole_size) {
1283                 start_addr = addr = mm->free_area_cache;
1284         } else {
1285                 start_addr = addr = TASK_UNMAPPED_BASE;
1286                 mm->cached_hole_size = 0;
1287         }
1288
1289 full_search:
1290         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1291                 /* At this point:  (!vma || addr < vma->vm_end). */
1292                 if (TASK_SIZE - len < addr) {
1293                         /*
1294                          * Start a new search - just in case we missed
1295                          * some holes.
1296                          */
1297                         if (start_addr != TASK_UNMAPPED_BASE) {
1298                                 addr = TASK_UNMAPPED_BASE;
1299                                 start_addr = addr;
1300                                 mm->cached_hole_size = 0;
1301                                 goto full_search;
1302                         }
1303                         return -ENOMEM;
1304                 }
1305                 if (!vma || addr + len <= vma->vm_start) {
1306                         /*
1307                          * Remember the place where we stopped the search:
1308                          */
1309                         mm->free_area_cache = addr + len;
1310                         return addr;
1311                 }
1312                 if (addr + mm->cached_hole_size < vma->vm_start)
1313                         mm->cached_hole_size = vma->vm_start - addr;
1314                 addr = vma->vm_end;
1315         }
1316 }
1317 #endif  
1318
1319 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1320 {
1321         /*
1322          * Is this a new hole at the lowest possible address?
1323          */
1324         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1325                 mm->free_area_cache = addr;
1326                 mm->cached_hole_size = ~0UL;
1327         }
1328 }
1329
1330 /*
1331  * This mmap-allocator allocates new areas top-down from below the
1332  * stack's low limit (the base):
1333  */
1334 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1335 unsigned long
1336 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1337                           const unsigned long len, const unsigned long pgoff,
1338                           const unsigned long flags)
1339 {
1340         struct vm_area_struct *vma;
1341         struct mm_struct *mm = current->mm;
1342         unsigned long addr = addr0;
1343
1344         /* requested length too big for entire address space */
1345         if (len > TASK_SIZE)
1346                 return -ENOMEM;
1347
1348         if (flags & MAP_FIXED)
1349                 return addr;
1350
1351         /* requesting a specific address */
1352         if (addr) {
1353                 addr = PAGE_ALIGN(addr);
1354                 vma = find_vma(mm, addr);
1355                 if (TASK_SIZE - len >= addr &&
1356                                 (!vma || addr + len <= vma->vm_start))
1357                         return addr;
1358         }
1359
1360         /* check if free_area_cache is useful for us */
1361         if (len <= mm->cached_hole_size) {
1362                 mm->cached_hole_size = 0;
1363                 mm->free_area_cache = mm->mmap_base;
1364         }
1365
1366         /* either no address requested or can't fit in requested address hole */
1367         addr = mm->free_area_cache;
1368
1369         /* make sure it can fit in the remaining address space */
1370         if (addr > len) {
1371                 vma = find_vma(mm, addr-len);
1372                 if (!vma || addr <= vma->vm_start)
1373                         /* remember the address as a hint for next time */
1374                         return (mm->free_area_cache = addr-len);
1375         }
1376
1377         if (mm->mmap_base < len)
1378                 goto bottomup;
1379
1380         addr = mm->mmap_base-len;
1381
1382         do {
1383                 /*
1384                  * Lookup failure means no vma is above this address,
1385                  * else if new region fits below vma->vm_start,
1386                  * return with success:
1387                  */
1388                 vma = find_vma(mm, addr);
1389                 if (!vma || addr+len <= vma->vm_start)
1390                         /* remember the address as a hint for next time */
1391                         return (mm->free_area_cache = addr);
1392
1393                 /* remember the largest hole we saw so far */
1394                 if (addr + mm->cached_hole_size < vma->vm_start)
1395                         mm->cached_hole_size = vma->vm_start - addr;
1396
1397                 /* try just below the current vma->vm_start */
1398                 addr = vma->vm_start-len;
1399         } while (len < vma->vm_start);
1400
1401 bottomup:
1402         /*
1403          * A failed mmap() very likely causes application failure,
1404          * so fall back to the bottom-up function here. This scenario
1405          * can happen with large stack limits and large mmap()
1406          * allocations.
1407          */
1408         mm->cached_hole_size = ~0UL;
1409         mm->free_area_cache = TASK_UNMAPPED_BASE;
1410         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1411         /*
1412          * Restore the topdown base:
1413          */
1414         mm->free_area_cache = mm->mmap_base;
1415         mm->cached_hole_size = ~0UL;
1416
1417         return addr;
1418 }
1419 #endif
1420
1421 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1422 {
1423         /*
1424          * Is this a new hole at the highest possible address?
1425          */
1426         if (addr > mm->free_area_cache)
1427                 mm->free_area_cache = addr;
1428
1429         /* dont allow allocations above current base */
1430         if (mm->free_area_cache > mm->mmap_base)
1431                 mm->free_area_cache = mm->mmap_base;
1432 }
1433
1434 unsigned long
1435 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1436                 unsigned long pgoff, unsigned long flags)
1437 {
1438         unsigned long (*get_area)(struct file *, unsigned long,
1439                                   unsigned long, unsigned long, unsigned long);
1440
1441         get_area = current->mm->get_unmapped_area;
1442         if (file && file->f_op && file->f_op->get_unmapped_area)
1443                 get_area = file->f_op->get_unmapped_area;
1444         addr = get_area(file, addr, len, pgoff, flags);
1445         if (IS_ERR_VALUE(addr))
1446                 return addr;
1447
1448         if (addr > TASK_SIZE - len)
1449                 return -ENOMEM;
1450         if (addr & ~PAGE_MASK)
1451                 return -EINVAL;
1452
1453         return arch_rebalance_pgtables(addr, len);
1454 }
1455
1456 EXPORT_SYMBOL(get_unmapped_area);
1457
1458 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1459 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1460 {
1461         struct vm_area_struct *vma = NULL;
1462
1463         if (mm) {
1464                 /* Check the cache first. */
1465                 /* (Cache hit rate is typically around 35%.) */
1466                 vma = mm->mmap_cache;
1467                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1468                         struct rb_node * rb_node;
1469
1470                         rb_node = mm->mm_rb.rb_node;
1471                         vma = NULL;
1472
1473                         while (rb_node) {
1474                                 struct vm_area_struct * vma_tmp;
1475
1476                                 vma_tmp = rb_entry(rb_node,
1477                                                 struct vm_area_struct, vm_rb);
1478
1479                                 if (vma_tmp->vm_end > addr) {
1480                                         vma = vma_tmp;
1481                                         if (vma_tmp->vm_start <= addr)
1482                                                 break;
1483                                         rb_node = rb_node->rb_left;
1484                                 } else
1485                                         rb_node = rb_node->rb_right;
1486                         }
1487                         if (vma)
1488                                 mm->mmap_cache = vma;
1489                 }
1490         }
1491         return vma;
1492 }
1493
1494 EXPORT_SYMBOL(find_vma);
1495
1496 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1497 struct vm_area_struct *
1498 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1499                         struct vm_area_struct **pprev)
1500 {
1501         struct vm_area_struct *vma = NULL, *prev = NULL;
1502         struct rb_node *rb_node;
1503         if (!mm)
1504                 goto out;
1505
1506         /* Guard against addr being lower than the first VMA */
1507         vma = mm->mmap;
1508
1509         /* Go through the RB tree quickly. */
1510         rb_node = mm->mm_rb.rb_node;
1511
1512         while (rb_node) {
1513                 struct vm_area_struct *vma_tmp;
1514                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1515
1516                 if (addr < vma_tmp->vm_end) {
1517                         rb_node = rb_node->rb_left;
1518                 } else {
1519                         prev = vma_tmp;
1520                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1521                                 break;
1522                         rb_node = rb_node->rb_right;
1523                 }
1524         }
1525
1526 out:
1527         *pprev = prev;
1528         return prev ? prev->vm_next : vma;
1529 }
1530
1531 /*
1532  * Verify that the stack growth is acceptable and
1533  * update accounting. This is shared with both the
1534  * grow-up and grow-down cases.
1535  */
1536 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1537 {
1538         struct mm_struct *mm = vma->vm_mm;
1539         struct rlimit *rlim = current->signal->rlim;
1540         unsigned long new_start;
1541
1542         /* address space limit tests */
1543         if (!may_expand_vm(mm, grow))
1544                 return -ENOMEM;
1545
1546         /* Stack limit test */
1547         if (size > rlim[RLIMIT_STACK].rlim_cur)
1548                 return -ENOMEM;
1549
1550         /* mlock limit tests */
1551         if (vma->vm_flags & VM_LOCKED) {
1552                 unsigned long locked;
1553                 unsigned long limit;
1554                 locked = mm->locked_vm + grow;
1555                 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1556                 if (locked > limit && !capable(CAP_IPC_LOCK))
1557                         return -ENOMEM;
1558         }
1559
1560         /* Check to ensure the stack will not grow into a hugetlb-only region */
1561         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1562                         vma->vm_end - size;
1563         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1564                 return -EFAULT;
1565
1566         /*
1567          * Overcommit..  This must be the final test, as it will
1568          * update security statistics.
1569          */
1570         if (security_vm_enough_memory_mm(mm, grow))
1571                 return -ENOMEM;
1572
1573         /* Ok, everything looks good - let it rip */
1574         mm->total_vm += grow;
1575         if (vma->vm_flags & VM_LOCKED)
1576                 mm->locked_vm += grow;
1577         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1578         return 0;
1579 }
1580
1581 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1582 /*
1583  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1584  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1585  */
1586 #ifndef CONFIG_IA64
1587 static
1588 #endif
1589 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1590 {
1591         int error;
1592
1593         if (!(vma->vm_flags & VM_GROWSUP))
1594                 return -EFAULT;
1595
1596         /*
1597          * We must make sure the anon_vma is allocated
1598          * so that the anon_vma locking is not a noop.
1599          */
1600         if (unlikely(anon_vma_prepare(vma)))
1601                 return -ENOMEM;
1602         anon_vma_lock(vma);
1603
1604         /*
1605          * vma->vm_start/vm_end cannot change under us because the caller
1606          * is required to hold the mmap_sem in read mode.  We need the
1607          * anon_vma lock to serialize against concurrent expand_stacks.
1608          * Also guard against wrapping around to address 0.
1609          */
1610         if (address < PAGE_ALIGN(address+4))
1611                 address = PAGE_ALIGN(address+4);
1612         else {
1613                 anon_vma_unlock(vma);
1614                 return -ENOMEM;
1615         }
1616         error = 0;
1617
1618         /* Somebody else might have raced and expanded it already */
1619         if (address > vma->vm_end) {
1620                 unsigned long size, grow;
1621
1622                 size = address - vma->vm_start;
1623                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1624
1625                 error = acct_stack_growth(vma, size, grow);
1626                 if (!error)
1627                         vma->vm_end = address;
1628         }
1629         anon_vma_unlock(vma);
1630         return error;
1631 }
1632 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1633
1634 /*
1635  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1636  */
1637 static int expand_downwards(struct vm_area_struct *vma,
1638                                    unsigned long address)
1639 {
1640         int error;
1641
1642         /*
1643          * We must make sure the anon_vma is allocated
1644          * so that the anon_vma locking is not a noop.
1645          */
1646         if (unlikely(anon_vma_prepare(vma)))
1647                 return -ENOMEM;
1648
1649         address &= PAGE_MASK;
1650         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1651         if (error)
1652                 return error;
1653
1654         anon_vma_lock(vma);
1655
1656         /*
1657          * vma->vm_start/vm_end cannot change under us because the caller
1658          * is required to hold the mmap_sem in read mode.  We need the
1659          * anon_vma lock to serialize against concurrent expand_stacks.
1660          */
1661
1662         /* Somebody else might have raced and expanded it already */
1663         if (address < vma->vm_start) {
1664                 unsigned long size, grow;
1665
1666                 size = vma->vm_end - address;
1667                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1668
1669                 error = acct_stack_growth(vma, size, grow);
1670                 if (!error) {
1671                         vma->vm_start = address;
1672                         vma->vm_pgoff -= grow;
1673                 }
1674         }
1675         anon_vma_unlock(vma);
1676         return error;
1677 }
1678
1679 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1680 {
1681         return expand_downwards(vma, address);
1682 }
1683
1684 #ifdef CONFIG_STACK_GROWSUP
1685 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1686 {
1687         return expand_upwards(vma, address);
1688 }
1689
1690 struct vm_area_struct *
1691 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1692 {
1693         struct vm_area_struct *vma, *prev;
1694
1695         addr &= PAGE_MASK;
1696         vma = find_vma_prev(mm, addr, &prev);
1697         if (vma && (vma->vm_start <= addr))
1698                 return vma;
1699         if (!prev || expand_stack(prev, addr))
1700                 return NULL;
1701         if (prev->vm_flags & VM_LOCKED) {
1702                 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1703                         return NULL;    /* vma gone! */
1704         }
1705         return prev;
1706 }
1707 #else
1708 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1709 {
1710         return expand_downwards(vma, address);
1711 }
1712
1713 struct vm_area_struct *
1714 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1715 {
1716         struct vm_area_struct * vma;
1717         unsigned long start;
1718
1719         addr &= PAGE_MASK;
1720         vma = find_vma(mm,addr);
1721         if (!vma)
1722                 return NULL;
1723         if (vma->vm_start <= addr)
1724                 return vma;
1725         if (!(vma->vm_flags & VM_GROWSDOWN))
1726                 return NULL;
1727         start = vma->vm_start;
1728         if (expand_stack(vma, addr))
1729                 return NULL;
1730         if (vma->vm_flags & VM_LOCKED) {
1731                 if (mlock_vma_pages_range(vma, addr, start) < 0)
1732                         return NULL;    /* vma gone! */
1733         }
1734         return vma;
1735 }
1736 #endif
1737
1738 /*
1739  * Ok - we have the memory areas we should free on the vma list,
1740  * so release them, and do the vma updates.
1741  *
1742  * Called with the mm semaphore held.
1743  */
1744 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1745 {
1746         /* Update high watermark before we lower total_vm */
1747         update_hiwater_vm(mm);
1748         do {
1749                 long nrpages = vma_pages(vma);
1750
1751                 mm->total_vm -= nrpages;
1752                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1753                 vma = remove_vma(vma);
1754         } while (vma);
1755         validate_mm(mm);
1756 }
1757
1758 /*
1759  * Get rid of page table information in the indicated region.
1760  *
1761  * Called with the mm semaphore held.
1762  */
1763 static void unmap_region(struct mm_struct *mm,
1764                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1765                 unsigned long start, unsigned long end)
1766 {
1767         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1768         struct mmu_gather *tlb;
1769         unsigned long nr_accounted = 0;
1770
1771         lru_add_drain();
1772         tlb = tlb_gather_mmu(mm, 0);
1773         update_hiwater_rss(mm);
1774         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1775         vm_unacct_memory(nr_accounted);
1776         free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1777                                  next? next->vm_start: 0);
1778         tlb_finish_mmu(tlb, start, end);
1779 }
1780
1781 /*
1782  * Create a list of vma's touched by the unmap, removing them from the mm's
1783  * vma list as we go..
1784  */
1785 static void
1786 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1787         struct vm_area_struct *prev, unsigned long end)
1788 {
1789         struct vm_area_struct **insertion_point;
1790         struct vm_area_struct *tail_vma = NULL;
1791         unsigned long addr;
1792
1793         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1794         do {
1795                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1796                 mm->map_count--;
1797                 tail_vma = vma;
1798                 vma = vma->vm_next;
1799         } while (vma && vma->vm_start < end);
1800         *insertion_point = vma;
1801         tail_vma->vm_next = NULL;
1802         if (mm->unmap_area == arch_unmap_area)
1803                 addr = prev ? prev->vm_end : mm->mmap_base;
1804         else
1805                 addr = vma ?  vma->vm_start : mm->mmap_base;
1806         mm->unmap_area(mm, addr);
1807         mm->mmap_cache = NULL;          /* Kill the cache. */
1808 }
1809
1810 /*
1811  * Split a vma into two pieces at address 'addr', a new vma is allocated
1812  * either for the first part or the tail.
1813  */
1814 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1815               unsigned long addr, int new_below)
1816 {
1817         struct mempolicy *pol;
1818         struct vm_area_struct *new;
1819
1820         if (is_vm_hugetlb_page(vma) && (addr &
1821                                         ~(huge_page_mask(hstate_vma(vma)))))
1822                 return -EINVAL;
1823
1824         if (mm->map_count >= sysctl_max_map_count)
1825                 return -ENOMEM;
1826
1827         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1828         if (!new)
1829                 return -ENOMEM;
1830
1831         /* most fields are the same, copy all, and then fixup */
1832         *new = *vma;
1833
1834         if (new_below)
1835                 new->vm_end = addr;
1836         else {
1837                 new->vm_start = addr;
1838                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1839         }
1840
1841         pol = mpol_dup(vma_policy(vma));
1842         if (IS_ERR(pol)) {
1843                 kmem_cache_free(vm_area_cachep, new);
1844                 return PTR_ERR(pol);
1845         }
1846         vma_set_policy(new, pol);
1847
1848         if (new->vm_file) {
1849                 get_file(new->vm_file);
1850                 if (vma->vm_flags & VM_EXECUTABLE)
1851                         added_exe_file_vma(mm);
1852         }
1853
1854         if (new->vm_ops && new->vm_ops->open)
1855                 new->vm_ops->open(new);
1856
1857         if (new_below)
1858                 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1859                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1860         else
1861                 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1862
1863         return 0;
1864 }
1865
1866 /* Munmap is split into 2 main parts -- this part which finds
1867  * what needs doing, and the areas themselves, which do the
1868  * work.  This now handles partial unmappings.
1869  * Jeremy Fitzhardinge <jeremy@goop.org>
1870  */
1871 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1872 {
1873         unsigned long end;
1874         struct vm_area_struct *vma, *prev, *last;
1875
1876         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1877                 return -EINVAL;
1878
1879         if ((len = PAGE_ALIGN(len)) == 0)
1880                 return -EINVAL;
1881
1882         /* Find the first overlapping VMA */
1883         vma = find_vma_prev(mm, start, &prev);
1884         if (!vma)
1885                 return 0;
1886         /* we have  start < vma->vm_end  */
1887
1888         /* if it doesn't overlap, we have nothing.. */
1889         end = start + len;
1890         if (vma->vm_start >= end)
1891                 return 0;
1892
1893         /*
1894          * If we need to split any vma, do it now to save pain later.
1895          *
1896          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1897          * unmapped vm_area_struct will remain in use: so lower split_vma
1898          * places tmp vma above, and higher split_vma places tmp vma below.
1899          */
1900         if (start > vma->vm_start) {
1901                 int error = split_vma(mm, vma, start, 0);
1902                 if (error)
1903                         return error;
1904                 prev = vma;
1905         }
1906
1907         /* Does it split the last one? */
1908         last = find_vma(mm, end);
1909         if (last && end > last->vm_start) {
1910                 int error = split_vma(mm, last, end, 1);
1911                 if (error)
1912                         return error;
1913         }
1914         vma = prev? prev->vm_next: mm->mmap;
1915
1916         /*
1917          * unlock any mlock()ed ranges before detaching vmas
1918          */
1919         if (mm->locked_vm) {
1920                 struct vm_area_struct *tmp = vma;
1921                 while (tmp && tmp->vm_start < end) {
1922                         if (tmp->vm_flags & VM_LOCKED) {
1923                                 mm->locked_vm -= vma_pages(tmp);
1924                                 munlock_vma_pages_all(tmp);
1925                         }
1926                         tmp = tmp->vm_next;
1927                 }
1928         }
1929
1930         /*
1931          * Remove the vma's, and unmap the actual pages
1932          */
1933         detach_vmas_to_be_unmapped(mm, vma, prev, end);
1934         unmap_region(mm, vma, prev, start, end);
1935
1936         /* Fix up all other VM information */
1937         remove_vma_list(mm, vma);
1938
1939         return 0;
1940 }
1941
1942 EXPORT_SYMBOL(do_munmap);
1943
1944 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1945 {
1946         int ret;
1947         struct mm_struct *mm = current->mm;
1948
1949         profile_munmap(addr);
1950
1951         down_write(&mm->mmap_sem);
1952         ret = do_munmap(mm, addr, len);
1953         up_write(&mm->mmap_sem);
1954         return ret;
1955 }
1956
1957 static inline void verify_mm_writelocked(struct mm_struct *mm)
1958 {
1959 #ifdef CONFIG_DEBUG_VM
1960         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1961                 WARN_ON(1);
1962                 up_read(&mm->mmap_sem);
1963         }
1964 #endif
1965 }
1966
1967 /*
1968  *  this is really a simplified "do_mmap".  it only handles
1969  *  anonymous maps.  eventually we may be able to do some
1970  *  brk-specific accounting here.
1971  */
1972 unsigned long do_brk(unsigned long addr, unsigned long len)
1973 {
1974         struct mm_struct * mm = current->mm;
1975         struct vm_area_struct * vma, * prev;
1976         unsigned long flags;
1977         struct rb_node ** rb_link, * rb_parent;
1978         pgoff_t pgoff = addr >> PAGE_SHIFT;
1979         int error;
1980
1981         len = PAGE_ALIGN(len);
1982         if (!len)
1983                 return addr;
1984
1985         if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1986                 return -EINVAL;
1987
1988         if (is_hugepage_only_range(mm, addr, len))
1989                 return -EINVAL;
1990
1991         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1992         if (error)
1993                 return error;
1994
1995         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1996
1997         error = arch_mmap_check(addr, len, flags);
1998         if (error)
1999                 return error;
2000
2001         /*
2002          * mlock MCL_FUTURE?
2003          */
2004         if (mm->def_flags & VM_LOCKED) {
2005                 unsigned long locked, lock_limit;
2006                 locked = len >> PAGE_SHIFT;
2007                 locked += mm->locked_vm;
2008                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2009                 lock_limit >>= PAGE_SHIFT;
2010                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2011                         return -EAGAIN;
2012         }
2013
2014         /*
2015          * mm->mmap_sem is required to protect against another thread
2016          * changing the mappings in case we sleep.
2017          */
2018         verify_mm_writelocked(mm);
2019
2020         /*
2021          * Clear old maps.  this also does some error checking for us
2022          */
2023  munmap_back:
2024         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2025         if (vma && vma->vm_start < addr + len) {
2026                 if (do_munmap(mm, addr, len))
2027                         return -ENOMEM;
2028                 goto munmap_back;
2029         }
2030
2031         /* Check against address space limits *after* clearing old maps... */
2032         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2033                 return -ENOMEM;
2034
2035         if (mm->map_count > sysctl_max_map_count)
2036                 return -ENOMEM;
2037
2038         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2039                 return -ENOMEM;
2040
2041         /* Can we just expand an old private anonymous mapping? */
2042         vma = vma_merge(mm, prev, addr, addr + len, flags,
2043                                         NULL, NULL, pgoff, NULL);
2044         if (vma)
2045                 goto out;
2046
2047         /*
2048          * create a vma struct for an anonymous mapping
2049          */
2050         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2051         if (!vma) {
2052                 vm_unacct_memory(len >> PAGE_SHIFT);
2053                 return -ENOMEM;
2054         }
2055
2056         vma->vm_mm = mm;
2057         vma->vm_start = addr;
2058         vma->vm_end = addr + len;
2059         vma->vm_pgoff = pgoff;
2060         vma->vm_flags = flags;
2061         vma->vm_page_prot = vm_get_page_prot(flags);
2062         vma_link(mm, vma, prev, rb_link, rb_parent);
2063 out:
2064         mm->total_vm += len >> PAGE_SHIFT;
2065         if (flags & VM_LOCKED) {
2066                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2067                         mm->locked_vm += (len >> PAGE_SHIFT);
2068         }
2069         return addr;
2070 }
2071
2072 EXPORT_SYMBOL(do_brk);
2073
2074 /* Release all mmaps. */
2075 void exit_mmap(struct mm_struct *mm)
2076 {
2077         struct mmu_gather *tlb;
2078         struct vm_area_struct *vma;
2079         unsigned long nr_accounted = 0;
2080         unsigned long end;
2081
2082         /* mm's last user has gone, and its about to be pulled down */
2083         mmu_notifier_release(mm);
2084
2085         if (mm->locked_vm) {
2086                 vma = mm->mmap;
2087                 while (vma) {
2088                         if (vma->vm_flags & VM_LOCKED)
2089                                 munlock_vma_pages_all(vma);
2090                         vma = vma->vm_next;
2091                 }
2092         }
2093
2094         arch_exit_mmap(mm);
2095
2096         vma = mm->mmap;
2097         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2098                 return;
2099
2100         lru_add_drain();
2101         flush_cache_mm(mm);
2102         tlb = tlb_gather_mmu(mm, 1);
2103         /* update_hiwater_rss(mm) here? but nobody should be looking */
2104         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2105         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2106         vm_unacct_memory(nr_accounted);
2107         free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2108         tlb_finish_mmu(tlb, 0, end);
2109
2110         /*
2111          * Walk the list again, actually closing and freeing it,
2112          * with preemption enabled, without holding any MM locks.
2113          */
2114         while (vma)
2115                 vma = remove_vma(vma);
2116
2117         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2118 }
2119
2120 /* Insert vm structure into process list sorted by address
2121  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2122  * then i_mmap_lock is taken here.
2123  */
2124 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2125 {
2126         struct vm_area_struct * __vma, * prev;
2127         struct rb_node ** rb_link, * rb_parent;
2128
2129         /*
2130          * The vm_pgoff of a purely anonymous vma should be irrelevant
2131          * until its first write fault, when page's anon_vma and index
2132          * are set.  But now set the vm_pgoff it will almost certainly
2133          * end up with (unless mremap moves it elsewhere before that
2134          * first wfault), so /proc/pid/maps tells a consistent story.
2135          *
2136          * By setting it to reflect the virtual start address of the
2137          * vma, merges and splits can happen in a seamless way, just
2138          * using the existing file pgoff checks and manipulations.
2139          * Similarly in do_mmap_pgoff and in do_brk.
2140          */
2141         if (!vma->vm_file) {
2142                 BUG_ON(vma->anon_vma);
2143                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2144         }
2145         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2146         if (__vma && __vma->vm_start < vma->vm_end)
2147                 return -ENOMEM;
2148         if ((vma->vm_flags & VM_ACCOUNT) &&
2149              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2150                 return -ENOMEM;
2151         vma_link(mm, vma, prev, rb_link, rb_parent);
2152         return 0;
2153 }
2154
2155 /*
2156  * Copy the vma structure to a new location in the same mm,
2157  * prior to moving page table entries, to effect an mremap move.
2158  */
2159 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2160         unsigned long addr, unsigned long len, pgoff_t pgoff)
2161 {
2162         struct vm_area_struct *vma = *vmap;
2163         unsigned long vma_start = vma->vm_start;
2164         struct mm_struct *mm = vma->vm_mm;
2165         struct vm_area_struct *new_vma, *prev;
2166         struct rb_node **rb_link, *rb_parent;
2167         struct mempolicy *pol;
2168
2169         /*
2170          * If anonymous vma has not yet been faulted, update new pgoff
2171          * to match new location, to increase its chance of merging.
2172          */
2173         if (!vma->vm_file && !vma->anon_vma)
2174                 pgoff = addr >> PAGE_SHIFT;
2175
2176         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2177         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2178                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2179         if (new_vma) {
2180                 /*
2181                  * Source vma may have been merged into new_vma
2182                  */
2183                 if (vma_start >= new_vma->vm_start &&
2184                     vma_start < new_vma->vm_end)
2185                         *vmap = new_vma;
2186         } else {
2187                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2188                 if (new_vma) {
2189                         *new_vma = *vma;
2190                         pol = mpol_dup(vma_policy(vma));
2191                         if (IS_ERR(pol)) {
2192                                 kmem_cache_free(vm_area_cachep, new_vma);
2193                                 return NULL;
2194                         }
2195                         vma_set_policy(new_vma, pol);
2196                         new_vma->vm_start = addr;
2197                         new_vma->vm_end = addr + len;
2198                         new_vma->vm_pgoff = pgoff;
2199                         if (new_vma->vm_file) {
2200                                 get_file(new_vma->vm_file);
2201                                 if (vma->vm_flags & VM_EXECUTABLE)
2202                                         added_exe_file_vma(mm);
2203                         }
2204                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2205                                 new_vma->vm_ops->open(new_vma);
2206                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2207                 }
2208         }
2209         return new_vma;
2210 }
2211
2212 /*
2213  * Return true if the calling process may expand its vm space by the passed
2214  * number of pages
2215  */
2216 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2217 {
2218         unsigned long cur = mm->total_vm;       /* pages */
2219         unsigned long lim;
2220
2221         lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2222
2223         if (cur + npages > lim)
2224                 return 0;
2225         return 1;
2226 }
2227
2228
2229 static int special_mapping_fault(struct vm_area_struct *vma,
2230                                 struct vm_fault *vmf)
2231 {
2232         pgoff_t pgoff;
2233         struct page **pages;
2234
2235         /*
2236          * special mappings have no vm_file, and in that case, the mm
2237          * uses vm_pgoff internally. So we have to subtract it from here.
2238          * We are allowed to do this because we are the mm; do not copy
2239          * this code into drivers!
2240          */
2241         pgoff = vmf->pgoff - vma->vm_pgoff;
2242
2243         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2244                 pgoff--;
2245
2246         if (*pages) {
2247                 struct page *page = *pages;
2248                 get_page(page);
2249                 vmf->page = page;
2250                 return 0;
2251         }
2252
2253         return VM_FAULT_SIGBUS;
2254 }
2255
2256 /*
2257  * Having a close hook prevents vma merging regardless of flags.
2258  */
2259 static void special_mapping_close(struct vm_area_struct *vma)
2260 {
2261 }
2262
2263 static struct vm_operations_struct special_mapping_vmops = {
2264         .close = special_mapping_close,
2265         .fault = special_mapping_fault,
2266 };
2267
2268 /*
2269  * Called with mm->mmap_sem held for writing.
2270  * Insert a new vma covering the given region, with the given flags.
2271  * Its pages are supplied by the given array of struct page *.
2272  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2273  * The region past the last page supplied will always produce SIGBUS.
2274  * The array pointer and the pages it points to are assumed to stay alive
2275  * for as long as this mapping might exist.
2276  */
2277 int install_special_mapping(struct mm_struct *mm,
2278                             unsigned long addr, unsigned long len,
2279                             unsigned long vm_flags, struct page **pages)
2280 {
2281         struct vm_area_struct *vma;
2282
2283         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2284         if (unlikely(vma == NULL))
2285                 return -ENOMEM;
2286
2287         vma->vm_mm = mm;
2288         vma->vm_start = addr;
2289         vma->vm_end = addr + len;
2290
2291         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2292         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2293
2294         vma->vm_ops = &special_mapping_vmops;
2295         vma->vm_private_data = pages;
2296
2297         if (unlikely(insert_vm_struct(mm, vma))) {
2298                 kmem_cache_free(vm_area_cachep, vma);
2299                 return -ENOMEM;
2300         }
2301
2302         mm->total_vm += len >> PAGE_SHIFT;
2303
2304         return 0;
2305 }
2306
2307 static DEFINE_MUTEX(mm_all_locks_mutex);
2308
2309 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2310 {
2311         if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2312                 /*
2313                  * The LSB of head.next can't change from under us
2314                  * because we hold the mm_all_locks_mutex.
2315                  */
2316                 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2317                 /*
2318                  * We can safely modify head.next after taking the
2319                  * anon_vma->lock. If some other vma in this mm shares
2320                  * the same anon_vma we won't take it again.
2321                  *
2322                  * No need of atomic instructions here, head.next
2323                  * can't change from under us thanks to the
2324                  * anon_vma->lock.
2325                  */
2326                 if (__test_and_set_bit(0, (unsigned long *)
2327                                        &anon_vma->head.next))
2328                         BUG();
2329         }
2330 }
2331
2332 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2333 {
2334         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2335                 /*
2336                  * AS_MM_ALL_LOCKS can't change from under us because
2337                  * we hold the mm_all_locks_mutex.
2338                  *
2339                  * Operations on ->flags have to be atomic because
2340                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2341                  * mm_all_locks_mutex, there may be other cpus
2342                  * changing other bitflags in parallel to us.
2343                  */
2344                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2345                         BUG();
2346                 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2347         }
2348 }
2349
2350 /*
2351  * This operation locks against the VM for all pte/vma/mm related
2352  * operations that could ever happen on a certain mm. This includes
2353  * vmtruncate, try_to_unmap, and all page faults.
2354  *
2355  * The caller must take the mmap_sem in write mode before calling
2356  * mm_take_all_locks(). The caller isn't allowed to release the
2357  * mmap_sem until mm_drop_all_locks() returns.
2358  *
2359  * mmap_sem in write mode is required in order to block all operations
2360  * that could modify pagetables and free pages without need of
2361  * altering the vma layout (for example populate_range() with
2362  * nonlinear vmas). It's also needed in write mode to avoid new
2363  * anon_vmas to be associated with existing vmas.
2364  *
2365  * A single task can't take more than one mm_take_all_locks() in a row
2366  * or it would deadlock.
2367  *
2368  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2369  * mapping->flags avoid to take the same lock twice, if more than one
2370  * vma in this mm is backed by the same anon_vma or address_space.
2371  *
2372  * We can take all the locks in random order because the VM code
2373  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2374  * takes more than one of them in a row. Secondly we're protected
2375  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2376  *
2377  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2378  * that may have to take thousand of locks.
2379  *
2380  * mm_take_all_locks() can fail if it's interrupted by signals.
2381  */
2382 int mm_take_all_locks(struct mm_struct *mm)
2383 {
2384         struct vm_area_struct *vma;
2385         int ret = -EINTR;
2386
2387         BUG_ON(down_read_trylock(&mm->mmap_sem));
2388
2389         mutex_lock(&mm_all_locks_mutex);
2390
2391         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2392                 if (signal_pending(current))
2393                         goto out_unlock;
2394                 if (vma->vm_file && vma->vm_file->f_mapping)
2395                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2396         }
2397
2398         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2399                 if (signal_pending(current))
2400                         goto out_unlock;
2401                 if (vma->anon_vma)
2402                         vm_lock_anon_vma(mm, vma->anon_vma);
2403         }
2404
2405         ret = 0;
2406
2407 out_unlock:
2408         if (ret)
2409                 mm_drop_all_locks(mm);
2410
2411         return ret;
2412 }
2413
2414 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2415 {
2416         if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2417                 /*
2418                  * The LSB of head.next can't change to 0 from under
2419                  * us because we hold the mm_all_locks_mutex.
2420                  *
2421                  * We must however clear the bitflag before unlocking
2422                  * the vma so the users using the anon_vma->head will
2423                  * never see our bitflag.
2424                  *
2425                  * No need of atomic instructions here, head.next
2426                  * can't change from under us until we release the
2427                  * anon_vma->lock.
2428                  */
2429                 if (!__test_and_clear_bit(0, (unsigned long *)
2430                                           &anon_vma->head.next))
2431                         BUG();
2432                 spin_unlock(&anon_vma->lock);
2433         }
2434 }
2435
2436 static void vm_unlock_mapping(struct address_space *mapping)
2437 {
2438         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2439                 /*
2440                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2441                  * because we hold the mm_all_locks_mutex.
2442                  */
2443                 spin_unlock(&mapping->i_mmap_lock);
2444                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2445                                         &mapping->flags))
2446                         BUG();
2447         }
2448 }
2449
2450 /*
2451  * The mmap_sem cannot be released by the caller until
2452  * mm_drop_all_locks() returns.
2453  */
2454 void mm_drop_all_locks(struct mm_struct *mm)
2455 {
2456         struct vm_area_struct *vma;
2457
2458         BUG_ON(down_read_trylock(&mm->mmap_sem));
2459         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2460
2461         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2462                 if (vma->anon_vma)
2463                         vm_unlock_anon_vma(vma->anon_vma);
2464                 if (vma->vm_file && vma->vm_file->f_mapping)
2465                         vm_unlock_mapping(vma->vm_file->f_mapping);
2466         }
2467
2468         mutex_unlock(&mm_all_locks_mutex);
2469 }
2470
2471 /*
2472  * initialise the VMA slab
2473  */
2474 void __init mmap_init(void)
2475 {
2476         int ret;
2477
2478         ret = percpu_counter_init(&vm_committed_as, 0);
2479         VM_BUG_ON(ret);
2480         vm_area_cachep = kmem_cache_create("vm_area_struct",
2481                         sizeof(struct vm_area_struct), 0,
2482                         SLAB_PANIC, NULL);
2483 }