]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/nommu.c
ftgmac100: Remove rx descriptor accessors
[karo-tx-linux.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74         struct page *page;
75
76         /*
77          * If the object we have should not have ksize performed on it,
78          * return size of 0
79          */
80         if (!objp || !virt_addr_valid(objp))
81                 return 0;
82
83         page = virt_to_head_page(objp);
84
85         /*
86          * If the allocator sets PageSlab, we know the pointer came from
87          * kmalloc().
88          */
89         if (PageSlab(page))
90                 return ksize(objp);
91
92         /*
93          * If it's not a compound page, see if we have a matching VMA
94          * region. This test is intentionally done in reverse order,
95          * so if there's no VMA, we still fall through and hand back
96          * PAGE_SIZE for 0-order pages.
97          */
98         if (!PageCompound(page)) {
99                 struct vm_area_struct *vma;
100
101                 vma = find_vma(current->mm, (unsigned long)objp);
102                 if (vma)
103                         return vma->vm_end - vma->vm_start;
104         }
105
106         /*
107          * The ksize() function is only guaranteed to work for pointers
108          * returned by kmalloc(). So handle arbitrary pointers here.
109          */
110         return PAGE_SIZE << compound_order(page);
111 }
112
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114                       unsigned long start, unsigned long nr_pages,
115                       unsigned int foll_flags, struct page **pages,
116                       struct vm_area_struct **vmas, int *nonblocking)
117 {
118         struct vm_area_struct *vma;
119         unsigned long vm_flags;
120         int i;
121
122         /* calculate required read or write permissions.
123          * If FOLL_FORCE is set, we only require the "MAY" flags.
124          */
125         vm_flags  = (foll_flags & FOLL_WRITE) ?
126                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127         vm_flags &= (foll_flags & FOLL_FORCE) ?
128                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129
130         for (i = 0; i < nr_pages; i++) {
131                 vma = find_vma(mm, start);
132                 if (!vma)
133                         goto finish_or_fault;
134
135                 /* protect what we can, including chardevs */
136                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137                     !(vm_flags & vma->vm_flags))
138                         goto finish_or_fault;
139
140                 if (pages) {
141                         pages[i] = virt_to_page(start);
142                         if (pages[i])
143                                 get_page(pages[i]);
144                 }
145                 if (vmas)
146                         vmas[i] = vma;
147                 start = (start + PAGE_SIZE) & PAGE_MASK;
148         }
149
150         return i;
151
152 finish_or_fault:
153         return i ? : -EFAULT;
154 }
155
156 /*
157  * get a list of pages in an address range belonging to the specified process
158  * and indicate the VMA that covers each page
159  * - this is potentially dodgy as we may end incrementing the page count of a
160  *   slab page or a secondary page from a compound page
161  * - don't permit access to VMAs that don't support it, such as I/O mappings
162  */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164                     unsigned int gup_flags, struct page **pages,
165                     struct vm_area_struct **vmas)
166 {
167         return __get_user_pages(current, current->mm, start, nr_pages,
168                                 gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173                             unsigned int gup_flags, struct page **pages,
174                             int *locked)
175 {
176         return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181                         struct mm_struct *mm, unsigned long start,
182                         unsigned long nr_pages, struct page **pages,
183                         unsigned int gup_flags)
184 {
185         long ret;
186         down_read(&mm->mmap_sem);
187         ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188                                 NULL, NULL);
189         up_read(&mm->mmap_sem);
190         return ret;
191 }
192
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194                              struct page **pages, unsigned int gup_flags)
195 {
196         return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197                                          pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200
201 /**
202  * follow_pfn - look up PFN at a user virtual address
203  * @vma: memory mapping
204  * @address: user virtual address
205  * @pfn: location to store found PFN
206  *
207  * Only IO mappings and raw PFN mappings are allowed.
208  *
209  * Returns zero and the pfn at @pfn on success, -ve otherwise.
210  */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212         unsigned long *pfn)
213 {
214         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215                 return -EINVAL;
216
217         *pfn = address >> PAGE_SHIFT;
218         return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221
222 LIST_HEAD(vmap_area_list);
223
224 void vfree(const void *addr)
225 {
226         kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232         /*
233          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234          * returns only a logical address.
235          */
236         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239
240 void *vmalloc_user(unsigned long size)
241 {
242         void *ret;
243
244         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
245                         PAGE_KERNEL);
246         if (ret) {
247                 struct vm_area_struct *vma;
248
249                 down_write(&current->mm->mmap_sem);
250                 vma = find_vma(current->mm, (unsigned long)ret);
251                 if (vma)
252                         vma->vm_flags |= VM_USERMAP;
253                 up_write(&current->mm->mmap_sem);
254         }
255
256         return ret;
257 }
258 EXPORT_SYMBOL(vmalloc_user);
259
260 struct page *vmalloc_to_page(const void *addr)
261 {
262         return virt_to_page(addr);
263 }
264 EXPORT_SYMBOL(vmalloc_to_page);
265
266 unsigned long vmalloc_to_pfn(const void *addr)
267 {
268         return page_to_pfn(virt_to_page(addr));
269 }
270 EXPORT_SYMBOL(vmalloc_to_pfn);
271
272 long vread(char *buf, char *addr, unsigned long count)
273 {
274         /* Don't allow overflow */
275         if ((unsigned long) buf + count < count)
276                 count = -(unsigned long) buf;
277
278         memcpy(buf, addr, count);
279         return count;
280 }
281
282 long vwrite(char *buf, char *addr, unsigned long count)
283 {
284         /* Don't allow overflow */
285         if ((unsigned long) addr + count < count)
286                 count = -(unsigned long) addr;
287
288         memcpy(addr, buf, count);
289         return count;
290 }
291
292 /*
293  *      vmalloc  -  allocate virtually contiguous memory
294  *
295  *      @size:          allocation size
296  *
297  *      Allocate enough pages to cover @size from the page level
298  *      allocator and map them into contiguous kernel virtual space.
299  *
300  *      For tight control over page level allocator and protection flags
301  *      use __vmalloc() instead.
302  */
303 void *vmalloc(unsigned long size)
304 {
305        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
306 }
307 EXPORT_SYMBOL(vmalloc);
308
309 /*
310  *      vzalloc - allocate virtually contiguous memory with zero fill
311  *
312  *      @size:          allocation size
313  *
314  *      Allocate enough pages to cover @size from the page level
315  *      allocator and map them into contiguous kernel virtual space.
316  *      The memory allocated is set to zero.
317  *
318  *      For tight control over page level allocator and protection flags
319  *      use __vmalloc() instead.
320  */
321 void *vzalloc(unsigned long size)
322 {
323         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
324                         PAGE_KERNEL);
325 }
326 EXPORT_SYMBOL(vzalloc);
327
328 /**
329  * vmalloc_node - allocate memory on a specific node
330  * @size:       allocation size
331  * @node:       numa node
332  *
333  * Allocate enough pages to cover @size from the page level
334  * allocator and map them into contiguous kernel virtual space.
335  *
336  * For tight control over page level allocator and protection flags
337  * use __vmalloc() instead.
338  */
339 void *vmalloc_node(unsigned long size, int node)
340 {
341         return vmalloc(size);
342 }
343 EXPORT_SYMBOL(vmalloc_node);
344
345 /**
346  * vzalloc_node - allocate memory on a specific node with zero fill
347  * @size:       allocation size
348  * @node:       numa node
349  *
350  * Allocate enough pages to cover @size from the page level
351  * allocator and map them into contiguous kernel virtual space.
352  * The memory allocated is set to zero.
353  *
354  * For tight control over page level allocator and protection flags
355  * use __vmalloc() instead.
356  */
357 void *vzalloc_node(unsigned long size, int node)
358 {
359         return vzalloc(size);
360 }
361 EXPORT_SYMBOL(vzalloc_node);
362
363 #ifndef PAGE_KERNEL_EXEC
364 # define PAGE_KERNEL_EXEC PAGE_KERNEL
365 #endif
366
367 /**
368  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
369  *      @size:          allocation size
370  *
371  *      Kernel-internal function to allocate enough pages to cover @size
372  *      the page level allocator and map them into contiguous and
373  *      executable kernel virtual space.
374  *
375  *      For tight control over page level allocator and protection flags
376  *      use __vmalloc() instead.
377  */
378
379 void *vmalloc_exec(unsigned long size)
380 {
381         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
382 }
383
384 /**
385  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
386  *      @size:          allocation size
387  *
388  *      Allocate enough 32bit PA addressable pages to cover @size from the
389  *      page level allocator and map them into contiguous kernel virtual space.
390  */
391 void *vmalloc_32(unsigned long size)
392 {
393         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
394 }
395 EXPORT_SYMBOL(vmalloc_32);
396
397 /**
398  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
399  *      @size:          allocation size
400  *
401  * The resulting memory area is 32bit addressable and zeroed so it can be
402  * mapped to userspace without leaking data.
403  *
404  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
405  * remap_vmalloc_range() are permissible.
406  */
407 void *vmalloc_32_user(unsigned long size)
408 {
409         /*
410          * We'll have to sort out the ZONE_DMA bits for 64-bit,
411          * but for now this can simply use vmalloc_user() directly.
412          */
413         return vmalloc_user(size);
414 }
415 EXPORT_SYMBOL(vmalloc_32_user);
416
417 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
418 {
419         BUG();
420         return NULL;
421 }
422 EXPORT_SYMBOL(vmap);
423
424 void vunmap(const void *addr)
425 {
426         BUG();
427 }
428 EXPORT_SYMBOL(vunmap);
429
430 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
431 {
432         BUG();
433         return NULL;
434 }
435 EXPORT_SYMBOL(vm_map_ram);
436
437 void vm_unmap_ram(const void *mem, unsigned int count)
438 {
439         BUG();
440 }
441 EXPORT_SYMBOL(vm_unmap_ram);
442
443 void vm_unmap_aliases(void)
444 {
445 }
446 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
447
448 /*
449  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
450  * have one.
451  */
452 void __weak vmalloc_sync_all(void)
453 {
454 }
455
456 /**
457  *      alloc_vm_area - allocate a range of kernel address space
458  *      @size:          size of the area
459  *
460  *      Returns:        NULL on failure, vm_struct on success
461  *
462  *      This function reserves a range of kernel address space, and
463  *      allocates pagetables to map that range.  No actual mappings
464  *      are created.  If the kernel address space is not shared
465  *      between processes, it syncs the pagetable across all
466  *      processes.
467  */
468 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
469 {
470         BUG();
471         return NULL;
472 }
473 EXPORT_SYMBOL_GPL(alloc_vm_area);
474
475 void free_vm_area(struct vm_struct *area)
476 {
477         BUG();
478 }
479 EXPORT_SYMBOL_GPL(free_vm_area);
480
481 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
482                    struct page *page)
483 {
484         return -EINVAL;
485 }
486 EXPORT_SYMBOL(vm_insert_page);
487
488 /*
489  *  sys_brk() for the most part doesn't need the global kernel
490  *  lock, except when an application is doing something nasty
491  *  like trying to un-brk an area that has already been mapped
492  *  to a regular file.  in this case, the unmapping will need
493  *  to invoke file system routines that need the global lock.
494  */
495 SYSCALL_DEFINE1(brk, unsigned long, brk)
496 {
497         struct mm_struct *mm = current->mm;
498
499         if (brk < mm->start_brk || brk > mm->context.end_brk)
500                 return mm->brk;
501
502         if (mm->brk == brk)
503                 return mm->brk;
504
505         /*
506          * Always allow shrinking brk
507          */
508         if (brk <= mm->brk) {
509                 mm->brk = brk;
510                 return brk;
511         }
512
513         /*
514          * Ok, looks good - let it rip.
515          */
516         flush_icache_range(mm->brk, brk);
517         return mm->brk = brk;
518 }
519
520 /*
521  * initialise the percpu counter for VM and region record slabs
522  */
523 void __init mmap_init(void)
524 {
525         int ret;
526
527         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
528         VM_BUG_ON(ret);
529         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
530 }
531
532 /*
533  * validate the region tree
534  * - the caller must hold the region lock
535  */
536 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
537 static noinline void validate_nommu_regions(void)
538 {
539         struct vm_region *region, *last;
540         struct rb_node *p, *lastp;
541
542         lastp = rb_first(&nommu_region_tree);
543         if (!lastp)
544                 return;
545
546         last = rb_entry(lastp, struct vm_region, vm_rb);
547         BUG_ON(last->vm_end <= last->vm_start);
548         BUG_ON(last->vm_top < last->vm_end);
549
550         while ((p = rb_next(lastp))) {
551                 region = rb_entry(p, struct vm_region, vm_rb);
552                 last = rb_entry(lastp, struct vm_region, vm_rb);
553
554                 BUG_ON(region->vm_end <= region->vm_start);
555                 BUG_ON(region->vm_top < region->vm_end);
556                 BUG_ON(region->vm_start < last->vm_top);
557
558                 lastp = p;
559         }
560 }
561 #else
562 static void validate_nommu_regions(void)
563 {
564 }
565 #endif
566
567 /*
568  * add a region into the global tree
569  */
570 static void add_nommu_region(struct vm_region *region)
571 {
572         struct vm_region *pregion;
573         struct rb_node **p, *parent;
574
575         validate_nommu_regions();
576
577         parent = NULL;
578         p = &nommu_region_tree.rb_node;
579         while (*p) {
580                 parent = *p;
581                 pregion = rb_entry(parent, struct vm_region, vm_rb);
582                 if (region->vm_start < pregion->vm_start)
583                         p = &(*p)->rb_left;
584                 else if (region->vm_start > pregion->vm_start)
585                         p = &(*p)->rb_right;
586                 else if (pregion == region)
587                         return;
588                 else
589                         BUG();
590         }
591
592         rb_link_node(&region->vm_rb, parent, p);
593         rb_insert_color(&region->vm_rb, &nommu_region_tree);
594
595         validate_nommu_regions();
596 }
597
598 /*
599  * delete a region from the global tree
600  */
601 static void delete_nommu_region(struct vm_region *region)
602 {
603         BUG_ON(!nommu_region_tree.rb_node);
604
605         validate_nommu_regions();
606         rb_erase(&region->vm_rb, &nommu_region_tree);
607         validate_nommu_regions();
608 }
609
610 /*
611  * free a contiguous series of pages
612  */
613 static void free_page_series(unsigned long from, unsigned long to)
614 {
615         for (; from < to; from += PAGE_SIZE) {
616                 struct page *page = virt_to_page(from);
617
618                 atomic_long_dec(&mmap_pages_allocated);
619                 put_page(page);
620         }
621 }
622
623 /*
624  * release a reference to a region
625  * - the caller must hold the region semaphore for writing, which this releases
626  * - the region may not have been added to the tree yet, in which case vm_top
627  *   will equal vm_start
628  */
629 static void __put_nommu_region(struct vm_region *region)
630         __releases(nommu_region_sem)
631 {
632         BUG_ON(!nommu_region_tree.rb_node);
633
634         if (--region->vm_usage == 0) {
635                 if (region->vm_top > region->vm_start)
636                         delete_nommu_region(region);
637                 up_write(&nommu_region_sem);
638
639                 if (region->vm_file)
640                         fput(region->vm_file);
641
642                 /* IO memory and memory shared directly out of the pagecache
643                  * from ramfs/tmpfs mustn't be released here */
644                 if (region->vm_flags & VM_MAPPED_COPY)
645                         free_page_series(region->vm_start, region->vm_top);
646                 kmem_cache_free(vm_region_jar, region);
647         } else {
648                 up_write(&nommu_region_sem);
649         }
650 }
651
652 /*
653  * release a reference to a region
654  */
655 static void put_nommu_region(struct vm_region *region)
656 {
657         down_write(&nommu_region_sem);
658         __put_nommu_region(region);
659 }
660
661 /*
662  * update protection on a vma
663  */
664 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
665 {
666 #ifdef CONFIG_MPU
667         struct mm_struct *mm = vma->vm_mm;
668         long start = vma->vm_start & PAGE_MASK;
669         while (start < vma->vm_end) {
670                 protect_page(mm, start, flags);
671                 start += PAGE_SIZE;
672         }
673         update_protections(mm);
674 #endif
675 }
676
677 /*
678  * add a VMA into a process's mm_struct in the appropriate place in the list
679  * and tree and add to the address space's page tree also if not an anonymous
680  * page
681  * - should be called with mm->mmap_sem held writelocked
682  */
683 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
684 {
685         struct vm_area_struct *pvma, *prev;
686         struct address_space *mapping;
687         struct rb_node **p, *parent, *rb_prev;
688
689         BUG_ON(!vma->vm_region);
690
691         mm->map_count++;
692         vma->vm_mm = mm;
693
694         protect_vma(vma, vma->vm_flags);
695
696         /* add the VMA to the mapping */
697         if (vma->vm_file) {
698                 mapping = vma->vm_file->f_mapping;
699
700                 i_mmap_lock_write(mapping);
701                 flush_dcache_mmap_lock(mapping);
702                 vma_interval_tree_insert(vma, &mapping->i_mmap);
703                 flush_dcache_mmap_unlock(mapping);
704                 i_mmap_unlock_write(mapping);
705         }
706
707         /* add the VMA to the tree */
708         parent = rb_prev = NULL;
709         p = &mm->mm_rb.rb_node;
710         while (*p) {
711                 parent = *p;
712                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
713
714                 /* sort by: start addr, end addr, VMA struct addr in that order
715                  * (the latter is necessary as we may get identical VMAs) */
716                 if (vma->vm_start < pvma->vm_start)
717                         p = &(*p)->rb_left;
718                 else if (vma->vm_start > pvma->vm_start) {
719                         rb_prev = parent;
720                         p = &(*p)->rb_right;
721                 } else if (vma->vm_end < pvma->vm_end)
722                         p = &(*p)->rb_left;
723                 else if (vma->vm_end > pvma->vm_end) {
724                         rb_prev = parent;
725                         p = &(*p)->rb_right;
726                 } else if (vma < pvma)
727                         p = &(*p)->rb_left;
728                 else if (vma > pvma) {
729                         rb_prev = parent;
730                         p = &(*p)->rb_right;
731                 } else
732                         BUG();
733         }
734
735         rb_link_node(&vma->vm_rb, parent, p);
736         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
737
738         /* add VMA to the VMA list also */
739         prev = NULL;
740         if (rb_prev)
741                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
742
743         __vma_link_list(mm, vma, prev, parent);
744 }
745
746 /*
747  * delete a VMA from its owning mm_struct and address space
748  */
749 static void delete_vma_from_mm(struct vm_area_struct *vma)
750 {
751         int i;
752         struct address_space *mapping;
753         struct mm_struct *mm = vma->vm_mm;
754         struct task_struct *curr = current;
755
756         protect_vma(vma, 0);
757
758         mm->map_count--;
759         for (i = 0; i < VMACACHE_SIZE; i++) {
760                 /* if the vma is cached, invalidate the entire cache */
761                 if (curr->vmacache.vmas[i] == vma) {
762                         vmacache_invalidate(mm);
763                         break;
764                 }
765         }
766
767         /* remove the VMA from the mapping */
768         if (vma->vm_file) {
769                 mapping = vma->vm_file->f_mapping;
770
771                 i_mmap_lock_write(mapping);
772                 flush_dcache_mmap_lock(mapping);
773                 vma_interval_tree_remove(vma, &mapping->i_mmap);
774                 flush_dcache_mmap_unlock(mapping);
775                 i_mmap_unlock_write(mapping);
776         }
777
778         /* remove from the MM's tree and list */
779         rb_erase(&vma->vm_rb, &mm->mm_rb);
780
781         if (vma->vm_prev)
782                 vma->vm_prev->vm_next = vma->vm_next;
783         else
784                 mm->mmap = vma->vm_next;
785
786         if (vma->vm_next)
787                 vma->vm_next->vm_prev = vma->vm_prev;
788 }
789
790 /*
791  * destroy a VMA record
792  */
793 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
794 {
795         if (vma->vm_ops && vma->vm_ops->close)
796                 vma->vm_ops->close(vma);
797         if (vma->vm_file)
798                 fput(vma->vm_file);
799         put_nommu_region(vma->vm_region);
800         kmem_cache_free(vm_area_cachep, vma);
801 }
802
803 /*
804  * look up the first VMA in which addr resides, NULL if none
805  * - should be called with mm->mmap_sem at least held readlocked
806  */
807 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
808 {
809         struct vm_area_struct *vma;
810
811         /* check the cache first */
812         vma = vmacache_find(mm, addr);
813         if (likely(vma))
814                 return vma;
815
816         /* trawl the list (there may be multiple mappings in which addr
817          * resides) */
818         for (vma = mm->mmap; vma; vma = vma->vm_next) {
819                 if (vma->vm_start > addr)
820                         return NULL;
821                 if (vma->vm_end > addr) {
822                         vmacache_update(addr, vma);
823                         return vma;
824                 }
825         }
826
827         return NULL;
828 }
829 EXPORT_SYMBOL(find_vma);
830
831 /*
832  * find a VMA
833  * - we don't extend stack VMAs under NOMMU conditions
834  */
835 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
836 {
837         return find_vma(mm, addr);
838 }
839
840 /*
841  * expand a stack to a given address
842  * - not supported under NOMMU conditions
843  */
844 int expand_stack(struct vm_area_struct *vma, unsigned long address)
845 {
846         return -ENOMEM;
847 }
848
849 /*
850  * look up the first VMA exactly that exactly matches addr
851  * - should be called with mm->mmap_sem at least held readlocked
852  */
853 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
854                                              unsigned long addr,
855                                              unsigned long len)
856 {
857         struct vm_area_struct *vma;
858         unsigned long end = addr + len;
859
860         /* check the cache first */
861         vma = vmacache_find_exact(mm, addr, end);
862         if (vma)
863                 return vma;
864
865         /* trawl the list (there may be multiple mappings in which addr
866          * resides) */
867         for (vma = mm->mmap; vma; vma = vma->vm_next) {
868                 if (vma->vm_start < addr)
869                         continue;
870                 if (vma->vm_start > addr)
871                         return NULL;
872                 if (vma->vm_end == end) {
873                         vmacache_update(addr, vma);
874                         return vma;
875                 }
876         }
877
878         return NULL;
879 }
880
881 /*
882  * determine whether a mapping should be permitted and, if so, what sort of
883  * mapping we're capable of supporting
884  */
885 static int validate_mmap_request(struct file *file,
886                                  unsigned long addr,
887                                  unsigned long len,
888                                  unsigned long prot,
889                                  unsigned long flags,
890                                  unsigned long pgoff,
891                                  unsigned long *_capabilities)
892 {
893         unsigned long capabilities, rlen;
894         int ret;
895
896         /* do the simple checks first */
897         if (flags & MAP_FIXED)
898                 return -EINVAL;
899
900         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
901             (flags & MAP_TYPE) != MAP_SHARED)
902                 return -EINVAL;
903
904         if (!len)
905                 return -EINVAL;
906
907         /* Careful about overflows.. */
908         rlen = PAGE_ALIGN(len);
909         if (!rlen || rlen > TASK_SIZE)
910                 return -ENOMEM;
911
912         /* offset overflow? */
913         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
914                 return -EOVERFLOW;
915
916         if (file) {
917                 /* files must support mmap */
918                 if (!file->f_op->mmap)
919                         return -ENODEV;
920
921                 /* work out if what we've got could possibly be shared
922                  * - we support chardevs that provide their own "memory"
923                  * - we support files/blockdevs that are memory backed
924                  */
925                 if (file->f_op->mmap_capabilities) {
926                         capabilities = file->f_op->mmap_capabilities(file);
927                 } else {
928                         /* no explicit capabilities set, so assume some
929                          * defaults */
930                         switch (file_inode(file)->i_mode & S_IFMT) {
931                         case S_IFREG:
932                         case S_IFBLK:
933                                 capabilities = NOMMU_MAP_COPY;
934                                 break;
935
936                         case S_IFCHR:
937                                 capabilities =
938                                         NOMMU_MAP_DIRECT |
939                                         NOMMU_MAP_READ |
940                                         NOMMU_MAP_WRITE;
941                                 break;
942
943                         default:
944                                 return -EINVAL;
945                         }
946                 }
947
948                 /* eliminate any capabilities that we can't support on this
949                  * device */
950                 if (!file->f_op->get_unmapped_area)
951                         capabilities &= ~NOMMU_MAP_DIRECT;
952                 if (!(file->f_mode & FMODE_CAN_READ))
953                         capabilities &= ~NOMMU_MAP_COPY;
954
955                 /* The file shall have been opened with read permission. */
956                 if (!(file->f_mode & FMODE_READ))
957                         return -EACCES;
958
959                 if (flags & MAP_SHARED) {
960                         /* do checks for writing, appending and locking */
961                         if ((prot & PROT_WRITE) &&
962                             !(file->f_mode & FMODE_WRITE))
963                                 return -EACCES;
964
965                         if (IS_APPEND(file_inode(file)) &&
966                             (file->f_mode & FMODE_WRITE))
967                                 return -EACCES;
968
969                         if (locks_verify_locked(file))
970                                 return -EAGAIN;
971
972                         if (!(capabilities & NOMMU_MAP_DIRECT))
973                                 return -ENODEV;
974
975                         /* we mustn't privatise shared mappings */
976                         capabilities &= ~NOMMU_MAP_COPY;
977                 } else {
978                         /* we're going to read the file into private memory we
979                          * allocate */
980                         if (!(capabilities & NOMMU_MAP_COPY))
981                                 return -ENODEV;
982
983                         /* we don't permit a private writable mapping to be
984                          * shared with the backing device */
985                         if (prot & PROT_WRITE)
986                                 capabilities &= ~NOMMU_MAP_DIRECT;
987                 }
988
989                 if (capabilities & NOMMU_MAP_DIRECT) {
990                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
991                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
992                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
993                             ) {
994                                 capabilities &= ~NOMMU_MAP_DIRECT;
995                                 if (flags & MAP_SHARED) {
996                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
997                                         return -EINVAL;
998                                 }
999                         }
1000                 }
1001
1002                 /* handle executable mappings and implied executable
1003                  * mappings */
1004                 if (path_noexec(&file->f_path)) {
1005                         if (prot & PROT_EXEC)
1006                                 return -EPERM;
1007                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1008                         /* handle implication of PROT_EXEC by PROT_READ */
1009                         if (current->personality & READ_IMPLIES_EXEC) {
1010                                 if (capabilities & NOMMU_MAP_EXEC)
1011                                         prot |= PROT_EXEC;
1012                         }
1013                 } else if ((prot & PROT_READ) &&
1014                          (prot & PROT_EXEC) &&
1015                          !(capabilities & NOMMU_MAP_EXEC)
1016                          ) {
1017                         /* backing file is not executable, try to copy */
1018                         capabilities &= ~NOMMU_MAP_DIRECT;
1019                 }
1020         } else {
1021                 /* anonymous mappings are always memory backed and can be
1022                  * privately mapped
1023                  */
1024                 capabilities = NOMMU_MAP_COPY;
1025
1026                 /* handle PROT_EXEC implication by PROT_READ */
1027                 if ((prot & PROT_READ) &&
1028                     (current->personality & READ_IMPLIES_EXEC))
1029                         prot |= PROT_EXEC;
1030         }
1031
1032         /* allow the security API to have its say */
1033         ret = security_mmap_addr(addr);
1034         if (ret < 0)
1035                 return ret;
1036
1037         /* looks okay */
1038         *_capabilities = capabilities;
1039         return 0;
1040 }
1041
1042 /*
1043  * we've determined that we can make the mapping, now translate what we
1044  * now know into VMA flags
1045  */
1046 static unsigned long determine_vm_flags(struct file *file,
1047                                         unsigned long prot,
1048                                         unsigned long flags,
1049                                         unsigned long capabilities)
1050 {
1051         unsigned long vm_flags;
1052
1053         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1054         /* vm_flags |= mm->def_flags; */
1055
1056         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1057                 /* attempt to share read-only copies of mapped file chunks */
1058                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1059                 if (file && !(prot & PROT_WRITE))
1060                         vm_flags |= VM_MAYSHARE;
1061         } else {
1062                 /* overlay a shareable mapping on the backing device or inode
1063                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1064                  * romfs/cramfs */
1065                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1066                 if (flags & MAP_SHARED)
1067                         vm_flags |= VM_SHARED;
1068         }
1069
1070         /* refuse to let anyone share private mappings with this process if
1071          * it's being traced - otherwise breakpoints set in it may interfere
1072          * with another untraced process
1073          */
1074         if ((flags & MAP_PRIVATE) && current->ptrace)
1075                 vm_flags &= ~VM_MAYSHARE;
1076
1077         return vm_flags;
1078 }
1079
1080 /*
1081  * set up a shared mapping on a file (the driver or filesystem provides and
1082  * pins the storage)
1083  */
1084 static int do_mmap_shared_file(struct vm_area_struct *vma)
1085 {
1086         int ret;
1087
1088         ret = call_mmap(vma->vm_file, vma);
1089         if (ret == 0) {
1090                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1091                 return 0;
1092         }
1093         if (ret != -ENOSYS)
1094                 return ret;
1095
1096         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1097          * opposed to tried but failed) so we can only give a suitable error as
1098          * it's not possible to make a private copy if MAP_SHARED was given */
1099         return -ENODEV;
1100 }
1101
1102 /*
1103  * set up a private mapping or an anonymous shared mapping
1104  */
1105 static int do_mmap_private(struct vm_area_struct *vma,
1106                            struct vm_region *region,
1107                            unsigned long len,
1108                            unsigned long capabilities)
1109 {
1110         unsigned long total, point;
1111         void *base;
1112         int ret, order;
1113
1114         /* invoke the file's mapping function so that it can keep track of
1115          * shared mappings on devices or memory
1116          * - VM_MAYSHARE will be set if it may attempt to share
1117          */
1118         if (capabilities & NOMMU_MAP_DIRECT) {
1119                 ret = call_mmap(vma->vm_file, vma);
1120                 if (ret == 0) {
1121                         /* shouldn't return success if we're not sharing */
1122                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1123                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1124                         return 0;
1125                 }
1126                 if (ret != -ENOSYS)
1127                         return ret;
1128
1129                 /* getting an ENOSYS error indicates that direct mmap isn't
1130                  * possible (as opposed to tried but failed) so we'll try to
1131                  * make a private copy of the data and map that instead */
1132         }
1133
1134
1135         /* allocate some memory to hold the mapping
1136          * - note that this may not return a page-aligned address if the object
1137          *   we're allocating is smaller than a page
1138          */
1139         order = get_order(len);
1140         total = 1 << order;
1141         point = len >> PAGE_SHIFT;
1142
1143         /* we don't want to allocate a power-of-2 sized page set */
1144         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1145                 total = point;
1146
1147         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1148         if (!base)
1149                 goto enomem;
1150
1151         atomic_long_add(total, &mmap_pages_allocated);
1152
1153         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1154         region->vm_start = (unsigned long) base;
1155         region->vm_end   = region->vm_start + len;
1156         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1157
1158         vma->vm_start = region->vm_start;
1159         vma->vm_end   = region->vm_start + len;
1160
1161         if (vma->vm_file) {
1162                 /* read the contents of a file into the copy */
1163                 mm_segment_t old_fs;
1164                 loff_t fpos;
1165
1166                 fpos = vma->vm_pgoff;
1167                 fpos <<= PAGE_SHIFT;
1168
1169                 old_fs = get_fs();
1170                 set_fs(KERNEL_DS);
1171                 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1172                 set_fs(old_fs);
1173
1174                 if (ret < 0)
1175                         goto error_free;
1176
1177                 /* clear the last little bit */
1178                 if (ret < len)
1179                         memset(base + ret, 0, len - ret);
1180
1181         }
1182
1183         return 0;
1184
1185 error_free:
1186         free_page_series(region->vm_start, region->vm_top);
1187         region->vm_start = vma->vm_start = 0;
1188         region->vm_end   = vma->vm_end = 0;
1189         region->vm_top   = 0;
1190         return ret;
1191
1192 enomem:
1193         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1194                len, current->pid, current->comm);
1195         show_free_areas(0, NULL);
1196         return -ENOMEM;
1197 }
1198
1199 /*
1200  * handle mapping creation for uClinux
1201  */
1202 unsigned long do_mmap(struct file *file,
1203                         unsigned long addr,
1204                         unsigned long len,
1205                         unsigned long prot,
1206                         unsigned long flags,
1207                         vm_flags_t vm_flags,
1208                         unsigned long pgoff,
1209                         unsigned long *populate,
1210                         struct list_head *uf)
1211 {
1212         struct vm_area_struct *vma;
1213         struct vm_region *region;
1214         struct rb_node *rb;
1215         unsigned long capabilities, result;
1216         int ret;
1217
1218         *populate = 0;
1219
1220         /* decide whether we should attempt the mapping, and if so what sort of
1221          * mapping */
1222         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1223                                     &capabilities);
1224         if (ret < 0)
1225                 return ret;
1226
1227         /* we ignore the address hint */
1228         addr = 0;
1229         len = PAGE_ALIGN(len);
1230
1231         /* we've determined that we can make the mapping, now translate what we
1232          * now know into VMA flags */
1233         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1234
1235         /* we're going to need to record the mapping */
1236         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1237         if (!region)
1238                 goto error_getting_region;
1239
1240         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1241         if (!vma)
1242                 goto error_getting_vma;
1243
1244         region->vm_usage = 1;
1245         region->vm_flags = vm_flags;
1246         region->vm_pgoff = pgoff;
1247
1248         INIT_LIST_HEAD(&vma->anon_vma_chain);
1249         vma->vm_flags = vm_flags;
1250         vma->vm_pgoff = pgoff;
1251
1252         if (file) {
1253                 region->vm_file = get_file(file);
1254                 vma->vm_file = get_file(file);
1255         }
1256
1257         down_write(&nommu_region_sem);
1258
1259         /* if we want to share, we need to check for regions created by other
1260          * mmap() calls that overlap with our proposed mapping
1261          * - we can only share with a superset match on most regular files
1262          * - shared mappings on character devices and memory backed files are
1263          *   permitted to overlap inexactly as far as we are concerned for in
1264          *   these cases, sharing is handled in the driver or filesystem rather
1265          *   than here
1266          */
1267         if (vm_flags & VM_MAYSHARE) {
1268                 struct vm_region *pregion;
1269                 unsigned long pglen, rpglen, pgend, rpgend, start;
1270
1271                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1272                 pgend = pgoff + pglen;
1273
1274                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1275                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1276
1277                         if (!(pregion->vm_flags & VM_MAYSHARE))
1278                                 continue;
1279
1280                         /* search for overlapping mappings on the same file */
1281                         if (file_inode(pregion->vm_file) !=
1282                             file_inode(file))
1283                                 continue;
1284
1285                         if (pregion->vm_pgoff >= pgend)
1286                                 continue;
1287
1288                         rpglen = pregion->vm_end - pregion->vm_start;
1289                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1290                         rpgend = pregion->vm_pgoff + rpglen;
1291                         if (pgoff >= rpgend)
1292                                 continue;
1293
1294                         /* handle inexactly overlapping matches between
1295                          * mappings */
1296                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1297                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1298                                 /* new mapping is not a subset of the region */
1299                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1300                                         goto sharing_violation;
1301                                 continue;
1302                         }
1303
1304                         /* we've found a region we can share */
1305                         pregion->vm_usage++;
1306                         vma->vm_region = pregion;
1307                         start = pregion->vm_start;
1308                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1309                         vma->vm_start = start;
1310                         vma->vm_end = start + len;
1311
1312                         if (pregion->vm_flags & VM_MAPPED_COPY)
1313                                 vma->vm_flags |= VM_MAPPED_COPY;
1314                         else {
1315                                 ret = do_mmap_shared_file(vma);
1316                                 if (ret < 0) {
1317                                         vma->vm_region = NULL;
1318                                         vma->vm_start = 0;
1319                                         vma->vm_end = 0;
1320                                         pregion->vm_usage--;
1321                                         pregion = NULL;
1322                                         goto error_just_free;
1323                                 }
1324                         }
1325                         fput(region->vm_file);
1326                         kmem_cache_free(vm_region_jar, region);
1327                         region = pregion;
1328                         result = start;
1329                         goto share;
1330                 }
1331
1332                 /* obtain the address at which to make a shared mapping
1333                  * - this is the hook for quasi-memory character devices to
1334                  *   tell us the location of a shared mapping
1335                  */
1336                 if (capabilities & NOMMU_MAP_DIRECT) {
1337                         addr = file->f_op->get_unmapped_area(file, addr, len,
1338                                                              pgoff, flags);
1339                         if (IS_ERR_VALUE(addr)) {
1340                                 ret = addr;
1341                                 if (ret != -ENOSYS)
1342                                         goto error_just_free;
1343
1344                                 /* the driver refused to tell us where to site
1345                                  * the mapping so we'll have to attempt to copy
1346                                  * it */
1347                                 ret = -ENODEV;
1348                                 if (!(capabilities & NOMMU_MAP_COPY))
1349                                         goto error_just_free;
1350
1351                                 capabilities &= ~NOMMU_MAP_DIRECT;
1352                         } else {
1353                                 vma->vm_start = region->vm_start = addr;
1354                                 vma->vm_end = region->vm_end = addr + len;
1355                         }
1356                 }
1357         }
1358
1359         vma->vm_region = region;
1360
1361         /* set up the mapping
1362          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1363          */
1364         if (file && vma->vm_flags & VM_SHARED)
1365                 ret = do_mmap_shared_file(vma);
1366         else
1367                 ret = do_mmap_private(vma, region, len, capabilities);
1368         if (ret < 0)
1369                 goto error_just_free;
1370         add_nommu_region(region);
1371
1372         /* clear anonymous mappings that don't ask for uninitialized data */
1373         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1374                 memset((void *)region->vm_start, 0,
1375                        region->vm_end - region->vm_start);
1376
1377         /* okay... we have a mapping; now we have to register it */
1378         result = vma->vm_start;
1379
1380         current->mm->total_vm += len >> PAGE_SHIFT;
1381
1382 share:
1383         add_vma_to_mm(current->mm, vma);
1384
1385         /* we flush the region from the icache only when the first executable
1386          * mapping of it is made  */
1387         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1388                 flush_icache_range(region->vm_start, region->vm_end);
1389                 region->vm_icache_flushed = true;
1390         }
1391
1392         up_write(&nommu_region_sem);
1393
1394         return result;
1395
1396 error_just_free:
1397         up_write(&nommu_region_sem);
1398 error:
1399         if (region->vm_file)
1400                 fput(region->vm_file);
1401         kmem_cache_free(vm_region_jar, region);
1402         if (vma->vm_file)
1403                 fput(vma->vm_file);
1404         kmem_cache_free(vm_area_cachep, vma);
1405         return ret;
1406
1407 sharing_violation:
1408         up_write(&nommu_region_sem);
1409         pr_warn("Attempt to share mismatched mappings\n");
1410         ret = -EINVAL;
1411         goto error;
1412
1413 error_getting_vma:
1414         kmem_cache_free(vm_region_jar, region);
1415         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1416                         len, current->pid);
1417         show_free_areas(0, NULL);
1418         return -ENOMEM;
1419
1420 error_getting_region:
1421         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1422                         len, current->pid);
1423         show_free_areas(0, NULL);
1424         return -ENOMEM;
1425 }
1426
1427 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1428                 unsigned long, prot, unsigned long, flags,
1429                 unsigned long, fd, unsigned long, pgoff)
1430 {
1431         struct file *file = NULL;
1432         unsigned long retval = -EBADF;
1433
1434         audit_mmap_fd(fd, flags);
1435         if (!(flags & MAP_ANONYMOUS)) {
1436                 file = fget(fd);
1437                 if (!file)
1438                         goto out;
1439         }
1440
1441         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1442
1443         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1444
1445         if (file)
1446                 fput(file);
1447 out:
1448         return retval;
1449 }
1450
1451 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1452 struct mmap_arg_struct {
1453         unsigned long addr;
1454         unsigned long len;
1455         unsigned long prot;
1456         unsigned long flags;
1457         unsigned long fd;
1458         unsigned long offset;
1459 };
1460
1461 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1462 {
1463         struct mmap_arg_struct a;
1464
1465         if (copy_from_user(&a, arg, sizeof(a)))
1466                 return -EFAULT;
1467         if (offset_in_page(a.offset))
1468                 return -EINVAL;
1469
1470         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1471                               a.offset >> PAGE_SHIFT);
1472 }
1473 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1474
1475 /*
1476  * split a vma into two pieces at address 'addr', a new vma is allocated either
1477  * for the first part or the tail.
1478  */
1479 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1480               unsigned long addr, int new_below)
1481 {
1482         struct vm_area_struct *new;
1483         struct vm_region *region;
1484         unsigned long npages;
1485
1486         /* we're only permitted to split anonymous regions (these should have
1487          * only a single usage on the region) */
1488         if (vma->vm_file)
1489                 return -ENOMEM;
1490
1491         if (mm->map_count >= sysctl_max_map_count)
1492                 return -ENOMEM;
1493
1494         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1495         if (!region)
1496                 return -ENOMEM;
1497
1498         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1499         if (!new) {
1500                 kmem_cache_free(vm_region_jar, region);
1501                 return -ENOMEM;
1502         }
1503
1504         /* most fields are the same, copy all, and then fixup */
1505         *new = *vma;
1506         *region = *vma->vm_region;
1507         new->vm_region = region;
1508
1509         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1510
1511         if (new_below) {
1512                 region->vm_top = region->vm_end = new->vm_end = addr;
1513         } else {
1514                 region->vm_start = new->vm_start = addr;
1515                 region->vm_pgoff = new->vm_pgoff += npages;
1516         }
1517
1518         if (new->vm_ops && new->vm_ops->open)
1519                 new->vm_ops->open(new);
1520
1521         delete_vma_from_mm(vma);
1522         down_write(&nommu_region_sem);
1523         delete_nommu_region(vma->vm_region);
1524         if (new_below) {
1525                 vma->vm_region->vm_start = vma->vm_start = addr;
1526                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1527         } else {
1528                 vma->vm_region->vm_end = vma->vm_end = addr;
1529                 vma->vm_region->vm_top = addr;
1530         }
1531         add_nommu_region(vma->vm_region);
1532         add_nommu_region(new->vm_region);
1533         up_write(&nommu_region_sem);
1534         add_vma_to_mm(mm, vma);
1535         add_vma_to_mm(mm, new);
1536         return 0;
1537 }
1538
1539 /*
1540  * shrink a VMA by removing the specified chunk from either the beginning or
1541  * the end
1542  */
1543 static int shrink_vma(struct mm_struct *mm,
1544                       struct vm_area_struct *vma,
1545                       unsigned long from, unsigned long to)
1546 {
1547         struct vm_region *region;
1548
1549         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1550          * and list */
1551         delete_vma_from_mm(vma);
1552         if (from > vma->vm_start)
1553                 vma->vm_end = from;
1554         else
1555                 vma->vm_start = to;
1556         add_vma_to_mm(mm, vma);
1557
1558         /* cut the backing region down to size */
1559         region = vma->vm_region;
1560         BUG_ON(region->vm_usage != 1);
1561
1562         down_write(&nommu_region_sem);
1563         delete_nommu_region(region);
1564         if (from > region->vm_start) {
1565                 to = region->vm_top;
1566                 region->vm_top = region->vm_end = from;
1567         } else {
1568                 region->vm_start = to;
1569         }
1570         add_nommu_region(region);
1571         up_write(&nommu_region_sem);
1572
1573         free_page_series(from, to);
1574         return 0;
1575 }
1576
1577 /*
1578  * release a mapping
1579  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1580  *   VMA, though it need not cover the whole VMA
1581  */
1582 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1583 {
1584         struct vm_area_struct *vma;
1585         unsigned long end;
1586         int ret;
1587
1588         len = PAGE_ALIGN(len);
1589         if (len == 0)
1590                 return -EINVAL;
1591
1592         end = start + len;
1593
1594         /* find the first potentially overlapping VMA */
1595         vma = find_vma(mm, start);
1596         if (!vma) {
1597                 static int limit;
1598                 if (limit < 5) {
1599                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1600                                         current->pid, current->comm,
1601                                         start, start + len - 1);
1602                         limit++;
1603                 }
1604                 return -EINVAL;
1605         }
1606
1607         /* we're allowed to split an anonymous VMA but not a file-backed one */
1608         if (vma->vm_file) {
1609                 do {
1610                         if (start > vma->vm_start)
1611                                 return -EINVAL;
1612                         if (end == vma->vm_end)
1613                                 goto erase_whole_vma;
1614                         vma = vma->vm_next;
1615                 } while (vma);
1616                 return -EINVAL;
1617         } else {
1618                 /* the chunk must be a subset of the VMA found */
1619                 if (start == vma->vm_start && end == vma->vm_end)
1620                         goto erase_whole_vma;
1621                 if (start < vma->vm_start || end > vma->vm_end)
1622                         return -EINVAL;
1623                 if (offset_in_page(start))
1624                         return -EINVAL;
1625                 if (end != vma->vm_end && offset_in_page(end))
1626                         return -EINVAL;
1627                 if (start != vma->vm_start && end != vma->vm_end) {
1628                         ret = split_vma(mm, vma, start, 1);
1629                         if (ret < 0)
1630                                 return ret;
1631                 }
1632                 return shrink_vma(mm, vma, start, end);
1633         }
1634
1635 erase_whole_vma:
1636         delete_vma_from_mm(vma);
1637         delete_vma(mm, vma);
1638         return 0;
1639 }
1640 EXPORT_SYMBOL(do_munmap);
1641
1642 int vm_munmap(unsigned long addr, size_t len)
1643 {
1644         struct mm_struct *mm = current->mm;
1645         int ret;
1646
1647         down_write(&mm->mmap_sem);
1648         ret = do_munmap(mm, addr, len, NULL);
1649         up_write(&mm->mmap_sem);
1650         return ret;
1651 }
1652 EXPORT_SYMBOL(vm_munmap);
1653
1654 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1655 {
1656         return vm_munmap(addr, len);
1657 }
1658
1659 /*
1660  * release all the mappings made in a process's VM space
1661  */
1662 void exit_mmap(struct mm_struct *mm)
1663 {
1664         struct vm_area_struct *vma;
1665
1666         if (!mm)
1667                 return;
1668
1669         mm->total_vm = 0;
1670
1671         while ((vma = mm->mmap)) {
1672                 mm->mmap = vma->vm_next;
1673                 delete_vma_from_mm(vma);
1674                 delete_vma(mm, vma);
1675                 cond_resched();
1676         }
1677 }
1678
1679 int vm_brk(unsigned long addr, unsigned long len)
1680 {
1681         return -ENOMEM;
1682 }
1683
1684 /*
1685  * expand (or shrink) an existing mapping, potentially moving it at the same
1686  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1687  *
1688  * under NOMMU conditions, we only permit changing a mapping's size, and only
1689  * as long as it stays within the region allocated by do_mmap_private() and the
1690  * block is not shareable
1691  *
1692  * MREMAP_FIXED is not supported under NOMMU conditions
1693  */
1694 static unsigned long do_mremap(unsigned long addr,
1695                         unsigned long old_len, unsigned long new_len,
1696                         unsigned long flags, unsigned long new_addr)
1697 {
1698         struct vm_area_struct *vma;
1699
1700         /* insanity checks first */
1701         old_len = PAGE_ALIGN(old_len);
1702         new_len = PAGE_ALIGN(new_len);
1703         if (old_len == 0 || new_len == 0)
1704                 return (unsigned long) -EINVAL;
1705
1706         if (offset_in_page(addr))
1707                 return -EINVAL;
1708
1709         if (flags & MREMAP_FIXED && new_addr != addr)
1710                 return (unsigned long) -EINVAL;
1711
1712         vma = find_vma_exact(current->mm, addr, old_len);
1713         if (!vma)
1714                 return (unsigned long) -EINVAL;
1715
1716         if (vma->vm_end != vma->vm_start + old_len)
1717                 return (unsigned long) -EFAULT;
1718
1719         if (vma->vm_flags & VM_MAYSHARE)
1720                 return (unsigned long) -EPERM;
1721
1722         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1723                 return (unsigned long) -ENOMEM;
1724
1725         /* all checks complete - do it */
1726         vma->vm_end = vma->vm_start + new_len;
1727         return vma->vm_start;
1728 }
1729
1730 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1731                 unsigned long, new_len, unsigned long, flags,
1732                 unsigned long, new_addr)
1733 {
1734         unsigned long ret;
1735
1736         down_write(&current->mm->mmap_sem);
1737         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1738         up_write(&current->mm->mmap_sem);
1739         return ret;
1740 }
1741
1742 struct page *follow_page_mask(struct vm_area_struct *vma,
1743                               unsigned long address, unsigned int flags,
1744                               unsigned int *page_mask)
1745 {
1746         *page_mask = 0;
1747         return NULL;
1748 }
1749
1750 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1751                 unsigned long pfn, unsigned long size, pgprot_t prot)
1752 {
1753         if (addr != (pfn << PAGE_SHIFT))
1754                 return -EINVAL;
1755
1756         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1757         return 0;
1758 }
1759 EXPORT_SYMBOL(remap_pfn_range);
1760
1761 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1762 {
1763         unsigned long pfn = start >> PAGE_SHIFT;
1764         unsigned long vm_len = vma->vm_end - vma->vm_start;
1765
1766         pfn += vma->vm_pgoff;
1767         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1768 }
1769 EXPORT_SYMBOL(vm_iomap_memory);
1770
1771 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1772                         unsigned long pgoff)
1773 {
1774         unsigned int size = vma->vm_end - vma->vm_start;
1775
1776         if (!(vma->vm_flags & VM_USERMAP))
1777                 return -EINVAL;
1778
1779         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1780         vma->vm_end = vma->vm_start + size;
1781
1782         return 0;
1783 }
1784 EXPORT_SYMBOL(remap_vmalloc_range);
1785
1786 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1787         unsigned long len, unsigned long pgoff, unsigned long flags)
1788 {
1789         return -ENOMEM;
1790 }
1791
1792 void unmap_mapping_range(struct address_space *mapping,
1793                          loff_t const holebegin, loff_t const holelen,
1794                          int even_cows)
1795 {
1796 }
1797 EXPORT_SYMBOL(unmap_mapping_range);
1798
1799 int filemap_fault(struct vm_fault *vmf)
1800 {
1801         BUG();
1802         return 0;
1803 }
1804 EXPORT_SYMBOL(filemap_fault);
1805
1806 void filemap_map_pages(struct vm_fault *vmf,
1807                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1808 {
1809         BUG();
1810 }
1811 EXPORT_SYMBOL(filemap_map_pages);
1812
1813 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1814                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1815 {
1816         struct vm_area_struct *vma;
1817         int write = gup_flags & FOLL_WRITE;
1818
1819         down_read(&mm->mmap_sem);
1820
1821         /* the access must start within one of the target process's mappings */
1822         vma = find_vma(mm, addr);
1823         if (vma) {
1824                 /* don't overrun this mapping */
1825                 if (addr + len >= vma->vm_end)
1826                         len = vma->vm_end - addr;
1827
1828                 /* only read or write mappings where it is permitted */
1829                 if (write && vma->vm_flags & VM_MAYWRITE)
1830                         copy_to_user_page(vma, NULL, addr,
1831                                          (void *) addr, buf, len);
1832                 else if (!write && vma->vm_flags & VM_MAYREAD)
1833                         copy_from_user_page(vma, NULL, addr,
1834                                             buf, (void *) addr, len);
1835                 else
1836                         len = 0;
1837         } else {
1838                 len = 0;
1839         }
1840
1841         up_read(&mm->mmap_sem);
1842
1843         return len;
1844 }
1845
1846 /**
1847  * @access_remote_vm - access another process' address space
1848  * @mm:         the mm_struct of the target address space
1849  * @addr:       start address to access
1850  * @buf:        source or destination buffer
1851  * @len:        number of bytes to transfer
1852  * @gup_flags:  flags modifying lookup behaviour
1853  *
1854  * The caller must hold a reference on @mm.
1855  */
1856 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1857                 void *buf, int len, unsigned int gup_flags)
1858 {
1859         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1860 }
1861
1862 /*
1863  * Access another process' address space.
1864  * - source/target buffer must be kernel space
1865  */
1866 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1867                 unsigned int gup_flags)
1868 {
1869         struct mm_struct *mm;
1870
1871         if (addr + len < addr)
1872                 return 0;
1873
1874         mm = get_task_mm(tsk);
1875         if (!mm)
1876                 return 0;
1877
1878         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1879
1880         mmput(mm);
1881         return len;
1882 }
1883 EXPORT_SYMBOL_GPL(access_process_vm);
1884
1885 /**
1886  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1887  * @inode: The inode to check
1888  * @size: The current filesize of the inode
1889  * @newsize: The proposed filesize of the inode
1890  *
1891  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1892  * make sure that that any outstanding VMAs aren't broken and then shrink the
1893  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1894  * automatically grant mappings that are too large.
1895  */
1896 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1897                                 size_t newsize)
1898 {
1899         struct vm_area_struct *vma;
1900         struct vm_region *region;
1901         pgoff_t low, high;
1902         size_t r_size, r_top;
1903
1904         low = newsize >> PAGE_SHIFT;
1905         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1906
1907         down_write(&nommu_region_sem);
1908         i_mmap_lock_read(inode->i_mapping);
1909
1910         /* search for VMAs that fall within the dead zone */
1911         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1912                 /* found one - only interested if it's shared out of the page
1913                  * cache */
1914                 if (vma->vm_flags & VM_SHARED) {
1915                         i_mmap_unlock_read(inode->i_mapping);
1916                         up_write(&nommu_region_sem);
1917                         return -ETXTBSY; /* not quite true, but near enough */
1918                 }
1919         }
1920
1921         /* reduce any regions that overlap the dead zone - if in existence,
1922          * these will be pointed to by VMAs that don't overlap the dead zone
1923          *
1924          * we don't check for any regions that start beyond the EOF as there
1925          * shouldn't be any
1926          */
1927         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1928                 if (!(vma->vm_flags & VM_SHARED))
1929                         continue;
1930
1931                 region = vma->vm_region;
1932                 r_size = region->vm_top - region->vm_start;
1933                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1934
1935                 if (r_top > newsize) {
1936                         region->vm_top -= r_top - newsize;
1937                         if (region->vm_end > region->vm_top)
1938                                 region->vm_end = region->vm_top;
1939                 }
1940         }
1941
1942         i_mmap_unlock_read(inode->i_mapping);
1943         up_write(&nommu_region_sem);
1944         return 0;
1945 }
1946
1947 /*
1948  * Initialise sysctl_user_reserve_kbytes.
1949  *
1950  * This is intended to prevent a user from starting a single memory hogging
1951  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1952  * mode.
1953  *
1954  * The default value is min(3% of free memory, 128MB)
1955  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1956  */
1957 static int __meminit init_user_reserve(void)
1958 {
1959         unsigned long free_kbytes;
1960
1961         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1962
1963         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1964         return 0;
1965 }
1966 subsys_initcall(init_user_reserve);
1967
1968 /*
1969  * Initialise sysctl_admin_reserve_kbytes.
1970  *
1971  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1972  * to log in and kill a memory hogging process.
1973  *
1974  * Systems with more than 256MB will reserve 8MB, enough to recover
1975  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1976  * only reserve 3% of free pages by default.
1977  */
1978 static int __meminit init_admin_reserve(void)
1979 {
1980         unsigned long free_kbytes;
1981
1982         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1983
1984         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1985         return 0;
1986 }
1987 subsys_initcall(init_admin_reserve);