]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/shmem.c
Merge remote-tracking branches 'spi/fix/bcm63xx', 'spi/fix/doc', 'spi/fix/mediatek...
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94         pgoff_t start;          /* start of range currently being fallocated */
95         pgoff_t next;           /* the next page offset to be fallocated */
96         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
97         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102         SGP_READ,       /* don't exceed i_size, don't allocate page */
103         SGP_CACHE,      /* don't exceed i_size, may allocate page */
104         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
105         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
106         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112         return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123                                 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128         struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130         return shmem_getpage_gfp(inode, index, pagep, sgp,
131                         mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136         return sb->s_fs_info;
137 }
138
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147         return (flags & VM_NORESERVE) ?
148                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153         if (!(flags & VM_NORESERVE))
154                 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158                 loff_t oldsize, loff_t newsize)
159 {
160         if (!(flags & VM_NORESERVE)) {
161                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162                         return security_vm_enough_memory_mm(current->mm,
163                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
164                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166         }
167         return 0;
168 }
169
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow huge sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178         return (flags & VM_NORESERVE) ?
179                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184         if (flags & VM_NORESERVE)
185                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202         if (sbinfo->max_inodes) {
203                 spin_lock(&sbinfo->stat_lock);
204                 if (!sbinfo->free_inodes) {
205                         spin_unlock(&sbinfo->stat_lock);
206                         return -ENOSPC;
207                 }
208                 sbinfo->free_inodes--;
209                 spin_unlock(&sbinfo->stat_lock);
210         }
211         return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217         if (sbinfo->max_inodes) {
218                 spin_lock(&sbinfo->stat_lock);
219                 sbinfo->free_inodes++;
220                 spin_unlock(&sbinfo->stat_lock);
221         }
222 }
223
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238         struct shmem_inode_info *info = SHMEM_I(inode);
239         long freed;
240
241         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242         if (freed > 0) {
243                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244                 if (sbinfo->max_blocks)
245                         percpu_counter_add(&sbinfo->used_blocks, -freed);
246                 info->alloced -= freed;
247                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248                 shmem_unacct_blocks(info->flags, freed);
249         }
250 }
251
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256                         pgoff_t index, void *expected, void *replacement)
257 {
258         void **pslot;
259         void *item;
260
261         VM_BUG_ON(!expected);
262         VM_BUG_ON(!replacement);
263         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264         if (!pslot)
265                 return -ENOENT;
266         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267         if (item != expected)
268                 return -ENOENT;
269         radix_tree_replace_slot(pslot, replacement);
270         return 0;
271 }
272
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281                                pgoff_t index, swp_entry_t swap)
282 {
283         void *item;
284
285         rcu_read_lock();
286         item = radix_tree_lookup(&mapping->page_tree, index);
287         rcu_read_unlock();
288         return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295                                    struct address_space *mapping,
296                                    pgoff_t index, void *expected)
297 {
298         int error;
299
300         VM_BUG_ON_PAGE(!PageLocked(page), page);
301         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303         page_cache_get(page);
304         page->mapping = mapping;
305         page->index = index;
306
307         spin_lock_irq(&mapping->tree_lock);
308         if (!expected)
309                 error = radix_tree_insert(&mapping->page_tree, index, page);
310         else
311                 error = shmem_radix_tree_replace(mapping, index, expected,
312                                                                  page);
313         if (!error) {
314                 mapping->nrpages++;
315                 __inc_zone_page_state(page, NR_FILE_PAGES);
316                 __inc_zone_page_state(page, NR_SHMEM);
317                 spin_unlock_irq(&mapping->tree_lock);
318         } else {
319                 page->mapping = NULL;
320                 spin_unlock_irq(&mapping->tree_lock);
321                 page_cache_release(page);
322         }
323         return error;
324 }
325
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331         struct address_space *mapping = page->mapping;
332         int error;
333
334         spin_lock_irq(&mapping->tree_lock);
335         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336         page->mapping = NULL;
337         mapping->nrpages--;
338         __dec_zone_page_state(page, NR_FILE_PAGES);
339         __dec_zone_page_state(page, NR_SHMEM);
340         spin_unlock_irq(&mapping->tree_lock);
341         page_cache_release(page);
342         BUG_ON(error);
343 }
344
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349                            pgoff_t index, void *radswap)
350 {
351         void *old;
352
353         spin_lock_irq(&mapping->tree_lock);
354         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355         spin_unlock_irq(&mapping->tree_lock);
356         if (old != radswap)
357                 return -ENOENT;
358         free_swap_and_cache(radix_to_swp_entry(radswap));
359         return 0;
360 }
361
362 /*
363  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364  */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367         struct pagevec pvec;
368         pgoff_t indices[PAGEVEC_SIZE];
369         pgoff_t index = 0;
370
371         pagevec_init(&pvec, 0);
372         /*
373          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374          */
375         while (!mapping_unevictable(mapping)) {
376                 /*
377                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379                  */
380                 pvec.nr = find_get_entries(mapping, index,
381                                            PAGEVEC_SIZE, pvec.pages, indices);
382                 if (!pvec.nr)
383                         break;
384                 index = indices[pvec.nr - 1] + 1;
385                 pagevec_remove_exceptionals(&pvec);
386                 check_move_unevictable_pages(pvec.pages, pvec.nr);
387                 pagevec_release(&pvec);
388                 cond_resched();
389         }
390 }
391
392 /*
393  * Remove range of pages and swap entries from radix tree, and free them.
394  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395  */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397                                                                  bool unfalloc)
398 {
399         struct address_space *mapping = inode->i_mapping;
400         struct shmem_inode_info *info = SHMEM_I(inode);
401         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405         struct pagevec pvec;
406         pgoff_t indices[PAGEVEC_SIZE];
407         long nr_swaps_freed = 0;
408         pgoff_t index;
409         int i;
410
411         if (lend == -1)
412                 end = -1;       /* unsigned, so actually very big */
413
414         pagevec_init(&pvec, 0);
415         index = start;
416         while (index < end) {
417                 pvec.nr = find_get_entries(mapping, index,
418                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
419                         pvec.pages, indices);
420                 if (!pvec.nr)
421                         break;
422                 for (i = 0; i < pagevec_count(&pvec); i++) {
423                         struct page *page = pvec.pages[i];
424
425                         index = indices[i];
426                         if (index >= end)
427                                 break;
428
429                         if (radix_tree_exceptional_entry(page)) {
430                                 if (unfalloc)
431                                         continue;
432                                 nr_swaps_freed += !shmem_free_swap(mapping,
433                                                                 index, page);
434                                 continue;
435                         }
436
437                         if (!trylock_page(page))
438                                 continue;
439                         if (!unfalloc || !PageUptodate(page)) {
440                                 if (page->mapping == mapping) {
441                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
442                                         truncate_inode_page(mapping, page);
443                                 }
444                         }
445                         unlock_page(page);
446                 }
447                 pagevec_remove_exceptionals(&pvec);
448                 pagevec_release(&pvec);
449                 cond_resched();
450                 index++;
451         }
452
453         if (partial_start) {
454                 struct page *page = NULL;
455                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456                 if (page) {
457                         unsigned int top = PAGE_CACHE_SIZE;
458                         if (start > end) {
459                                 top = partial_end;
460                                 partial_end = 0;
461                         }
462                         zero_user_segment(page, partial_start, top);
463                         set_page_dirty(page);
464                         unlock_page(page);
465                         page_cache_release(page);
466                 }
467         }
468         if (partial_end) {
469                 struct page *page = NULL;
470                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
471                 if (page) {
472                         zero_user_segment(page, 0, partial_end);
473                         set_page_dirty(page);
474                         unlock_page(page);
475                         page_cache_release(page);
476                 }
477         }
478         if (start >= end)
479                 return;
480
481         index = start;
482         while (index < end) {
483                 cond_resched();
484
485                 pvec.nr = find_get_entries(mapping, index,
486                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
487                                 pvec.pages, indices);
488                 if (!pvec.nr) {
489                         /* If all gone or hole-punch or unfalloc, we're done */
490                         if (index == start || end != -1)
491                                 break;
492                         /* But if truncating, restart to make sure all gone */
493                         index = start;
494                         continue;
495                 }
496                 for (i = 0; i < pagevec_count(&pvec); i++) {
497                         struct page *page = pvec.pages[i];
498
499                         index = indices[i];
500                         if (index >= end)
501                                 break;
502
503                         if (radix_tree_exceptional_entry(page)) {
504                                 if (unfalloc)
505                                         continue;
506                                 if (shmem_free_swap(mapping, index, page)) {
507                                         /* Swap was replaced by page: retry */
508                                         index--;
509                                         break;
510                                 }
511                                 nr_swaps_freed++;
512                                 continue;
513                         }
514
515                         lock_page(page);
516                         if (!unfalloc || !PageUptodate(page)) {
517                                 if (page->mapping == mapping) {
518                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
519                                         truncate_inode_page(mapping, page);
520                                 } else {
521                                         /* Page was replaced by swap: retry */
522                                         unlock_page(page);
523                                         index--;
524                                         break;
525                                 }
526                         }
527                         unlock_page(page);
528                 }
529                 pagevec_remove_exceptionals(&pvec);
530                 pagevec_release(&pvec);
531                 index++;
532         }
533
534         spin_lock(&info->lock);
535         info->swapped -= nr_swaps_freed;
536         shmem_recalc_inode(inode);
537         spin_unlock(&info->lock);
538 }
539
540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
541 {
542         shmem_undo_range(inode, lstart, lend, false);
543         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544 }
545 EXPORT_SYMBOL_GPL(shmem_truncate_range);
546
547 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
548                          struct kstat *stat)
549 {
550         struct inode *inode = dentry->d_inode;
551         struct shmem_inode_info *info = SHMEM_I(inode);
552
553         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
554                 spin_lock(&info->lock);
555                 shmem_recalc_inode(inode);
556                 spin_unlock(&info->lock);
557         }
558         generic_fillattr(inode, stat);
559         return 0;
560 }
561
562 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
563 {
564         struct inode *inode = d_inode(dentry);
565         struct shmem_inode_info *info = SHMEM_I(inode);
566         int error;
567
568         error = inode_change_ok(inode, attr);
569         if (error)
570                 return error;
571
572         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
573                 loff_t oldsize = inode->i_size;
574                 loff_t newsize = attr->ia_size;
575
576                 /* protected by i_mutex */
577                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
578                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
579                         return -EPERM;
580
581                 if (newsize != oldsize) {
582                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
583                                         oldsize, newsize);
584                         if (error)
585                                 return error;
586                         i_size_write(inode, newsize);
587                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
588                 }
589                 if (newsize <= oldsize) {
590                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
591                         if (oldsize > holebegin)
592                                 unmap_mapping_range(inode->i_mapping,
593                                                         holebegin, 0, 1);
594                         if (info->alloced)
595                                 shmem_truncate_range(inode,
596                                                         newsize, (loff_t)-1);
597                         /* unmap again to remove racily COWed private pages */
598                         if (oldsize > holebegin)
599                                 unmap_mapping_range(inode->i_mapping,
600                                                         holebegin, 0, 1);
601                 }
602         }
603
604         setattr_copy(inode, attr);
605         if (attr->ia_valid & ATTR_MODE)
606                 error = posix_acl_chmod(inode, inode->i_mode);
607         return error;
608 }
609
610 static void shmem_evict_inode(struct inode *inode)
611 {
612         struct shmem_inode_info *info = SHMEM_I(inode);
613
614         if (inode->i_mapping->a_ops == &shmem_aops) {
615                 shmem_unacct_size(info->flags, inode->i_size);
616                 inode->i_size = 0;
617                 shmem_truncate_range(inode, 0, (loff_t)-1);
618                 if (!list_empty(&info->swaplist)) {
619                         mutex_lock(&shmem_swaplist_mutex);
620                         list_del_init(&info->swaplist);
621                         mutex_unlock(&shmem_swaplist_mutex);
622                 }
623         } else
624                 kfree(info->symlink);
625
626         simple_xattrs_free(&info->xattrs);
627         WARN_ON(inode->i_blocks);
628         shmem_free_inode(inode->i_sb);
629         clear_inode(inode);
630 }
631
632 /*
633  * If swap found in inode, free it and move page from swapcache to filecache.
634  */
635 static int shmem_unuse_inode(struct shmem_inode_info *info,
636                              swp_entry_t swap, struct page **pagep)
637 {
638         struct address_space *mapping = info->vfs_inode.i_mapping;
639         void *radswap;
640         pgoff_t index;
641         gfp_t gfp;
642         int error = 0;
643
644         radswap = swp_to_radix_entry(swap);
645         index = radix_tree_locate_item(&mapping->page_tree, radswap);
646         if (index == -1)
647                 return -EAGAIN; /* tell shmem_unuse we found nothing */
648
649         /*
650          * Move _head_ to start search for next from here.
651          * But be careful: shmem_evict_inode checks list_empty without taking
652          * mutex, and there's an instant in list_move_tail when info->swaplist
653          * would appear empty, if it were the only one on shmem_swaplist.
654          */
655         if (shmem_swaplist.next != &info->swaplist)
656                 list_move_tail(&shmem_swaplist, &info->swaplist);
657
658         gfp = mapping_gfp_mask(mapping);
659         if (shmem_should_replace_page(*pagep, gfp)) {
660                 mutex_unlock(&shmem_swaplist_mutex);
661                 error = shmem_replace_page(pagep, gfp, info, index);
662                 mutex_lock(&shmem_swaplist_mutex);
663                 /*
664                  * We needed to drop mutex to make that restrictive page
665                  * allocation, but the inode might have been freed while we
666                  * dropped it: although a racing shmem_evict_inode() cannot
667                  * complete without emptying the radix_tree, our page lock
668                  * on this swapcache page is not enough to prevent that -
669                  * free_swap_and_cache() of our swap entry will only
670                  * trylock_page(), removing swap from radix_tree whatever.
671                  *
672                  * We must not proceed to shmem_add_to_page_cache() if the
673                  * inode has been freed, but of course we cannot rely on
674                  * inode or mapping or info to check that.  However, we can
675                  * safely check if our swap entry is still in use (and here
676                  * it can't have got reused for another page): if it's still
677                  * in use, then the inode cannot have been freed yet, and we
678                  * can safely proceed (if it's no longer in use, that tells
679                  * nothing about the inode, but we don't need to unuse swap).
680                  */
681                 if (!page_swapcount(*pagep))
682                         error = -ENOENT;
683         }
684
685         /*
686          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
687          * but also to hold up shmem_evict_inode(): so inode cannot be freed
688          * beneath us (pagelock doesn't help until the page is in pagecache).
689          */
690         if (!error)
691                 error = shmem_add_to_page_cache(*pagep, mapping, index,
692                                                 radswap);
693         if (error != -ENOMEM) {
694                 /*
695                  * Truncation and eviction use free_swap_and_cache(), which
696                  * only does trylock page: if we raced, best clean up here.
697                  */
698                 delete_from_swap_cache(*pagep);
699                 set_page_dirty(*pagep);
700                 if (!error) {
701                         spin_lock(&info->lock);
702                         info->swapped--;
703                         spin_unlock(&info->lock);
704                         swap_free(swap);
705                 }
706         }
707         return error;
708 }
709
710 /*
711  * Search through swapped inodes to find and replace swap by page.
712  */
713 int shmem_unuse(swp_entry_t swap, struct page *page)
714 {
715         struct list_head *this, *next;
716         struct shmem_inode_info *info;
717         struct mem_cgroup *memcg;
718         int error = 0;
719
720         /*
721          * There's a faint possibility that swap page was replaced before
722          * caller locked it: caller will come back later with the right page.
723          */
724         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
725                 goto out;
726
727         /*
728          * Charge page using GFP_KERNEL while we can wait, before taking
729          * the shmem_swaplist_mutex which might hold up shmem_writepage().
730          * Charged back to the user (not to caller) when swap account is used.
731          */
732         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
733         if (error)
734                 goto out;
735         /* No radix_tree_preload: swap entry keeps a place for page in tree */
736         error = -EAGAIN;
737
738         mutex_lock(&shmem_swaplist_mutex);
739         list_for_each_safe(this, next, &shmem_swaplist) {
740                 info = list_entry(this, struct shmem_inode_info, swaplist);
741                 if (info->swapped)
742                         error = shmem_unuse_inode(info, swap, &page);
743                 else
744                         list_del_init(&info->swaplist);
745                 cond_resched();
746                 if (error != -EAGAIN)
747                         break;
748                 /* found nothing in this: move on to search the next */
749         }
750         mutex_unlock(&shmem_swaplist_mutex);
751
752         if (error) {
753                 if (error != -ENOMEM)
754                         error = 0;
755                 mem_cgroup_cancel_charge(page, memcg);
756         } else
757                 mem_cgroup_commit_charge(page, memcg, true);
758 out:
759         unlock_page(page);
760         page_cache_release(page);
761         return error;
762 }
763
764 /*
765  * Move the page from the page cache to the swap cache.
766  */
767 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
768 {
769         struct shmem_inode_info *info;
770         struct address_space *mapping;
771         struct inode *inode;
772         swp_entry_t swap;
773         pgoff_t index;
774
775         BUG_ON(!PageLocked(page));
776         mapping = page->mapping;
777         index = page->index;
778         inode = mapping->host;
779         info = SHMEM_I(inode);
780         if (info->flags & VM_LOCKED)
781                 goto redirty;
782         if (!total_swap_pages)
783                 goto redirty;
784
785         /*
786          * Our capabilities prevent regular writeback or sync from ever calling
787          * shmem_writepage; but a stacking filesystem might use ->writepage of
788          * its underlying filesystem, in which case tmpfs should write out to
789          * swap only in response to memory pressure, and not for the writeback
790          * threads or sync.
791          */
792         if (!wbc->for_reclaim) {
793                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
794                 goto redirty;
795         }
796
797         /*
798          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
799          * value into swapfile.c, the only way we can correctly account for a
800          * fallocated page arriving here is now to initialize it and write it.
801          *
802          * That's okay for a page already fallocated earlier, but if we have
803          * not yet completed the fallocation, then (a) we want to keep track
804          * of this page in case we have to undo it, and (b) it may not be a
805          * good idea to continue anyway, once we're pushing into swap.  So
806          * reactivate the page, and let shmem_fallocate() quit when too many.
807          */
808         if (!PageUptodate(page)) {
809                 if (inode->i_private) {
810                         struct shmem_falloc *shmem_falloc;
811                         spin_lock(&inode->i_lock);
812                         shmem_falloc = inode->i_private;
813                         if (shmem_falloc &&
814                             !shmem_falloc->waitq &&
815                             index >= shmem_falloc->start &&
816                             index < shmem_falloc->next)
817                                 shmem_falloc->nr_unswapped++;
818                         else
819                                 shmem_falloc = NULL;
820                         spin_unlock(&inode->i_lock);
821                         if (shmem_falloc)
822                                 goto redirty;
823                 }
824                 clear_highpage(page);
825                 flush_dcache_page(page);
826                 SetPageUptodate(page);
827         }
828
829         swap = get_swap_page();
830         if (!swap.val)
831                 goto redirty;
832
833         /*
834          * Add inode to shmem_unuse()'s list of swapped-out inodes,
835          * if it's not already there.  Do it now before the page is
836          * moved to swap cache, when its pagelock no longer protects
837          * the inode from eviction.  But don't unlock the mutex until
838          * we've incremented swapped, because shmem_unuse_inode() will
839          * prune a !swapped inode from the swaplist under this mutex.
840          */
841         mutex_lock(&shmem_swaplist_mutex);
842         if (list_empty(&info->swaplist))
843                 list_add_tail(&info->swaplist, &shmem_swaplist);
844
845         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
846                 swap_shmem_alloc(swap);
847                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
848
849                 spin_lock(&info->lock);
850                 info->swapped++;
851                 shmem_recalc_inode(inode);
852                 spin_unlock(&info->lock);
853
854                 mutex_unlock(&shmem_swaplist_mutex);
855                 BUG_ON(page_mapped(page));
856                 swap_writepage(page, wbc);
857                 return 0;
858         }
859
860         mutex_unlock(&shmem_swaplist_mutex);
861         swapcache_free(swap);
862 redirty:
863         set_page_dirty(page);
864         if (wbc->for_reclaim)
865                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
866         unlock_page(page);
867         return 0;
868 }
869
870 #ifdef CONFIG_NUMA
871 #ifdef CONFIG_TMPFS
872 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
873 {
874         char buffer[64];
875
876         if (!mpol || mpol->mode == MPOL_DEFAULT)
877                 return;         /* show nothing */
878
879         mpol_to_str(buffer, sizeof(buffer), mpol);
880
881         seq_printf(seq, ",mpol=%s", buffer);
882 }
883
884 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
885 {
886         struct mempolicy *mpol = NULL;
887         if (sbinfo->mpol) {
888                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
889                 mpol = sbinfo->mpol;
890                 mpol_get(mpol);
891                 spin_unlock(&sbinfo->stat_lock);
892         }
893         return mpol;
894 }
895 #endif /* CONFIG_TMPFS */
896
897 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
898                         struct shmem_inode_info *info, pgoff_t index)
899 {
900         struct vm_area_struct pvma;
901         struct page *page;
902
903         /* Create a pseudo vma that just contains the policy */
904         pvma.vm_start = 0;
905         /* Bias interleave by inode number to distribute better across nodes */
906         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
907         pvma.vm_ops = NULL;
908         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
909
910         page = swapin_readahead(swap, gfp, &pvma, 0);
911
912         /* Drop reference taken by mpol_shared_policy_lookup() */
913         mpol_cond_put(pvma.vm_policy);
914
915         return page;
916 }
917
918 static struct page *shmem_alloc_page(gfp_t gfp,
919                         struct shmem_inode_info *info, pgoff_t index)
920 {
921         struct vm_area_struct pvma;
922         struct page *page;
923
924         /* Create a pseudo vma that just contains the policy */
925         pvma.vm_start = 0;
926         /* Bias interleave by inode number to distribute better across nodes */
927         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
928         pvma.vm_ops = NULL;
929         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
930
931         page = alloc_page_vma(gfp, &pvma, 0);
932
933         /* Drop reference taken by mpol_shared_policy_lookup() */
934         mpol_cond_put(pvma.vm_policy);
935
936         return page;
937 }
938 #else /* !CONFIG_NUMA */
939 #ifdef CONFIG_TMPFS
940 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
941 {
942 }
943 #endif /* CONFIG_TMPFS */
944
945 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
946                         struct shmem_inode_info *info, pgoff_t index)
947 {
948         return swapin_readahead(swap, gfp, NULL, 0);
949 }
950
951 static inline struct page *shmem_alloc_page(gfp_t gfp,
952                         struct shmem_inode_info *info, pgoff_t index)
953 {
954         return alloc_page(gfp);
955 }
956 #endif /* CONFIG_NUMA */
957
958 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
959 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
960 {
961         return NULL;
962 }
963 #endif
964
965 /*
966  * When a page is moved from swapcache to shmem filecache (either by the
967  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
968  * shmem_unuse_inode()), it may have been read in earlier from swap, in
969  * ignorance of the mapping it belongs to.  If that mapping has special
970  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
971  * we may need to copy to a suitable page before moving to filecache.
972  *
973  * In a future release, this may well be extended to respect cpuset and
974  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
975  * but for now it is a simple matter of zone.
976  */
977 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
978 {
979         return page_zonenum(page) > gfp_zone(gfp);
980 }
981
982 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
983                                 struct shmem_inode_info *info, pgoff_t index)
984 {
985         struct page *oldpage, *newpage;
986         struct address_space *swap_mapping;
987         pgoff_t swap_index;
988         int error;
989
990         oldpage = *pagep;
991         swap_index = page_private(oldpage);
992         swap_mapping = page_mapping(oldpage);
993
994         /*
995          * We have arrived here because our zones are constrained, so don't
996          * limit chance of success by further cpuset and node constraints.
997          */
998         gfp &= ~GFP_CONSTRAINT_MASK;
999         newpage = shmem_alloc_page(gfp, info, index);
1000         if (!newpage)
1001                 return -ENOMEM;
1002
1003         page_cache_get(newpage);
1004         copy_highpage(newpage, oldpage);
1005         flush_dcache_page(newpage);
1006
1007         __set_page_locked(newpage);
1008         SetPageUptodate(newpage);
1009         SetPageSwapBacked(newpage);
1010         set_page_private(newpage, swap_index);
1011         SetPageSwapCache(newpage);
1012
1013         /*
1014          * Our caller will very soon move newpage out of swapcache, but it's
1015          * a nice clean interface for us to replace oldpage by newpage there.
1016          */
1017         spin_lock_irq(&swap_mapping->tree_lock);
1018         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1019                                                                    newpage);
1020         if (!error) {
1021                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1022                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1023         }
1024         spin_unlock_irq(&swap_mapping->tree_lock);
1025
1026         if (unlikely(error)) {
1027                 /*
1028                  * Is this possible?  I think not, now that our callers check
1029                  * both PageSwapCache and page_private after getting page lock;
1030                  * but be defensive.  Reverse old to newpage for clear and free.
1031                  */
1032                 oldpage = newpage;
1033         } else {
1034                 mem_cgroup_replace_page(oldpage, newpage);
1035                 lru_cache_add_anon(newpage);
1036                 *pagep = newpage;
1037         }
1038
1039         ClearPageSwapCache(oldpage);
1040         set_page_private(oldpage, 0);
1041
1042         unlock_page(oldpage);
1043         page_cache_release(oldpage);
1044         page_cache_release(oldpage);
1045         return error;
1046 }
1047
1048 /*
1049  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1050  *
1051  * If we allocate a new one we do not mark it dirty. That's up to the
1052  * vm. If we swap it in we mark it dirty since we also free the swap
1053  * entry since a page cannot live in both the swap and page cache
1054  */
1055 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1056         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1057 {
1058         struct address_space *mapping = inode->i_mapping;
1059         struct shmem_inode_info *info;
1060         struct shmem_sb_info *sbinfo;
1061         struct mem_cgroup *memcg;
1062         struct page *page;
1063         swp_entry_t swap;
1064         int error;
1065         int once = 0;
1066         int alloced = 0;
1067
1068         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1069                 return -EFBIG;
1070 repeat:
1071         swap.val = 0;
1072         page = find_lock_entry(mapping, index);
1073         if (radix_tree_exceptional_entry(page)) {
1074                 swap = radix_to_swp_entry(page);
1075                 page = NULL;
1076         }
1077
1078         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1079             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1080                 error = -EINVAL;
1081                 goto failed;
1082         }
1083
1084         if (page && sgp == SGP_WRITE)
1085                 mark_page_accessed(page);
1086
1087         /* fallocated page? */
1088         if (page && !PageUptodate(page)) {
1089                 if (sgp != SGP_READ)
1090                         goto clear;
1091                 unlock_page(page);
1092                 page_cache_release(page);
1093                 page = NULL;
1094         }
1095         if (page || (sgp == SGP_READ && !swap.val)) {
1096                 *pagep = page;
1097                 return 0;
1098         }
1099
1100         /*
1101          * Fast cache lookup did not find it:
1102          * bring it back from swap or allocate.
1103          */
1104         info = SHMEM_I(inode);
1105         sbinfo = SHMEM_SB(inode->i_sb);
1106
1107         if (swap.val) {
1108                 /* Look it up and read it in.. */
1109                 page = lookup_swap_cache(swap);
1110                 if (!page) {
1111                         /* here we actually do the io */
1112                         if (fault_type)
1113                                 *fault_type |= VM_FAULT_MAJOR;
1114                         page = shmem_swapin(swap, gfp, info, index);
1115                         if (!page) {
1116                                 error = -ENOMEM;
1117                                 goto failed;
1118                         }
1119                 }
1120
1121                 /* We have to do this with page locked to prevent races */
1122                 lock_page(page);
1123                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1124                     !shmem_confirm_swap(mapping, index, swap)) {
1125                         error = -EEXIST;        /* try again */
1126                         goto unlock;
1127                 }
1128                 if (!PageUptodate(page)) {
1129                         error = -EIO;
1130                         goto failed;
1131                 }
1132                 wait_on_page_writeback(page);
1133
1134                 if (shmem_should_replace_page(page, gfp)) {
1135                         error = shmem_replace_page(&page, gfp, info, index);
1136                         if (error)
1137                                 goto failed;
1138                 }
1139
1140                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1141                 if (!error) {
1142                         error = shmem_add_to_page_cache(page, mapping, index,
1143                                                 swp_to_radix_entry(swap));
1144                         /*
1145                          * We already confirmed swap under page lock, and make
1146                          * no memory allocation here, so usually no possibility
1147                          * of error; but free_swap_and_cache() only trylocks a
1148                          * page, so it is just possible that the entry has been
1149                          * truncated or holepunched since swap was confirmed.
1150                          * shmem_undo_range() will have done some of the
1151                          * unaccounting, now delete_from_swap_cache() will do
1152                          * the rest.
1153                          * Reset swap.val? No, leave it so "failed" goes back to
1154                          * "repeat": reading a hole and writing should succeed.
1155                          */
1156                         if (error) {
1157                                 mem_cgroup_cancel_charge(page, memcg);
1158                                 delete_from_swap_cache(page);
1159                         }
1160                 }
1161                 if (error)
1162                         goto failed;
1163
1164                 mem_cgroup_commit_charge(page, memcg, true);
1165
1166                 spin_lock(&info->lock);
1167                 info->swapped--;
1168                 shmem_recalc_inode(inode);
1169                 spin_unlock(&info->lock);
1170
1171                 if (sgp == SGP_WRITE)
1172                         mark_page_accessed(page);
1173
1174                 delete_from_swap_cache(page);
1175                 set_page_dirty(page);
1176                 swap_free(swap);
1177
1178         } else {
1179                 if (shmem_acct_block(info->flags)) {
1180                         error = -ENOSPC;
1181                         goto failed;
1182                 }
1183                 if (sbinfo->max_blocks) {
1184                         if (percpu_counter_compare(&sbinfo->used_blocks,
1185                                                 sbinfo->max_blocks) >= 0) {
1186                                 error = -ENOSPC;
1187                                 goto unacct;
1188                         }
1189                         percpu_counter_inc(&sbinfo->used_blocks);
1190                 }
1191
1192                 page = shmem_alloc_page(gfp, info, index);
1193                 if (!page) {
1194                         error = -ENOMEM;
1195                         goto decused;
1196                 }
1197
1198                 __SetPageSwapBacked(page);
1199                 __set_page_locked(page);
1200                 if (sgp == SGP_WRITE)
1201                         __SetPageReferenced(page);
1202
1203                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1204                 if (error)
1205                         goto decused;
1206                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1207                 if (!error) {
1208                         error = shmem_add_to_page_cache(page, mapping, index,
1209                                                         NULL);
1210                         radix_tree_preload_end();
1211                 }
1212                 if (error) {
1213                         mem_cgroup_cancel_charge(page, memcg);
1214                         goto decused;
1215                 }
1216                 mem_cgroup_commit_charge(page, memcg, false);
1217                 lru_cache_add_anon(page);
1218
1219                 spin_lock(&info->lock);
1220                 info->alloced++;
1221                 inode->i_blocks += BLOCKS_PER_PAGE;
1222                 shmem_recalc_inode(inode);
1223                 spin_unlock(&info->lock);
1224                 alloced = true;
1225
1226                 /*
1227                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1228                  */
1229                 if (sgp == SGP_FALLOC)
1230                         sgp = SGP_WRITE;
1231 clear:
1232                 /*
1233                  * Let SGP_WRITE caller clear ends if write does not fill page;
1234                  * but SGP_FALLOC on a page fallocated earlier must initialize
1235                  * it now, lest undo on failure cancel our earlier guarantee.
1236                  */
1237                 if (sgp != SGP_WRITE) {
1238                         clear_highpage(page);
1239                         flush_dcache_page(page);
1240                         SetPageUptodate(page);
1241                 }
1242                 if (sgp == SGP_DIRTY)
1243                         set_page_dirty(page);
1244         }
1245
1246         /* Perhaps the file has been truncated since we checked */
1247         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1248             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1249                 error = -EINVAL;
1250                 if (alloced)
1251                         goto trunc;
1252                 else
1253                         goto failed;
1254         }
1255         *pagep = page;
1256         return 0;
1257
1258         /*
1259          * Error recovery.
1260          */
1261 trunc:
1262         info = SHMEM_I(inode);
1263         ClearPageDirty(page);
1264         delete_from_page_cache(page);
1265         spin_lock(&info->lock);
1266         info->alloced--;
1267         inode->i_blocks -= BLOCKS_PER_PAGE;
1268         spin_unlock(&info->lock);
1269 decused:
1270         sbinfo = SHMEM_SB(inode->i_sb);
1271         if (sbinfo->max_blocks)
1272                 percpu_counter_add(&sbinfo->used_blocks, -1);
1273 unacct:
1274         shmem_unacct_blocks(info->flags, 1);
1275 failed:
1276         if (swap.val && error != -EINVAL &&
1277             !shmem_confirm_swap(mapping, index, swap))
1278                 error = -EEXIST;
1279 unlock:
1280         if (page) {
1281                 unlock_page(page);
1282                 page_cache_release(page);
1283         }
1284         if (error == -ENOSPC && !once++) {
1285                 info = SHMEM_I(inode);
1286                 spin_lock(&info->lock);
1287                 shmem_recalc_inode(inode);
1288                 spin_unlock(&info->lock);
1289                 goto repeat;
1290         }
1291         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1292                 goto repeat;
1293         return error;
1294 }
1295
1296 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1297 {
1298         struct inode *inode = file_inode(vma->vm_file);
1299         int error;
1300         int ret = VM_FAULT_LOCKED;
1301
1302         /*
1303          * Trinity finds that probing a hole which tmpfs is punching can
1304          * prevent the hole-punch from ever completing: which in turn
1305          * locks writers out with its hold on i_mutex.  So refrain from
1306          * faulting pages into the hole while it's being punched.  Although
1307          * shmem_undo_range() does remove the additions, it may be unable to
1308          * keep up, as each new page needs its own unmap_mapping_range() call,
1309          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1310          *
1311          * It does not matter if we sometimes reach this check just before the
1312          * hole-punch begins, so that one fault then races with the punch:
1313          * we just need to make racing faults a rare case.
1314          *
1315          * The implementation below would be much simpler if we just used a
1316          * standard mutex or completion: but we cannot take i_mutex in fault,
1317          * and bloating every shmem inode for this unlikely case would be sad.
1318          */
1319         if (unlikely(inode->i_private)) {
1320                 struct shmem_falloc *shmem_falloc;
1321
1322                 spin_lock(&inode->i_lock);
1323                 shmem_falloc = inode->i_private;
1324                 if (shmem_falloc &&
1325                     shmem_falloc->waitq &&
1326                     vmf->pgoff >= shmem_falloc->start &&
1327                     vmf->pgoff < shmem_falloc->next) {
1328                         wait_queue_head_t *shmem_falloc_waitq;
1329                         DEFINE_WAIT(shmem_fault_wait);
1330
1331                         ret = VM_FAULT_NOPAGE;
1332                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1333                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1334                                 /* It's polite to up mmap_sem if we can */
1335                                 up_read(&vma->vm_mm->mmap_sem);
1336                                 ret = VM_FAULT_RETRY;
1337                         }
1338
1339                         shmem_falloc_waitq = shmem_falloc->waitq;
1340                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1341                                         TASK_UNINTERRUPTIBLE);
1342                         spin_unlock(&inode->i_lock);
1343                         schedule();
1344
1345                         /*
1346                          * shmem_falloc_waitq points into the shmem_fallocate()
1347                          * stack of the hole-punching task: shmem_falloc_waitq
1348                          * is usually invalid by the time we reach here, but
1349                          * finish_wait() does not dereference it in that case;
1350                          * though i_lock needed lest racing with wake_up_all().
1351                          */
1352                         spin_lock(&inode->i_lock);
1353                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1354                         spin_unlock(&inode->i_lock);
1355                         return ret;
1356                 }
1357                 spin_unlock(&inode->i_lock);
1358         }
1359
1360         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1361         if (error)
1362                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1363
1364         if (ret & VM_FAULT_MAJOR) {
1365                 count_vm_event(PGMAJFAULT);
1366                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1367         }
1368         return ret;
1369 }
1370
1371 #ifdef CONFIG_NUMA
1372 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1373 {
1374         struct inode *inode = file_inode(vma->vm_file);
1375         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1376 }
1377
1378 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1379                                           unsigned long addr)
1380 {
1381         struct inode *inode = file_inode(vma->vm_file);
1382         pgoff_t index;
1383
1384         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1385         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1386 }
1387 #endif
1388
1389 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1390 {
1391         struct inode *inode = file_inode(file);
1392         struct shmem_inode_info *info = SHMEM_I(inode);
1393         int retval = -ENOMEM;
1394
1395         spin_lock(&info->lock);
1396         if (lock && !(info->flags & VM_LOCKED)) {
1397                 if (!user_shm_lock(inode->i_size, user))
1398                         goto out_nomem;
1399                 info->flags |= VM_LOCKED;
1400                 mapping_set_unevictable(file->f_mapping);
1401         }
1402         if (!lock && (info->flags & VM_LOCKED) && user) {
1403                 user_shm_unlock(inode->i_size, user);
1404                 info->flags &= ~VM_LOCKED;
1405                 mapping_clear_unevictable(file->f_mapping);
1406         }
1407         retval = 0;
1408
1409 out_nomem:
1410         spin_unlock(&info->lock);
1411         return retval;
1412 }
1413
1414 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1415 {
1416         file_accessed(file);
1417         vma->vm_ops = &shmem_vm_ops;
1418         return 0;
1419 }
1420
1421 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1422                                      umode_t mode, dev_t dev, unsigned long flags)
1423 {
1424         struct inode *inode;
1425         struct shmem_inode_info *info;
1426         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1427
1428         if (shmem_reserve_inode(sb))
1429                 return NULL;
1430
1431         inode = new_inode(sb);
1432         if (inode) {
1433                 inode->i_ino = get_next_ino();
1434                 inode_init_owner(inode, dir, mode);
1435                 inode->i_blocks = 0;
1436                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1437                 inode->i_generation = get_seconds();
1438                 info = SHMEM_I(inode);
1439                 memset(info, 0, (char *)inode - (char *)info);
1440                 spin_lock_init(&info->lock);
1441                 info->seals = F_SEAL_SEAL;
1442                 info->flags = flags & VM_NORESERVE;
1443                 INIT_LIST_HEAD(&info->swaplist);
1444                 simple_xattrs_init(&info->xattrs);
1445                 cache_no_acl(inode);
1446
1447                 switch (mode & S_IFMT) {
1448                 default:
1449                         inode->i_op = &shmem_special_inode_operations;
1450                         init_special_inode(inode, mode, dev);
1451                         break;
1452                 case S_IFREG:
1453                         inode->i_mapping->a_ops = &shmem_aops;
1454                         inode->i_op = &shmem_inode_operations;
1455                         inode->i_fop = &shmem_file_operations;
1456                         mpol_shared_policy_init(&info->policy,
1457                                                  shmem_get_sbmpol(sbinfo));
1458                         break;
1459                 case S_IFDIR:
1460                         inc_nlink(inode);
1461                         /* Some things misbehave if size == 0 on a directory */
1462                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1463                         inode->i_op = &shmem_dir_inode_operations;
1464                         inode->i_fop = &simple_dir_operations;
1465                         break;
1466                 case S_IFLNK:
1467                         /*
1468                          * Must not load anything in the rbtree,
1469                          * mpol_free_shared_policy will not be called.
1470                          */
1471                         mpol_shared_policy_init(&info->policy, NULL);
1472                         break;
1473                 }
1474         } else
1475                 shmem_free_inode(sb);
1476         return inode;
1477 }
1478
1479 bool shmem_mapping(struct address_space *mapping)
1480 {
1481         if (!mapping->host)
1482                 return false;
1483
1484         return mapping->host->i_sb->s_op == &shmem_ops;
1485 }
1486
1487 #ifdef CONFIG_TMPFS
1488 static const struct inode_operations shmem_symlink_inode_operations;
1489 static const struct inode_operations shmem_short_symlink_operations;
1490
1491 #ifdef CONFIG_TMPFS_XATTR
1492 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1493 #else
1494 #define shmem_initxattrs NULL
1495 #endif
1496
1497 static int
1498 shmem_write_begin(struct file *file, struct address_space *mapping,
1499                         loff_t pos, unsigned len, unsigned flags,
1500                         struct page **pagep, void **fsdata)
1501 {
1502         struct inode *inode = mapping->host;
1503         struct shmem_inode_info *info = SHMEM_I(inode);
1504         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1505
1506         /* i_mutex is held by caller */
1507         if (unlikely(info->seals)) {
1508                 if (info->seals & F_SEAL_WRITE)
1509                         return -EPERM;
1510                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1511                         return -EPERM;
1512         }
1513
1514         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1515 }
1516
1517 static int
1518 shmem_write_end(struct file *file, struct address_space *mapping,
1519                         loff_t pos, unsigned len, unsigned copied,
1520                         struct page *page, void *fsdata)
1521 {
1522         struct inode *inode = mapping->host;
1523
1524         if (pos + copied > inode->i_size)
1525                 i_size_write(inode, pos + copied);
1526
1527         if (!PageUptodate(page)) {
1528                 if (copied < PAGE_CACHE_SIZE) {
1529                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1530                         zero_user_segments(page, 0, from,
1531                                         from + copied, PAGE_CACHE_SIZE);
1532                 }
1533                 SetPageUptodate(page);
1534         }
1535         set_page_dirty(page);
1536         unlock_page(page);
1537         page_cache_release(page);
1538
1539         return copied;
1540 }
1541
1542 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1543 {
1544         struct file *file = iocb->ki_filp;
1545         struct inode *inode = file_inode(file);
1546         struct address_space *mapping = inode->i_mapping;
1547         pgoff_t index;
1548         unsigned long offset;
1549         enum sgp_type sgp = SGP_READ;
1550         int error = 0;
1551         ssize_t retval = 0;
1552         loff_t *ppos = &iocb->ki_pos;
1553
1554         /*
1555          * Might this read be for a stacking filesystem?  Then when reading
1556          * holes of a sparse file, we actually need to allocate those pages,
1557          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1558          */
1559         if (!iter_is_iovec(to))
1560                 sgp = SGP_DIRTY;
1561
1562         index = *ppos >> PAGE_CACHE_SHIFT;
1563         offset = *ppos & ~PAGE_CACHE_MASK;
1564
1565         for (;;) {
1566                 struct page *page = NULL;
1567                 pgoff_t end_index;
1568                 unsigned long nr, ret;
1569                 loff_t i_size = i_size_read(inode);
1570
1571                 end_index = i_size >> PAGE_CACHE_SHIFT;
1572                 if (index > end_index)
1573                         break;
1574                 if (index == end_index) {
1575                         nr = i_size & ~PAGE_CACHE_MASK;
1576                         if (nr <= offset)
1577                                 break;
1578                 }
1579
1580                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1581                 if (error) {
1582                         if (error == -EINVAL)
1583                                 error = 0;
1584                         break;
1585                 }
1586                 if (page)
1587                         unlock_page(page);
1588
1589                 /*
1590                  * We must evaluate after, since reads (unlike writes)
1591                  * are called without i_mutex protection against truncate
1592                  */
1593                 nr = PAGE_CACHE_SIZE;
1594                 i_size = i_size_read(inode);
1595                 end_index = i_size >> PAGE_CACHE_SHIFT;
1596                 if (index == end_index) {
1597                         nr = i_size & ~PAGE_CACHE_MASK;
1598                         if (nr <= offset) {
1599                                 if (page)
1600                                         page_cache_release(page);
1601                                 break;
1602                         }
1603                 }
1604                 nr -= offset;
1605
1606                 if (page) {
1607                         /*
1608                          * If users can be writing to this page using arbitrary
1609                          * virtual addresses, take care about potential aliasing
1610                          * before reading the page on the kernel side.
1611                          */
1612                         if (mapping_writably_mapped(mapping))
1613                                 flush_dcache_page(page);
1614                         /*
1615                          * Mark the page accessed if we read the beginning.
1616                          */
1617                         if (!offset)
1618                                 mark_page_accessed(page);
1619                 } else {
1620                         page = ZERO_PAGE(0);
1621                         page_cache_get(page);
1622                 }
1623
1624                 /*
1625                  * Ok, we have the page, and it's up-to-date, so
1626                  * now we can copy it to user space...
1627                  */
1628                 ret = copy_page_to_iter(page, offset, nr, to);
1629                 retval += ret;
1630                 offset += ret;
1631                 index += offset >> PAGE_CACHE_SHIFT;
1632                 offset &= ~PAGE_CACHE_MASK;
1633
1634                 page_cache_release(page);
1635                 if (!iov_iter_count(to))
1636                         break;
1637                 if (ret < nr) {
1638                         error = -EFAULT;
1639                         break;
1640                 }
1641                 cond_resched();
1642         }
1643
1644         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1645         file_accessed(file);
1646         return retval ? retval : error;
1647 }
1648
1649 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1650                                 struct pipe_inode_info *pipe, size_t len,
1651                                 unsigned int flags)
1652 {
1653         struct address_space *mapping = in->f_mapping;
1654         struct inode *inode = mapping->host;
1655         unsigned int loff, nr_pages, req_pages;
1656         struct page *pages[PIPE_DEF_BUFFERS];
1657         struct partial_page partial[PIPE_DEF_BUFFERS];
1658         struct page *page;
1659         pgoff_t index, end_index;
1660         loff_t isize, left;
1661         int error, page_nr;
1662         struct splice_pipe_desc spd = {
1663                 .pages = pages,
1664                 .partial = partial,
1665                 .nr_pages_max = PIPE_DEF_BUFFERS,
1666                 .flags = flags,
1667                 .ops = &page_cache_pipe_buf_ops,
1668                 .spd_release = spd_release_page,
1669         };
1670
1671         isize = i_size_read(inode);
1672         if (unlikely(*ppos >= isize))
1673                 return 0;
1674
1675         left = isize - *ppos;
1676         if (unlikely(left < len))
1677                 len = left;
1678
1679         if (splice_grow_spd(pipe, &spd))
1680                 return -ENOMEM;
1681
1682         index = *ppos >> PAGE_CACHE_SHIFT;
1683         loff = *ppos & ~PAGE_CACHE_MASK;
1684         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1685         nr_pages = min(req_pages, spd.nr_pages_max);
1686
1687         spd.nr_pages = find_get_pages_contig(mapping, index,
1688                                                 nr_pages, spd.pages);
1689         index += spd.nr_pages;
1690         error = 0;
1691
1692         while (spd.nr_pages < nr_pages) {
1693                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1694                 if (error)
1695                         break;
1696                 unlock_page(page);
1697                 spd.pages[spd.nr_pages++] = page;
1698                 index++;
1699         }
1700
1701         index = *ppos >> PAGE_CACHE_SHIFT;
1702         nr_pages = spd.nr_pages;
1703         spd.nr_pages = 0;
1704
1705         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1706                 unsigned int this_len;
1707
1708                 if (!len)
1709                         break;
1710
1711                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1712                 page = spd.pages[page_nr];
1713
1714                 if (!PageUptodate(page) || page->mapping != mapping) {
1715                         error = shmem_getpage(inode, index, &page,
1716                                                         SGP_CACHE, NULL);
1717                         if (error)
1718                                 break;
1719                         unlock_page(page);
1720                         page_cache_release(spd.pages[page_nr]);
1721                         spd.pages[page_nr] = page;
1722                 }
1723
1724                 isize = i_size_read(inode);
1725                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1726                 if (unlikely(!isize || index > end_index))
1727                         break;
1728
1729                 if (end_index == index) {
1730                         unsigned int plen;
1731
1732                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1733                         if (plen <= loff)
1734                                 break;
1735
1736                         this_len = min(this_len, plen - loff);
1737                         len = this_len;
1738                 }
1739
1740                 spd.partial[page_nr].offset = loff;
1741                 spd.partial[page_nr].len = this_len;
1742                 len -= this_len;
1743                 loff = 0;
1744                 spd.nr_pages++;
1745                 index++;
1746         }
1747
1748         while (page_nr < nr_pages)
1749                 page_cache_release(spd.pages[page_nr++]);
1750
1751         if (spd.nr_pages)
1752                 error = splice_to_pipe(pipe, &spd);
1753
1754         splice_shrink_spd(&spd);
1755
1756         if (error > 0) {
1757                 *ppos += error;
1758                 file_accessed(in);
1759         }
1760         return error;
1761 }
1762
1763 /*
1764  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1765  */
1766 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1767                                     pgoff_t index, pgoff_t end, int whence)
1768 {
1769         struct page *page;
1770         struct pagevec pvec;
1771         pgoff_t indices[PAGEVEC_SIZE];
1772         bool done = false;
1773         int i;
1774
1775         pagevec_init(&pvec, 0);
1776         pvec.nr = 1;            /* start small: we may be there already */
1777         while (!done) {
1778                 pvec.nr = find_get_entries(mapping, index,
1779                                         pvec.nr, pvec.pages, indices);
1780                 if (!pvec.nr) {
1781                         if (whence == SEEK_DATA)
1782                                 index = end;
1783                         break;
1784                 }
1785                 for (i = 0; i < pvec.nr; i++, index++) {
1786                         if (index < indices[i]) {
1787                                 if (whence == SEEK_HOLE) {
1788                                         done = true;
1789                                         break;
1790                                 }
1791                                 index = indices[i];
1792                         }
1793                         page = pvec.pages[i];
1794                         if (page && !radix_tree_exceptional_entry(page)) {
1795                                 if (!PageUptodate(page))
1796                                         page = NULL;
1797                         }
1798                         if (index >= end ||
1799                             (page && whence == SEEK_DATA) ||
1800                             (!page && whence == SEEK_HOLE)) {
1801                                 done = true;
1802                                 break;
1803                         }
1804                 }
1805                 pagevec_remove_exceptionals(&pvec);
1806                 pagevec_release(&pvec);
1807                 pvec.nr = PAGEVEC_SIZE;
1808                 cond_resched();
1809         }
1810         return index;
1811 }
1812
1813 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1814 {
1815         struct address_space *mapping = file->f_mapping;
1816         struct inode *inode = mapping->host;
1817         pgoff_t start, end;
1818         loff_t new_offset;
1819
1820         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1821                 return generic_file_llseek_size(file, offset, whence,
1822                                         MAX_LFS_FILESIZE, i_size_read(inode));
1823         mutex_lock(&inode->i_mutex);
1824         /* We're holding i_mutex so we can access i_size directly */
1825
1826         if (offset < 0)
1827                 offset = -EINVAL;
1828         else if (offset >= inode->i_size)
1829                 offset = -ENXIO;
1830         else {
1831                 start = offset >> PAGE_CACHE_SHIFT;
1832                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1833                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1834                 new_offset <<= PAGE_CACHE_SHIFT;
1835                 if (new_offset > offset) {
1836                         if (new_offset < inode->i_size)
1837                                 offset = new_offset;
1838                         else if (whence == SEEK_DATA)
1839                                 offset = -ENXIO;
1840                         else
1841                                 offset = inode->i_size;
1842                 }
1843         }
1844
1845         if (offset >= 0)
1846                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1847         mutex_unlock(&inode->i_mutex);
1848         return offset;
1849 }
1850
1851 /*
1852  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1853  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1854  */
1855 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1856 #define LAST_SCAN               4       /* about 150ms max */
1857
1858 static void shmem_tag_pins(struct address_space *mapping)
1859 {
1860         struct radix_tree_iter iter;
1861         void **slot;
1862         pgoff_t start;
1863         struct page *page;
1864
1865         lru_add_drain();
1866         start = 0;
1867         rcu_read_lock();
1868
1869 restart:
1870         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1871                 page = radix_tree_deref_slot(slot);
1872                 if (!page || radix_tree_exception(page)) {
1873                         if (radix_tree_deref_retry(page))
1874                                 goto restart;
1875                 } else if (page_count(page) - page_mapcount(page) > 1) {
1876                         spin_lock_irq(&mapping->tree_lock);
1877                         radix_tree_tag_set(&mapping->page_tree, iter.index,
1878                                            SHMEM_TAG_PINNED);
1879                         spin_unlock_irq(&mapping->tree_lock);
1880                 }
1881
1882                 if (need_resched()) {
1883                         cond_resched_rcu();
1884                         start = iter.index + 1;
1885                         goto restart;
1886                 }
1887         }
1888         rcu_read_unlock();
1889 }
1890
1891 /*
1892  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1893  * via get_user_pages(), drivers might have some pending I/O without any active
1894  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1895  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1896  * them to be dropped.
1897  * The caller must guarantee that no new user will acquire writable references
1898  * to those pages to avoid races.
1899  */
1900 static int shmem_wait_for_pins(struct address_space *mapping)
1901 {
1902         struct radix_tree_iter iter;
1903         void **slot;
1904         pgoff_t start;
1905         struct page *page;
1906         int error, scan;
1907
1908         shmem_tag_pins(mapping);
1909
1910         error = 0;
1911         for (scan = 0; scan <= LAST_SCAN; scan++) {
1912                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1913                         break;
1914
1915                 if (!scan)
1916                         lru_add_drain_all();
1917                 else if (schedule_timeout_killable((HZ << scan) / 200))
1918                         scan = LAST_SCAN;
1919
1920                 start = 0;
1921                 rcu_read_lock();
1922 restart:
1923                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1924                                            start, SHMEM_TAG_PINNED) {
1925
1926                         page = radix_tree_deref_slot(slot);
1927                         if (radix_tree_exception(page)) {
1928                                 if (radix_tree_deref_retry(page))
1929                                         goto restart;
1930
1931                                 page = NULL;
1932                         }
1933
1934                         if (page &&
1935                             page_count(page) - page_mapcount(page) != 1) {
1936                                 if (scan < LAST_SCAN)
1937                                         goto continue_resched;
1938
1939                                 /*
1940                                  * On the last scan, we clean up all those tags
1941                                  * we inserted; but make a note that we still
1942                                  * found pages pinned.
1943                                  */
1944                                 error = -EBUSY;
1945                         }
1946
1947                         spin_lock_irq(&mapping->tree_lock);
1948                         radix_tree_tag_clear(&mapping->page_tree,
1949                                              iter.index, SHMEM_TAG_PINNED);
1950                         spin_unlock_irq(&mapping->tree_lock);
1951 continue_resched:
1952                         if (need_resched()) {
1953                                 cond_resched_rcu();
1954                                 start = iter.index + 1;
1955                                 goto restart;
1956                         }
1957                 }
1958                 rcu_read_unlock();
1959         }
1960
1961         return error;
1962 }
1963
1964 #define F_ALL_SEALS (F_SEAL_SEAL | \
1965                      F_SEAL_SHRINK | \
1966                      F_SEAL_GROW | \
1967                      F_SEAL_WRITE)
1968
1969 int shmem_add_seals(struct file *file, unsigned int seals)
1970 {
1971         struct inode *inode = file_inode(file);
1972         struct shmem_inode_info *info = SHMEM_I(inode);
1973         int error;
1974
1975         /*
1976          * SEALING
1977          * Sealing allows multiple parties to share a shmem-file but restrict
1978          * access to a specific subset of file operations. Seals can only be
1979          * added, but never removed. This way, mutually untrusted parties can
1980          * share common memory regions with a well-defined policy. A malicious
1981          * peer can thus never perform unwanted operations on a shared object.
1982          *
1983          * Seals are only supported on special shmem-files and always affect
1984          * the whole underlying inode. Once a seal is set, it may prevent some
1985          * kinds of access to the file. Currently, the following seals are
1986          * defined:
1987          *   SEAL_SEAL: Prevent further seals from being set on this file
1988          *   SEAL_SHRINK: Prevent the file from shrinking
1989          *   SEAL_GROW: Prevent the file from growing
1990          *   SEAL_WRITE: Prevent write access to the file
1991          *
1992          * As we don't require any trust relationship between two parties, we
1993          * must prevent seals from being removed. Therefore, sealing a file
1994          * only adds a given set of seals to the file, it never touches
1995          * existing seals. Furthermore, the "setting seals"-operation can be
1996          * sealed itself, which basically prevents any further seal from being
1997          * added.
1998          *
1999          * Semantics of sealing are only defined on volatile files. Only
2000          * anonymous shmem files support sealing. More importantly, seals are
2001          * never written to disk. Therefore, there's no plan to support it on
2002          * other file types.
2003          */
2004
2005         if (file->f_op != &shmem_file_operations)
2006                 return -EINVAL;
2007         if (!(file->f_mode & FMODE_WRITE))
2008                 return -EPERM;
2009         if (seals & ~(unsigned int)F_ALL_SEALS)
2010                 return -EINVAL;
2011
2012         mutex_lock(&inode->i_mutex);
2013
2014         if (info->seals & F_SEAL_SEAL) {
2015                 error = -EPERM;
2016                 goto unlock;
2017         }
2018
2019         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2020                 error = mapping_deny_writable(file->f_mapping);
2021                 if (error)
2022                         goto unlock;
2023
2024                 error = shmem_wait_for_pins(file->f_mapping);
2025                 if (error) {
2026                         mapping_allow_writable(file->f_mapping);
2027                         goto unlock;
2028                 }
2029         }
2030
2031         info->seals |= seals;
2032         error = 0;
2033
2034 unlock:
2035         mutex_unlock(&inode->i_mutex);
2036         return error;
2037 }
2038 EXPORT_SYMBOL_GPL(shmem_add_seals);
2039
2040 int shmem_get_seals(struct file *file)
2041 {
2042         if (file->f_op != &shmem_file_operations)
2043                 return -EINVAL;
2044
2045         return SHMEM_I(file_inode(file))->seals;
2046 }
2047 EXPORT_SYMBOL_GPL(shmem_get_seals);
2048
2049 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2050 {
2051         long error;
2052
2053         switch (cmd) {
2054         case F_ADD_SEALS:
2055                 /* disallow upper 32bit */
2056                 if (arg > UINT_MAX)
2057                         return -EINVAL;
2058
2059                 error = shmem_add_seals(file, arg);
2060                 break;
2061         case F_GET_SEALS:
2062                 error = shmem_get_seals(file);
2063                 break;
2064         default:
2065                 error = -EINVAL;
2066                 break;
2067         }
2068
2069         return error;
2070 }
2071
2072 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2073                                                          loff_t len)
2074 {
2075         struct inode *inode = file_inode(file);
2076         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2077         struct shmem_inode_info *info = SHMEM_I(inode);
2078         struct shmem_falloc shmem_falloc;
2079         pgoff_t start, index, end;
2080         int error;
2081
2082         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2083                 return -EOPNOTSUPP;
2084
2085         mutex_lock(&inode->i_mutex);
2086
2087         if (mode & FALLOC_FL_PUNCH_HOLE) {
2088                 struct address_space *mapping = file->f_mapping;
2089                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2090                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2091                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2092
2093                 /* protected by i_mutex */
2094                 if (info->seals & F_SEAL_WRITE) {
2095                         error = -EPERM;
2096                         goto out;
2097                 }
2098
2099                 shmem_falloc.waitq = &shmem_falloc_waitq;
2100                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2101                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2102                 spin_lock(&inode->i_lock);
2103                 inode->i_private = &shmem_falloc;
2104                 spin_unlock(&inode->i_lock);
2105
2106                 if ((u64)unmap_end > (u64)unmap_start)
2107                         unmap_mapping_range(mapping, unmap_start,
2108                                             1 + unmap_end - unmap_start, 0);
2109                 shmem_truncate_range(inode, offset, offset + len - 1);
2110                 /* No need to unmap again: hole-punching leaves COWed pages */
2111
2112                 spin_lock(&inode->i_lock);
2113                 inode->i_private = NULL;
2114                 wake_up_all(&shmem_falloc_waitq);
2115                 spin_unlock(&inode->i_lock);
2116                 error = 0;
2117                 goto out;
2118         }
2119
2120         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2121         error = inode_newsize_ok(inode, offset + len);
2122         if (error)
2123                 goto out;
2124
2125         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2126                 error = -EPERM;
2127                 goto out;
2128         }
2129
2130         start = offset >> PAGE_CACHE_SHIFT;
2131         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2132         /* Try to avoid a swapstorm if len is impossible to satisfy */
2133         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2134                 error = -ENOSPC;
2135                 goto out;
2136         }
2137
2138         shmem_falloc.waitq = NULL;
2139         shmem_falloc.start = start;
2140         shmem_falloc.next  = start;
2141         shmem_falloc.nr_falloced = 0;
2142         shmem_falloc.nr_unswapped = 0;
2143         spin_lock(&inode->i_lock);
2144         inode->i_private = &shmem_falloc;
2145         spin_unlock(&inode->i_lock);
2146
2147         for (index = start; index < end; index++) {
2148                 struct page *page;
2149
2150                 /*
2151                  * Good, the fallocate(2) manpage permits EINTR: we may have
2152                  * been interrupted because we are using up too much memory.
2153                  */
2154                 if (signal_pending(current))
2155                         error = -EINTR;
2156                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2157                         error = -ENOMEM;
2158                 else
2159                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2160                                                                         NULL);
2161                 if (error) {
2162                         /* Remove the !PageUptodate pages we added */
2163                         shmem_undo_range(inode,
2164                                 (loff_t)start << PAGE_CACHE_SHIFT,
2165                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
2166                         goto undone;
2167                 }
2168
2169                 /*
2170                  * Inform shmem_writepage() how far we have reached.
2171                  * No need for lock or barrier: we have the page lock.
2172                  */
2173                 shmem_falloc.next++;
2174                 if (!PageUptodate(page))
2175                         shmem_falloc.nr_falloced++;
2176
2177                 /*
2178                  * If !PageUptodate, leave it that way so that freeable pages
2179                  * can be recognized if we need to rollback on error later.
2180                  * But set_page_dirty so that memory pressure will swap rather
2181                  * than free the pages we are allocating (and SGP_CACHE pages
2182                  * might still be clean: we now need to mark those dirty too).
2183                  */
2184                 set_page_dirty(page);
2185                 unlock_page(page);
2186                 page_cache_release(page);
2187                 cond_resched();
2188         }
2189
2190         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2191                 i_size_write(inode, offset + len);
2192         inode->i_ctime = CURRENT_TIME;
2193 undone:
2194         spin_lock(&inode->i_lock);
2195         inode->i_private = NULL;
2196         spin_unlock(&inode->i_lock);
2197 out:
2198         mutex_unlock(&inode->i_mutex);
2199         return error;
2200 }
2201
2202 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2203 {
2204         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2205
2206         buf->f_type = TMPFS_MAGIC;
2207         buf->f_bsize = PAGE_CACHE_SIZE;
2208         buf->f_namelen = NAME_MAX;
2209         if (sbinfo->max_blocks) {
2210                 buf->f_blocks = sbinfo->max_blocks;
2211                 buf->f_bavail =
2212                 buf->f_bfree  = sbinfo->max_blocks -
2213                                 percpu_counter_sum(&sbinfo->used_blocks);
2214         }
2215         if (sbinfo->max_inodes) {
2216                 buf->f_files = sbinfo->max_inodes;
2217                 buf->f_ffree = sbinfo->free_inodes;
2218         }
2219         /* else leave those fields 0 like simple_statfs */
2220         return 0;
2221 }
2222
2223 /*
2224  * File creation. Allocate an inode, and we're done..
2225  */
2226 static int
2227 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2228 {
2229         struct inode *inode;
2230         int error = -ENOSPC;
2231
2232         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2233         if (inode) {
2234                 error = simple_acl_create(dir, inode);
2235                 if (error)
2236                         goto out_iput;
2237                 error = security_inode_init_security(inode, dir,
2238                                                      &dentry->d_name,
2239                                                      shmem_initxattrs, NULL);
2240                 if (error && error != -EOPNOTSUPP)
2241                         goto out_iput;
2242
2243                 error = 0;
2244                 dir->i_size += BOGO_DIRENT_SIZE;
2245                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2246                 d_instantiate(dentry, inode);
2247                 dget(dentry); /* Extra count - pin the dentry in core */
2248         }
2249         return error;
2250 out_iput:
2251         iput(inode);
2252         return error;
2253 }
2254
2255 static int
2256 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2257 {
2258         struct inode *inode;
2259         int error = -ENOSPC;
2260
2261         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2262         if (inode) {
2263                 error = security_inode_init_security(inode, dir,
2264                                                      NULL,
2265                                                      shmem_initxattrs, NULL);
2266                 if (error && error != -EOPNOTSUPP)
2267                         goto out_iput;
2268                 error = simple_acl_create(dir, inode);
2269                 if (error)
2270                         goto out_iput;
2271                 d_tmpfile(dentry, inode);
2272         }
2273         return error;
2274 out_iput:
2275         iput(inode);
2276         return error;
2277 }
2278
2279 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2280 {
2281         int error;
2282
2283         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2284                 return error;
2285         inc_nlink(dir);
2286         return 0;
2287 }
2288
2289 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2290                 bool excl)
2291 {
2292         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2293 }
2294
2295 /*
2296  * Link a file..
2297  */
2298 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2299 {
2300         struct inode *inode = d_inode(old_dentry);
2301         int ret;
2302
2303         /*
2304          * No ordinary (disk based) filesystem counts links as inodes;
2305          * but each new link needs a new dentry, pinning lowmem, and
2306          * tmpfs dentries cannot be pruned until they are unlinked.
2307          */
2308         ret = shmem_reserve_inode(inode->i_sb);
2309         if (ret)
2310                 goto out;
2311
2312         dir->i_size += BOGO_DIRENT_SIZE;
2313         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2314         inc_nlink(inode);
2315         ihold(inode);   /* New dentry reference */
2316         dget(dentry);           /* Extra pinning count for the created dentry */
2317         d_instantiate(dentry, inode);
2318 out:
2319         return ret;
2320 }
2321
2322 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2323 {
2324         struct inode *inode = d_inode(dentry);
2325
2326         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2327                 shmem_free_inode(inode->i_sb);
2328
2329         dir->i_size -= BOGO_DIRENT_SIZE;
2330         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2331         drop_nlink(inode);
2332         dput(dentry);   /* Undo the count from "create" - this does all the work */
2333         return 0;
2334 }
2335
2336 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2337 {
2338         if (!simple_empty(dentry))
2339                 return -ENOTEMPTY;
2340
2341         drop_nlink(d_inode(dentry));
2342         drop_nlink(dir);
2343         return shmem_unlink(dir, dentry);
2344 }
2345
2346 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2347 {
2348         bool old_is_dir = d_is_dir(old_dentry);
2349         bool new_is_dir = d_is_dir(new_dentry);
2350
2351         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2352                 if (old_is_dir) {
2353                         drop_nlink(old_dir);
2354                         inc_nlink(new_dir);
2355                 } else {
2356                         drop_nlink(new_dir);
2357                         inc_nlink(old_dir);
2358                 }
2359         }
2360         old_dir->i_ctime = old_dir->i_mtime =
2361         new_dir->i_ctime = new_dir->i_mtime =
2362         d_inode(old_dentry)->i_ctime =
2363         d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2364
2365         return 0;
2366 }
2367
2368 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2369 {
2370         struct dentry *whiteout;
2371         int error;
2372
2373         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2374         if (!whiteout)
2375                 return -ENOMEM;
2376
2377         error = shmem_mknod(old_dir, whiteout,
2378                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2379         dput(whiteout);
2380         if (error)
2381                 return error;
2382
2383         /*
2384          * Cheat and hash the whiteout while the old dentry is still in
2385          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2386          *
2387          * d_lookup() will consistently find one of them at this point,
2388          * not sure which one, but that isn't even important.
2389          */
2390         d_rehash(whiteout);
2391         return 0;
2392 }
2393
2394 /*
2395  * The VFS layer already does all the dentry stuff for rename,
2396  * we just have to decrement the usage count for the target if
2397  * it exists so that the VFS layer correctly free's it when it
2398  * gets overwritten.
2399  */
2400 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2401 {
2402         struct inode *inode = d_inode(old_dentry);
2403         int they_are_dirs = S_ISDIR(inode->i_mode);
2404
2405         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2406                 return -EINVAL;
2407
2408         if (flags & RENAME_EXCHANGE)
2409                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2410
2411         if (!simple_empty(new_dentry))
2412                 return -ENOTEMPTY;
2413
2414         if (flags & RENAME_WHITEOUT) {
2415                 int error;
2416
2417                 error = shmem_whiteout(old_dir, old_dentry);
2418                 if (error)
2419                         return error;
2420         }
2421
2422         if (d_really_is_positive(new_dentry)) {
2423                 (void) shmem_unlink(new_dir, new_dentry);
2424                 if (they_are_dirs) {
2425                         drop_nlink(d_inode(new_dentry));
2426                         drop_nlink(old_dir);
2427                 }
2428         } else if (they_are_dirs) {
2429                 drop_nlink(old_dir);
2430                 inc_nlink(new_dir);
2431         }
2432
2433         old_dir->i_size -= BOGO_DIRENT_SIZE;
2434         new_dir->i_size += BOGO_DIRENT_SIZE;
2435         old_dir->i_ctime = old_dir->i_mtime =
2436         new_dir->i_ctime = new_dir->i_mtime =
2437         inode->i_ctime = CURRENT_TIME;
2438         return 0;
2439 }
2440
2441 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2442 {
2443         int error;
2444         int len;
2445         struct inode *inode;
2446         struct page *page;
2447         char *kaddr;
2448         struct shmem_inode_info *info;
2449
2450         len = strlen(symname) + 1;
2451         if (len > PAGE_CACHE_SIZE)
2452                 return -ENAMETOOLONG;
2453
2454         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2455         if (!inode)
2456                 return -ENOSPC;
2457
2458         error = security_inode_init_security(inode, dir, &dentry->d_name,
2459                                              shmem_initxattrs, NULL);
2460         if (error) {
2461                 if (error != -EOPNOTSUPP) {
2462                         iput(inode);
2463                         return error;
2464                 }
2465                 error = 0;
2466         }
2467
2468         info = SHMEM_I(inode);
2469         inode->i_size = len-1;
2470         if (len <= SHORT_SYMLINK_LEN) {
2471                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2472                 if (!info->symlink) {
2473                         iput(inode);
2474                         return -ENOMEM;
2475                 }
2476                 inode->i_op = &shmem_short_symlink_operations;
2477                 inode->i_link = info->symlink;
2478         } else {
2479                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2480                 if (error) {
2481                         iput(inode);
2482                         return error;
2483                 }
2484                 inode->i_mapping->a_ops = &shmem_aops;
2485                 inode->i_op = &shmem_symlink_inode_operations;
2486                 kaddr = kmap_atomic(page);
2487                 memcpy(kaddr, symname, len);
2488                 kunmap_atomic(kaddr);
2489                 SetPageUptodate(page);
2490                 set_page_dirty(page);
2491                 unlock_page(page);
2492                 page_cache_release(page);
2493         }
2494         dir->i_size += BOGO_DIRENT_SIZE;
2495         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2496         d_instantiate(dentry, inode);
2497         dget(dentry);
2498         return 0;
2499 }
2500
2501 static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2502 {
2503         struct page *page = NULL;
2504         int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2505         if (error)
2506                 return ERR_PTR(error);
2507         unlock_page(page);
2508         *cookie = page;
2509         return kmap(page);
2510 }
2511
2512 static void shmem_put_link(struct inode *unused, void *cookie)
2513 {
2514         struct page *page = cookie;
2515         kunmap(page);
2516         mark_page_accessed(page);
2517         page_cache_release(page);
2518 }
2519
2520 #ifdef CONFIG_TMPFS_XATTR
2521 /*
2522  * Superblocks without xattr inode operations may get some security.* xattr
2523  * support from the LSM "for free". As soon as we have any other xattrs
2524  * like ACLs, we also need to implement the security.* handlers at
2525  * filesystem level, though.
2526  */
2527
2528 /*
2529  * Callback for security_inode_init_security() for acquiring xattrs.
2530  */
2531 static int shmem_initxattrs(struct inode *inode,
2532                             const struct xattr *xattr_array,
2533                             void *fs_info)
2534 {
2535         struct shmem_inode_info *info = SHMEM_I(inode);
2536         const struct xattr *xattr;
2537         struct simple_xattr *new_xattr;
2538         size_t len;
2539
2540         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2541                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2542                 if (!new_xattr)
2543                         return -ENOMEM;
2544
2545                 len = strlen(xattr->name) + 1;
2546                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2547                                           GFP_KERNEL);
2548                 if (!new_xattr->name) {
2549                         kfree(new_xattr);
2550                         return -ENOMEM;
2551                 }
2552
2553                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2554                        XATTR_SECURITY_PREFIX_LEN);
2555                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2556                        xattr->name, len);
2557
2558                 simple_xattr_list_add(&info->xattrs, new_xattr);
2559         }
2560
2561         return 0;
2562 }
2563
2564 static const struct xattr_handler *shmem_xattr_handlers[] = {
2565 #ifdef CONFIG_TMPFS_POSIX_ACL
2566         &posix_acl_access_xattr_handler,
2567         &posix_acl_default_xattr_handler,
2568 #endif
2569         NULL
2570 };
2571
2572 static int shmem_xattr_validate(const char *name)
2573 {
2574         struct { const char *prefix; size_t len; } arr[] = {
2575                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2576                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2577         };
2578         int i;
2579
2580         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2581                 size_t preflen = arr[i].len;
2582                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2583                         if (!name[preflen])
2584                                 return -EINVAL;
2585                         return 0;
2586                 }
2587         }
2588         return -EOPNOTSUPP;
2589 }
2590
2591 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2592                               void *buffer, size_t size)
2593 {
2594         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2595         int err;
2596
2597         /*
2598          * If this is a request for a synthetic attribute in the system.*
2599          * namespace use the generic infrastructure to resolve a handler
2600          * for it via sb->s_xattr.
2601          */
2602         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2603                 return generic_getxattr(dentry, name, buffer, size);
2604
2605         err = shmem_xattr_validate(name);
2606         if (err)
2607                 return err;
2608
2609         return simple_xattr_get(&info->xattrs, name, buffer, size);
2610 }
2611
2612 static int shmem_setxattr(struct dentry *dentry, const char *name,
2613                           const void *value, size_t size, int flags)
2614 {
2615         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2616         int err;
2617
2618         /*
2619          * If this is a request for a synthetic attribute in the system.*
2620          * namespace use the generic infrastructure to resolve a handler
2621          * for it via sb->s_xattr.
2622          */
2623         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2624                 return generic_setxattr(dentry, name, value, size, flags);
2625
2626         err = shmem_xattr_validate(name);
2627         if (err)
2628                 return err;
2629
2630         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2631 }
2632
2633 static int shmem_removexattr(struct dentry *dentry, const char *name)
2634 {
2635         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2636         int err;
2637
2638         /*
2639          * If this is a request for a synthetic attribute in the system.*
2640          * namespace use the generic infrastructure to resolve a handler
2641          * for it via sb->s_xattr.
2642          */
2643         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2644                 return generic_removexattr(dentry, name);
2645
2646         err = shmem_xattr_validate(name);
2647         if (err)
2648                 return err;
2649
2650         return simple_xattr_remove(&info->xattrs, name);
2651 }
2652
2653 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2654 {
2655         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2656         return simple_xattr_list(&info->xattrs, buffer, size);
2657 }
2658 #endif /* CONFIG_TMPFS_XATTR */
2659
2660 static const struct inode_operations shmem_short_symlink_operations = {
2661         .readlink       = generic_readlink,
2662         .follow_link    = simple_follow_link,
2663 #ifdef CONFIG_TMPFS_XATTR
2664         .setxattr       = shmem_setxattr,
2665         .getxattr       = shmem_getxattr,
2666         .listxattr      = shmem_listxattr,
2667         .removexattr    = shmem_removexattr,
2668 #endif
2669 };
2670
2671 static const struct inode_operations shmem_symlink_inode_operations = {
2672         .readlink       = generic_readlink,
2673         .follow_link    = shmem_follow_link,
2674         .put_link       = shmem_put_link,
2675 #ifdef CONFIG_TMPFS_XATTR
2676         .setxattr       = shmem_setxattr,
2677         .getxattr       = shmem_getxattr,
2678         .listxattr      = shmem_listxattr,
2679         .removexattr    = shmem_removexattr,
2680 #endif
2681 };
2682
2683 static struct dentry *shmem_get_parent(struct dentry *child)
2684 {
2685         return ERR_PTR(-ESTALE);
2686 }
2687
2688 static int shmem_match(struct inode *ino, void *vfh)
2689 {
2690         __u32 *fh = vfh;
2691         __u64 inum = fh[2];
2692         inum = (inum << 32) | fh[1];
2693         return ino->i_ino == inum && fh[0] == ino->i_generation;
2694 }
2695
2696 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2697                 struct fid *fid, int fh_len, int fh_type)
2698 {
2699         struct inode *inode;
2700         struct dentry *dentry = NULL;
2701         u64 inum;
2702
2703         if (fh_len < 3)
2704                 return NULL;
2705
2706         inum = fid->raw[2];
2707         inum = (inum << 32) | fid->raw[1];
2708
2709         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2710                         shmem_match, fid->raw);
2711         if (inode) {
2712                 dentry = d_find_alias(inode);
2713                 iput(inode);
2714         }
2715
2716         return dentry;
2717 }
2718
2719 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2720                                 struct inode *parent)
2721 {
2722         if (*len < 3) {
2723                 *len = 3;
2724                 return FILEID_INVALID;
2725         }
2726
2727         if (inode_unhashed(inode)) {
2728                 /* Unfortunately insert_inode_hash is not idempotent,
2729                  * so as we hash inodes here rather than at creation
2730                  * time, we need a lock to ensure we only try
2731                  * to do it once
2732                  */
2733                 static DEFINE_SPINLOCK(lock);
2734                 spin_lock(&lock);
2735                 if (inode_unhashed(inode))
2736                         __insert_inode_hash(inode,
2737                                             inode->i_ino + inode->i_generation);
2738                 spin_unlock(&lock);
2739         }
2740
2741         fh[0] = inode->i_generation;
2742         fh[1] = inode->i_ino;
2743         fh[2] = ((__u64)inode->i_ino) >> 32;
2744
2745         *len = 3;
2746         return 1;
2747 }
2748
2749 static const struct export_operations shmem_export_ops = {
2750         .get_parent     = shmem_get_parent,
2751         .encode_fh      = shmem_encode_fh,
2752         .fh_to_dentry   = shmem_fh_to_dentry,
2753 };
2754
2755 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2756                                bool remount)
2757 {
2758         char *this_char, *value, *rest;
2759         struct mempolicy *mpol = NULL;
2760         uid_t uid;
2761         gid_t gid;
2762
2763         while (options != NULL) {
2764                 this_char = options;
2765                 for (;;) {
2766                         /*
2767                          * NUL-terminate this option: unfortunately,
2768                          * mount options form a comma-separated list,
2769                          * but mpol's nodelist may also contain commas.
2770                          */
2771                         options = strchr(options, ',');
2772                         if (options == NULL)
2773                                 break;
2774                         options++;
2775                         if (!isdigit(*options)) {
2776                                 options[-1] = '\0';
2777                                 break;
2778                         }
2779                 }
2780                 if (!*this_char)
2781                         continue;
2782                 if ((value = strchr(this_char,'=')) != NULL) {
2783                         *value++ = 0;
2784                 } else {
2785                         printk(KERN_ERR
2786                             "tmpfs: No value for mount option '%s'\n",
2787                             this_char);
2788                         goto error;
2789                 }
2790
2791                 if (!strcmp(this_char,"size")) {
2792                         unsigned long long size;
2793                         size = memparse(value,&rest);
2794                         if (*rest == '%') {
2795                                 size <<= PAGE_SHIFT;
2796                                 size *= totalram_pages;
2797                                 do_div(size, 100);
2798                                 rest++;
2799                         }
2800                         if (*rest)
2801                                 goto bad_val;
2802                         sbinfo->max_blocks =
2803                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2804                 } else if (!strcmp(this_char,"nr_blocks")) {
2805                         sbinfo->max_blocks = memparse(value, &rest);
2806                         if (*rest)
2807                                 goto bad_val;
2808                 } else if (!strcmp(this_char,"nr_inodes")) {
2809                         sbinfo->max_inodes = memparse(value, &rest);
2810                         if (*rest)
2811                                 goto bad_val;
2812                 } else if (!strcmp(this_char,"mode")) {
2813                         if (remount)
2814                                 continue;
2815                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2816                         if (*rest)
2817                                 goto bad_val;
2818                 } else if (!strcmp(this_char,"uid")) {
2819                         if (remount)
2820                                 continue;
2821                         uid = simple_strtoul(value, &rest, 0);
2822                         if (*rest)
2823                                 goto bad_val;
2824                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2825                         if (!uid_valid(sbinfo->uid))
2826                                 goto bad_val;
2827                 } else if (!strcmp(this_char,"gid")) {
2828                         if (remount)
2829                                 continue;
2830                         gid = simple_strtoul(value, &rest, 0);
2831                         if (*rest)
2832                                 goto bad_val;
2833                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2834                         if (!gid_valid(sbinfo->gid))
2835                                 goto bad_val;
2836                 } else if (!strcmp(this_char,"mpol")) {
2837                         mpol_put(mpol);
2838                         mpol = NULL;
2839                         if (mpol_parse_str(value, &mpol))
2840                                 goto bad_val;
2841                 } else {
2842                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2843                                this_char);
2844                         goto error;
2845                 }
2846         }
2847         sbinfo->mpol = mpol;
2848         return 0;
2849
2850 bad_val:
2851         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2852                value, this_char);
2853 error:
2854         mpol_put(mpol);
2855         return 1;
2856
2857 }
2858
2859 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2860 {
2861         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2862         struct shmem_sb_info config = *sbinfo;
2863         unsigned long inodes;
2864         int error = -EINVAL;
2865
2866         config.mpol = NULL;
2867         if (shmem_parse_options(data, &config, true))
2868                 return error;
2869
2870         spin_lock(&sbinfo->stat_lock);
2871         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2872         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2873                 goto out;
2874         if (config.max_inodes < inodes)
2875                 goto out;
2876         /*
2877          * Those tests disallow limited->unlimited while any are in use;
2878          * but we must separately disallow unlimited->limited, because
2879          * in that case we have no record of how much is already in use.
2880          */
2881         if (config.max_blocks && !sbinfo->max_blocks)
2882                 goto out;
2883         if (config.max_inodes && !sbinfo->max_inodes)
2884                 goto out;
2885
2886         error = 0;
2887         sbinfo->max_blocks  = config.max_blocks;
2888         sbinfo->max_inodes  = config.max_inodes;
2889         sbinfo->free_inodes = config.max_inodes - inodes;
2890
2891         /*
2892          * Preserve previous mempolicy unless mpol remount option was specified.
2893          */
2894         if (config.mpol) {
2895                 mpol_put(sbinfo->mpol);
2896                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2897         }
2898 out:
2899         spin_unlock(&sbinfo->stat_lock);
2900         return error;
2901 }
2902
2903 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2904 {
2905         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2906
2907         if (sbinfo->max_blocks != shmem_default_max_blocks())
2908                 seq_printf(seq, ",size=%luk",
2909                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2910         if (sbinfo->max_inodes != shmem_default_max_inodes())
2911                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2912         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2913                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2914         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2915                 seq_printf(seq, ",uid=%u",
2916                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2917         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2918                 seq_printf(seq, ",gid=%u",
2919                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2920         shmem_show_mpol(seq, sbinfo->mpol);
2921         return 0;
2922 }
2923
2924 #define MFD_NAME_PREFIX "memfd:"
2925 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2926 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2927
2928 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2929
2930 SYSCALL_DEFINE2(memfd_create,
2931                 const char __user *, uname,
2932                 unsigned int, flags)
2933 {
2934         struct shmem_inode_info *info;
2935         struct file *file;
2936         int fd, error;
2937         char *name;
2938         long len;
2939
2940         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2941                 return -EINVAL;
2942
2943         /* length includes terminating zero */
2944         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2945         if (len <= 0)
2946                 return -EFAULT;
2947         if (len > MFD_NAME_MAX_LEN + 1)
2948                 return -EINVAL;
2949
2950         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2951         if (!name)
2952                 return -ENOMEM;
2953
2954         strcpy(name, MFD_NAME_PREFIX);
2955         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2956                 error = -EFAULT;
2957                 goto err_name;
2958         }
2959
2960         /* terminating-zero may have changed after strnlen_user() returned */
2961         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2962                 error = -EFAULT;
2963                 goto err_name;
2964         }
2965
2966         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2967         if (fd < 0) {
2968                 error = fd;
2969                 goto err_name;
2970         }
2971
2972         file = shmem_file_setup(name, 0, VM_NORESERVE);
2973         if (IS_ERR(file)) {
2974                 error = PTR_ERR(file);
2975                 goto err_fd;
2976         }
2977         info = SHMEM_I(file_inode(file));
2978         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2979         file->f_flags |= O_RDWR | O_LARGEFILE;
2980         if (flags & MFD_ALLOW_SEALING)
2981                 info->seals &= ~F_SEAL_SEAL;
2982
2983         fd_install(fd, file);
2984         kfree(name);
2985         return fd;
2986
2987 err_fd:
2988         put_unused_fd(fd);
2989 err_name:
2990         kfree(name);
2991         return error;
2992 }
2993
2994 #endif /* CONFIG_TMPFS */
2995
2996 static void shmem_put_super(struct super_block *sb)
2997 {
2998         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2999
3000         percpu_counter_destroy(&sbinfo->used_blocks);
3001         mpol_put(sbinfo->mpol);
3002         kfree(sbinfo);
3003         sb->s_fs_info = NULL;
3004 }
3005
3006 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3007 {
3008         struct inode *inode;
3009         struct shmem_sb_info *sbinfo;
3010         int err = -ENOMEM;
3011
3012         /* Round up to L1_CACHE_BYTES to resist false sharing */
3013         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3014                                 L1_CACHE_BYTES), GFP_KERNEL);
3015         if (!sbinfo)
3016                 return -ENOMEM;
3017
3018         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3019         sbinfo->uid = current_fsuid();
3020         sbinfo->gid = current_fsgid();
3021         sb->s_fs_info = sbinfo;
3022
3023 #ifdef CONFIG_TMPFS
3024         /*
3025          * Per default we only allow half of the physical ram per
3026          * tmpfs instance, limiting inodes to one per page of lowmem;
3027          * but the internal instance is left unlimited.
3028          */
3029         if (!(sb->s_flags & MS_KERNMOUNT)) {
3030                 sbinfo->max_blocks = shmem_default_max_blocks();
3031                 sbinfo->max_inodes = shmem_default_max_inodes();
3032                 if (shmem_parse_options(data, sbinfo, false)) {
3033                         err = -EINVAL;
3034                         goto failed;
3035                 }
3036         } else {
3037                 sb->s_flags |= MS_NOUSER;
3038         }
3039         sb->s_export_op = &shmem_export_ops;
3040         sb->s_flags |= MS_NOSEC;
3041 #else
3042         sb->s_flags |= MS_NOUSER;
3043 #endif
3044
3045         spin_lock_init(&sbinfo->stat_lock);
3046         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3047                 goto failed;
3048         sbinfo->free_inodes = sbinfo->max_inodes;
3049
3050         sb->s_maxbytes = MAX_LFS_FILESIZE;
3051         sb->s_blocksize = PAGE_CACHE_SIZE;
3052         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3053         sb->s_magic = TMPFS_MAGIC;
3054         sb->s_op = &shmem_ops;
3055         sb->s_time_gran = 1;
3056 #ifdef CONFIG_TMPFS_XATTR
3057         sb->s_xattr = shmem_xattr_handlers;
3058 #endif
3059 #ifdef CONFIG_TMPFS_POSIX_ACL
3060         sb->s_flags |= MS_POSIXACL;
3061 #endif
3062
3063         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3064         if (!inode)
3065                 goto failed;
3066         inode->i_uid = sbinfo->uid;
3067         inode->i_gid = sbinfo->gid;
3068         sb->s_root = d_make_root(inode);
3069         if (!sb->s_root)
3070                 goto failed;
3071         return 0;
3072
3073 failed:
3074         shmem_put_super(sb);
3075         return err;
3076 }
3077
3078 static struct kmem_cache *shmem_inode_cachep;
3079
3080 static struct inode *shmem_alloc_inode(struct super_block *sb)
3081 {
3082         struct shmem_inode_info *info;
3083         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3084         if (!info)
3085                 return NULL;
3086         return &info->vfs_inode;
3087 }
3088
3089 static void shmem_destroy_callback(struct rcu_head *head)
3090 {
3091         struct inode *inode = container_of(head, struct inode, i_rcu);
3092         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3093 }
3094
3095 static void shmem_destroy_inode(struct inode *inode)
3096 {
3097         if (S_ISREG(inode->i_mode))
3098                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3099         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3100 }
3101
3102 static void shmem_init_inode(void *foo)
3103 {
3104         struct shmem_inode_info *info = foo;
3105         inode_init_once(&info->vfs_inode);
3106 }
3107
3108 static int shmem_init_inodecache(void)
3109 {
3110         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3111                                 sizeof(struct shmem_inode_info),
3112                                 0, SLAB_PANIC, shmem_init_inode);
3113         return 0;
3114 }
3115
3116 static void shmem_destroy_inodecache(void)
3117 {
3118         kmem_cache_destroy(shmem_inode_cachep);
3119 }
3120
3121 static const struct address_space_operations shmem_aops = {
3122         .writepage      = shmem_writepage,
3123         .set_page_dirty = __set_page_dirty_no_writeback,
3124 #ifdef CONFIG_TMPFS
3125         .write_begin    = shmem_write_begin,
3126         .write_end      = shmem_write_end,
3127 #endif
3128 #ifdef CONFIG_MIGRATION
3129         .migratepage    = migrate_page,
3130 #endif
3131         .error_remove_page = generic_error_remove_page,
3132 };
3133
3134 static const struct file_operations shmem_file_operations = {
3135         .mmap           = shmem_mmap,
3136 #ifdef CONFIG_TMPFS
3137         .llseek         = shmem_file_llseek,
3138         .read_iter      = shmem_file_read_iter,
3139         .write_iter     = generic_file_write_iter,
3140         .fsync          = noop_fsync,
3141         .splice_read    = shmem_file_splice_read,
3142         .splice_write   = iter_file_splice_write,
3143         .fallocate      = shmem_fallocate,
3144 #endif
3145 };
3146
3147 static const struct inode_operations shmem_inode_operations = {
3148         .getattr        = shmem_getattr,
3149         .setattr        = shmem_setattr,
3150 #ifdef CONFIG_TMPFS_XATTR
3151         .setxattr       = shmem_setxattr,
3152         .getxattr       = shmem_getxattr,
3153         .listxattr      = shmem_listxattr,
3154         .removexattr    = shmem_removexattr,
3155         .set_acl        = simple_set_acl,
3156 #endif
3157 };
3158
3159 static const struct inode_operations shmem_dir_inode_operations = {
3160 #ifdef CONFIG_TMPFS
3161         .create         = shmem_create,
3162         .lookup         = simple_lookup,
3163         .link           = shmem_link,
3164         .unlink         = shmem_unlink,
3165         .symlink        = shmem_symlink,
3166         .mkdir          = shmem_mkdir,
3167         .rmdir          = shmem_rmdir,
3168         .mknod          = shmem_mknod,
3169         .rename2        = shmem_rename2,
3170         .tmpfile        = shmem_tmpfile,
3171 #endif
3172 #ifdef CONFIG_TMPFS_XATTR
3173         .setxattr       = shmem_setxattr,
3174         .getxattr       = shmem_getxattr,
3175         .listxattr      = shmem_listxattr,
3176         .removexattr    = shmem_removexattr,
3177 #endif
3178 #ifdef CONFIG_TMPFS_POSIX_ACL
3179         .setattr        = shmem_setattr,
3180         .set_acl        = simple_set_acl,
3181 #endif
3182 };
3183
3184 static const struct inode_operations shmem_special_inode_operations = {
3185 #ifdef CONFIG_TMPFS_XATTR
3186         .setxattr       = shmem_setxattr,
3187         .getxattr       = shmem_getxattr,
3188         .listxattr      = shmem_listxattr,
3189         .removexattr    = shmem_removexattr,
3190 #endif
3191 #ifdef CONFIG_TMPFS_POSIX_ACL
3192         .setattr        = shmem_setattr,
3193         .set_acl        = simple_set_acl,
3194 #endif
3195 };
3196
3197 static const struct super_operations shmem_ops = {
3198         .alloc_inode    = shmem_alloc_inode,
3199         .destroy_inode  = shmem_destroy_inode,
3200 #ifdef CONFIG_TMPFS
3201         .statfs         = shmem_statfs,
3202         .remount_fs     = shmem_remount_fs,
3203         .show_options   = shmem_show_options,
3204 #endif
3205         .evict_inode    = shmem_evict_inode,
3206         .drop_inode     = generic_delete_inode,
3207         .put_super      = shmem_put_super,
3208 };
3209
3210 static const struct vm_operations_struct shmem_vm_ops = {
3211         .fault          = shmem_fault,
3212         .map_pages      = filemap_map_pages,
3213 #ifdef CONFIG_NUMA
3214         .set_policy     = shmem_set_policy,
3215         .get_policy     = shmem_get_policy,
3216 #endif
3217 };
3218
3219 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3220         int flags, const char *dev_name, void *data)
3221 {
3222         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3223 }
3224
3225 static struct file_system_type shmem_fs_type = {
3226         .owner          = THIS_MODULE,
3227         .name           = "tmpfs",
3228         .mount          = shmem_mount,
3229         .kill_sb        = kill_litter_super,
3230         .fs_flags       = FS_USERNS_MOUNT,
3231 };
3232
3233 int __init shmem_init(void)
3234 {
3235         int error;
3236
3237         /* If rootfs called this, don't re-init */
3238         if (shmem_inode_cachep)
3239                 return 0;
3240
3241         error = shmem_init_inodecache();
3242         if (error)
3243                 goto out3;
3244
3245         error = register_filesystem(&shmem_fs_type);
3246         if (error) {
3247                 printk(KERN_ERR "Could not register tmpfs\n");
3248                 goto out2;
3249         }
3250
3251         shm_mnt = kern_mount(&shmem_fs_type);
3252         if (IS_ERR(shm_mnt)) {
3253                 error = PTR_ERR(shm_mnt);
3254                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3255                 goto out1;
3256         }
3257         return 0;
3258
3259 out1:
3260         unregister_filesystem(&shmem_fs_type);
3261 out2:
3262         shmem_destroy_inodecache();
3263 out3:
3264         shm_mnt = ERR_PTR(error);
3265         return error;
3266 }
3267
3268 #else /* !CONFIG_SHMEM */
3269
3270 /*
3271  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3272  *
3273  * This is intended for small system where the benefits of the full
3274  * shmem code (swap-backed and resource-limited) are outweighed by
3275  * their complexity. On systems without swap this code should be
3276  * effectively equivalent, but much lighter weight.
3277  */
3278
3279 static struct file_system_type shmem_fs_type = {
3280         .name           = "tmpfs",
3281         .mount          = ramfs_mount,
3282         .kill_sb        = kill_litter_super,
3283         .fs_flags       = FS_USERNS_MOUNT,
3284 };
3285
3286 int __init shmem_init(void)
3287 {
3288         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3289
3290         shm_mnt = kern_mount(&shmem_fs_type);
3291         BUG_ON(IS_ERR(shm_mnt));
3292
3293         return 0;
3294 }
3295
3296 int shmem_unuse(swp_entry_t swap, struct page *page)
3297 {
3298         return 0;
3299 }
3300
3301 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3302 {
3303         return 0;
3304 }
3305
3306 void shmem_unlock_mapping(struct address_space *mapping)
3307 {
3308 }
3309
3310 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3311 {
3312         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3313 }
3314 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3315
3316 #define shmem_vm_ops                            generic_file_vm_ops
3317 #define shmem_file_operations                   ramfs_file_operations
3318 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3319 #define shmem_acct_size(flags, size)            0
3320 #define shmem_unacct_size(flags, size)          do {} while (0)
3321
3322 #endif /* CONFIG_SHMEM */
3323
3324 /* common code */
3325
3326 static struct dentry_operations anon_ops = {
3327         .d_dname = simple_dname
3328 };
3329
3330 static struct file *__shmem_file_setup(const char *name, loff_t size,
3331                                        unsigned long flags, unsigned int i_flags)
3332 {
3333         struct file *res;
3334         struct inode *inode;
3335         struct path path;
3336         struct super_block *sb;
3337         struct qstr this;
3338
3339         if (IS_ERR(shm_mnt))
3340                 return ERR_CAST(shm_mnt);
3341
3342         if (size < 0 || size > MAX_LFS_FILESIZE)
3343                 return ERR_PTR(-EINVAL);
3344
3345         if (shmem_acct_size(flags, size))
3346                 return ERR_PTR(-ENOMEM);
3347
3348         res = ERR_PTR(-ENOMEM);
3349         this.name = name;
3350         this.len = strlen(name);
3351         this.hash = 0; /* will go */
3352         sb = shm_mnt->mnt_sb;
3353         path.mnt = mntget(shm_mnt);
3354         path.dentry = d_alloc_pseudo(sb, &this);
3355         if (!path.dentry)
3356                 goto put_memory;
3357         d_set_d_op(path.dentry, &anon_ops);
3358
3359         res = ERR_PTR(-ENOSPC);
3360         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3361         if (!inode)
3362                 goto put_memory;
3363
3364         inode->i_flags |= i_flags;
3365         d_instantiate(path.dentry, inode);
3366         inode->i_size = size;
3367         clear_nlink(inode);     /* It is unlinked */
3368         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3369         if (IS_ERR(res))
3370                 goto put_path;
3371
3372         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3373                   &shmem_file_operations);
3374         if (IS_ERR(res))
3375                 goto put_path;
3376
3377         return res;
3378
3379 put_memory:
3380         shmem_unacct_size(flags, size);
3381 put_path:
3382         path_put(&path);
3383         return res;
3384 }
3385
3386 /**
3387  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3388  *      kernel internal.  There will be NO LSM permission checks against the
3389  *      underlying inode.  So users of this interface must do LSM checks at a
3390  *      higher layer.  The users are the big_key and shm implementations.  LSM
3391  *      checks are provided at the key or shm level rather than the inode.
3392  * @name: name for dentry (to be seen in /proc/<pid>/maps
3393  * @size: size to be set for the file
3394  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3395  */
3396 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3397 {
3398         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3399 }
3400
3401 /**
3402  * shmem_file_setup - get an unlinked file living in tmpfs
3403  * @name: name for dentry (to be seen in /proc/<pid>/maps
3404  * @size: size to be set for the file
3405  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3406  */
3407 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3408 {
3409         return __shmem_file_setup(name, size, flags, 0);
3410 }
3411 EXPORT_SYMBOL_GPL(shmem_file_setup);
3412
3413 /**
3414  * shmem_zero_setup - setup a shared anonymous mapping
3415  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3416  */
3417 int shmem_zero_setup(struct vm_area_struct *vma)
3418 {
3419         struct file *file;
3420         loff_t size = vma->vm_end - vma->vm_start;
3421
3422         /*
3423          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3424          * between XFS directory reading and selinux: since this file is only
3425          * accessible to the user through its mapping, use S_PRIVATE flag to
3426          * bypass file security, in the same way as shmem_kernel_file_setup().
3427          */
3428         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3429         if (IS_ERR(file))
3430                 return PTR_ERR(file);
3431
3432         if (vma->vm_file)
3433                 fput(vma->vm_file);
3434         vma->vm_file = file;
3435         vma->vm_ops = &shmem_vm_ops;
3436         return 0;
3437 }
3438
3439 /**
3440  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3441  * @mapping:    the page's address_space
3442  * @index:      the page index
3443  * @gfp:        the page allocator flags to use if allocating
3444  *
3445  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3446  * with any new page allocations done using the specified allocation flags.
3447  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3448  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3449  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3450  *
3451  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3452  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3453  */
3454 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3455                                          pgoff_t index, gfp_t gfp)
3456 {
3457 #ifdef CONFIG_SHMEM
3458         struct inode *inode = mapping->host;
3459         struct page *page;
3460         int error;
3461
3462         BUG_ON(mapping->a_ops != &shmem_aops);
3463         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3464         if (error)
3465                 page = ERR_PTR(error);
3466         else
3467                 unlock_page(page);
3468         return page;
3469 #else
3470         /*
3471          * The tiny !SHMEM case uses ramfs without swap
3472          */
3473         return read_cache_page_gfp(mapping, index, gfp);
3474 #endif
3475 }
3476 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);