]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/swapfile.c
x86, binutils, xen: Fix another wrong size directive
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
38
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40                                  unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
49
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
54
55 static struct swap_list_t swap_list = {-1, -1};
56
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
58
59 static DEFINE_MUTEX(swapon_mutex);
60
61 static inline unsigned char swap_count(unsigned char ent)
62 {
63         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
64 }
65
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69 {
70         swp_entry_t entry = swp_entry(si->type, offset);
71         struct page *page;
72         int ret = 0;
73
74         page = find_get_page(&swapper_space, entry.val);
75         if (!page)
76                 return 0;
77         /*
78          * This function is called from scan_swap_map() and it's called
79          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80          * We have to use trylock for avoiding deadlock. This is a special
81          * case and you should use try_to_free_swap() with explicit lock_page()
82          * in usual operations.
83          */
84         if (trylock_page(page)) {
85                 ret = try_to_free_swap(page);
86                 unlock_page(page);
87         }
88         page_cache_release(page);
89         return ret;
90 }
91
92 /*
93  * We need this because the bdev->unplug_fn can sleep and we cannot
94  * hold swap_lock while calling the unplug_fn. And swap_lock
95  * cannot be turned into a mutex.
96  */
97 static DECLARE_RWSEM(swap_unplug_sem);
98
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100 {
101         swp_entry_t entry;
102
103         down_read(&swap_unplug_sem);
104         entry.val = page_private(page);
105         if (PageSwapCache(page)) {
106                 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107                 struct backing_dev_info *bdi;
108
109                 /*
110                  * If the page is removed from swapcache from under us (with a
111                  * racy try_to_unuse/swapoff) we need an additional reference
112                  * count to avoid reading garbage from page_private(page) above.
113                  * If the WARN_ON triggers during a swapoff it maybe the race
114                  * condition and it's harmless. However if it triggers without
115                  * swapoff it signals a problem.
116                  */
117                 WARN_ON(page_count(page) <= 1);
118
119                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120                 blk_run_backing_dev(bdi, page);
121         }
122         up_read(&swap_unplug_sem);
123 }
124
125 /*
126  * swapon tell device that all the old swap contents can be discarded,
127  * to allow the swap device to optimize its wear-levelling.
128  */
129 static int discard_swap(struct swap_info_struct *si)
130 {
131         struct swap_extent *se;
132         sector_t start_block;
133         sector_t nr_blocks;
134         int err = 0;
135
136         /* Do not discard the swap header page! */
137         se = &si->first_swap_extent;
138         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140         if (nr_blocks) {
141                 err = blkdev_issue_discard(si->bdev, start_block,
142                                 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
143                 if (err)
144                         return err;
145                 cond_resched();
146         }
147
148         list_for_each_entry(se, &si->first_swap_extent.list, list) {
149                 start_block = se->start_block << (PAGE_SHIFT - 9);
150                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
151
152                 err = blkdev_issue_discard(si->bdev, start_block,
153                                 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
154                 if (err)
155                         break;
156
157                 cond_resched();
158         }
159         return err;             /* That will often be -EOPNOTSUPP */
160 }
161
162 /*
163  * swap allocation tell device that a cluster of swap can now be discarded,
164  * to allow the swap device to optimize its wear-levelling.
165  */
166 static void discard_swap_cluster(struct swap_info_struct *si,
167                                  pgoff_t start_page, pgoff_t nr_pages)
168 {
169         struct swap_extent *se = si->curr_swap_extent;
170         int found_extent = 0;
171
172         while (nr_pages) {
173                 struct list_head *lh;
174
175                 if (se->start_page <= start_page &&
176                     start_page < se->start_page + se->nr_pages) {
177                         pgoff_t offset = start_page - se->start_page;
178                         sector_t start_block = se->start_block + offset;
179                         sector_t nr_blocks = se->nr_pages - offset;
180
181                         if (nr_blocks > nr_pages)
182                                 nr_blocks = nr_pages;
183                         start_page += nr_blocks;
184                         nr_pages -= nr_blocks;
185
186                         if (!found_extent++)
187                                 si->curr_swap_extent = se;
188
189                         start_block <<= PAGE_SHIFT - 9;
190                         nr_blocks <<= PAGE_SHIFT - 9;
191                         if (blkdev_issue_discard(si->bdev, start_block,
192                                     nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
193                                 break;
194                 }
195
196                 lh = se->list.next;
197                 se = list_entry(lh, struct swap_extent, list);
198         }
199 }
200
201 static int wait_for_discard(void *word)
202 {
203         schedule();
204         return 0;
205 }
206
207 #define SWAPFILE_CLUSTER        256
208 #define LATENCY_LIMIT           256
209
210 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
211                                           unsigned char usage)
212 {
213         unsigned long offset;
214         unsigned long scan_base;
215         unsigned long last_in_cluster = 0;
216         int latency_ration = LATENCY_LIMIT;
217         int found_free_cluster = 0;
218
219         /*
220          * We try to cluster swap pages by allocating them sequentially
221          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
222          * way, however, we resort to first-free allocation, starting
223          * a new cluster.  This prevents us from scattering swap pages
224          * all over the entire swap partition, so that we reduce
225          * overall disk seek times between swap pages.  -- sct
226          * But we do now try to find an empty cluster.  -Andrea
227          * And we let swap pages go all over an SSD partition.  Hugh
228          */
229
230         si->flags += SWP_SCANNING;
231         scan_base = offset = si->cluster_next;
232
233         if (unlikely(!si->cluster_nr--)) {
234                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
236                         goto checks;
237                 }
238                 if (si->flags & SWP_DISCARDABLE) {
239                         /*
240                          * Start range check on racing allocations, in case
241                          * they overlap the cluster we eventually decide on
242                          * (we scan without swap_lock to allow preemption).
243                          * It's hardly conceivable that cluster_nr could be
244                          * wrapped during our scan, but don't depend on it.
245                          */
246                         if (si->lowest_alloc)
247                                 goto checks;
248                         si->lowest_alloc = si->max;
249                         si->highest_alloc = 0;
250                 }
251                 spin_unlock(&swap_lock);
252
253                 /*
254                  * If seek is expensive, start searching for new cluster from
255                  * start of partition, to minimize the span of allocated swap.
256                  * But if seek is cheap, search from our current position, so
257                  * that swap is allocated from all over the partition: if the
258                  * Flash Translation Layer only remaps within limited zones,
259                  * we don't want to wear out the first zone too quickly.
260                  */
261                 if (!(si->flags & SWP_SOLIDSTATE))
262                         scan_base = offset = si->lowest_bit;
263                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
264
265                 /* Locate the first empty (unaligned) cluster */
266                 for (; last_in_cluster <= si->highest_bit; offset++) {
267                         if (si->swap_map[offset])
268                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
269                         else if (offset == last_in_cluster) {
270                                 spin_lock(&swap_lock);
271                                 offset -= SWAPFILE_CLUSTER - 1;
272                                 si->cluster_next = offset;
273                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
274                                 found_free_cluster = 1;
275                                 goto checks;
276                         }
277                         if (unlikely(--latency_ration < 0)) {
278                                 cond_resched();
279                                 latency_ration = LATENCY_LIMIT;
280                         }
281                 }
282
283                 offset = si->lowest_bit;
284                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
285
286                 /* Locate the first empty (unaligned) cluster */
287                 for (; last_in_cluster < scan_base; offset++) {
288                         if (si->swap_map[offset])
289                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
290                         else if (offset == last_in_cluster) {
291                                 spin_lock(&swap_lock);
292                                 offset -= SWAPFILE_CLUSTER - 1;
293                                 si->cluster_next = offset;
294                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
295                                 found_free_cluster = 1;
296                                 goto checks;
297                         }
298                         if (unlikely(--latency_ration < 0)) {
299                                 cond_resched();
300                                 latency_ration = LATENCY_LIMIT;
301                         }
302                 }
303
304                 offset = scan_base;
305                 spin_lock(&swap_lock);
306                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
307                 si->lowest_alloc = 0;
308         }
309
310 checks:
311         if (!(si->flags & SWP_WRITEOK))
312                 goto no_page;
313         if (!si->highest_bit)
314                 goto no_page;
315         if (offset > si->highest_bit)
316                 scan_base = offset = si->lowest_bit;
317
318         /* reuse swap entry of cache-only swap if not hibernation. */
319         if (vm_swap_full()
320                 && usage == SWAP_HAS_CACHE
321                 && si->swap_map[offset] == SWAP_HAS_CACHE) {
322                 int swap_was_freed;
323                 spin_unlock(&swap_lock);
324                 swap_was_freed = __try_to_reclaim_swap(si, offset);
325                 spin_lock(&swap_lock);
326                 /* entry was freed successfully, try to use this again */
327                 if (swap_was_freed)
328                         goto checks;
329                 goto scan; /* check next one */
330         }
331
332         if (si->swap_map[offset])
333                 goto scan;
334
335         if (offset == si->lowest_bit)
336                 si->lowest_bit++;
337         if (offset == si->highest_bit)
338                 si->highest_bit--;
339         si->inuse_pages++;
340         if (si->inuse_pages == si->pages) {
341                 si->lowest_bit = si->max;
342                 si->highest_bit = 0;
343         }
344         si->swap_map[offset] = usage;
345         si->cluster_next = offset + 1;
346         si->flags -= SWP_SCANNING;
347
348         if (si->lowest_alloc) {
349                 /*
350                  * Only set when SWP_DISCARDABLE, and there's a scan
351                  * for a free cluster in progress or just completed.
352                  */
353                 if (found_free_cluster) {
354                         /*
355                          * To optimize wear-levelling, discard the
356                          * old data of the cluster, taking care not to
357                          * discard any of its pages that have already
358                          * been allocated by racing tasks (offset has
359                          * already stepped over any at the beginning).
360                          */
361                         if (offset < si->highest_alloc &&
362                             si->lowest_alloc <= last_in_cluster)
363                                 last_in_cluster = si->lowest_alloc - 1;
364                         si->flags |= SWP_DISCARDING;
365                         spin_unlock(&swap_lock);
366
367                         if (offset < last_in_cluster)
368                                 discard_swap_cluster(si, offset,
369                                         last_in_cluster - offset + 1);
370
371                         spin_lock(&swap_lock);
372                         si->lowest_alloc = 0;
373                         si->flags &= ~SWP_DISCARDING;
374
375                         smp_mb();       /* wake_up_bit advises this */
376                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
377
378                 } else if (si->flags & SWP_DISCARDING) {
379                         /*
380                          * Delay using pages allocated by racing tasks
381                          * until the whole discard has been issued. We
382                          * could defer that delay until swap_writepage,
383                          * but it's easier to keep this self-contained.
384                          */
385                         spin_unlock(&swap_lock);
386                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
387                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
388                         spin_lock(&swap_lock);
389                 } else {
390                         /*
391                          * Note pages allocated by racing tasks while
392                          * scan for a free cluster is in progress, so
393                          * that its final discard can exclude them.
394                          */
395                         if (offset < si->lowest_alloc)
396                                 si->lowest_alloc = offset;
397                         if (offset > si->highest_alloc)
398                                 si->highest_alloc = offset;
399                 }
400         }
401         return offset;
402
403 scan:
404         spin_unlock(&swap_lock);
405         while (++offset <= si->highest_bit) {
406                 if (!si->swap_map[offset]) {
407                         spin_lock(&swap_lock);
408                         goto checks;
409                 }
410                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
411                         spin_lock(&swap_lock);
412                         goto checks;
413                 }
414                 if (unlikely(--latency_ration < 0)) {
415                         cond_resched();
416                         latency_ration = LATENCY_LIMIT;
417                 }
418         }
419         offset = si->lowest_bit;
420         while (++offset < scan_base) {
421                 if (!si->swap_map[offset]) {
422                         spin_lock(&swap_lock);
423                         goto checks;
424                 }
425                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
426                         spin_lock(&swap_lock);
427                         goto checks;
428                 }
429                 if (unlikely(--latency_ration < 0)) {
430                         cond_resched();
431                         latency_ration = LATENCY_LIMIT;
432                 }
433         }
434         spin_lock(&swap_lock);
435
436 no_page:
437         si->flags -= SWP_SCANNING;
438         return 0;
439 }
440
441 swp_entry_t get_swap_page(void)
442 {
443         struct swap_info_struct *si;
444         pgoff_t offset;
445         int type, next;
446         int wrapped = 0;
447
448         spin_lock(&swap_lock);
449         if (nr_swap_pages <= 0)
450                 goto noswap;
451         nr_swap_pages--;
452
453         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
454                 si = swap_info[type];
455                 next = si->next;
456                 if (next < 0 ||
457                     (!wrapped && si->prio != swap_info[next]->prio)) {
458                         next = swap_list.head;
459                         wrapped++;
460                 }
461
462                 if (!si->highest_bit)
463                         continue;
464                 if (!(si->flags & SWP_WRITEOK))
465                         continue;
466
467                 swap_list.next = next;
468                 /* This is called for allocating swap entry for cache */
469                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
470                 if (offset) {
471                         spin_unlock(&swap_lock);
472                         return swp_entry(type, offset);
473                 }
474                 next = swap_list.next;
475         }
476
477         nr_swap_pages++;
478 noswap:
479         spin_unlock(&swap_lock);
480         return (swp_entry_t) {0};
481 }
482
483 /* The only caller of this function is now susupend routine */
484 swp_entry_t get_swap_page_of_type(int type)
485 {
486         struct swap_info_struct *si;
487         pgoff_t offset;
488
489         spin_lock(&swap_lock);
490         si = swap_info[type];
491         if (si && (si->flags & SWP_WRITEOK)) {
492                 nr_swap_pages--;
493                 /* This is called for allocating swap entry, not cache */
494                 offset = scan_swap_map(si, 1);
495                 if (offset) {
496                         spin_unlock(&swap_lock);
497                         return swp_entry(type, offset);
498                 }
499                 nr_swap_pages++;
500         }
501         spin_unlock(&swap_lock);
502         return (swp_entry_t) {0};
503 }
504
505 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
506 {
507         struct swap_info_struct *p;
508         unsigned long offset, type;
509
510         if (!entry.val)
511                 goto out;
512         type = swp_type(entry);
513         if (type >= nr_swapfiles)
514                 goto bad_nofile;
515         p = swap_info[type];
516         if (!(p->flags & SWP_USED))
517                 goto bad_device;
518         offset = swp_offset(entry);
519         if (offset >= p->max)
520                 goto bad_offset;
521         if (!p->swap_map[offset])
522                 goto bad_free;
523         spin_lock(&swap_lock);
524         return p;
525
526 bad_free:
527         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
528         goto out;
529 bad_offset:
530         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
531         goto out;
532 bad_device:
533         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
534         goto out;
535 bad_nofile:
536         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
537 out:
538         return NULL;
539 }
540
541 static unsigned char swap_entry_free(struct swap_info_struct *p,
542                                      swp_entry_t entry, unsigned char usage)
543 {
544         unsigned long offset = swp_offset(entry);
545         unsigned char count;
546         unsigned char has_cache;
547
548         count = p->swap_map[offset];
549         has_cache = count & SWAP_HAS_CACHE;
550         count &= ~SWAP_HAS_CACHE;
551
552         if (usage == SWAP_HAS_CACHE) {
553                 VM_BUG_ON(!has_cache);
554                 has_cache = 0;
555         } else if (count == SWAP_MAP_SHMEM) {
556                 /*
557                  * Or we could insist on shmem.c using a special
558                  * swap_shmem_free() and free_shmem_swap_and_cache()...
559                  */
560                 count = 0;
561         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
562                 if (count == COUNT_CONTINUED) {
563                         if (swap_count_continued(p, offset, count))
564                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
565                         else
566                                 count = SWAP_MAP_MAX;
567                 } else
568                         count--;
569         }
570
571         if (!count)
572                 mem_cgroup_uncharge_swap(entry);
573
574         usage = count | has_cache;
575         p->swap_map[offset] = usage;
576
577         /* free if no reference */
578         if (!usage) {
579                 if (offset < p->lowest_bit)
580                         p->lowest_bit = offset;
581                 if (offset > p->highest_bit)
582                         p->highest_bit = offset;
583                 if (swap_list.next >= 0 &&
584                     p->prio > swap_info[swap_list.next]->prio)
585                         swap_list.next = p->type;
586                 nr_swap_pages++;
587                 p->inuse_pages--;
588         }
589
590         return usage;
591 }
592
593 /*
594  * Caller has made sure that the swapdevice corresponding to entry
595  * is still around or has not been recycled.
596  */
597 void swap_free(swp_entry_t entry)
598 {
599         struct swap_info_struct *p;
600
601         p = swap_info_get(entry);
602         if (p) {
603                 swap_entry_free(p, entry, 1);
604                 spin_unlock(&swap_lock);
605         }
606 }
607
608 /*
609  * Called after dropping swapcache to decrease refcnt to swap entries.
610  */
611 void swapcache_free(swp_entry_t entry, struct page *page)
612 {
613         struct swap_info_struct *p;
614         unsigned char count;
615
616         p = swap_info_get(entry);
617         if (p) {
618                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
619                 if (page)
620                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
621                 spin_unlock(&swap_lock);
622         }
623 }
624
625 /*
626  * How many references to page are currently swapped out?
627  * This does not give an exact answer when swap count is continued,
628  * but does include the high COUNT_CONTINUED flag to allow for that.
629  */
630 static inline int page_swapcount(struct page *page)
631 {
632         int count = 0;
633         struct swap_info_struct *p;
634         swp_entry_t entry;
635
636         entry.val = page_private(page);
637         p = swap_info_get(entry);
638         if (p) {
639                 count = swap_count(p->swap_map[swp_offset(entry)]);
640                 spin_unlock(&swap_lock);
641         }
642         return count;
643 }
644
645 /*
646  * We can write to an anon page without COW if there are no other references
647  * to it.  And as a side-effect, free up its swap: because the old content
648  * on disk will never be read, and seeking back there to write new content
649  * later would only waste time away from clustering.
650  */
651 int reuse_swap_page(struct page *page)
652 {
653         int count;
654
655         VM_BUG_ON(!PageLocked(page));
656         if (unlikely(PageKsm(page)))
657                 return 0;
658         count = page_mapcount(page);
659         if (count <= 1 && PageSwapCache(page)) {
660                 count += page_swapcount(page);
661                 if (count == 1 && !PageWriteback(page)) {
662                         delete_from_swap_cache(page);
663                         SetPageDirty(page);
664                 }
665         }
666         return count <= 1;
667 }
668
669 /*
670  * If swap is getting full, or if there are no more mappings of this page,
671  * then try_to_free_swap is called to free its swap space.
672  */
673 int try_to_free_swap(struct page *page)
674 {
675         VM_BUG_ON(!PageLocked(page));
676
677         if (!PageSwapCache(page))
678                 return 0;
679         if (PageWriteback(page))
680                 return 0;
681         if (page_swapcount(page))
682                 return 0;
683
684         delete_from_swap_cache(page);
685         SetPageDirty(page);
686         return 1;
687 }
688
689 /*
690  * Free the swap entry like above, but also try to
691  * free the page cache entry if it is the last user.
692  */
693 int free_swap_and_cache(swp_entry_t entry)
694 {
695         struct swap_info_struct *p;
696         struct page *page = NULL;
697
698         if (non_swap_entry(entry))
699                 return 1;
700
701         p = swap_info_get(entry);
702         if (p) {
703                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
704                         page = find_get_page(&swapper_space, entry.val);
705                         if (page && !trylock_page(page)) {
706                                 page_cache_release(page);
707                                 page = NULL;
708                         }
709                 }
710                 spin_unlock(&swap_lock);
711         }
712         if (page) {
713                 /*
714                  * Not mapped elsewhere, or swap space full? Free it!
715                  * Also recheck PageSwapCache now page is locked (above).
716                  */
717                 if (PageSwapCache(page) && !PageWriteback(page) &&
718                                 (!page_mapped(page) || vm_swap_full())) {
719                         delete_from_swap_cache(page);
720                         SetPageDirty(page);
721                 }
722                 unlock_page(page);
723                 page_cache_release(page);
724         }
725         return p != NULL;
726 }
727
728 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
729 /**
730  * mem_cgroup_count_swap_user - count the user of a swap entry
731  * @ent: the swap entry to be checked
732  * @pagep: the pointer for the swap cache page of the entry to be stored
733  *
734  * Returns the number of the user of the swap entry. The number is valid only
735  * for swaps of anonymous pages.
736  * If the entry is found on swap cache, the page is stored to pagep with
737  * refcount of it being incremented.
738  */
739 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
740 {
741         struct page *page;
742         struct swap_info_struct *p;
743         int count = 0;
744
745         page = find_get_page(&swapper_space, ent.val);
746         if (page)
747                 count += page_mapcount(page);
748         p = swap_info_get(ent);
749         if (p) {
750                 count += swap_count(p->swap_map[swp_offset(ent)]);
751                 spin_unlock(&swap_lock);
752         }
753
754         *pagep = page;
755         return count;
756 }
757 #endif
758
759 #ifdef CONFIG_HIBERNATION
760 /*
761  * Find the swap type that corresponds to given device (if any).
762  *
763  * @offset - number of the PAGE_SIZE-sized block of the device, starting
764  * from 0, in which the swap header is expected to be located.
765  *
766  * This is needed for the suspend to disk (aka swsusp).
767  */
768 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
769 {
770         struct block_device *bdev = NULL;
771         int type;
772
773         if (device)
774                 bdev = bdget(device);
775
776         spin_lock(&swap_lock);
777         for (type = 0; type < nr_swapfiles; type++) {
778                 struct swap_info_struct *sis = swap_info[type];
779
780                 if (!(sis->flags & SWP_WRITEOK))
781                         continue;
782
783                 if (!bdev) {
784                         if (bdev_p)
785                                 *bdev_p = bdgrab(sis->bdev);
786
787                         spin_unlock(&swap_lock);
788                         return type;
789                 }
790                 if (bdev == sis->bdev) {
791                         struct swap_extent *se = &sis->first_swap_extent;
792
793                         if (se->start_block == offset) {
794                                 if (bdev_p)
795                                         *bdev_p = bdgrab(sis->bdev);
796
797                                 spin_unlock(&swap_lock);
798                                 bdput(bdev);
799                                 return type;
800                         }
801                 }
802         }
803         spin_unlock(&swap_lock);
804         if (bdev)
805                 bdput(bdev);
806
807         return -ENODEV;
808 }
809
810 /*
811  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
812  * corresponding to given index in swap_info (swap type).
813  */
814 sector_t swapdev_block(int type, pgoff_t offset)
815 {
816         struct block_device *bdev;
817
818         if ((unsigned int)type >= nr_swapfiles)
819                 return 0;
820         if (!(swap_info[type]->flags & SWP_WRITEOK))
821                 return 0;
822         return map_swap_entry(swp_entry(type, offset), &bdev);
823 }
824
825 /*
826  * Return either the total number of swap pages of given type, or the number
827  * of free pages of that type (depending on @free)
828  *
829  * This is needed for software suspend
830  */
831 unsigned int count_swap_pages(int type, int free)
832 {
833         unsigned int n = 0;
834
835         spin_lock(&swap_lock);
836         if ((unsigned int)type < nr_swapfiles) {
837                 struct swap_info_struct *sis = swap_info[type];
838
839                 if (sis->flags & SWP_WRITEOK) {
840                         n = sis->pages;
841                         if (free)
842                                 n -= sis->inuse_pages;
843                 }
844         }
845         spin_unlock(&swap_lock);
846         return n;
847 }
848 #endif /* CONFIG_HIBERNATION */
849
850 /*
851  * No need to decide whether this PTE shares the swap entry with others,
852  * just let do_wp_page work it out if a write is requested later - to
853  * force COW, vm_page_prot omits write permission from any private vma.
854  */
855 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
856                 unsigned long addr, swp_entry_t entry, struct page *page)
857 {
858         struct mem_cgroup *ptr = NULL;
859         spinlock_t *ptl;
860         pte_t *pte;
861         int ret = 1;
862
863         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
864                 ret = -ENOMEM;
865                 goto out_nolock;
866         }
867
868         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
869         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
870                 if (ret > 0)
871                         mem_cgroup_cancel_charge_swapin(ptr);
872                 ret = 0;
873                 goto out;
874         }
875
876         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
877         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
878         get_page(page);
879         set_pte_at(vma->vm_mm, addr, pte,
880                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
881         page_add_anon_rmap(page, vma, addr);
882         mem_cgroup_commit_charge_swapin(page, ptr);
883         swap_free(entry);
884         /*
885          * Move the page to the active list so it is not
886          * immediately swapped out again after swapon.
887          */
888         activate_page(page);
889 out:
890         pte_unmap_unlock(pte, ptl);
891 out_nolock:
892         return ret;
893 }
894
895 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
896                                 unsigned long addr, unsigned long end,
897                                 swp_entry_t entry, struct page *page)
898 {
899         pte_t swp_pte = swp_entry_to_pte(entry);
900         pte_t *pte;
901         int ret = 0;
902
903         /*
904          * We don't actually need pte lock while scanning for swp_pte: since
905          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
906          * page table while we're scanning; though it could get zapped, and on
907          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
908          * of unmatched parts which look like swp_pte, so unuse_pte must
909          * recheck under pte lock.  Scanning without pte lock lets it be
910          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
911          */
912         pte = pte_offset_map(pmd, addr);
913         do {
914                 /*
915                  * swapoff spends a _lot_ of time in this loop!
916                  * Test inline before going to call unuse_pte.
917                  */
918                 if (unlikely(pte_same(*pte, swp_pte))) {
919                         pte_unmap(pte);
920                         ret = unuse_pte(vma, pmd, addr, entry, page);
921                         if (ret)
922                                 goto out;
923                         pte = pte_offset_map(pmd, addr);
924                 }
925         } while (pte++, addr += PAGE_SIZE, addr != end);
926         pte_unmap(pte - 1);
927 out:
928         return ret;
929 }
930
931 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
932                                 unsigned long addr, unsigned long end,
933                                 swp_entry_t entry, struct page *page)
934 {
935         pmd_t *pmd;
936         unsigned long next;
937         int ret;
938
939         pmd = pmd_offset(pud, addr);
940         do {
941                 next = pmd_addr_end(addr, end);
942                 if (pmd_none_or_clear_bad(pmd))
943                         continue;
944                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
945                 if (ret)
946                         return ret;
947         } while (pmd++, addr = next, addr != end);
948         return 0;
949 }
950
951 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
952                                 unsigned long addr, unsigned long end,
953                                 swp_entry_t entry, struct page *page)
954 {
955         pud_t *pud;
956         unsigned long next;
957         int ret;
958
959         pud = pud_offset(pgd, addr);
960         do {
961                 next = pud_addr_end(addr, end);
962                 if (pud_none_or_clear_bad(pud))
963                         continue;
964                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
965                 if (ret)
966                         return ret;
967         } while (pud++, addr = next, addr != end);
968         return 0;
969 }
970
971 static int unuse_vma(struct vm_area_struct *vma,
972                                 swp_entry_t entry, struct page *page)
973 {
974         pgd_t *pgd;
975         unsigned long addr, end, next;
976         int ret;
977
978         if (page_anon_vma(page)) {
979                 addr = page_address_in_vma(page, vma);
980                 if (addr == -EFAULT)
981                         return 0;
982                 else
983                         end = addr + PAGE_SIZE;
984         } else {
985                 addr = vma->vm_start;
986                 end = vma->vm_end;
987         }
988
989         pgd = pgd_offset(vma->vm_mm, addr);
990         do {
991                 next = pgd_addr_end(addr, end);
992                 if (pgd_none_or_clear_bad(pgd))
993                         continue;
994                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
995                 if (ret)
996                         return ret;
997         } while (pgd++, addr = next, addr != end);
998         return 0;
999 }
1000
1001 static int unuse_mm(struct mm_struct *mm,
1002                                 swp_entry_t entry, struct page *page)
1003 {
1004         struct vm_area_struct *vma;
1005         int ret = 0;
1006
1007         if (!down_read_trylock(&mm->mmap_sem)) {
1008                 /*
1009                  * Activate page so shrink_inactive_list is unlikely to unmap
1010                  * its ptes while lock is dropped, so swapoff can make progress.
1011                  */
1012                 activate_page(page);
1013                 unlock_page(page);
1014                 down_read(&mm->mmap_sem);
1015                 lock_page(page);
1016         }
1017         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1018                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1019                         break;
1020         }
1021         up_read(&mm->mmap_sem);
1022         return (ret < 0)? ret: 0;
1023 }
1024
1025 /*
1026  * Scan swap_map from current position to next entry still in use.
1027  * Recycle to start on reaching the end, returning 0 when empty.
1028  */
1029 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1030                                         unsigned int prev)
1031 {
1032         unsigned int max = si->max;
1033         unsigned int i = prev;
1034         unsigned char count;
1035
1036         /*
1037          * No need for swap_lock here: we're just looking
1038          * for whether an entry is in use, not modifying it; false
1039          * hits are okay, and sys_swapoff() has already prevented new
1040          * allocations from this area (while holding swap_lock).
1041          */
1042         for (;;) {
1043                 if (++i >= max) {
1044                         if (!prev) {
1045                                 i = 0;
1046                                 break;
1047                         }
1048                         /*
1049                          * No entries in use at top of swap_map,
1050                          * loop back to start and recheck there.
1051                          */
1052                         max = prev + 1;
1053                         prev = 0;
1054                         i = 1;
1055                 }
1056                 count = si->swap_map[i];
1057                 if (count && swap_count(count) != SWAP_MAP_BAD)
1058                         break;
1059         }
1060         return i;
1061 }
1062
1063 /*
1064  * We completely avoid races by reading each swap page in advance,
1065  * and then search for the process using it.  All the necessary
1066  * page table adjustments can then be made atomically.
1067  */
1068 static int try_to_unuse(unsigned int type)
1069 {
1070         struct swap_info_struct *si = swap_info[type];
1071         struct mm_struct *start_mm;
1072         unsigned char *swap_map;
1073         unsigned char swcount;
1074         struct page *page;
1075         swp_entry_t entry;
1076         unsigned int i = 0;
1077         int retval = 0;
1078
1079         /*
1080          * When searching mms for an entry, a good strategy is to
1081          * start at the first mm we freed the previous entry from
1082          * (though actually we don't notice whether we or coincidence
1083          * freed the entry).  Initialize this start_mm with a hold.
1084          *
1085          * A simpler strategy would be to start at the last mm we
1086          * freed the previous entry from; but that would take less
1087          * advantage of mmlist ordering, which clusters forked mms
1088          * together, child after parent.  If we race with dup_mmap(), we
1089          * prefer to resolve parent before child, lest we miss entries
1090          * duplicated after we scanned child: using last mm would invert
1091          * that.
1092          */
1093         start_mm = &init_mm;
1094         atomic_inc(&init_mm.mm_users);
1095
1096         /*
1097          * Keep on scanning until all entries have gone.  Usually,
1098          * one pass through swap_map is enough, but not necessarily:
1099          * there are races when an instance of an entry might be missed.
1100          */
1101         while ((i = find_next_to_unuse(si, i)) != 0) {
1102                 if (signal_pending(current)) {
1103                         retval = -EINTR;
1104                         break;
1105                 }
1106
1107                 /*
1108                  * Get a page for the entry, using the existing swap
1109                  * cache page if there is one.  Otherwise, get a clean
1110                  * page and read the swap into it.
1111                  */
1112                 swap_map = &si->swap_map[i];
1113                 entry = swp_entry(type, i);
1114                 page = read_swap_cache_async(entry,
1115                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1116                 if (!page) {
1117                         /*
1118                          * Either swap_duplicate() failed because entry
1119                          * has been freed independently, and will not be
1120                          * reused since sys_swapoff() already disabled
1121                          * allocation from here, or alloc_page() failed.
1122                          */
1123                         if (!*swap_map)
1124                                 continue;
1125                         retval = -ENOMEM;
1126                         break;
1127                 }
1128
1129                 /*
1130                  * Don't hold on to start_mm if it looks like exiting.
1131                  */
1132                 if (atomic_read(&start_mm->mm_users) == 1) {
1133                         mmput(start_mm);
1134                         start_mm = &init_mm;
1135                         atomic_inc(&init_mm.mm_users);
1136                 }
1137
1138                 /*
1139                  * Wait for and lock page.  When do_swap_page races with
1140                  * try_to_unuse, do_swap_page can handle the fault much
1141                  * faster than try_to_unuse can locate the entry.  This
1142                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1143                  * defer to do_swap_page in such a case - in some tests,
1144                  * do_swap_page and try_to_unuse repeatedly compete.
1145                  */
1146                 wait_on_page_locked(page);
1147                 wait_on_page_writeback(page);
1148                 lock_page(page);
1149                 wait_on_page_writeback(page);
1150
1151                 /*
1152                  * Remove all references to entry.
1153                  */
1154                 swcount = *swap_map;
1155                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1156                         retval = shmem_unuse(entry, page);
1157                         /* page has already been unlocked and released */
1158                         if (retval < 0)
1159                                 break;
1160                         continue;
1161                 }
1162                 if (swap_count(swcount) && start_mm != &init_mm)
1163                         retval = unuse_mm(start_mm, entry, page);
1164
1165                 if (swap_count(*swap_map)) {
1166                         int set_start_mm = (*swap_map >= swcount);
1167                         struct list_head *p = &start_mm->mmlist;
1168                         struct mm_struct *new_start_mm = start_mm;
1169                         struct mm_struct *prev_mm = start_mm;
1170                         struct mm_struct *mm;
1171
1172                         atomic_inc(&new_start_mm->mm_users);
1173                         atomic_inc(&prev_mm->mm_users);
1174                         spin_lock(&mmlist_lock);
1175                         while (swap_count(*swap_map) && !retval &&
1176                                         (p = p->next) != &start_mm->mmlist) {
1177                                 mm = list_entry(p, struct mm_struct, mmlist);
1178                                 if (!atomic_inc_not_zero(&mm->mm_users))
1179                                         continue;
1180                                 spin_unlock(&mmlist_lock);
1181                                 mmput(prev_mm);
1182                                 prev_mm = mm;
1183
1184                                 cond_resched();
1185
1186                                 swcount = *swap_map;
1187                                 if (!swap_count(swcount)) /* any usage ? */
1188                                         ;
1189                                 else if (mm == &init_mm)
1190                                         set_start_mm = 1;
1191                                 else
1192                                         retval = unuse_mm(mm, entry, page);
1193
1194                                 if (set_start_mm && *swap_map < swcount) {
1195                                         mmput(new_start_mm);
1196                                         atomic_inc(&mm->mm_users);
1197                                         new_start_mm = mm;
1198                                         set_start_mm = 0;
1199                                 }
1200                                 spin_lock(&mmlist_lock);
1201                         }
1202                         spin_unlock(&mmlist_lock);
1203                         mmput(prev_mm);
1204                         mmput(start_mm);
1205                         start_mm = new_start_mm;
1206                 }
1207                 if (retval) {
1208                         unlock_page(page);
1209                         page_cache_release(page);
1210                         break;
1211                 }
1212
1213                 /*
1214                  * If a reference remains (rare), we would like to leave
1215                  * the page in the swap cache; but try_to_unmap could
1216                  * then re-duplicate the entry once we drop page lock,
1217                  * so we might loop indefinitely; also, that page could
1218                  * not be swapped out to other storage meanwhile.  So:
1219                  * delete from cache even if there's another reference,
1220                  * after ensuring that the data has been saved to disk -
1221                  * since if the reference remains (rarer), it will be
1222                  * read from disk into another page.  Splitting into two
1223                  * pages would be incorrect if swap supported "shared
1224                  * private" pages, but they are handled by tmpfs files.
1225                  *
1226                  * Given how unuse_vma() targets one particular offset
1227                  * in an anon_vma, once the anon_vma has been determined,
1228                  * this splitting happens to be just what is needed to
1229                  * handle where KSM pages have been swapped out: re-reading
1230                  * is unnecessarily slow, but we can fix that later on.
1231                  */
1232                 if (swap_count(*swap_map) &&
1233                      PageDirty(page) && PageSwapCache(page)) {
1234                         struct writeback_control wbc = {
1235                                 .sync_mode = WB_SYNC_NONE,
1236                         };
1237
1238                         swap_writepage(page, &wbc);
1239                         lock_page(page);
1240                         wait_on_page_writeback(page);
1241                 }
1242
1243                 /*
1244                  * It is conceivable that a racing task removed this page from
1245                  * swap cache just before we acquired the page lock at the top,
1246                  * or while we dropped it in unuse_mm().  The page might even
1247                  * be back in swap cache on another swap area: that we must not
1248                  * delete, since it may not have been written out to swap yet.
1249                  */
1250                 if (PageSwapCache(page) &&
1251                     likely(page_private(page) == entry.val))
1252                         delete_from_swap_cache(page);
1253
1254                 /*
1255                  * So we could skip searching mms once swap count went
1256                  * to 1, we did not mark any present ptes as dirty: must
1257                  * mark page dirty so shrink_page_list will preserve it.
1258                  */
1259                 SetPageDirty(page);
1260                 unlock_page(page);
1261                 page_cache_release(page);
1262
1263                 /*
1264                  * Make sure that we aren't completely killing
1265                  * interactive performance.
1266                  */
1267                 cond_resched();
1268         }
1269
1270         mmput(start_mm);
1271         return retval;
1272 }
1273
1274 /*
1275  * After a successful try_to_unuse, if no swap is now in use, we know
1276  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1277  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1278  * added to the mmlist just after page_duplicate - before would be racy.
1279  */
1280 static void drain_mmlist(void)
1281 {
1282         struct list_head *p, *next;
1283         unsigned int type;
1284
1285         for (type = 0; type < nr_swapfiles; type++)
1286                 if (swap_info[type]->inuse_pages)
1287                         return;
1288         spin_lock(&mmlist_lock);
1289         list_for_each_safe(p, next, &init_mm.mmlist)
1290                 list_del_init(p);
1291         spin_unlock(&mmlist_lock);
1292 }
1293
1294 /*
1295  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1296  * corresponds to page offset for the specified swap entry.
1297  * Note that the type of this function is sector_t, but it returns page offset
1298  * into the bdev, not sector offset.
1299  */
1300 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1301 {
1302         struct swap_info_struct *sis;
1303         struct swap_extent *start_se;
1304         struct swap_extent *se;
1305         pgoff_t offset;
1306
1307         sis = swap_info[swp_type(entry)];
1308         *bdev = sis->bdev;
1309
1310         offset = swp_offset(entry);
1311         start_se = sis->curr_swap_extent;
1312         se = start_se;
1313
1314         for ( ; ; ) {
1315                 struct list_head *lh;
1316
1317                 if (se->start_page <= offset &&
1318                                 offset < (se->start_page + se->nr_pages)) {
1319                         return se->start_block + (offset - se->start_page);
1320                 }
1321                 lh = se->list.next;
1322                 se = list_entry(lh, struct swap_extent, list);
1323                 sis->curr_swap_extent = se;
1324                 BUG_ON(se == start_se);         /* It *must* be present */
1325         }
1326 }
1327
1328 /*
1329  * Returns the page offset into bdev for the specified page's swap entry.
1330  */
1331 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1332 {
1333         swp_entry_t entry;
1334         entry.val = page_private(page);
1335         return map_swap_entry(entry, bdev);
1336 }
1337
1338 /*
1339  * Free all of a swapdev's extent information
1340  */
1341 static void destroy_swap_extents(struct swap_info_struct *sis)
1342 {
1343         while (!list_empty(&sis->first_swap_extent.list)) {
1344                 struct swap_extent *se;
1345
1346                 se = list_entry(sis->first_swap_extent.list.next,
1347                                 struct swap_extent, list);
1348                 list_del(&se->list);
1349                 kfree(se);
1350         }
1351 }
1352
1353 /*
1354  * Add a block range (and the corresponding page range) into this swapdev's
1355  * extent list.  The extent list is kept sorted in page order.
1356  *
1357  * This function rather assumes that it is called in ascending page order.
1358  */
1359 static int
1360 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1361                 unsigned long nr_pages, sector_t start_block)
1362 {
1363         struct swap_extent *se;
1364         struct swap_extent *new_se;
1365         struct list_head *lh;
1366
1367         if (start_page == 0) {
1368                 se = &sis->first_swap_extent;
1369                 sis->curr_swap_extent = se;
1370                 se->start_page = 0;
1371                 se->nr_pages = nr_pages;
1372                 se->start_block = start_block;
1373                 return 1;
1374         } else {
1375                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1376                 se = list_entry(lh, struct swap_extent, list);
1377                 BUG_ON(se->start_page + se->nr_pages != start_page);
1378                 if (se->start_block + se->nr_pages == start_block) {
1379                         /* Merge it */
1380                         se->nr_pages += nr_pages;
1381                         return 0;
1382                 }
1383         }
1384
1385         /*
1386          * No merge.  Insert a new extent, preserving ordering.
1387          */
1388         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1389         if (new_se == NULL)
1390                 return -ENOMEM;
1391         new_se->start_page = start_page;
1392         new_se->nr_pages = nr_pages;
1393         new_se->start_block = start_block;
1394
1395         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1396         return 1;
1397 }
1398
1399 /*
1400  * A `swap extent' is a simple thing which maps a contiguous range of pages
1401  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1402  * is built at swapon time and is then used at swap_writepage/swap_readpage
1403  * time for locating where on disk a page belongs.
1404  *
1405  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1406  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1407  * swap files identically.
1408  *
1409  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1410  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1411  * swapfiles are handled *identically* after swapon time.
1412  *
1413  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1414  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1415  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1416  * requirements, they are simply tossed out - we will never use those blocks
1417  * for swapping.
1418  *
1419  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1420  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1421  * which will scribble on the fs.
1422  *
1423  * The amount of disk space which a single swap extent represents varies.
1424  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1425  * extents in the list.  To avoid much list walking, we cache the previous
1426  * search location in `curr_swap_extent', and start new searches from there.
1427  * This is extremely effective.  The average number of iterations in
1428  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1429  */
1430 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1431 {
1432         struct inode *inode;
1433         unsigned blocks_per_page;
1434         unsigned long page_no;
1435         unsigned blkbits;
1436         sector_t probe_block;
1437         sector_t last_block;
1438         sector_t lowest_block = -1;
1439         sector_t highest_block = 0;
1440         int nr_extents = 0;
1441         int ret;
1442
1443         inode = sis->swap_file->f_mapping->host;
1444         if (S_ISBLK(inode->i_mode)) {
1445                 ret = add_swap_extent(sis, 0, sis->max, 0);
1446                 *span = sis->pages;
1447                 goto out;
1448         }
1449
1450         blkbits = inode->i_blkbits;
1451         blocks_per_page = PAGE_SIZE >> blkbits;
1452
1453         /*
1454          * Map all the blocks into the extent list.  This code doesn't try
1455          * to be very smart.
1456          */
1457         probe_block = 0;
1458         page_no = 0;
1459         last_block = i_size_read(inode) >> blkbits;
1460         while ((probe_block + blocks_per_page) <= last_block &&
1461                         page_no < sis->max) {
1462                 unsigned block_in_page;
1463                 sector_t first_block;
1464
1465                 first_block = bmap(inode, probe_block);
1466                 if (first_block == 0)
1467                         goto bad_bmap;
1468
1469                 /*
1470                  * It must be PAGE_SIZE aligned on-disk
1471                  */
1472                 if (first_block & (blocks_per_page - 1)) {
1473                         probe_block++;
1474                         goto reprobe;
1475                 }
1476
1477                 for (block_in_page = 1; block_in_page < blocks_per_page;
1478                                         block_in_page++) {
1479                         sector_t block;
1480
1481                         block = bmap(inode, probe_block + block_in_page);
1482                         if (block == 0)
1483                                 goto bad_bmap;
1484                         if (block != first_block + block_in_page) {
1485                                 /* Discontiguity */
1486                                 probe_block++;
1487                                 goto reprobe;
1488                         }
1489                 }
1490
1491                 first_block >>= (PAGE_SHIFT - blkbits);
1492                 if (page_no) {  /* exclude the header page */
1493                         if (first_block < lowest_block)
1494                                 lowest_block = first_block;
1495                         if (first_block > highest_block)
1496                                 highest_block = first_block;
1497                 }
1498
1499                 /*
1500                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1501                  */
1502                 ret = add_swap_extent(sis, page_no, 1, first_block);
1503                 if (ret < 0)
1504                         goto out;
1505                 nr_extents += ret;
1506                 page_no++;
1507                 probe_block += blocks_per_page;
1508 reprobe:
1509                 continue;
1510         }
1511         ret = nr_extents;
1512         *span = 1 + highest_block - lowest_block;
1513         if (page_no == 0)
1514                 page_no = 1;    /* force Empty message */
1515         sis->max = page_no;
1516         sis->pages = page_no - 1;
1517         sis->highest_bit = page_no - 1;
1518 out:
1519         return ret;
1520 bad_bmap:
1521         printk(KERN_ERR "swapon: swapfile has holes\n");
1522         ret = -EINVAL;
1523         goto out;
1524 }
1525
1526 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1527 {
1528         struct swap_info_struct *p = NULL;
1529         unsigned char *swap_map;
1530         struct file *swap_file, *victim;
1531         struct address_space *mapping;
1532         struct inode *inode;
1533         char *pathname;
1534         int i, type, prev;
1535         int err;
1536
1537         if (!capable(CAP_SYS_ADMIN))
1538                 return -EPERM;
1539
1540         pathname = getname(specialfile);
1541         err = PTR_ERR(pathname);
1542         if (IS_ERR(pathname))
1543                 goto out;
1544
1545         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1546         putname(pathname);
1547         err = PTR_ERR(victim);
1548         if (IS_ERR(victim))
1549                 goto out;
1550
1551         mapping = victim->f_mapping;
1552         prev = -1;
1553         spin_lock(&swap_lock);
1554         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1555                 p = swap_info[type];
1556                 if (p->flags & SWP_WRITEOK) {
1557                         if (p->swap_file->f_mapping == mapping)
1558                                 break;
1559                 }
1560                 prev = type;
1561         }
1562         if (type < 0) {
1563                 err = -EINVAL;
1564                 spin_unlock(&swap_lock);
1565                 goto out_dput;
1566         }
1567         if (!security_vm_enough_memory(p->pages))
1568                 vm_unacct_memory(p->pages);
1569         else {
1570                 err = -ENOMEM;
1571                 spin_unlock(&swap_lock);
1572                 goto out_dput;
1573         }
1574         if (prev < 0)
1575                 swap_list.head = p->next;
1576         else
1577                 swap_info[prev]->next = p->next;
1578         if (type == swap_list.next) {
1579                 /* just pick something that's safe... */
1580                 swap_list.next = swap_list.head;
1581         }
1582         if (p->prio < 0) {
1583                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1584                         swap_info[i]->prio = p->prio--;
1585                 least_priority++;
1586         }
1587         nr_swap_pages -= p->pages;
1588         total_swap_pages -= p->pages;
1589         p->flags &= ~SWP_WRITEOK;
1590         spin_unlock(&swap_lock);
1591
1592         current->flags |= PF_OOM_ORIGIN;
1593         err = try_to_unuse(type);
1594         current->flags &= ~PF_OOM_ORIGIN;
1595
1596         if (err) {
1597                 /* re-insert swap space back into swap_list */
1598                 spin_lock(&swap_lock);
1599                 if (p->prio < 0)
1600                         p->prio = --least_priority;
1601                 prev = -1;
1602                 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1603                         if (p->prio >= swap_info[i]->prio)
1604                                 break;
1605                         prev = i;
1606                 }
1607                 p->next = i;
1608                 if (prev < 0)
1609                         swap_list.head = swap_list.next = type;
1610                 else
1611                         swap_info[prev]->next = type;
1612                 nr_swap_pages += p->pages;
1613                 total_swap_pages += p->pages;
1614                 p->flags |= SWP_WRITEOK;
1615                 spin_unlock(&swap_lock);
1616                 goto out_dput;
1617         }
1618
1619         /* wait for any unplug function to finish */
1620         down_write(&swap_unplug_sem);
1621         up_write(&swap_unplug_sem);
1622
1623         destroy_swap_extents(p);
1624         if (p->flags & SWP_CONTINUED)
1625                 free_swap_count_continuations(p);
1626
1627         mutex_lock(&swapon_mutex);
1628         spin_lock(&swap_lock);
1629         drain_mmlist();
1630
1631         /* wait for anyone still in scan_swap_map */
1632         p->highest_bit = 0;             /* cuts scans short */
1633         while (p->flags >= SWP_SCANNING) {
1634                 spin_unlock(&swap_lock);
1635                 schedule_timeout_uninterruptible(1);
1636                 spin_lock(&swap_lock);
1637         }
1638
1639         swap_file = p->swap_file;
1640         p->swap_file = NULL;
1641         p->max = 0;
1642         swap_map = p->swap_map;
1643         p->swap_map = NULL;
1644         p->flags = 0;
1645         spin_unlock(&swap_lock);
1646         mutex_unlock(&swapon_mutex);
1647         vfree(swap_map);
1648         /* Destroy swap account informatin */
1649         swap_cgroup_swapoff(type);
1650
1651         inode = mapping->host;
1652         if (S_ISBLK(inode->i_mode)) {
1653                 struct block_device *bdev = I_BDEV(inode);
1654                 set_blocksize(bdev, p->old_block_size);
1655                 bd_release(bdev);
1656         } else {
1657                 mutex_lock(&inode->i_mutex);
1658                 inode->i_flags &= ~S_SWAPFILE;
1659                 mutex_unlock(&inode->i_mutex);
1660         }
1661         filp_close(swap_file, NULL);
1662         err = 0;
1663
1664 out_dput:
1665         filp_close(victim, NULL);
1666 out:
1667         return err;
1668 }
1669
1670 #ifdef CONFIG_PROC_FS
1671 /* iterator */
1672 static void *swap_start(struct seq_file *swap, loff_t *pos)
1673 {
1674         struct swap_info_struct *si;
1675         int type;
1676         loff_t l = *pos;
1677
1678         mutex_lock(&swapon_mutex);
1679
1680         if (!l)
1681                 return SEQ_START_TOKEN;
1682
1683         for (type = 0; type < nr_swapfiles; type++) {
1684                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1685                 si = swap_info[type];
1686                 if (!(si->flags & SWP_USED) || !si->swap_map)
1687                         continue;
1688                 if (!--l)
1689                         return si;
1690         }
1691
1692         return NULL;
1693 }
1694
1695 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1696 {
1697         struct swap_info_struct *si = v;
1698         int type;
1699
1700         if (v == SEQ_START_TOKEN)
1701                 type = 0;
1702         else
1703                 type = si->type + 1;
1704
1705         for (; type < nr_swapfiles; type++) {
1706                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1707                 si = swap_info[type];
1708                 if (!(si->flags & SWP_USED) || !si->swap_map)
1709                         continue;
1710                 ++*pos;
1711                 return si;
1712         }
1713
1714         return NULL;
1715 }
1716
1717 static void swap_stop(struct seq_file *swap, void *v)
1718 {
1719         mutex_unlock(&swapon_mutex);
1720 }
1721
1722 static int swap_show(struct seq_file *swap, void *v)
1723 {
1724         struct swap_info_struct *si = v;
1725         struct file *file;
1726         int len;
1727
1728         if (si == SEQ_START_TOKEN) {
1729                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1730                 return 0;
1731         }
1732
1733         file = si->swap_file;
1734         len = seq_path(swap, &file->f_path, " \t\n\\");
1735         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1736                         len < 40 ? 40 - len : 1, " ",
1737                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1738                                 "partition" : "file\t",
1739                         si->pages << (PAGE_SHIFT - 10),
1740                         si->inuse_pages << (PAGE_SHIFT - 10),
1741                         si->prio);
1742         return 0;
1743 }
1744
1745 static const struct seq_operations swaps_op = {
1746         .start =        swap_start,
1747         .next =         swap_next,
1748         .stop =         swap_stop,
1749         .show =         swap_show
1750 };
1751
1752 static int swaps_open(struct inode *inode, struct file *file)
1753 {
1754         return seq_open(file, &swaps_op);
1755 }
1756
1757 static const struct file_operations proc_swaps_operations = {
1758         .open           = swaps_open,
1759         .read           = seq_read,
1760         .llseek         = seq_lseek,
1761         .release        = seq_release,
1762 };
1763
1764 static int __init procswaps_init(void)
1765 {
1766         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1767         return 0;
1768 }
1769 __initcall(procswaps_init);
1770 #endif /* CONFIG_PROC_FS */
1771
1772 #ifdef MAX_SWAPFILES_CHECK
1773 static int __init max_swapfiles_check(void)
1774 {
1775         MAX_SWAPFILES_CHECK();
1776         return 0;
1777 }
1778 late_initcall(max_swapfiles_check);
1779 #endif
1780
1781 /*
1782  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1783  *
1784  * The swapon system call
1785  */
1786 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1787 {
1788         struct swap_info_struct *p;
1789         char *name = NULL;
1790         struct block_device *bdev = NULL;
1791         struct file *swap_file = NULL;
1792         struct address_space *mapping;
1793         unsigned int type;
1794         int i, prev;
1795         int error;
1796         union swap_header *swap_header;
1797         unsigned int nr_good_pages;
1798         int nr_extents = 0;
1799         sector_t span;
1800         unsigned long maxpages;
1801         unsigned long swapfilepages;
1802         unsigned char *swap_map = NULL;
1803         struct page *page = NULL;
1804         struct inode *inode = NULL;
1805         int did_down = 0;
1806
1807         if (!capable(CAP_SYS_ADMIN))
1808                 return -EPERM;
1809
1810         p = kzalloc(sizeof(*p), GFP_KERNEL);
1811         if (!p)
1812                 return -ENOMEM;
1813
1814         spin_lock(&swap_lock);
1815         for (type = 0; type < nr_swapfiles; type++) {
1816                 if (!(swap_info[type]->flags & SWP_USED))
1817                         break;
1818         }
1819         error = -EPERM;
1820         if (type >= MAX_SWAPFILES) {
1821                 spin_unlock(&swap_lock);
1822                 kfree(p);
1823                 goto out;
1824         }
1825         if (type >= nr_swapfiles) {
1826                 p->type = type;
1827                 swap_info[type] = p;
1828                 /*
1829                  * Write swap_info[type] before nr_swapfiles, in case a
1830                  * racing procfs swap_start() or swap_next() is reading them.
1831                  * (We never shrink nr_swapfiles, we never free this entry.)
1832                  */
1833                 smp_wmb();
1834                 nr_swapfiles++;
1835         } else {
1836                 kfree(p);
1837                 p = swap_info[type];
1838                 /*
1839                  * Do not memset this entry: a racing procfs swap_next()
1840                  * would be relying on p->type to remain valid.
1841                  */
1842         }
1843         INIT_LIST_HEAD(&p->first_swap_extent.list);
1844         p->flags = SWP_USED;
1845         p->next = -1;
1846         spin_unlock(&swap_lock);
1847
1848         name = getname(specialfile);
1849         error = PTR_ERR(name);
1850         if (IS_ERR(name)) {
1851                 name = NULL;
1852                 goto bad_swap_2;
1853         }
1854         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1855         error = PTR_ERR(swap_file);
1856         if (IS_ERR(swap_file)) {
1857                 swap_file = NULL;
1858                 goto bad_swap_2;
1859         }
1860
1861         p->swap_file = swap_file;
1862         mapping = swap_file->f_mapping;
1863         inode = mapping->host;
1864
1865         error = -EBUSY;
1866         for (i = 0; i < nr_swapfiles; i++) {
1867                 struct swap_info_struct *q = swap_info[i];
1868
1869                 if (i == type || !q->swap_file)
1870                         continue;
1871                 if (mapping == q->swap_file->f_mapping)
1872                         goto bad_swap;
1873         }
1874
1875         error = -EINVAL;
1876         if (S_ISBLK(inode->i_mode)) {
1877                 bdev = I_BDEV(inode);
1878                 error = bd_claim(bdev, sys_swapon);
1879                 if (error < 0) {
1880                         bdev = NULL;
1881                         error = -EINVAL;
1882                         goto bad_swap;
1883                 }
1884                 p->old_block_size = block_size(bdev);
1885                 error = set_blocksize(bdev, PAGE_SIZE);
1886                 if (error < 0)
1887                         goto bad_swap;
1888                 p->bdev = bdev;
1889         } else if (S_ISREG(inode->i_mode)) {
1890                 p->bdev = inode->i_sb->s_bdev;
1891                 mutex_lock(&inode->i_mutex);
1892                 did_down = 1;
1893                 if (IS_SWAPFILE(inode)) {
1894                         error = -EBUSY;
1895                         goto bad_swap;
1896                 }
1897         } else {
1898                 goto bad_swap;
1899         }
1900
1901         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1902
1903         /*
1904          * Read the swap header.
1905          */
1906         if (!mapping->a_ops->readpage) {
1907                 error = -EINVAL;
1908                 goto bad_swap;
1909         }
1910         page = read_mapping_page(mapping, 0, swap_file);
1911         if (IS_ERR(page)) {
1912                 error = PTR_ERR(page);
1913                 goto bad_swap;
1914         }
1915         swap_header = kmap(page);
1916
1917         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1918                 printk(KERN_ERR "Unable to find swap-space signature\n");
1919                 error = -EINVAL;
1920                 goto bad_swap;
1921         }
1922
1923         /* swap partition endianess hack... */
1924         if (swab32(swap_header->info.version) == 1) {
1925                 swab32s(&swap_header->info.version);
1926                 swab32s(&swap_header->info.last_page);
1927                 swab32s(&swap_header->info.nr_badpages);
1928                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1929                         swab32s(&swap_header->info.badpages[i]);
1930         }
1931         /* Check the swap header's sub-version */
1932         if (swap_header->info.version != 1) {
1933                 printk(KERN_WARNING
1934                        "Unable to handle swap header version %d\n",
1935                        swap_header->info.version);
1936                 error = -EINVAL;
1937                 goto bad_swap;
1938         }
1939
1940         p->lowest_bit  = 1;
1941         p->cluster_next = 1;
1942         p->cluster_nr = 0;
1943
1944         /*
1945          * Find out how many pages are allowed for a single swap
1946          * device. There are two limiting factors: 1) the number of
1947          * bits for the swap offset in the swp_entry_t type and
1948          * 2) the number of bits in the a swap pte as defined by
1949          * the different architectures. In order to find the
1950          * largest possible bit mask a swap entry with swap type 0
1951          * and swap offset ~0UL is created, encoded to a swap pte,
1952          * decoded to a swp_entry_t again and finally the swap
1953          * offset is extracted. This will mask all the bits from
1954          * the initial ~0UL mask that can't be encoded in either
1955          * the swp_entry_t or the architecture definition of a
1956          * swap pte.
1957          */
1958         maxpages = swp_offset(pte_to_swp_entry(
1959                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1960         if (maxpages > swap_header->info.last_page) {
1961                 maxpages = swap_header->info.last_page + 1;
1962                 /* p->max is an unsigned int: don't overflow it */
1963                 if ((unsigned int)maxpages == 0)
1964                         maxpages = UINT_MAX;
1965         }
1966         p->highest_bit = maxpages - 1;
1967
1968         error = -EINVAL;
1969         if (!maxpages)
1970                 goto bad_swap;
1971         if (swapfilepages && maxpages > swapfilepages) {
1972                 printk(KERN_WARNING
1973                        "Swap area shorter than signature indicates\n");
1974                 goto bad_swap;
1975         }
1976         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1977                 goto bad_swap;
1978         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1979                 goto bad_swap;
1980
1981         /* OK, set up the swap map and apply the bad block list */
1982         swap_map = vmalloc(maxpages);
1983         if (!swap_map) {
1984                 error = -ENOMEM;
1985                 goto bad_swap;
1986         }
1987
1988         memset(swap_map, 0, maxpages);
1989         nr_good_pages = maxpages - 1;   /* omit header page */
1990
1991         for (i = 0; i < swap_header->info.nr_badpages; i++) {
1992                 unsigned int page_nr = swap_header->info.badpages[i];
1993                 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
1994                         error = -EINVAL;
1995                         goto bad_swap;
1996                 }
1997                 if (page_nr < maxpages) {
1998                         swap_map[page_nr] = SWAP_MAP_BAD;
1999                         nr_good_pages--;
2000                 }
2001         }
2002
2003         error = swap_cgroup_swapon(type, maxpages);
2004         if (error)
2005                 goto bad_swap;
2006
2007         if (nr_good_pages) {
2008                 swap_map[0] = SWAP_MAP_BAD;
2009                 p->max = maxpages;
2010                 p->pages = nr_good_pages;
2011                 nr_extents = setup_swap_extents(p, &span);
2012                 if (nr_extents < 0) {
2013                         error = nr_extents;
2014                         goto bad_swap;
2015                 }
2016                 nr_good_pages = p->pages;
2017         }
2018         if (!nr_good_pages) {
2019                 printk(KERN_WARNING "Empty swap-file\n");
2020                 error = -EINVAL;
2021                 goto bad_swap;
2022         }
2023
2024         if (p->bdev) {
2025                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2026                         p->flags |= SWP_SOLIDSTATE;
2027                         p->cluster_next = 1 + (random32() % p->highest_bit);
2028                 }
2029                 if (discard_swap(p) == 0)
2030                         p->flags |= SWP_DISCARDABLE;
2031         }
2032
2033         mutex_lock(&swapon_mutex);
2034         spin_lock(&swap_lock);
2035         if (swap_flags & SWAP_FLAG_PREFER)
2036                 p->prio =
2037                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2038         else
2039                 p->prio = --least_priority;
2040         p->swap_map = swap_map;
2041         p->flags |= SWP_WRITEOK;
2042         nr_swap_pages += nr_good_pages;
2043         total_swap_pages += nr_good_pages;
2044
2045         printk(KERN_INFO "Adding %uk swap on %s.  "
2046                         "Priority:%d extents:%d across:%lluk %s%s\n",
2047                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2048                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2049                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2050                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2051
2052         /* insert swap space into swap_list: */
2053         prev = -1;
2054         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2055                 if (p->prio >= swap_info[i]->prio)
2056                         break;
2057                 prev = i;
2058         }
2059         p->next = i;
2060         if (prev < 0)
2061                 swap_list.head = swap_list.next = type;
2062         else
2063                 swap_info[prev]->next = type;
2064         spin_unlock(&swap_lock);
2065         mutex_unlock(&swapon_mutex);
2066         error = 0;
2067         goto out;
2068 bad_swap:
2069         if (bdev) {
2070                 set_blocksize(bdev, p->old_block_size);
2071                 bd_release(bdev);
2072         }
2073         destroy_swap_extents(p);
2074         swap_cgroup_swapoff(type);
2075 bad_swap_2:
2076         spin_lock(&swap_lock);
2077         p->swap_file = NULL;
2078         p->flags = 0;
2079         spin_unlock(&swap_lock);
2080         vfree(swap_map);
2081         if (swap_file)
2082                 filp_close(swap_file, NULL);
2083 out:
2084         if (page && !IS_ERR(page)) {
2085                 kunmap(page);
2086                 page_cache_release(page);
2087         }
2088         if (name)
2089                 putname(name);
2090         if (did_down) {
2091                 if (!error)
2092                         inode->i_flags |= S_SWAPFILE;
2093                 mutex_unlock(&inode->i_mutex);
2094         }
2095         return error;
2096 }
2097
2098 void si_swapinfo(struct sysinfo *val)
2099 {
2100         unsigned int type;
2101         unsigned long nr_to_be_unused = 0;
2102
2103         spin_lock(&swap_lock);
2104         for (type = 0; type < nr_swapfiles; type++) {
2105                 struct swap_info_struct *si = swap_info[type];
2106
2107                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2108                         nr_to_be_unused += si->inuse_pages;
2109         }
2110         val->freeswap = nr_swap_pages + nr_to_be_unused;
2111         val->totalswap = total_swap_pages + nr_to_be_unused;
2112         spin_unlock(&swap_lock);
2113 }
2114
2115 /*
2116  * Verify that a swap entry is valid and increment its swap map count.
2117  *
2118  * Returns error code in following case.
2119  * - success -> 0
2120  * - swp_entry is invalid -> EINVAL
2121  * - swp_entry is migration entry -> EINVAL
2122  * - swap-cache reference is requested but there is already one. -> EEXIST
2123  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2124  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2125  */
2126 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2127 {
2128         struct swap_info_struct *p;
2129         unsigned long offset, type;
2130         unsigned char count;
2131         unsigned char has_cache;
2132         int err = -EINVAL;
2133
2134         if (non_swap_entry(entry))
2135                 goto out;
2136
2137         type = swp_type(entry);
2138         if (type >= nr_swapfiles)
2139                 goto bad_file;
2140         p = swap_info[type];
2141         offset = swp_offset(entry);
2142
2143         spin_lock(&swap_lock);
2144         if (unlikely(offset >= p->max))
2145                 goto unlock_out;
2146
2147         count = p->swap_map[offset];
2148         has_cache = count & SWAP_HAS_CACHE;
2149         count &= ~SWAP_HAS_CACHE;
2150         err = 0;
2151
2152         if (usage == SWAP_HAS_CACHE) {
2153
2154                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2155                 if (!has_cache && count)
2156                         has_cache = SWAP_HAS_CACHE;
2157                 else if (has_cache)             /* someone else added cache */
2158                         err = -EEXIST;
2159                 else                            /* no users remaining */
2160                         err = -ENOENT;
2161
2162         } else if (count || has_cache) {
2163
2164                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2165                         count += usage;
2166                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2167                         err = -EINVAL;
2168                 else if (swap_count_continued(p, offset, count))
2169                         count = COUNT_CONTINUED;
2170                 else
2171                         err = -ENOMEM;
2172         } else
2173                 err = -ENOENT;                  /* unused swap entry */
2174
2175         p->swap_map[offset] = count | has_cache;
2176
2177 unlock_out:
2178         spin_unlock(&swap_lock);
2179 out:
2180         return err;
2181
2182 bad_file:
2183         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2184         goto out;
2185 }
2186
2187 /*
2188  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2189  * (in which case its reference count is never incremented).
2190  */
2191 void swap_shmem_alloc(swp_entry_t entry)
2192 {
2193         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2194 }
2195
2196 /*
2197  * Increase reference count of swap entry by 1.
2198  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2199  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2200  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2201  * might occur if a page table entry has got corrupted.
2202  */
2203 int swap_duplicate(swp_entry_t entry)
2204 {
2205         int err = 0;
2206
2207         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2208                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2209         return err;
2210 }
2211
2212 /*
2213  * @entry: swap entry for which we allocate swap cache.
2214  *
2215  * Called when allocating swap cache for existing swap entry,
2216  * This can return error codes. Returns 0 at success.
2217  * -EBUSY means there is a swap cache.
2218  * Note: return code is different from swap_duplicate().
2219  */
2220 int swapcache_prepare(swp_entry_t entry)
2221 {
2222         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2223 }
2224
2225 /*
2226  * swap_lock prevents swap_map being freed. Don't grab an extra
2227  * reference on the swaphandle, it doesn't matter if it becomes unused.
2228  */
2229 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2230 {
2231         struct swap_info_struct *si;
2232         int our_page_cluster = page_cluster;
2233         pgoff_t target, toff;
2234         pgoff_t base, end;
2235         int nr_pages = 0;
2236
2237         if (!our_page_cluster)  /* no readahead */
2238                 return 0;
2239
2240         si = swap_info[swp_type(entry)];
2241         target = swp_offset(entry);
2242         base = (target >> our_page_cluster) << our_page_cluster;
2243         end = base + (1 << our_page_cluster);
2244         if (!base)              /* first page is swap header */
2245                 base++;
2246
2247         spin_lock(&swap_lock);
2248         if (end > si->max)      /* don't go beyond end of map */
2249                 end = si->max;
2250
2251         /* Count contiguous allocated slots above our target */
2252         for (toff = target; ++toff < end; nr_pages++) {
2253                 /* Don't read in free or bad pages */
2254                 if (!si->swap_map[toff])
2255                         break;
2256                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2257                         break;
2258         }
2259         /* Count contiguous allocated slots below our target */
2260         for (toff = target; --toff >= base; nr_pages++) {
2261                 /* Don't read in free or bad pages */
2262                 if (!si->swap_map[toff])
2263                         break;
2264                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2265                         break;
2266         }
2267         spin_unlock(&swap_lock);
2268
2269         /*
2270          * Indicate starting offset, and return number of pages to get:
2271          * if only 1, say 0, since there's then no readahead to be done.
2272          */
2273         *offset = ++toff;
2274         return nr_pages? ++nr_pages: 0;
2275 }
2276
2277 /*
2278  * add_swap_count_continuation - called when a swap count is duplicated
2279  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2280  * page of the original vmalloc'ed swap_map, to hold the continuation count
2281  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2282  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2283  *
2284  * These continuation pages are seldom referenced: the common paths all work
2285  * on the original swap_map, only referring to a continuation page when the
2286  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2287  *
2288  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2289  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2290  * can be called after dropping locks.
2291  */
2292 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2293 {
2294         struct swap_info_struct *si;
2295         struct page *head;
2296         struct page *page;
2297         struct page *list_page;
2298         pgoff_t offset;
2299         unsigned char count;
2300
2301         /*
2302          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2303          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2304          */
2305         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2306
2307         si = swap_info_get(entry);
2308         if (!si) {
2309                 /*
2310                  * An acceptable race has occurred since the failing
2311                  * __swap_duplicate(): the swap entry has been freed,
2312                  * perhaps even the whole swap_map cleared for swapoff.
2313                  */
2314                 goto outer;
2315         }
2316
2317         offset = swp_offset(entry);
2318         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2319
2320         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2321                 /*
2322                  * The higher the swap count, the more likely it is that tasks
2323                  * will race to add swap count continuation: we need to avoid
2324                  * over-provisioning.
2325                  */
2326                 goto out;
2327         }
2328
2329         if (!page) {
2330                 spin_unlock(&swap_lock);
2331                 return -ENOMEM;
2332         }
2333
2334         /*
2335          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2336          * no architecture is using highmem pages for kernel pagetables: so it
2337          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2338          */
2339         head = vmalloc_to_page(si->swap_map + offset);
2340         offset &= ~PAGE_MASK;
2341
2342         /*
2343          * Page allocation does not initialize the page's lru field,
2344          * but it does always reset its private field.
2345          */
2346         if (!page_private(head)) {
2347                 BUG_ON(count & COUNT_CONTINUED);
2348                 INIT_LIST_HEAD(&head->lru);
2349                 set_page_private(head, SWP_CONTINUED);
2350                 si->flags |= SWP_CONTINUED;
2351         }
2352
2353         list_for_each_entry(list_page, &head->lru, lru) {
2354                 unsigned char *map;
2355
2356                 /*
2357                  * If the previous map said no continuation, but we've found
2358                  * a continuation page, free our allocation and use this one.
2359                  */
2360                 if (!(count & COUNT_CONTINUED))
2361                         goto out;
2362
2363                 map = kmap_atomic(list_page, KM_USER0) + offset;
2364                 count = *map;
2365                 kunmap_atomic(map, KM_USER0);
2366
2367                 /*
2368                  * If this continuation count now has some space in it,
2369                  * free our allocation and use this one.
2370                  */
2371                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2372                         goto out;
2373         }
2374
2375         list_add_tail(&page->lru, &head->lru);
2376         page = NULL;                    /* now it's attached, don't free it */
2377 out:
2378         spin_unlock(&swap_lock);
2379 outer:
2380         if (page)
2381                 __free_page(page);
2382         return 0;
2383 }
2384
2385 /*
2386  * swap_count_continued - when the original swap_map count is incremented
2387  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2388  * into, carry if so, or else fail until a new continuation page is allocated;
2389  * when the original swap_map count is decremented from 0 with continuation,
2390  * borrow from the continuation and report whether it still holds more.
2391  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2392  */
2393 static bool swap_count_continued(struct swap_info_struct *si,
2394                                  pgoff_t offset, unsigned char count)
2395 {
2396         struct page *head;
2397         struct page *page;
2398         unsigned char *map;
2399
2400         head = vmalloc_to_page(si->swap_map + offset);
2401         if (page_private(head) != SWP_CONTINUED) {
2402                 BUG_ON(count & COUNT_CONTINUED);
2403                 return false;           /* need to add count continuation */
2404         }
2405
2406         offset &= ~PAGE_MASK;
2407         page = list_entry(head->lru.next, struct page, lru);
2408         map = kmap_atomic(page, KM_USER0) + offset;
2409
2410         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2411                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2412
2413         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2414                 /*
2415                  * Think of how you add 1 to 999
2416                  */
2417                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2418                         kunmap_atomic(map, KM_USER0);
2419                         page = list_entry(page->lru.next, struct page, lru);
2420                         BUG_ON(page == head);
2421                         map = kmap_atomic(page, KM_USER0) + offset;
2422                 }
2423                 if (*map == SWAP_CONT_MAX) {
2424                         kunmap_atomic(map, KM_USER0);
2425                         page = list_entry(page->lru.next, struct page, lru);
2426                         if (page == head)
2427                                 return false;   /* add count continuation */
2428                         map = kmap_atomic(page, KM_USER0) + offset;
2429 init_map:               *map = 0;               /* we didn't zero the page */
2430                 }
2431                 *map += 1;
2432                 kunmap_atomic(map, KM_USER0);
2433                 page = list_entry(page->lru.prev, struct page, lru);
2434                 while (page != head) {
2435                         map = kmap_atomic(page, KM_USER0) + offset;
2436                         *map = COUNT_CONTINUED;
2437                         kunmap_atomic(map, KM_USER0);
2438                         page = list_entry(page->lru.prev, struct page, lru);
2439                 }
2440                 return true;                    /* incremented */
2441
2442         } else {                                /* decrementing */
2443                 /*
2444                  * Think of how you subtract 1 from 1000
2445                  */
2446                 BUG_ON(count != COUNT_CONTINUED);
2447                 while (*map == COUNT_CONTINUED) {
2448                         kunmap_atomic(map, KM_USER0);
2449                         page = list_entry(page->lru.next, struct page, lru);
2450                         BUG_ON(page == head);
2451                         map = kmap_atomic(page, KM_USER0) + offset;
2452                 }
2453                 BUG_ON(*map == 0);
2454                 *map -= 1;
2455                 if (*map == 0)
2456                         count = 0;
2457                 kunmap_atomic(map, KM_USER0);
2458                 page = list_entry(page->lru.prev, struct page, lru);
2459                 while (page != head) {
2460                         map = kmap_atomic(page, KM_USER0) + offset;
2461                         *map = SWAP_CONT_MAX | count;
2462                         count = COUNT_CONTINUED;
2463                         kunmap_atomic(map, KM_USER0);
2464                         page = list_entry(page->lru.prev, struct page, lru);
2465                 }
2466                 return count == COUNT_CONTINUED;
2467         }
2468 }
2469
2470 /*
2471  * free_swap_count_continuations - swapoff free all the continuation pages
2472  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2473  */
2474 static void free_swap_count_continuations(struct swap_info_struct *si)
2475 {
2476         pgoff_t offset;
2477
2478         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2479                 struct page *head;
2480                 head = vmalloc_to_page(si->swap_map + offset);
2481                 if (page_private(head)) {
2482                         struct list_head *this, *next;
2483                         list_for_each_safe(this, next, &head->lru) {
2484                                 struct page *page;
2485                                 page = list_entry(this, struct page, lru);
2486                                 list_del(this);
2487                                 __free_page(page);
2488                         }
2489                 }
2490         }
2491 }