]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/swapfile.c
Merge branch 'akpm'
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <linux/swapops.h>
40 #include <linux/page_cgroup.h>
41
42 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
43                                  unsigned char);
44 static void free_swap_count_continuations(struct swap_info_struct *);
45 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
46
47 DEFINE_SPINLOCK(swap_lock);
48 static unsigned int nr_swapfiles;
49 long nr_swap_pages;
50 long total_swap_pages;
51 static int least_priority;
52
53 static const char Bad_file[] = "Bad swap file entry ";
54 static const char Unused_file[] = "Unused swap file entry ";
55 static const char Bad_offset[] = "Bad swap offset entry ";
56 static const char Unused_offset[] = "Unused swap offset entry ";
57
58 struct swap_list_t swap_list = {-1, -1};
59
60 struct swap_info_struct *swap_info[MAX_SWAPFILES];
61
62 static DEFINE_MUTEX(swapon_mutex);
63
64 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
65 /* Activity counter to indicate that a swapon or swapoff has occurred */
66 static atomic_t proc_poll_event = ATOMIC_INIT(0);
67
68 static inline unsigned char swap_count(unsigned char ent)
69 {
70         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
71 }
72
73 /* returns 1 if swap entry is freed */
74 static int
75 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
76 {
77         swp_entry_t entry = swp_entry(si->type, offset);
78         struct page *page;
79         int ret = 0;
80
81         page = find_get_page(&swapper_space, entry.val);
82         if (!page)
83                 return 0;
84         /*
85          * This function is called from scan_swap_map() and it's called
86          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
87          * We have to use trylock for avoiding deadlock. This is a special
88          * case and you should use try_to_free_swap() with explicit lock_page()
89          * in usual operations.
90          */
91         if (trylock_page(page)) {
92                 ret = try_to_free_swap(page);
93                 unlock_page(page);
94         }
95         page_cache_release(page);
96         return ret;
97 }
98
99 /*
100  * swapon tell device that all the old swap contents can be discarded,
101  * to allow the swap device to optimize its wear-levelling.
102  */
103 static int discard_swap(struct swap_info_struct *si)
104 {
105         struct swap_extent *se;
106         sector_t start_block;
107         sector_t nr_blocks;
108         int err = 0;
109
110         /* Do not discard the swap header page! */
111         se = &si->first_swap_extent;
112         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
113         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
114         if (nr_blocks) {
115                 err = blkdev_issue_discard(si->bdev, start_block,
116                                 nr_blocks, GFP_KERNEL, 0);
117                 if (err)
118                         return err;
119                 cond_resched();
120         }
121
122         list_for_each_entry(se, &si->first_swap_extent.list, list) {
123                 start_block = se->start_block << (PAGE_SHIFT - 9);
124                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
125
126                 err = blkdev_issue_discard(si->bdev, start_block,
127                                 nr_blocks, GFP_KERNEL, 0);
128                 if (err)
129                         break;
130
131                 cond_resched();
132         }
133         return err;             /* That will often be -EOPNOTSUPP */
134 }
135
136 /*
137  * swap allocation tell device that a cluster of swap can now be discarded,
138  * to allow the swap device to optimize its wear-levelling.
139  */
140 static void discard_swap_cluster(struct swap_info_struct *si,
141                                  pgoff_t start_page, pgoff_t nr_pages)
142 {
143         struct swap_extent *se = si->curr_swap_extent;
144         int found_extent = 0;
145
146         while (nr_pages) {
147                 struct list_head *lh;
148
149                 if (se->start_page <= start_page &&
150                     start_page < se->start_page + se->nr_pages) {
151                         pgoff_t offset = start_page - se->start_page;
152                         sector_t start_block = se->start_block + offset;
153                         sector_t nr_blocks = se->nr_pages - offset;
154
155                         if (nr_blocks > nr_pages)
156                                 nr_blocks = nr_pages;
157                         start_page += nr_blocks;
158                         nr_pages -= nr_blocks;
159
160                         if (!found_extent++)
161                                 si->curr_swap_extent = se;
162
163                         start_block <<= PAGE_SHIFT - 9;
164                         nr_blocks <<= PAGE_SHIFT - 9;
165                         if (blkdev_issue_discard(si->bdev, start_block,
166                                     nr_blocks, GFP_NOIO, 0))
167                                 break;
168                 }
169
170                 lh = se->list.next;
171                 se = list_entry(lh, struct swap_extent, list);
172         }
173 }
174
175 static int wait_for_discard(void *word)
176 {
177         schedule();
178         return 0;
179 }
180
181 #define SWAPFILE_CLUSTER        256
182 #define LATENCY_LIMIT           256
183
184 static unsigned long scan_swap_map(struct swap_info_struct *si,
185                                    unsigned char usage)
186 {
187         unsigned long offset;
188         unsigned long scan_base;
189         unsigned long last_in_cluster = 0;
190         int latency_ration = LATENCY_LIMIT;
191         int found_free_cluster = 0;
192
193         /*
194          * We try to cluster swap pages by allocating them sequentially
195          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
196          * way, however, we resort to first-free allocation, starting
197          * a new cluster.  This prevents us from scattering swap pages
198          * all over the entire swap partition, so that we reduce
199          * overall disk seek times between swap pages.  -- sct
200          * But we do now try to find an empty cluster.  -Andrea
201          * And we let swap pages go all over an SSD partition.  Hugh
202          */
203
204         si->flags += SWP_SCANNING;
205         scan_base = offset = si->cluster_next;
206
207         if (unlikely(!si->cluster_nr--)) {
208                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
209                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
210                         goto checks;
211                 }
212                 if (si->flags & SWP_DISCARDABLE) {
213                         /*
214                          * Start range check on racing allocations, in case
215                          * they overlap the cluster we eventually decide on
216                          * (we scan without swap_lock to allow preemption).
217                          * It's hardly conceivable that cluster_nr could be
218                          * wrapped during our scan, but don't depend on it.
219                          */
220                         if (si->lowest_alloc)
221                                 goto checks;
222                         si->lowest_alloc = si->max;
223                         si->highest_alloc = 0;
224                 }
225                 spin_unlock(&swap_lock);
226
227                 /*
228                  * If seek is expensive, start searching for new cluster from
229                  * start of partition, to minimize the span of allocated swap.
230                  * But if seek is cheap, search from our current position, so
231                  * that swap is allocated from all over the partition: if the
232                  * Flash Translation Layer only remaps within limited zones,
233                  * we don't want to wear out the first zone too quickly.
234                  */
235                 if (!(si->flags & SWP_SOLIDSTATE))
236                         scan_base = offset = si->lowest_bit;
237                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
238
239                 /* Locate the first empty (unaligned) cluster */
240                 for (; last_in_cluster <= si->highest_bit; offset++) {
241                         if (si->swap_map[offset])
242                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
243                         else if (offset == last_in_cluster) {
244                                 spin_lock(&swap_lock);
245                                 offset -= SWAPFILE_CLUSTER - 1;
246                                 si->cluster_next = offset;
247                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
248                                 found_free_cluster = 1;
249                                 goto checks;
250                         }
251                         if (unlikely(--latency_ration < 0)) {
252                                 cond_resched();
253                                 latency_ration = LATENCY_LIMIT;
254                         }
255                 }
256
257                 offset = si->lowest_bit;
258                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
259
260                 /* Locate the first empty (unaligned) cluster */
261                 for (; last_in_cluster < scan_base; offset++) {
262                         if (si->swap_map[offset])
263                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
264                         else if (offset == last_in_cluster) {
265                                 spin_lock(&swap_lock);
266                                 offset -= SWAPFILE_CLUSTER - 1;
267                                 si->cluster_next = offset;
268                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
269                                 found_free_cluster = 1;
270                                 goto checks;
271                         }
272                         if (unlikely(--latency_ration < 0)) {
273                                 cond_resched();
274                                 latency_ration = LATENCY_LIMIT;
275                         }
276                 }
277
278                 offset = scan_base;
279                 spin_lock(&swap_lock);
280                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
281                 si->lowest_alloc = 0;
282         }
283
284 checks:
285         if (!(si->flags & SWP_WRITEOK))
286                 goto no_page;
287         if (!si->highest_bit)
288                 goto no_page;
289         if (offset > si->highest_bit)
290                 scan_base = offset = si->lowest_bit;
291
292         /* reuse swap entry of cache-only swap if not busy. */
293         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
294                 int swap_was_freed;
295                 spin_unlock(&swap_lock);
296                 swap_was_freed = __try_to_reclaim_swap(si, offset);
297                 spin_lock(&swap_lock);
298                 /* entry was freed successfully, try to use this again */
299                 if (swap_was_freed)
300                         goto checks;
301                 goto scan; /* check next one */
302         }
303
304         if (si->swap_map[offset])
305                 goto scan;
306
307         if (offset == si->lowest_bit)
308                 si->lowest_bit++;
309         if (offset == si->highest_bit)
310                 si->highest_bit--;
311         si->inuse_pages++;
312         if (si->inuse_pages == si->pages) {
313                 si->lowest_bit = si->max;
314                 si->highest_bit = 0;
315         }
316         si->swap_map[offset] = usage;
317         si->cluster_next = offset + 1;
318         si->flags -= SWP_SCANNING;
319
320         if (si->lowest_alloc) {
321                 /*
322                  * Only set when SWP_DISCARDABLE, and there's a scan
323                  * for a free cluster in progress or just completed.
324                  */
325                 if (found_free_cluster) {
326                         /*
327                          * To optimize wear-levelling, discard the
328                          * old data of the cluster, taking care not to
329                          * discard any of its pages that have already
330                          * been allocated by racing tasks (offset has
331                          * already stepped over any at the beginning).
332                          */
333                         if (offset < si->highest_alloc &&
334                             si->lowest_alloc <= last_in_cluster)
335                                 last_in_cluster = si->lowest_alloc - 1;
336                         si->flags |= SWP_DISCARDING;
337                         spin_unlock(&swap_lock);
338
339                         if (offset < last_in_cluster)
340                                 discard_swap_cluster(si, offset,
341                                         last_in_cluster - offset + 1);
342
343                         spin_lock(&swap_lock);
344                         si->lowest_alloc = 0;
345                         si->flags &= ~SWP_DISCARDING;
346
347                         smp_mb();       /* wake_up_bit advises this */
348                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
349
350                 } else if (si->flags & SWP_DISCARDING) {
351                         /*
352                          * Delay using pages allocated by racing tasks
353                          * until the whole discard has been issued. We
354                          * could defer that delay until swap_writepage,
355                          * but it's easier to keep this self-contained.
356                          */
357                         spin_unlock(&swap_lock);
358                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
359                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
360                         spin_lock(&swap_lock);
361                 } else {
362                         /*
363                          * Note pages allocated by racing tasks while
364                          * scan for a free cluster is in progress, so
365                          * that its final discard can exclude them.
366                          */
367                         if (offset < si->lowest_alloc)
368                                 si->lowest_alloc = offset;
369                         if (offset > si->highest_alloc)
370                                 si->highest_alloc = offset;
371                 }
372         }
373         return offset;
374
375 scan:
376         spin_unlock(&swap_lock);
377         while (++offset <= si->highest_bit) {
378                 if (!si->swap_map[offset]) {
379                         spin_lock(&swap_lock);
380                         goto checks;
381                 }
382                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
383                         spin_lock(&swap_lock);
384                         goto checks;
385                 }
386                 if (unlikely(--latency_ration < 0)) {
387                         cond_resched();
388                         latency_ration = LATENCY_LIMIT;
389                 }
390         }
391         offset = si->lowest_bit;
392         while (++offset < scan_base) {
393                 if (!si->swap_map[offset]) {
394                         spin_lock(&swap_lock);
395                         goto checks;
396                 }
397                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
398                         spin_lock(&swap_lock);
399                         goto checks;
400                 }
401                 if (unlikely(--latency_ration < 0)) {
402                         cond_resched();
403                         latency_ration = LATENCY_LIMIT;
404                 }
405         }
406         spin_lock(&swap_lock);
407
408 no_page:
409         si->flags -= SWP_SCANNING;
410         return 0;
411 }
412
413 swp_entry_t get_swap_page(void)
414 {
415         struct swap_info_struct *si;
416         pgoff_t offset;
417         int type, next;
418         int wrapped = 0;
419
420         spin_lock(&swap_lock);
421         if (nr_swap_pages <= 0)
422                 goto noswap;
423         nr_swap_pages--;
424
425         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
426                 si = swap_info[type];
427                 next = si->next;
428                 if (next < 0 ||
429                     (!wrapped && si->prio != swap_info[next]->prio)) {
430                         next = swap_list.head;
431                         wrapped++;
432                 }
433
434                 if (!si->highest_bit)
435                         continue;
436                 if (!(si->flags & SWP_WRITEOK))
437                         continue;
438
439                 swap_list.next = next;
440                 /* This is called for allocating swap entry for cache */
441                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
442                 if (offset) {
443                         spin_unlock(&swap_lock);
444                         return swp_entry(type, offset);
445                 }
446                 next = swap_list.next;
447         }
448
449         nr_swap_pages++;
450 noswap:
451         spin_unlock(&swap_lock);
452         return (swp_entry_t) {0};
453 }
454
455 /* The only caller of this function is now susupend routine */
456 swp_entry_t get_swap_page_of_type(int type)
457 {
458         struct swap_info_struct *si;
459         pgoff_t offset;
460
461         spin_lock(&swap_lock);
462         si = swap_info[type];
463         if (si && (si->flags & SWP_WRITEOK)) {
464                 nr_swap_pages--;
465                 /* This is called for allocating swap entry, not cache */
466                 offset = scan_swap_map(si, 1);
467                 if (offset) {
468                         spin_unlock(&swap_lock);
469                         return swp_entry(type, offset);
470                 }
471                 nr_swap_pages++;
472         }
473         spin_unlock(&swap_lock);
474         return (swp_entry_t) {0};
475 }
476
477 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
478 {
479         struct swap_info_struct *p;
480         unsigned long offset, type;
481
482         if (!entry.val)
483                 goto out;
484         type = swp_type(entry);
485         if (type >= nr_swapfiles)
486                 goto bad_nofile;
487         p = swap_info[type];
488         if (!(p->flags & SWP_USED))
489                 goto bad_device;
490         offset = swp_offset(entry);
491         if (offset >= p->max)
492                 goto bad_offset;
493         if (!p->swap_map[offset])
494                 goto bad_free;
495         spin_lock(&swap_lock);
496         return p;
497
498 bad_free:
499         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
500         goto out;
501 bad_offset:
502         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
503         goto out;
504 bad_device:
505         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
506         goto out;
507 bad_nofile:
508         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
509 out:
510         return NULL;
511 }
512
513 static unsigned char swap_entry_free(struct swap_info_struct *p,
514                                      swp_entry_t entry, unsigned char usage)
515 {
516         unsigned long offset = swp_offset(entry);
517         unsigned char count;
518         unsigned char has_cache;
519
520         count = p->swap_map[offset];
521         has_cache = count & SWAP_HAS_CACHE;
522         count &= ~SWAP_HAS_CACHE;
523
524         if (usage == SWAP_HAS_CACHE) {
525                 VM_BUG_ON(!has_cache);
526                 has_cache = 0;
527         } else if (count == SWAP_MAP_SHMEM) {
528                 /*
529                  * Or we could insist on shmem.c using a special
530                  * swap_shmem_free() and free_shmem_swap_and_cache()...
531                  */
532                 count = 0;
533         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
534                 if (count == COUNT_CONTINUED) {
535                         if (swap_count_continued(p, offset, count))
536                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
537                         else
538                                 count = SWAP_MAP_MAX;
539                 } else
540                         count--;
541         }
542
543         if (!count)
544                 mem_cgroup_uncharge_swap(entry);
545
546         usage = count | has_cache;
547         p->swap_map[offset] = usage;
548
549         /* free if no reference */
550         if (!usage) {
551                 struct gendisk *disk = p->bdev->bd_disk;
552                 if (offset < p->lowest_bit)
553                         p->lowest_bit = offset;
554                 if (offset > p->highest_bit)
555                         p->highest_bit = offset;
556                 if (swap_list.next >= 0 &&
557                     p->prio > swap_info[swap_list.next]->prio)
558                         swap_list.next = p->type;
559                 nr_swap_pages++;
560                 p->inuse_pages--;
561                 frontswap_invalidate_page(p->type, offset);
562                 if ((p->flags & SWP_BLKDEV) &&
563                                 disk->fops->swap_slot_free_notify)
564                         disk->fops->swap_slot_free_notify(p->bdev, offset);
565         }
566
567         return usage;
568 }
569
570 /*
571  * Caller has made sure that the swapdevice corresponding to entry
572  * is still around or has not been recycled.
573  */
574 void swap_free(swp_entry_t entry)
575 {
576         struct swap_info_struct *p;
577
578         p = swap_info_get(entry);
579         if (p) {
580                 swap_entry_free(p, entry, 1);
581                 spin_unlock(&swap_lock);
582         }
583 }
584
585 /*
586  * Called after dropping swapcache to decrease refcnt to swap entries.
587  */
588 void swapcache_free(swp_entry_t entry, struct page *page)
589 {
590         struct swap_info_struct *p;
591         unsigned char count;
592
593         p = swap_info_get(entry);
594         if (p) {
595                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
596                 if (page)
597                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
598                 spin_unlock(&swap_lock);
599         }
600 }
601
602 /*
603  * How many references to page are currently swapped out?
604  * This does not give an exact answer when swap count is continued,
605  * but does include the high COUNT_CONTINUED flag to allow for that.
606  */
607 static inline int page_swapcount(struct page *page)
608 {
609         int count = 0;
610         struct swap_info_struct *p;
611         swp_entry_t entry;
612
613         entry.val = page_private(page);
614         p = swap_info_get(entry);
615         if (p) {
616                 count = swap_count(p->swap_map[swp_offset(entry)]);
617                 spin_unlock(&swap_lock);
618         }
619         return count;
620 }
621
622 /*
623  * We can write to an anon page without COW if there are no other references
624  * to it.  And as a side-effect, free up its swap: because the old content
625  * on disk will never be read, and seeking back there to write new content
626  * later would only waste time away from clustering.
627  */
628 int reuse_swap_page(struct page *page)
629 {
630         int count;
631
632         VM_BUG_ON(!PageLocked(page));
633         if (unlikely(PageKsm(page)))
634                 return 0;
635         count = page_mapcount(page);
636         if (count <= 1 && PageSwapCache(page)) {
637                 count += page_swapcount(page);
638                 if (count == 1 && !PageWriteback(page)) {
639                         delete_from_swap_cache(page);
640                         SetPageDirty(page);
641                 }
642         }
643         return count <= 1;
644 }
645
646 /*
647  * If swap is getting full, or if there are no more mappings of this page,
648  * then try_to_free_swap is called to free its swap space.
649  */
650 int try_to_free_swap(struct page *page)
651 {
652         VM_BUG_ON(!PageLocked(page));
653
654         if (!PageSwapCache(page))
655                 return 0;
656         if (PageWriteback(page))
657                 return 0;
658         if (page_swapcount(page))
659                 return 0;
660
661         /*
662          * Once hibernation has begun to create its image of memory,
663          * there's a danger that one of the calls to try_to_free_swap()
664          * - most probably a call from __try_to_reclaim_swap() while
665          * hibernation is allocating its own swap pages for the image,
666          * but conceivably even a call from memory reclaim - will free
667          * the swap from a page which has already been recorded in the
668          * image as a clean swapcache page, and then reuse its swap for
669          * another page of the image.  On waking from hibernation, the
670          * original page might be freed under memory pressure, then
671          * later read back in from swap, now with the wrong data.
672          *
673          * Hibration suspends storage while it is writing the image
674          * to disk so check that here.
675          */
676         if (pm_suspended_storage())
677                 return 0;
678
679         delete_from_swap_cache(page);
680         SetPageDirty(page);
681         return 1;
682 }
683
684 /*
685  * Free the swap entry like above, but also try to
686  * free the page cache entry if it is the last user.
687  */
688 int free_swap_and_cache(swp_entry_t entry)
689 {
690         struct swap_info_struct *p;
691         struct page *page = NULL;
692
693         if (non_swap_entry(entry))
694                 return 1;
695
696         p = swap_info_get(entry);
697         if (p) {
698                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
699                         page = find_get_page(&swapper_space, entry.val);
700                         if (page && !trylock_page(page)) {
701                                 page_cache_release(page);
702                                 page = NULL;
703                         }
704                 }
705                 spin_unlock(&swap_lock);
706         }
707         if (page) {
708                 /*
709                  * Not mapped elsewhere, or swap space full? Free it!
710                  * Also recheck PageSwapCache now page is locked (above).
711                  */
712                 if (PageSwapCache(page) && !PageWriteback(page) &&
713                                 (!page_mapped(page) || vm_swap_full())) {
714                         delete_from_swap_cache(page);
715                         SetPageDirty(page);
716                 }
717                 unlock_page(page);
718                 page_cache_release(page);
719         }
720         return p != NULL;
721 }
722
723 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
724 /**
725  * mem_cgroup_count_swap_user - count the user of a swap entry
726  * @ent: the swap entry to be checked
727  * @pagep: the pointer for the swap cache page of the entry to be stored
728  *
729  * Returns the number of the user of the swap entry. The number is valid only
730  * for swaps of anonymous pages.
731  * If the entry is found on swap cache, the page is stored to pagep with
732  * refcount of it being incremented.
733  */
734 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
735 {
736         struct page *page;
737         struct swap_info_struct *p;
738         int count = 0;
739
740         page = find_get_page(&swapper_space, ent.val);
741         if (page)
742                 count += page_mapcount(page);
743         p = swap_info_get(ent);
744         if (p) {
745                 count += swap_count(p->swap_map[swp_offset(ent)]);
746                 spin_unlock(&swap_lock);
747         }
748
749         *pagep = page;
750         return count;
751 }
752 #endif
753
754 #ifdef CONFIG_HIBERNATION
755 /*
756  * Find the swap type that corresponds to given device (if any).
757  *
758  * @offset - number of the PAGE_SIZE-sized block of the device, starting
759  * from 0, in which the swap header is expected to be located.
760  *
761  * This is needed for the suspend to disk (aka swsusp).
762  */
763 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
764 {
765         struct block_device *bdev = NULL;
766         int type;
767
768         if (device)
769                 bdev = bdget(device);
770
771         spin_lock(&swap_lock);
772         for (type = 0; type < nr_swapfiles; type++) {
773                 struct swap_info_struct *sis = swap_info[type];
774
775                 if (!(sis->flags & SWP_WRITEOK))
776                         continue;
777
778                 if (!bdev) {
779                         if (bdev_p)
780                                 *bdev_p = bdgrab(sis->bdev);
781
782                         spin_unlock(&swap_lock);
783                         return type;
784                 }
785                 if (bdev == sis->bdev) {
786                         struct swap_extent *se = &sis->first_swap_extent;
787
788                         if (se->start_block == offset) {
789                                 if (bdev_p)
790                                         *bdev_p = bdgrab(sis->bdev);
791
792                                 spin_unlock(&swap_lock);
793                                 bdput(bdev);
794                                 return type;
795                         }
796                 }
797         }
798         spin_unlock(&swap_lock);
799         if (bdev)
800                 bdput(bdev);
801
802         return -ENODEV;
803 }
804
805 /*
806  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
807  * corresponding to given index in swap_info (swap type).
808  */
809 sector_t swapdev_block(int type, pgoff_t offset)
810 {
811         struct block_device *bdev;
812
813         if ((unsigned int)type >= nr_swapfiles)
814                 return 0;
815         if (!(swap_info[type]->flags & SWP_WRITEOK))
816                 return 0;
817         return map_swap_entry(swp_entry(type, offset), &bdev);
818 }
819
820 /*
821  * Return either the total number of swap pages of given type, or the number
822  * of free pages of that type (depending on @free)
823  *
824  * This is needed for software suspend
825  */
826 unsigned int count_swap_pages(int type, int free)
827 {
828         unsigned int n = 0;
829
830         spin_lock(&swap_lock);
831         if ((unsigned int)type < nr_swapfiles) {
832                 struct swap_info_struct *sis = swap_info[type];
833
834                 if (sis->flags & SWP_WRITEOK) {
835                         n = sis->pages;
836                         if (free)
837                                 n -= sis->inuse_pages;
838                 }
839         }
840         spin_unlock(&swap_lock);
841         return n;
842 }
843 #endif /* CONFIG_HIBERNATION */
844
845 /*
846  * No need to decide whether this PTE shares the swap entry with others,
847  * just let do_wp_page work it out if a write is requested later - to
848  * force COW, vm_page_prot omits write permission from any private vma.
849  */
850 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
851                 unsigned long addr, swp_entry_t entry, struct page *page)
852 {
853         struct mem_cgroup *memcg;
854         spinlock_t *ptl;
855         pte_t *pte;
856         int ret = 1;
857
858         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
859                                          GFP_KERNEL, &memcg)) {
860                 ret = -ENOMEM;
861                 goto out_nolock;
862         }
863
864         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
865         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
866                 if (ret > 0)
867                         mem_cgroup_cancel_charge_swapin(memcg);
868                 ret = 0;
869                 goto out;
870         }
871
872         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
873         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
874         get_page(page);
875         set_pte_at(vma->vm_mm, addr, pte,
876                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
877         page_add_anon_rmap(page, vma, addr);
878         mem_cgroup_commit_charge_swapin(page, memcg);
879         swap_free(entry);
880         /*
881          * Move the page to the active list so it is not
882          * immediately swapped out again after swapon.
883          */
884         activate_page(page);
885 out:
886         pte_unmap_unlock(pte, ptl);
887 out_nolock:
888         return ret;
889 }
890
891 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
892                                 unsigned long addr, unsigned long end,
893                                 swp_entry_t entry, struct page *page)
894 {
895         pte_t swp_pte = swp_entry_to_pte(entry);
896         pte_t *pte;
897         int ret = 0;
898
899         /*
900          * We don't actually need pte lock while scanning for swp_pte: since
901          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
902          * page table while we're scanning; though it could get zapped, and on
903          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
904          * of unmatched parts which look like swp_pte, so unuse_pte must
905          * recheck under pte lock.  Scanning without pte lock lets it be
906          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
907          */
908         pte = pte_offset_map(pmd, addr);
909         do {
910                 /*
911                  * swapoff spends a _lot_ of time in this loop!
912                  * Test inline before going to call unuse_pte.
913                  */
914                 if (unlikely(pte_same(*pte, swp_pte))) {
915                         pte_unmap(pte);
916                         ret = unuse_pte(vma, pmd, addr, entry, page);
917                         if (ret)
918                                 goto out;
919                         pte = pte_offset_map(pmd, addr);
920                 }
921         } while (pte++, addr += PAGE_SIZE, addr != end);
922         pte_unmap(pte - 1);
923 out:
924         return ret;
925 }
926
927 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
928                                 unsigned long addr, unsigned long end,
929                                 swp_entry_t entry, struct page *page)
930 {
931         pmd_t *pmd;
932         unsigned long next;
933         int ret;
934
935         pmd = pmd_offset(pud, addr);
936         do {
937                 next = pmd_addr_end(addr, end);
938                 if (unlikely(pmd_trans_huge(*pmd)))
939                         continue;
940                 if (pmd_none_or_clear_bad(pmd))
941                         continue;
942                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
943                 if (ret)
944                         return ret;
945         } while (pmd++, addr = next, addr != end);
946         return 0;
947 }
948
949 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
950                                 unsigned long addr, unsigned long end,
951                                 swp_entry_t entry, struct page *page)
952 {
953         pud_t *pud;
954         unsigned long next;
955         int ret;
956
957         pud = pud_offset(pgd, addr);
958         do {
959                 next = pud_addr_end(addr, end);
960                 if (pud_none_or_clear_bad(pud))
961                         continue;
962                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
963                 if (ret)
964                         return ret;
965         } while (pud++, addr = next, addr != end);
966         return 0;
967 }
968
969 static int unuse_vma(struct vm_area_struct *vma,
970                                 swp_entry_t entry, struct page *page)
971 {
972         pgd_t *pgd;
973         unsigned long addr, end, next;
974         int ret;
975
976         if (page_anon_vma(page)) {
977                 addr = page_address_in_vma(page, vma);
978                 if (addr == -EFAULT)
979                         return 0;
980                 else
981                         end = addr + PAGE_SIZE;
982         } else {
983                 addr = vma->vm_start;
984                 end = vma->vm_end;
985         }
986
987         pgd = pgd_offset(vma->vm_mm, addr);
988         do {
989                 next = pgd_addr_end(addr, end);
990                 if (pgd_none_or_clear_bad(pgd))
991                         continue;
992                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
993                 if (ret)
994                         return ret;
995         } while (pgd++, addr = next, addr != end);
996         return 0;
997 }
998
999 static int unuse_mm(struct mm_struct *mm,
1000                                 swp_entry_t entry, struct page *page)
1001 {
1002         struct vm_area_struct *vma;
1003         int ret = 0;
1004
1005         if (!down_read_trylock(&mm->mmap_sem)) {
1006                 /*
1007                  * Activate page so shrink_inactive_list is unlikely to unmap
1008                  * its ptes while lock is dropped, so swapoff can make progress.
1009                  */
1010                 activate_page(page);
1011                 unlock_page(page);
1012                 down_read(&mm->mmap_sem);
1013                 lock_page(page);
1014         }
1015         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1016                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1017                         break;
1018         }
1019         up_read(&mm->mmap_sem);
1020         return (ret < 0)? ret: 0;
1021 }
1022
1023 /*
1024  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1025  * from current position to next entry still in use.
1026  * Recycle to start on reaching the end, returning 0 when empty.
1027  */
1028 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1029                                         unsigned int prev, bool frontswap)
1030 {
1031         unsigned int max = si->max;
1032         unsigned int i = prev;
1033         unsigned char count;
1034
1035         /*
1036          * No need for swap_lock here: we're just looking
1037          * for whether an entry is in use, not modifying it; false
1038          * hits are okay, and sys_swapoff() has already prevented new
1039          * allocations from this area (while holding swap_lock).
1040          */
1041         for (;;) {
1042                 if (++i >= max) {
1043                         if (!prev) {
1044                                 i = 0;
1045                                 break;
1046                         }
1047                         /*
1048                          * No entries in use at top of swap_map,
1049                          * loop back to start and recheck there.
1050                          */
1051                         max = prev + 1;
1052                         prev = 0;
1053                         i = 1;
1054                 }
1055                 if (frontswap) {
1056                         if (frontswap_test(si, i))
1057                                 break;
1058                         else
1059                                 continue;
1060                 }
1061                 count = si->swap_map[i];
1062                 if (count && swap_count(count) != SWAP_MAP_BAD)
1063                         break;
1064         }
1065         return i;
1066 }
1067
1068 /*
1069  * We completely avoid races by reading each swap page in advance,
1070  * and then search for the process using it.  All the necessary
1071  * page table adjustments can then be made atomically.
1072  *
1073  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1074  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1075  */
1076 int try_to_unuse(unsigned int type, bool frontswap,
1077                  unsigned long pages_to_unuse)
1078 {
1079         struct swap_info_struct *si = swap_info[type];
1080         struct mm_struct *start_mm;
1081         unsigned char *swap_map;
1082         unsigned char swcount;
1083         struct page *page;
1084         swp_entry_t entry;
1085         unsigned int i = 0;
1086         int retval = 0;
1087
1088         /*
1089          * When searching mms for an entry, a good strategy is to
1090          * start at the first mm we freed the previous entry from
1091          * (though actually we don't notice whether we or coincidence
1092          * freed the entry).  Initialize this start_mm with a hold.
1093          *
1094          * A simpler strategy would be to start at the last mm we
1095          * freed the previous entry from; but that would take less
1096          * advantage of mmlist ordering, which clusters forked mms
1097          * together, child after parent.  If we race with dup_mmap(), we
1098          * prefer to resolve parent before child, lest we miss entries
1099          * duplicated after we scanned child: using last mm would invert
1100          * that.
1101          */
1102         start_mm = &init_mm;
1103         atomic_inc(&init_mm.mm_users);
1104
1105         /*
1106          * Keep on scanning until all entries have gone.  Usually,
1107          * one pass through swap_map is enough, but not necessarily:
1108          * there are races when an instance of an entry might be missed.
1109          */
1110         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1111                 if (signal_pending(current)) {
1112                         retval = -EINTR;
1113                         break;
1114                 }
1115
1116                 /*
1117                  * Get a page for the entry, using the existing swap
1118                  * cache page if there is one.  Otherwise, get a clean
1119                  * page and read the swap into it.
1120                  */
1121                 swap_map = &si->swap_map[i];
1122                 entry = swp_entry(type, i);
1123                 page = read_swap_cache_async(entry,
1124                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1125                 if (!page) {
1126                         /*
1127                          * Either swap_duplicate() failed because entry
1128                          * has been freed independently, and will not be
1129                          * reused since sys_swapoff() already disabled
1130                          * allocation from here, or alloc_page() failed.
1131                          */
1132                         if (!*swap_map)
1133                                 continue;
1134                         retval = -ENOMEM;
1135                         break;
1136                 }
1137
1138                 /*
1139                  * Don't hold on to start_mm if it looks like exiting.
1140                  */
1141                 if (atomic_read(&start_mm->mm_users) == 1) {
1142                         mmput(start_mm);
1143                         start_mm = &init_mm;
1144                         atomic_inc(&init_mm.mm_users);
1145                 }
1146
1147                 /*
1148                  * Wait for and lock page.  When do_swap_page races with
1149                  * try_to_unuse, do_swap_page can handle the fault much
1150                  * faster than try_to_unuse can locate the entry.  This
1151                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1152                  * defer to do_swap_page in such a case - in some tests,
1153                  * do_swap_page and try_to_unuse repeatedly compete.
1154                  */
1155                 wait_on_page_locked(page);
1156                 wait_on_page_writeback(page);
1157                 lock_page(page);
1158                 wait_on_page_writeback(page);
1159
1160                 /*
1161                  * Remove all references to entry.
1162                  */
1163                 swcount = *swap_map;
1164                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1165                         retval = shmem_unuse(entry, page);
1166                         /* page has already been unlocked and released */
1167                         if (retval < 0)
1168                                 break;
1169                         continue;
1170                 }
1171                 if (swap_count(swcount) && start_mm != &init_mm)
1172                         retval = unuse_mm(start_mm, entry, page);
1173
1174                 if (swap_count(*swap_map)) {
1175                         int set_start_mm = (*swap_map >= swcount);
1176                         struct list_head *p = &start_mm->mmlist;
1177                         struct mm_struct *new_start_mm = start_mm;
1178                         struct mm_struct *prev_mm = start_mm;
1179                         struct mm_struct *mm;
1180
1181                         atomic_inc(&new_start_mm->mm_users);
1182                         atomic_inc(&prev_mm->mm_users);
1183                         spin_lock(&mmlist_lock);
1184                         while (swap_count(*swap_map) && !retval &&
1185                                         (p = p->next) != &start_mm->mmlist) {
1186                                 mm = list_entry(p, struct mm_struct, mmlist);
1187                                 if (!atomic_inc_not_zero(&mm->mm_users))
1188                                         continue;
1189                                 spin_unlock(&mmlist_lock);
1190                                 mmput(prev_mm);
1191                                 prev_mm = mm;
1192
1193                                 cond_resched();
1194
1195                                 swcount = *swap_map;
1196                                 if (!swap_count(swcount)) /* any usage ? */
1197                                         ;
1198                                 else if (mm == &init_mm)
1199                                         set_start_mm = 1;
1200                                 else
1201                                         retval = unuse_mm(mm, entry, page);
1202
1203                                 if (set_start_mm && *swap_map < swcount) {
1204                                         mmput(new_start_mm);
1205                                         atomic_inc(&mm->mm_users);
1206                                         new_start_mm = mm;
1207                                         set_start_mm = 0;
1208                                 }
1209                                 spin_lock(&mmlist_lock);
1210                         }
1211                         spin_unlock(&mmlist_lock);
1212                         mmput(prev_mm);
1213                         mmput(start_mm);
1214                         start_mm = new_start_mm;
1215                 }
1216                 if (retval) {
1217                         unlock_page(page);
1218                         page_cache_release(page);
1219                         break;
1220                 }
1221
1222                 /*
1223                  * If a reference remains (rare), we would like to leave
1224                  * the page in the swap cache; but try_to_unmap could
1225                  * then re-duplicate the entry once we drop page lock,
1226                  * so we might loop indefinitely; also, that page could
1227                  * not be swapped out to other storage meanwhile.  So:
1228                  * delete from cache even if there's another reference,
1229                  * after ensuring that the data has been saved to disk -
1230                  * since if the reference remains (rarer), it will be
1231                  * read from disk into another page.  Splitting into two
1232                  * pages would be incorrect if swap supported "shared
1233                  * private" pages, but they are handled by tmpfs files.
1234                  *
1235                  * Given how unuse_vma() targets one particular offset
1236                  * in an anon_vma, once the anon_vma has been determined,
1237                  * this splitting happens to be just what is needed to
1238                  * handle where KSM pages have been swapped out: re-reading
1239                  * is unnecessarily slow, but we can fix that later on.
1240                  */
1241                 if (swap_count(*swap_map) &&
1242                      PageDirty(page) && PageSwapCache(page)) {
1243                         struct writeback_control wbc = {
1244                                 .sync_mode = WB_SYNC_NONE,
1245                         };
1246
1247                         swap_writepage(page, &wbc);
1248                         lock_page(page);
1249                         wait_on_page_writeback(page);
1250                 }
1251
1252                 /*
1253                  * It is conceivable that a racing task removed this page from
1254                  * swap cache just before we acquired the page lock at the top,
1255                  * or while we dropped it in unuse_mm().  The page might even
1256                  * be back in swap cache on another swap area: that we must not
1257                  * delete, since it may not have been written out to swap yet.
1258                  */
1259                 if (PageSwapCache(page) &&
1260                     likely(page_private(page) == entry.val))
1261                         delete_from_swap_cache(page);
1262
1263                 /*
1264                  * So we could skip searching mms once swap count went
1265                  * to 1, we did not mark any present ptes as dirty: must
1266                  * mark page dirty so shrink_page_list will preserve it.
1267                  */
1268                 SetPageDirty(page);
1269                 unlock_page(page);
1270                 page_cache_release(page);
1271
1272                 /*
1273                  * Make sure that we aren't completely killing
1274                  * interactive performance.
1275                  */
1276                 cond_resched();
1277                 if (frontswap && pages_to_unuse > 0) {
1278                         if (!--pages_to_unuse)
1279                                 break;
1280                 }
1281         }
1282
1283         mmput(start_mm);
1284         return retval;
1285 }
1286
1287 /*
1288  * After a successful try_to_unuse, if no swap is now in use, we know
1289  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1290  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1291  * added to the mmlist just after page_duplicate - before would be racy.
1292  */
1293 static void drain_mmlist(void)
1294 {
1295         struct list_head *p, *next;
1296         unsigned int type;
1297
1298         for (type = 0; type < nr_swapfiles; type++)
1299                 if (swap_info[type]->inuse_pages)
1300                         return;
1301         spin_lock(&mmlist_lock);
1302         list_for_each_safe(p, next, &init_mm.mmlist)
1303                 list_del_init(p);
1304         spin_unlock(&mmlist_lock);
1305 }
1306
1307 /*
1308  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1309  * corresponds to page offset for the specified swap entry.
1310  * Note that the type of this function is sector_t, but it returns page offset
1311  * into the bdev, not sector offset.
1312  */
1313 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1314 {
1315         struct swap_info_struct *sis;
1316         struct swap_extent *start_se;
1317         struct swap_extent *se;
1318         pgoff_t offset;
1319
1320         sis = swap_info[swp_type(entry)];
1321         *bdev = sis->bdev;
1322
1323         offset = swp_offset(entry);
1324         start_se = sis->curr_swap_extent;
1325         se = start_se;
1326
1327         for ( ; ; ) {
1328                 struct list_head *lh;
1329
1330                 if (se->start_page <= offset &&
1331                                 offset < (se->start_page + se->nr_pages)) {
1332                         return se->start_block + (offset - se->start_page);
1333                 }
1334                 lh = se->list.next;
1335                 se = list_entry(lh, struct swap_extent, list);
1336                 sis->curr_swap_extent = se;
1337                 BUG_ON(se == start_se);         /* It *must* be present */
1338         }
1339 }
1340
1341 /*
1342  * Returns the page offset into bdev for the specified page's swap entry.
1343  */
1344 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1345 {
1346         swp_entry_t entry;
1347         entry.val = page_private(page);
1348         return map_swap_entry(entry, bdev);
1349 }
1350
1351 /*
1352  * Free all of a swapdev's extent information
1353  */
1354 static void destroy_swap_extents(struct swap_info_struct *sis)
1355 {
1356         while (!list_empty(&sis->first_swap_extent.list)) {
1357                 struct swap_extent *se;
1358
1359                 se = list_entry(sis->first_swap_extent.list.next,
1360                                 struct swap_extent, list);
1361                 list_del(&se->list);
1362                 kfree(se);
1363         }
1364 }
1365
1366 /*
1367  * Add a block range (and the corresponding page range) into this swapdev's
1368  * extent list.  The extent list is kept sorted in page order.
1369  *
1370  * This function rather assumes that it is called in ascending page order.
1371  */
1372 static int
1373 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1374                 unsigned long nr_pages, sector_t start_block)
1375 {
1376         struct swap_extent *se;
1377         struct swap_extent *new_se;
1378         struct list_head *lh;
1379
1380         if (start_page == 0) {
1381                 se = &sis->first_swap_extent;
1382                 sis->curr_swap_extent = se;
1383                 se->start_page = 0;
1384                 se->nr_pages = nr_pages;
1385                 se->start_block = start_block;
1386                 return 1;
1387         } else {
1388                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1389                 se = list_entry(lh, struct swap_extent, list);
1390                 BUG_ON(se->start_page + se->nr_pages != start_page);
1391                 if (se->start_block + se->nr_pages == start_block) {
1392                         /* Merge it */
1393                         se->nr_pages += nr_pages;
1394                         return 0;
1395                 }
1396         }
1397
1398         /*
1399          * No merge.  Insert a new extent, preserving ordering.
1400          */
1401         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1402         if (new_se == NULL)
1403                 return -ENOMEM;
1404         new_se->start_page = start_page;
1405         new_se->nr_pages = nr_pages;
1406         new_se->start_block = start_block;
1407
1408         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1409         return 1;
1410 }
1411
1412 /*
1413  * A `swap extent' is a simple thing which maps a contiguous range of pages
1414  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1415  * is built at swapon time and is then used at swap_writepage/swap_readpage
1416  * time for locating where on disk a page belongs.
1417  *
1418  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1419  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1420  * swap files identically.
1421  *
1422  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1423  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1424  * swapfiles are handled *identically* after swapon time.
1425  *
1426  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1427  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1428  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1429  * requirements, they are simply tossed out - we will never use those blocks
1430  * for swapping.
1431  *
1432  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1433  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1434  * which will scribble on the fs.
1435  *
1436  * The amount of disk space which a single swap extent represents varies.
1437  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1438  * extents in the list.  To avoid much list walking, we cache the previous
1439  * search location in `curr_swap_extent', and start new searches from there.
1440  * This is extremely effective.  The average number of iterations in
1441  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1442  */
1443 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1444 {
1445         struct inode *inode;
1446         unsigned blocks_per_page;
1447         unsigned long page_no;
1448         unsigned blkbits;
1449         sector_t probe_block;
1450         sector_t last_block;
1451         sector_t lowest_block = -1;
1452         sector_t highest_block = 0;
1453         int nr_extents = 0;
1454         int ret;
1455
1456         inode = sis->swap_file->f_mapping->host;
1457         if (S_ISBLK(inode->i_mode)) {
1458                 ret = add_swap_extent(sis, 0, sis->max, 0);
1459                 *span = sis->pages;
1460                 goto out;
1461         }
1462
1463         blkbits = inode->i_blkbits;
1464         blocks_per_page = PAGE_SIZE >> blkbits;
1465
1466         /*
1467          * Map all the blocks into the extent list.  This code doesn't try
1468          * to be very smart.
1469          */
1470         probe_block = 0;
1471         page_no = 0;
1472         last_block = i_size_read(inode) >> blkbits;
1473         while ((probe_block + blocks_per_page) <= last_block &&
1474                         page_no < sis->max) {
1475                 unsigned block_in_page;
1476                 sector_t first_block;
1477
1478                 first_block = bmap(inode, probe_block);
1479                 if (first_block == 0)
1480                         goto bad_bmap;
1481
1482                 /*
1483                  * It must be PAGE_SIZE aligned on-disk
1484                  */
1485                 if (first_block & (blocks_per_page - 1)) {
1486                         probe_block++;
1487                         goto reprobe;
1488                 }
1489
1490                 for (block_in_page = 1; block_in_page < blocks_per_page;
1491                                         block_in_page++) {
1492                         sector_t block;
1493
1494                         block = bmap(inode, probe_block + block_in_page);
1495                         if (block == 0)
1496                                 goto bad_bmap;
1497                         if (block != first_block + block_in_page) {
1498                                 /* Discontiguity */
1499                                 probe_block++;
1500                                 goto reprobe;
1501                         }
1502                 }
1503
1504                 first_block >>= (PAGE_SHIFT - blkbits);
1505                 if (page_no) {  /* exclude the header page */
1506                         if (first_block < lowest_block)
1507                                 lowest_block = first_block;
1508                         if (first_block > highest_block)
1509                                 highest_block = first_block;
1510                 }
1511
1512                 /*
1513                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1514                  */
1515                 ret = add_swap_extent(sis, page_no, 1, first_block);
1516                 if (ret < 0)
1517                         goto out;
1518                 nr_extents += ret;
1519                 page_no++;
1520                 probe_block += blocks_per_page;
1521 reprobe:
1522                 continue;
1523         }
1524         ret = nr_extents;
1525         *span = 1 + highest_block - lowest_block;
1526         if (page_no == 0)
1527                 page_no = 1;    /* force Empty message */
1528         sis->max = page_no;
1529         sis->pages = page_no - 1;
1530         sis->highest_bit = page_no - 1;
1531 out:
1532         return ret;
1533 bad_bmap:
1534         printk(KERN_ERR "swapon: swapfile has holes\n");
1535         ret = -EINVAL;
1536         goto out;
1537 }
1538
1539 static void enable_swap_info(struct swap_info_struct *p, int prio,
1540                                 unsigned char *swap_map,
1541                                 unsigned long *frontswap_map)
1542 {
1543         int i, prev;
1544
1545         spin_lock(&swap_lock);
1546         if (prio >= 0)
1547                 p->prio = prio;
1548         else
1549                 p->prio = --least_priority;
1550         p->swap_map = swap_map;
1551         frontswap_map_set(p, frontswap_map);
1552         p->flags |= SWP_WRITEOK;
1553         nr_swap_pages += p->pages;
1554         total_swap_pages += p->pages;
1555
1556         /* insert swap space into swap_list: */
1557         prev = -1;
1558         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1559                 if (p->prio >= swap_info[i]->prio)
1560                         break;
1561                 prev = i;
1562         }
1563         p->next = i;
1564         if (prev < 0)
1565                 swap_list.head = swap_list.next = p->type;
1566         else
1567                 swap_info[prev]->next = p->type;
1568         frontswap_init(p->type);
1569         spin_unlock(&swap_lock);
1570 }
1571
1572 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1573 {
1574         struct swap_info_struct *p = NULL;
1575         unsigned char *swap_map;
1576         struct file *swap_file, *victim;
1577         struct address_space *mapping;
1578         struct inode *inode;
1579         char *pathname;
1580         int oom_score_adj;
1581         int i, type, prev;
1582         int err;
1583
1584         if (!capable(CAP_SYS_ADMIN))
1585                 return -EPERM;
1586
1587         pathname = getname(specialfile);
1588         err = PTR_ERR(pathname);
1589         if (IS_ERR(pathname))
1590                 goto out;
1591
1592         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1593         putname(pathname);
1594         err = PTR_ERR(victim);
1595         if (IS_ERR(victim))
1596                 goto out;
1597
1598         mapping = victim->f_mapping;
1599         prev = -1;
1600         spin_lock(&swap_lock);
1601         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1602                 p = swap_info[type];
1603                 if (p->flags & SWP_WRITEOK) {
1604                         if (p->swap_file->f_mapping == mapping)
1605                                 break;
1606                 }
1607                 prev = type;
1608         }
1609         if (type < 0) {
1610                 err = -EINVAL;
1611                 spin_unlock(&swap_lock);
1612                 goto out_dput;
1613         }
1614         if (!security_vm_enough_memory(p->pages))
1615                 vm_unacct_memory(p->pages);
1616         else {
1617                 err = -ENOMEM;
1618                 spin_unlock(&swap_lock);
1619                 goto out_dput;
1620         }
1621         if (prev < 0)
1622                 swap_list.head = p->next;
1623         else
1624                 swap_info[prev]->next = p->next;
1625         if (type == swap_list.next) {
1626                 /* just pick something that's safe... */
1627                 swap_list.next = swap_list.head;
1628         }
1629         if (p->prio < 0) {
1630                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1631                         swap_info[i]->prio = p->prio--;
1632                 least_priority++;
1633         }
1634         nr_swap_pages -= p->pages;
1635         total_swap_pages -= p->pages;
1636         p->flags &= ~SWP_WRITEOK;
1637         spin_unlock(&swap_lock);
1638
1639         oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1640         err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1641         compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1642
1643         if (err) {
1644                 /*
1645                  * reading p->prio and p->swap_map outside the lock is
1646                  * safe here because only sys_swapon and sys_swapoff
1647                  * change them, and there can be no other sys_swapon or
1648                  * sys_swapoff for this swap_info_struct at this point.
1649                  */
1650                 /* re-insert swap space back into swap_list */
1651                 enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
1652                 goto out_dput;
1653         }
1654
1655         destroy_swap_extents(p);
1656         if (p->flags & SWP_CONTINUED)
1657                 free_swap_count_continuations(p);
1658
1659         mutex_lock(&swapon_mutex);
1660         spin_lock(&swap_lock);
1661         drain_mmlist();
1662
1663         /* wait for anyone still in scan_swap_map */
1664         p->highest_bit = 0;             /* cuts scans short */
1665         while (p->flags >= SWP_SCANNING) {
1666                 spin_unlock(&swap_lock);
1667                 schedule_timeout_uninterruptible(1);
1668                 spin_lock(&swap_lock);
1669         }
1670
1671         swap_file = p->swap_file;
1672         p->swap_file = NULL;
1673         p->max = 0;
1674         swap_map = p->swap_map;
1675         p->swap_map = NULL;
1676         p->flags = 0;
1677         frontswap_invalidate_area(type);
1678         spin_unlock(&swap_lock);
1679         mutex_unlock(&swapon_mutex);
1680         vfree(swap_map);
1681         vfree(frontswap_map_get(p));
1682         /* Destroy swap account informatin */
1683         swap_cgroup_swapoff(type);
1684
1685         inode = mapping->host;
1686         if (S_ISBLK(inode->i_mode)) {
1687                 struct block_device *bdev = I_BDEV(inode);
1688                 set_blocksize(bdev, p->old_block_size);
1689                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1690         } else {
1691                 mutex_lock(&inode->i_mutex);
1692                 inode->i_flags &= ~S_SWAPFILE;
1693                 mutex_unlock(&inode->i_mutex);
1694         }
1695         filp_close(swap_file, NULL);
1696         err = 0;
1697         atomic_inc(&proc_poll_event);
1698         wake_up_interruptible(&proc_poll_wait);
1699
1700 out_dput:
1701         filp_close(victim, NULL);
1702 out:
1703         return err;
1704 }
1705
1706 #ifdef CONFIG_PROC_FS
1707 static unsigned swaps_poll(struct file *file, poll_table *wait)
1708 {
1709         struct seq_file *seq = file->private_data;
1710
1711         poll_wait(file, &proc_poll_wait, wait);
1712
1713         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1714                 seq->poll_event = atomic_read(&proc_poll_event);
1715                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1716         }
1717
1718         return POLLIN | POLLRDNORM;
1719 }
1720
1721 /* iterator */
1722 static void *swap_start(struct seq_file *swap, loff_t *pos)
1723 {
1724         struct swap_info_struct *si;
1725         int type;
1726         loff_t l = *pos;
1727
1728         mutex_lock(&swapon_mutex);
1729
1730         if (!l)
1731                 return SEQ_START_TOKEN;
1732
1733         for (type = 0; type < nr_swapfiles; type++) {
1734                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1735                 si = swap_info[type];
1736                 if (!(si->flags & SWP_USED) || !si->swap_map)
1737                         continue;
1738                 if (!--l)
1739                         return si;
1740         }
1741
1742         return NULL;
1743 }
1744
1745 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1746 {
1747         struct swap_info_struct *si = v;
1748         int type;
1749
1750         if (v == SEQ_START_TOKEN)
1751                 type = 0;
1752         else
1753                 type = si->type + 1;
1754
1755         for (; type < nr_swapfiles; type++) {
1756                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1757                 si = swap_info[type];
1758                 if (!(si->flags & SWP_USED) || !si->swap_map)
1759                         continue;
1760                 ++*pos;
1761                 return si;
1762         }
1763
1764         return NULL;
1765 }
1766
1767 static void swap_stop(struct seq_file *swap, void *v)
1768 {
1769         mutex_unlock(&swapon_mutex);
1770 }
1771
1772 static int swap_show(struct seq_file *swap, void *v)
1773 {
1774         struct swap_info_struct *si = v;
1775         struct file *file;
1776         int len;
1777
1778         if (si == SEQ_START_TOKEN) {
1779                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1780                 return 0;
1781         }
1782
1783         file = si->swap_file;
1784         len = seq_path(swap, &file->f_path, " \t\n\\");
1785         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1786                         len < 40 ? 40 - len : 1, " ",
1787                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1788                                 "partition" : "file\t",
1789                         si->pages << (PAGE_SHIFT - 10),
1790                         si->inuse_pages << (PAGE_SHIFT - 10),
1791                         si->prio);
1792         return 0;
1793 }
1794
1795 static const struct seq_operations swaps_op = {
1796         .start =        swap_start,
1797         .next =         swap_next,
1798         .stop =         swap_stop,
1799         .show =         swap_show
1800 };
1801
1802 static int swaps_open(struct inode *inode, struct file *file)
1803 {
1804         struct seq_file *seq;
1805         int ret;
1806
1807         ret = seq_open(file, &swaps_op);
1808         if (ret)
1809                 return ret;
1810
1811         seq = file->private_data;
1812         seq->poll_event = atomic_read(&proc_poll_event);
1813         return 0;
1814 }
1815
1816 static const struct file_operations proc_swaps_operations = {
1817         .open           = swaps_open,
1818         .read           = seq_read,
1819         .llseek         = seq_lseek,
1820         .release        = seq_release,
1821         .poll           = swaps_poll,
1822 };
1823
1824 static int __init procswaps_init(void)
1825 {
1826         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1827         return 0;
1828 }
1829 __initcall(procswaps_init);
1830 #endif /* CONFIG_PROC_FS */
1831
1832 #ifdef MAX_SWAPFILES_CHECK
1833 static int __init max_swapfiles_check(void)
1834 {
1835         MAX_SWAPFILES_CHECK();
1836         return 0;
1837 }
1838 late_initcall(max_swapfiles_check);
1839 #endif
1840
1841 static struct swap_info_struct *alloc_swap_info(void)
1842 {
1843         struct swap_info_struct *p;
1844         unsigned int type;
1845
1846         p = kzalloc(sizeof(*p), GFP_KERNEL);
1847         if (!p)
1848                 return ERR_PTR(-ENOMEM);
1849
1850         spin_lock(&swap_lock);
1851         for (type = 0; type < nr_swapfiles; type++) {
1852                 if (!(swap_info[type]->flags & SWP_USED))
1853                         break;
1854         }
1855         if (type >= MAX_SWAPFILES) {
1856                 spin_unlock(&swap_lock);
1857                 kfree(p);
1858                 return ERR_PTR(-EPERM);
1859         }
1860         if (type >= nr_swapfiles) {
1861                 p->type = type;
1862                 swap_info[type] = p;
1863                 /*
1864                  * Write swap_info[type] before nr_swapfiles, in case a
1865                  * racing procfs swap_start() or swap_next() is reading them.
1866                  * (We never shrink nr_swapfiles, we never free this entry.)
1867                  */
1868                 smp_wmb();
1869                 nr_swapfiles++;
1870         } else {
1871                 kfree(p);
1872                 p = swap_info[type];
1873                 /*
1874                  * Do not memset this entry: a racing procfs swap_next()
1875                  * would be relying on p->type to remain valid.
1876                  */
1877         }
1878         INIT_LIST_HEAD(&p->first_swap_extent.list);
1879         p->flags = SWP_USED;
1880         p->next = -1;
1881         spin_unlock(&swap_lock);
1882
1883         return p;
1884 }
1885
1886 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1887 {
1888         int error;
1889
1890         if (S_ISBLK(inode->i_mode)) {
1891                 p->bdev = bdgrab(I_BDEV(inode));
1892                 error = blkdev_get(p->bdev,
1893                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1894                                    sys_swapon);
1895                 if (error < 0) {
1896                         p->bdev = NULL;
1897                         return -EINVAL;
1898                 }
1899                 p->old_block_size = block_size(p->bdev);
1900                 error = set_blocksize(p->bdev, PAGE_SIZE);
1901                 if (error < 0)
1902                         return error;
1903                 p->flags |= SWP_BLKDEV;
1904         } else if (S_ISREG(inode->i_mode)) {
1905                 p->bdev = inode->i_sb->s_bdev;
1906                 mutex_lock(&inode->i_mutex);
1907                 if (IS_SWAPFILE(inode))
1908                         return -EBUSY;
1909         } else
1910                 return -EINVAL;
1911
1912         return 0;
1913 }
1914
1915 static unsigned long read_swap_header(struct swap_info_struct *p,
1916                                         union swap_header *swap_header,
1917                                         struct inode *inode)
1918 {
1919         int i;
1920         unsigned long maxpages;
1921         unsigned long swapfilepages;
1922
1923         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1924                 printk(KERN_ERR "Unable to find swap-space signature\n");
1925                 return 0;
1926         }
1927
1928         /* swap partition endianess hack... */
1929         if (swab32(swap_header->info.version) == 1) {
1930                 swab32s(&swap_header->info.version);
1931                 swab32s(&swap_header->info.last_page);
1932                 swab32s(&swap_header->info.nr_badpages);
1933                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1934                         swab32s(&swap_header->info.badpages[i]);
1935         }
1936         /* Check the swap header's sub-version */
1937         if (swap_header->info.version != 1) {
1938                 printk(KERN_WARNING
1939                        "Unable to handle swap header version %d\n",
1940                        swap_header->info.version);
1941                 return 0;
1942         }
1943
1944         p->lowest_bit  = 1;
1945         p->cluster_next = 1;
1946         p->cluster_nr = 0;
1947
1948         /*
1949          * Find out how many pages are allowed for a single swap
1950          * device. There are three limiting factors: 1) the number
1951          * of bits for the swap offset in the swp_entry_t type, and
1952          * 2) the number of bits in the swap pte as defined by the
1953          * the different architectures, and 3) the number of free bits
1954          * in an exceptional radix_tree entry. In order to find the
1955          * largest possible bit mask, a swap entry with swap type 0
1956          * and swap offset ~0UL is created, encoded to a swap pte,
1957          * decoded to a swp_entry_t again, and finally the swap
1958          * offset is extracted. This will mask all the bits from
1959          * the initial ~0UL mask that can't be encoded in either
1960          * the swp_entry_t or the architecture definition of a
1961          * swap pte.  Then the same is done for a radix_tree entry.
1962          */
1963         maxpages = swp_offset(pte_to_swp_entry(
1964                         swp_entry_to_pte(swp_entry(0, ~0UL))));
1965         maxpages = swp_offset(radix_to_swp_entry(
1966                         swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1967
1968         if (maxpages > swap_header->info.last_page) {
1969                 maxpages = swap_header->info.last_page + 1;
1970                 /* p->max is an unsigned int: don't overflow it */
1971                 if ((unsigned int)maxpages == 0)
1972                         maxpages = UINT_MAX;
1973         }
1974         p->highest_bit = maxpages - 1;
1975
1976         if (!maxpages)
1977                 return 0;
1978         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1979         if (swapfilepages && maxpages > swapfilepages) {
1980                 printk(KERN_WARNING
1981                        "Swap area shorter than signature indicates\n");
1982                 return 0;
1983         }
1984         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1985                 return 0;
1986         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1987                 return 0;
1988
1989         return maxpages;
1990 }
1991
1992 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1993                                         union swap_header *swap_header,
1994                                         unsigned char *swap_map,
1995                                         unsigned long maxpages,
1996                                         sector_t *span)
1997 {
1998         int i;
1999         unsigned int nr_good_pages;
2000         int nr_extents;
2001
2002         nr_good_pages = maxpages - 1;   /* omit header page */
2003
2004         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2005                 unsigned int page_nr = swap_header->info.badpages[i];
2006                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2007                         return -EINVAL;
2008                 if (page_nr < maxpages) {
2009                         swap_map[page_nr] = SWAP_MAP_BAD;
2010                         nr_good_pages--;
2011                 }
2012         }
2013
2014         if (nr_good_pages) {
2015                 swap_map[0] = SWAP_MAP_BAD;
2016                 p->max = maxpages;
2017                 p->pages = nr_good_pages;
2018                 nr_extents = setup_swap_extents(p, span);
2019                 if (nr_extents < 0)
2020                         return nr_extents;
2021                 nr_good_pages = p->pages;
2022         }
2023         if (!nr_good_pages) {
2024                 printk(KERN_WARNING "Empty swap-file\n");
2025                 return -EINVAL;
2026         }
2027
2028         return nr_extents;
2029 }
2030
2031 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2032 {
2033         struct swap_info_struct *p;
2034         char *name;
2035         struct file *swap_file = NULL;
2036         struct address_space *mapping;
2037         int i;
2038         int prio;
2039         int error;
2040         union swap_header *swap_header;
2041         int nr_extents;
2042         sector_t span;
2043         unsigned long maxpages;
2044         unsigned char *swap_map = NULL;
2045         unsigned long *frontswap_map = NULL;
2046         struct page *page = NULL;
2047         struct inode *inode = NULL;
2048
2049         if (!capable(CAP_SYS_ADMIN))
2050                 return -EPERM;
2051
2052         p = alloc_swap_info();
2053         if (IS_ERR(p))
2054                 return PTR_ERR(p);
2055
2056         name = getname(specialfile);
2057         if (IS_ERR(name)) {
2058                 error = PTR_ERR(name);
2059                 name = NULL;
2060                 goto bad_swap;
2061         }
2062         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2063         if (IS_ERR(swap_file)) {
2064                 error = PTR_ERR(swap_file);
2065                 swap_file = NULL;
2066                 goto bad_swap;
2067         }
2068
2069         p->swap_file = swap_file;
2070         mapping = swap_file->f_mapping;
2071
2072         for (i = 0; i < nr_swapfiles; i++) {
2073                 struct swap_info_struct *q = swap_info[i];
2074
2075                 if (q == p || !q->swap_file)
2076                         continue;
2077                 if (mapping == q->swap_file->f_mapping) {
2078                         error = -EBUSY;
2079                         goto bad_swap;
2080                 }
2081         }
2082
2083         inode = mapping->host;
2084         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2085         error = claim_swapfile(p, inode);
2086         if (unlikely(error))
2087                 goto bad_swap;
2088
2089         /*
2090          * Read the swap header.
2091          */
2092         if (!mapping->a_ops->readpage) {
2093                 error = -EINVAL;
2094                 goto bad_swap;
2095         }
2096         page = read_mapping_page(mapping, 0, swap_file);
2097         if (IS_ERR(page)) {
2098                 error = PTR_ERR(page);
2099                 goto bad_swap;
2100         }
2101         swap_header = kmap(page);
2102
2103         maxpages = read_swap_header(p, swap_header, inode);
2104         if (unlikely(!maxpages)) {
2105                 error = -EINVAL;
2106                 goto bad_swap;
2107         }
2108
2109         /* OK, set up the swap map and apply the bad block list */
2110         swap_map = vzalloc(maxpages);
2111         if (!swap_map) {
2112                 error = -ENOMEM;
2113                 goto bad_swap;
2114         }
2115
2116         error = swap_cgroup_swapon(p->type, maxpages);
2117         if (error)
2118                 goto bad_swap;
2119
2120         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2121                 maxpages, &span);
2122         if (unlikely(nr_extents < 0)) {
2123                 error = nr_extents;
2124                 goto bad_swap;
2125         }
2126         /* frontswap enabled? set up bit-per-page map for frontswap */
2127         if (frontswap_enabled)
2128                 frontswap_map = vzalloc(maxpages / sizeof(long));
2129
2130         if (p->bdev) {
2131                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2132                         p->flags |= SWP_SOLIDSTATE;
2133                         p->cluster_next = 1 + (random32() % p->highest_bit);
2134                 }
2135                 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2136                         p->flags |= SWP_DISCARDABLE;
2137         }
2138
2139         mutex_lock(&swapon_mutex);
2140         prio = -1;
2141         if (swap_flags & SWAP_FLAG_PREFER)
2142                 prio =
2143                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2144         enable_swap_info(p, prio, swap_map, frontswap_map);
2145
2146         printk(KERN_INFO "Adding %uk swap on %s.  "
2147                         "Priority:%d extents:%d across:%lluk %s%s%s\n",
2148                 p->pages<<(PAGE_SHIFT-10), name, p->prio,
2149                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2150                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2151                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2152                 (frontswap_map) ? "FS" : "");
2153
2154         mutex_unlock(&swapon_mutex);
2155         atomic_inc(&proc_poll_event);
2156         wake_up_interruptible(&proc_poll_wait);
2157
2158         if (S_ISREG(inode->i_mode))
2159                 inode->i_flags |= S_SWAPFILE;
2160         error = 0;
2161         goto out;
2162 bad_swap:
2163         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2164                 set_blocksize(p->bdev, p->old_block_size);
2165                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2166         }
2167         destroy_swap_extents(p);
2168         swap_cgroup_swapoff(p->type);
2169         spin_lock(&swap_lock);
2170         p->swap_file = NULL;
2171         p->flags = 0;
2172         spin_unlock(&swap_lock);
2173         vfree(swap_map);
2174         if (swap_file) {
2175                 if (inode && S_ISREG(inode->i_mode)) {
2176                         mutex_unlock(&inode->i_mutex);
2177                         inode = NULL;
2178                 }
2179                 filp_close(swap_file, NULL);
2180         }
2181 out:
2182         if (page && !IS_ERR(page)) {
2183                 kunmap(page);
2184                 page_cache_release(page);
2185         }
2186         if (name)
2187                 putname(name);
2188         if (inode && S_ISREG(inode->i_mode))
2189                 mutex_unlock(&inode->i_mutex);
2190         return error;
2191 }
2192
2193 void si_swapinfo(struct sysinfo *val)
2194 {
2195         unsigned int type;
2196         unsigned long nr_to_be_unused = 0;
2197
2198         spin_lock(&swap_lock);
2199         for (type = 0; type < nr_swapfiles; type++) {
2200                 struct swap_info_struct *si = swap_info[type];
2201
2202                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2203                         nr_to_be_unused += si->inuse_pages;
2204         }
2205         val->freeswap = nr_swap_pages + nr_to_be_unused;
2206         val->totalswap = total_swap_pages + nr_to_be_unused;
2207         spin_unlock(&swap_lock);
2208 }
2209
2210 /*
2211  * Verify that a swap entry is valid and increment its swap map count.
2212  *
2213  * Returns error code in following case.
2214  * - success -> 0
2215  * - swp_entry is invalid -> EINVAL
2216  * - swp_entry is migration entry -> EINVAL
2217  * - swap-cache reference is requested but there is already one. -> EEXIST
2218  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2219  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2220  */
2221 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2222 {
2223         struct swap_info_struct *p;
2224         unsigned long offset, type;
2225         unsigned char count;
2226         unsigned char has_cache;
2227         int err = -EINVAL;
2228
2229         if (non_swap_entry(entry))
2230                 goto out;
2231
2232         type = swp_type(entry);
2233         if (type >= nr_swapfiles)
2234                 goto bad_file;
2235         p = swap_info[type];
2236         offset = swp_offset(entry);
2237
2238         spin_lock(&swap_lock);
2239         if (unlikely(offset >= p->max))
2240                 goto unlock_out;
2241
2242         count = p->swap_map[offset];
2243         has_cache = count & SWAP_HAS_CACHE;
2244         count &= ~SWAP_HAS_CACHE;
2245         err = 0;
2246
2247         if (usage == SWAP_HAS_CACHE) {
2248
2249                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2250                 if (!has_cache && count)
2251                         has_cache = SWAP_HAS_CACHE;
2252                 else if (has_cache)             /* someone else added cache */
2253                         err = -EEXIST;
2254                 else                            /* no users remaining */
2255                         err = -ENOENT;
2256
2257         } else if (count || has_cache) {
2258
2259                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2260                         count += usage;
2261                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2262                         err = -EINVAL;
2263                 else if (swap_count_continued(p, offset, count))
2264                         count = COUNT_CONTINUED;
2265                 else
2266                         err = -ENOMEM;
2267         } else
2268                 err = -ENOENT;                  /* unused swap entry */
2269
2270         p->swap_map[offset] = count | has_cache;
2271
2272 unlock_out:
2273         spin_unlock(&swap_lock);
2274 out:
2275         return err;
2276
2277 bad_file:
2278         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2279         goto out;
2280 }
2281
2282 /*
2283  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2284  * (in which case its reference count is never incremented).
2285  */
2286 void swap_shmem_alloc(swp_entry_t entry)
2287 {
2288         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2289 }
2290
2291 /*
2292  * Increase reference count of swap entry by 1.
2293  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2294  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2295  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2296  * might occur if a page table entry has got corrupted.
2297  */
2298 int swap_duplicate(swp_entry_t entry)
2299 {
2300         int err = 0;
2301
2302         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2303                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2304         return err;
2305 }
2306
2307 /*
2308  * @entry: swap entry for which we allocate swap cache.
2309  *
2310  * Called when allocating swap cache for existing swap entry,
2311  * This can return error codes. Returns 0 at success.
2312  * -EBUSY means there is a swap cache.
2313  * Note: return code is different from swap_duplicate().
2314  */
2315 int swapcache_prepare(swp_entry_t entry)
2316 {
2317         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2318 }
2319
2320 /*
2321  * swap_lock prevents swap_map being freed. Don't grab an extra
2322  * reference on the swaphandle, it doesn't matter if it becomes unused.
2323  */
2324 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2325 {
2326         struct swap_info_struct *si;
2327         int our_page_cluster = page_cluster;
2328         pgoff_t target, toff;
2329         pgoff_t base, end;
2330         int nr_pages = 0;
2331
2332         if (!our_page_cluster)  /* no readahead */
2333                 return 0;
2334
2335         si = swap_info[swp_type(entry)];
2336         target = swp_offset(entry);
2337         base = (target >> our_page_cluster) << our_page_cluster;
2338         end = base + (1 << our_page_cluster);
2339         if (!base)              /* first page is swap header */
2340                 base++;
2341
2342         spin_lock(&swap_lock);
2343         if (frontswap_test(si, target)) {
2344                 spin_unlock(&swap_lock);
2345                 return 0;
2346         }
2347         if (end > si->max)      /* don't go beyond end of map */
2348                 end = si->max;
2349
2350         /* Count contiguous allocated slots above our target */
2351         for (toff = target; ++toff < end; nr_pages++) {
2352                 /* Don't read in free or bad pages */
2353                 if (!si->swap_map[toff])
2354                         break;
2355                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2356                         break;
2357                 /* Don't read in frontswap pages */
2358                 if (frontswap_test(si, toff))
2359                         break;
2360         }
2361         /* Count contiguous allocated slots below our target */
2362         for (toff = target; --toff >= base; nr_pages++) {
2363                 /* Don't read in free or bad pages */
2364                 if (!si->swap_map[toff])
2365                         break;
2366                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2367                         break;
2368                 /* Don't read in frontswap pages */
2369                 if (frontswap_test(si, toff))
2370                         break;
2371         }
2372         spin_unlock(&swap_lock);
2373
2374         /*
2375          * Indicate starting offset, and return number of pages to get:
2376          * if only 1, say 0, since there's then no readahead to be done.
2377          */
2378         *offset = ++toff;
2379         return nr_pages? ++nr_pages: 0;
2380 }
2381
2382 /*
2383  * add_swap_count_continuation - called when a swap count is duplicated
2384  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2385  * page of the original vmalloc'ed swap_map, to hold the continuation count
2386  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2387  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2388  *
2389  * These continuation pages are seldom referenced: the common paths all work
2390  * on the original swap_map, only referring to a continuation page when the
2391  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2392  *
2393  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2394  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2395  * can be called after dropping locks.
2396  */
2397 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2398 {
2399         struct swap_info_struct *si;
2400         struct page *head;
2401         struct page *page;
2402         struct page *list_page;
2403         pgoff_t offset;
2404         unsigned char count;
2405
2406         /*
2407          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2408          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2409          */
2410         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2411
2412         si = swap_info_get(entry);
2413         if (!si) {
2414                 /*
2415                  * An acceptable race has occurred since the failing
2416                  * __swap_duplicate(): the swap entry has been freed,
2417                  * perhaps even the whole swap_map cleared for swapoff.
2418                  */
2419                 goto outer;
2420         }
2421
2422         offset = swp_offset(entry);
2423         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2424
2425         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2426                 /*
2427                  * The higher the swap count, the more likely it is that tasks
2428                  * will race to add swap count continuation: we need to avoid
2429                  * over-provisioning.
2430                  */
2431                 goto out;
2432         }
2433
2434         if (!page) {
2435                 spin_unlock(&swap_lock);
2436                 return -ENOMEM;
2437         }
2438
2439         /*
2440          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2441          * no architecture is using highmem pages for kernel pagetables: so it
2442          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2443          */
2444         head = vmalloc_to_page(si->swap_map + offset);
2445         offset &= ~PAGE_MASK;
2446
2447         /*
2448          * Page allocation does not initialize the page's lru field,
2449          * but it does always reset its private field.
2450          */
2451         if (!page_private(head)) {
2452                 BUG_ON(count & COUNT_CONTINUED);
2453                 INIT_LIST_HEAD(&head->lru);
2454                 set_page_private(head, SWP_CONTINUED);
2455                 si->flags |= SWP_CONTINUED;
2456         }
2457
2458         list_for_each_entry(list_page, &head->lru, lru) {
2459                 unsigned char *map;
2460
2461                 /*
2462                  * If the previous map said no continuation, but we've found
2463                  * a continuation page, free our allocation and use this one.
2464                  */
2465                 if (!(count & COUNT_CONTINUED))
2466                         goto out;
2467
2468                 map = kmap_atomic(list_page) + offset;
2469                 count = *map;
2470                 kunmap_atomic(map);
2471
2472                 /*
2473                  * If this continuation count now has some space in it,
2474                  * free our allocation and use this one.
2475                  */
2476                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2477                         goto out;
2478         }
2479
2480         list_add_tail(&page->lru, &head->lru);
2481         page = NULL;                    /* now it's attached, don't free it */
2482 out:
2483         spin_unlock(&swap_lock);
2484 outer:
2485         if (page)
2486                 __free_page(page);
2487         return 0;
2488 }
2489
2490 /*
2491  * swap_count_continued - when the original swap_map count is incremented
2492  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2493  * into, carry if so, or else fail until a new continuation page is allocated;
2494  * when the original swap_map count is decremented from 0 with continuation,
2495  * borrow from the continuation and report whether it still holds more.
2496  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2497  */
2498 static bool swap_count_continued(struct swap_info_struct *si,
2499                                  pgoff_t offset, unsigned char count)
2500 {
2501         struct page *head;
2502         struct page *page;
2503         unsigned char *map;
2504
2505         head = vmalloc_to_page(si->swap_map + offset);
2506         if (page_private(head) != SWP_CONTINUED) {
2507                 BUG_ON(count & COUNT_CONTINUED);
2508                 return false;           /* need to add count continuation */
2509         }
2510
2511         offset &= ~PAGE_MASK;
2512         page = list_entry(head->lru.next, struct page, lru);
2513         map = kmap_atomic(page) + offset;
2514
2515         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2516                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2517
2518         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2519                 /*
2520                  * Think of how you add 1 to 999
2521                  */
2522                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2523                         kunmap_atomic(map);
2524                         page = list_entry(page->lru.next, struct page, lru);
2525                         BUG_ON(page == head);
2526                         map = kmap_atomic(page) + offset;
2527                 }
2528                 if (*map == SWAP_CONT_MAX) {
2529                         kunmap_atomic(map);
2530                         page = list_entry(page->lru.next, struct page, lru);
2531                         if (page == head)
2532                                 return false;   /* add count continuation */
2533                         map = kmap_atomic(page) + offset;
2534 init_map:               *map = 0;               /* we didn't zero the page */
2535                 }
2536                 *map += 1;
2537                 kunmap_atomic(map);
2538                 page = list_entry(page->lru.prev, struct page, lru);
2539                 while (page != head) {
2540                         map = kmap_atomic(page) + offset;
2541                         *map = COUNT_CONTINUED;
2542                         kunmap_atomic(map);
2543                         page = list_entry(page->lru.prev, struct page, lru);
2544                 }
2545                 return true;                    /* incremented */
2546
2547         } else {                                /* decrementing */
2548                 /*
2549                  * Think of how you subtract 1 from 1000
2550                  */
2551                 BUG_ON(count != COUNT_CONTINUED);
2552                 while (*map == COUNT_CONTINUED) {
2553                         kunmap_atomic(map);
2554                         page = list_entry(page->lru.next, struct page, lru);
2555                         BUG_ON(page == head);
2556                         map = kmap_atomic(page) + offset;
2557                 }
2558                 BUG_ON(*map == 0);
2559                 *map -= 1;
2560                 if (*map == 0)
2561                         count = 0;
2562                 kunmap_atomic(map);
2563                 page = list_entry(page->lru.prev, struct page, lru);
2564                 while (page != head) {
2565                         map = kmap_atomic(page) + offset;
2566                         *map = SWAP_CONT_MAX | count;
2567                         count = COUNT_CONTINUED;
2568                         kunmap_atomic(map);
2569                         page = list_entry(page->lru.prev, struct page, lru);
2570                 }
2571                 return count == COUNT_CONTINUED;
2572         }
2573 }
2574
2575 /*
2576  * free_swap_count_continuations - swapoff free all the continuation pages
2577  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2578  */
2579 static void free_swap_count_continuations(struct swap_info_struct *si)
2580 {
2581         pgoff_t offset;
2582
2583         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2584                 struct page *head;
2585                 head = vmalloc_to_page(si->swap_map + offset);
2586                 if (page_private(head)) {
2587                         struct list_head *this, *next;
2588                         list_for_each_safe(this, next, &head->lru) {
2589                                 struct page *page;
2590                                 page = list_entry(this, struct page, lru);
2591                                 list_del(this);
2592                                 __free_page(page);
2593                         }
2594                 }
2595         }
2596 }