]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/swapfile.c
mm: __first_valid_page skip over offline pages
[karo-tx-linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <linux/swapops.h>
44 #include <linux/swap_cgroup.h>
45
46 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
47                                  unsigned char);
48 static void free_swap_count_continuations(struct swap_info_struct *);
49 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
50
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55  * Some modules use swappable objects and may try to swap them out under
56  * memory pressure (via the shrinker). Before doing so, they may wish to
57  * check to see if any swap space is available.
58  */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority;
63
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68
69 /*
70  * all active swap_info_structs
71  * protected with swap_lock, and ordered by priority.
72  */
73 PLIST_HEAD(swap_active_head);
74
75 /*
76  * all available (active, not full) swap_info_structs
77  * protected with swap_avail_lock, ordered by priority.
78  * This is used by get_swap_page() instead of swap_active_head
79  * because swap_active_head includes all swap_info_structs,
80  * but get_swap_page() doesn't need to look at full ones.
81  * This uses its own lock instead of swap_lock because when a
82  * swap_info_struct changes between not-full/full, it needs to
83  * add/remove itself to/from this list, but the swap_info_struct->lock
84  * is held and the locking order requires swap_lock to be taken
85  * before any swap_info_struct->lock.
86  */
87 static PLIST_HEAD(swap_avail_head);
88 static DEFINE_SPINLOCK(swap_avail_lock);
89
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91
92 static DEFINE_MUTEX(swapon_mutex);
93
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97
98 static inline unsigned char swap_count(unsigned char ent)
99 {
100         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
101 }
102
103 /* returns 1 if swap entry is freed */
104 static int
105 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
106 {
107         swp_entry_t entry = swp_entry(si->type, offset);
108         struct page *page;
109         int ret = 0;
110
111         page = find_get_page(swap_address_space(entry), swp_offset(entry));
112         if (!page)
113                 return 0;
114         /*
115          * This function is called from scan_swap_map() and it's called
116          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
117          * We have to use trylock for avoiding deadlock. This is a special
118          * case and you should use try_to_free_swap() with explicit lock_page()
119          * in usual operations.
120          */
121         if (trylock_page(page)) {
122                 ret = try_to_free_swap(page);
123                 unlock_page(page);
124         }
125         put_page(page);
126         return ret;
127 }
128
129 /*
130  * swapon tell device that all the old swap contents can be discarded,
131  * to allow the swap device to optimize its wear-levelling.
132  */
133 static int discard_swap(struct swap_info_struct *si)
134 {
135         struct swap_extent *se;
136         sector_t start_block;
137         sector_t nr_blocks;
138         int err = 0;
139
140         /* Do not discard the swap header page! */
141         se = &si->first_swap_extent;
142         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
143         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
144         if (nr_blocks) {
145                 err = blkdev_issue_discard(si->bdev, start_block,
146                                 nr_blocks, GFP_KERNEL, 0);
147                 if (err)
148                         return err;
149                 cond_resched();
150         }
151
152         list_for_each_entry(se, &si->first_swap_extent.list, list) {
153                 start_block = se->start_block << (PAGE_SHIFT - 9);
154                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
155
156                 err = blkdev_issue_discard(si->bdev, start_block,
157                                 nr_blocks, GFP_KERNEL, 0);
158                 if (err)
159                         break;
160
161                 cond_resched();
162         }
163         return err;             /* That will often be -EOPNOTSUPP */
164 }
165
166 /*
167  * swap allocation tell device that a cluster of swap can now be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static void discard_swap_cluster(struct swap_info_struct *si,
171                                  pgoff_t start_page, pgoff_t nr_pages)
172 {
173         struct swap_extent *se = si->curr_swap_extent;
174         int found_extent = 0;
175
176         while (nr_pages) {
177                 if (se->start_page <= start_page &&
178                     start_page < se->start_page + se->nr_pages) {
179                         pgoff_t offset = start_page - se->start_page;
180                         sector_t start_block = se->start_block + offset;
181                         sector_t nr_blocks = se->nr_pages - offset;
182
183                         if (nr_blocks > nr_pages)
184                                 nr_blocks = nr_pages;
185                         start_page += nr_blocks;
186                         nr_pages -= nr_blocks;
187
188                         if (!found_extent++)
189                                 si->curr_swap_extent = se;
190
191                         start_block <<= PAGE_SHIFT - 9;
192                         nr_blocks <<= PAGE_SHIFT - 9;
193                         if (blkdev_issue_discard(si->bdev, start_block,
194                                     nr_blocks, GFP_NOIO, 0))
195                                 break;
196                 }
197
198                 se = list_next_entry(se, list);
199         }
200 }
201
202 #ifdef CONFIG_THP_SWAP
203 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
204 #else
205 #define SWAPFILE_CLUSTER        256
206 #endif
207 #define LATENCY_LIMIT           256
208
209 static inline void cluster_set_flag(struct swap_cluster_info *info,
210         unsigned int flag)
211 {
212         info->flags = flag;
213 }
214
215 static inline unsigned int cluster_count(struct swap_cluster_info *info)
216 {
217         return info->data;
218 }
219
220 static inline void cluster_set_count(struct swap_cluster_info *info,
221                                      unsigned int c)
222 {
223         info->data = c;
224 }
225
226 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
227                                          unsigned int c, unsigned int f)
228 {
229         info->flags = f;
230         info->data = c;
231 }
232
233 static inline unsigned int cluster_next(struct swap_cluster_info *info)
234 {
235         return info->data;
236 }
237
238 static inline void cluster_set_next(struct swap_cluster_info *info,
239                                     unsigned int n)
240 {
241         info->data = n;
242 }
243
244 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
245                                          unsigned int n, unsigned int f)
246 {
247         info->flags = f;
248         info->data = n;
249 }
250
251 static inline bool cluster_is_free(struct swap_cluster_info *info)
252 {
253         return info->flags & CLUSTER_FLAG_FREE;
254 }
255
256 static inline bool cluster_is_null(struct swap_cluster_info *info)
257 {
258         return info->flags & CLUSTER_FLAG_NEXT_NULL;
259 }
260
261 static inline void cluster_set_null(struct swap_cluster_info *info)
262 {
263         info->flags = CLUSTER_FLAG_NEXT_NULL;
264         info->data = 0;
265 }
266
267 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
268                                                      unsigned long offset)
269 {
270         struct swap_cluster_info *ci;
271
272         ci = si->cluster_info;
273         if (ci) {
274                 ci += offset / SWAPFILE_CLUSTER;
275                 spin_lock(&ci->lock);
276         }
277         return ci;
278 }
279
280 static inline void unlock_cluster(struct swap_cluster_info *ci)
281 {
282         if (ci)
283                 spin_unlock(&ci->lock);
284 }
285
286 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
287         struct swap_info_struct *si,
288         unsigned long offset)
289 {
290         struct swap_cluster_info *ci;
291
292         ci = lock_cluster(si, offset);
293         if (!ci)
294                 spin_lock(&si->lock);
295
296         return ci;
297 }
298
299 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
300                                                struct swap_cluster_info *ci)
301 {
302         if (ci)
303                 unlock_cluster(ci);
304         else
305                 spin_unlock(&si->lock);
306 }
307
308 static inline bool cluster_list_empty(struct swap_cluster_list *list)
309 {
310         return cluster_is_null(&list->head);
311 }
312
313 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
314 {
315         return cluster_next(&list->head);
316 }
317
318 static void cluster_list_init(struct swap_cluster_list *list)
319 {
320         cluster_set_null(&list->head);
321         cluster_set_null(&list->tail);
322 }
323
324 static void cluster_list_add_tail(struct swap_cluster_list *list,
325                                   struct swap_cluster_info *ci,
326                                   unsigned int idx)
327 {
328         if (cluster_list_empty(list)) {
329                 cluster_set_next_flag(&list->head, idx, 0);
330                 cluster_set_next_flag(&list->tail, idx, 0);
331         } else {
332                 struct swap_cluster_info *ci_tail;
333                 unsigned int tail = cluster_next(&list->tail);
334
335                 /*
336                  * Nested cluster lock, but both cluster locks are
337                  * only acquired when we held swap_info_struct->lock
338                  */
339                 ci_tail = ci + tail;
340                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
341                 cluster_set_next(ci_tail, idx);
342                 spin_unlock(&ci_tail->lock);
343                 cluster_set_next_flag(&list->tail, idx, 0);
344         }
345 }
346
347 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
348                                            struct swap_cluster_info *ci)
349 {
350         unsigned int idx;
351
352         idx = cluster_next(&list->head);
353         if (cluster_next(&list->tail) == idx) {
354                 cluster_set_null(&list->head);
355                 cluster_set_null(&list->tail);
356         } else
357                 cluster_set_next_flag(&list->head,
358                                       cluster_next(&ci[idx]), 0);
359
360         return idx;
361 }
362
363 /* Add a cluster to discard list and schedule it to do discard */
364 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
365                 unsigned int idx)
366 {
367         /*
368          * If scan_swap_map() can't find a free cluster, it will check
369          * si->swap_map directly. To make sure the discarding cluster isn't
370          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
371          * will be cleared after discard
372          */
373         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
374                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
375
376         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
377
378         schedule_work(&si->discard_work);
379 }
380
381 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
382 {
383         struct swap_cluster_info *ci = si->cluster_info;
384
385         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
386         cluster_list_add_tail(&si->free_clusters, ci, idx);
387 }
388
389 /*
390  * Doing discard actually. After a cluster discard is finished, the cluster
391  * will be added to free cluster list. caller should hold si->lock.
392 */
393 static void swap_do_scheduled_discard(struct swap_info_struct *si)
394 {
395         struct swap_cluster_info *info, *ci;
396         unsigned int idx;
397
398         info = si->cluster_info;
399
400         while (!cluster_list_empty(&si->discard_clusters)) {
401                 idx = cluster_list_del_first(&si->discard_clusters, info);
402                 spin_unlock(&si->lock);
403
404                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
405                                 SWAPFILE_CLUSTER);
406
407                 spin_lock(&si->lock);
408                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
409                 __free_cluster(si, idx);
410                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
411                                 0, SWAPFILE_CLUSTER);
412                 unlock_cluster(ci);
413         }
414 }
415
416 static void swap_discard_work(struct work_struct *work)
417 {
418         struct swap_info_struct *si;
419
420         si = container_of(work, struct swap_info_struct, discard_work);
421
422         spin_lock(&si->lock);
423         swap_do_scheduled_discard(si);
424         spin_unlock(&si->lock);
425 }
426
427 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
428 {
429         struct swap_cluster_info *ci = si->cluster_info;
430
431         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
432         cluster_list_del_first(&si->free_clusters, ci);
433         cluster_set_count_flag(ci + idx, 0, 0);
434 }
435
436 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
437 {
438         struct swap_cluster_info *ci = si->cluster_info + idx;
439
440         VM_BUG_ON(cluster_count(ci) != 0);
441         /*
442          * If the swap is discardable, prepare discard the cluster
443          * instead of free it immediately. The cluster will be freed
444          * after discard.
445          */
446         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
447             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
448                 swap_cluster_schedule_discard(si, idx);
449                 return;
450         }
451
452         __free_cluster(si, idx);
453 }
454
455 /*
456  * The cluster corresponding to page_nr will be used. The cluster will be
457  * removed from free cluster list and its usage counter will be increased.
458  */
459 static void inc_cluster_info_page(struct swap_info_struct *p,
460         struct swap_cluster_info *cluster_info, unsigned long page_nr)
461 {
462         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
463
464         if (!cluster_info)
465                 return;
466         if (cluster_is_free(&cluster_info[idx]))
467                 alloc_cluster(p, idx);
468
469         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
470         cluster_set_count(&cluster_info[idx],
471                 cluster_count(&cluster_info[idx]) + 1);
472 }
473
474 /*
475  * The cluster corresponding to page_nr decreases one usage. If the usage
476  * counter becomes 0, which means no page in the cluster is in using, we can
477  * optionally discard the cluster and add it to free cluster list.
478  */
479 static void dec_cluster_info_page(struct swap_info_struct *p,
480         struct swap_cluster_info *cluster_info, unsigned long page_nr)
481 {
482         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
483
484         if (!cluster_info)
485                 return;
486
487         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
488         cluster_set_count(&cluster_info[idx],
489                 cluster_count(&cluster_info[idx]) - 1);
490
491         if (cluster_count(&cluster_info[idx]) == 0)
492                 free_cluster(p, idx);
493 }
494
495 /*
496  * It's possible scan_swap_map() uses a free cluster in the middle of free
497  * cluster list. Avoiding such abuse to avoid list corruption.
498  */
499 static bool
500 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
501         unsigned long offset)
502 {
503         struct percpu_cluster *percpu_cluster;
504         bool conflict;
505
506         offset /= SWAPFILE_CLUSTER;
507         conflict = !cluster_list_empty(&si->free_clusters) &&
508                 offset != cluster_list_first(&si->free_clusters) &&
509                 cluster_is_free(&si->cluster_info[offset]);
510
511         if (!conflict)
512                 return false;
513
514         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
515         cluster_set_null(&percpu_cluster->index);
516         return true;
517 }
518
519 /*
520  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
521  * might involve allocating a new cluster for current CPU too.
522  */
523 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
524         unsigned long *offset, unsigned long *scan_base)
525 {
526         struct percpu_cluster *cluster;
527         struct swap_cluster_info *ci;
528         bool found_free;
529         unsigned long tmp, max;
530
531 new_cluster:
532         cluster = this_cpu_ptr(si->percpu_cluster);
533         if (cluster_is_null(&cluster->index)) {
534                 if (!cluster_list_empty(&si->free_clusters)) {
535                         cluster->index = si->free_clusters.head;
536                         cluster->next = cluster_next(&cluster->index) *
537                                         SWAPFILE_CLUSTER;
538                 } else if (!cluster_list_empty(&si->discard_clusters)) {
539                         /*
540                          * we don't have free cluster but have some clusters in
541                          * discarding, do discard now and reclaim them
542                          */
543                         swap_do_scheduled_discard(si);
544                         *scan_base = *offset = si->cluster_next;
545                         goto new_cluster;
546                 } else
547                         return false;
548         }
549
550         found_free = false;
551
552         /*
553          * Other CPUs can use our cluster if they can't find a free cluster,
554          * check if there is still free entry in the cluster
555          */
556         tmp = cluster->next;
557         max = min_t(unsigned long, si->max,
558                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
559         if (tmp >= max) {
560                 cluster_set_null(&cluster->index);
561                 goto new_cluster;
562         }
563         ci = lock_cluster(si, tmp);
564         while (tmp < max) {
565                 if (!si->swap_map[tmp]) {
566                         found_free = true;
567                         break;
568                 }
569                 tmp++;
570         }
571         unlock_cluster(ci);
572         if (!found_free) {
573                 cluster_set_null(&cluster->index);
574                 goto new_cluster;
575         }
576         cluster->next = tmp + 1;
577         *offset = tmp;
578         *scan_base = tmp;
579         return found_free;
580 }
581
582 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
583                              unsigned int nr_entries)
584 {
585         unsigned int end = offset + nr_entries - 1;
586
587         if (offset == si->lowest_bit)
588                 si->lowest_bit += nr_entries;
589         if (end == si->highest_bit)
590                 si->highest_bit -= nr_entries;
591         si->inuse_pages += nr_entries;
592         if (si->inuse_pages == si->pages) {
593                 si->lowest_bit = si->max;
594                 si->highest_bit = 0;
595                 spin_lock(&swap_avail_lock);
596                 plist_del(&si->avail_list, &swap_avail_head);
597                 spin_unlock(&swap_avail_lock);
598         }
599 }
600
601 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
602                             unsigned int nr_entries)
603 {
604         unsigned long end = offset + nr_entries - 1;
605         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
606
607         if (offset < si->lowest_bit)
608                 si->lowest_bit = offset;
609         if (end > si->highest_bit) {
610                 bool was_full = !si->highest_bit;
611
612                 si->highest_bit = end;
613                 if (was_full && (si->flags & SWP_WRITEOK)) {
614                         spin_lock(&swap_avail_lock);
615                         WARN_ON(!plist_node_empty(&si->avail_list));
616                         if (plist_node_empty(&si->avail_list))
617                                 plist_add(&si->avail_list, &swap_avail_head);
618                         spin_unlock(&swap_avail_lock);
619                 }
620         }
621         atomic_long_add(nr_entries, &nr_swap_pages);
622         si->inuse_pages -= nr_entries;
623         if (si->flags & SWP_BLKDEV)
624                 swap_slot_free_notify =
625                         si->bdev->bd_disk->fops->swap_slot_free_notify;
626         else
627                 swap_slot_free_notify = NULL;
628         while (offset <= end) {
629                 frontswap_invalidate_page(si->type, offset);
630                 if (swap_slot_free_notify)
631                         swap_slot_free_notify(si->bdev, offset);
632                 offset++;
633         }
634 }
635
636 static int scan_swap_map_slots(struct swap_info_struct *si,
637                                unsigned char usage, int nr,
638                                swp_entry_t slots[])
639 {
640         struct swap_cluster_info *ci;
641         unsigned long offset;
642         unsigned long scan_base;
643         unsigned long last_in_cluster = 0;
644         int latency_ration = LATENCY_LIMIT;
645         int n_ret = 0;
646
647         if (nr > SWAP_BATCH)
648                 nr = SWAP_BATCH;
649
650         /*
651          * We try to cluster swap pages by allocating them sequentially
652          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
653          * way, however, we resort to first-free allocation, starting
654          * a new cluster.  This prevents us from scattering swap pages
655          * all over the entire swap partition, so that we reduce
656          * overall disk seek times between swap pages.  -- sct
657          * But we do now try to find an empty cluster.  -Andrea
658          * And we let swap pages go all over an SSD partition.  Hugh
659          */
660
661         si->flags += SWP_SCANNING;
662         scan_base = offset = si->cluster_next;
663
664         /* SSD algorithm */
665         if (si->cluster_info) {
666                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
667                         goto checks;
668                 else
669                         goto scan;
670         }
671
672         if (unlikely(!si->cluster_nr--)) {
673                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
674                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
675                         goto checks;
676                 }
677
678                 spin_unlock(&si->lock);
679
680                 /*
681                  * If seek is expensive, start searching for new cluster from
682                  * start of partition, to minimize the span of allocated swap.
683                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
684                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
685                  */
686                 scan_base = offset = si->lowest_bit;
687                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
688
689                 /* Locate the first empty (unaligned) cluster */
690                 for (; last_in_cluster <= si->highest_bit; offset++) {
691                         if (si->swap_map[offset])
692                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
693                         else if (offset == last_in_cluster) {
694                                 spin_lock(&si->lock);
695                                 offset -= SWAPFILE_CLUSTER - 1;
696                                 si->cluster_next = offset;
697                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
698                                 goto checks;
699                         }
700                         if (unlikely(--latency_ration < 0)) {
701                                 cond_resched();
702                                 latency_ration = LATENCY_LIMIT;
703                         }
704                 }
705
706                 offset = scan_base;
707                 spin_lock(&si->lock);
708                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
709         }
710
711 checks:
712         if (si->cluster_info) {
713                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
714                 /* take a break if we already got some slots */
715                         if (n_ret)
716                                 goto done;
717                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
718                                                         &scan_base))
719                                 goto scan;
720                 }
721         }
722         if (!(si->flags & SWP_WRITEOK))
723                 goto no_page;
724         if (!si->highest_bit)
725                 goto no_page;
726         if (offset > si->highest_bit)
727                 scan_base = offset = si->lowest_bit;
728
729         ci = lock_cluster(si, offset);
730         /* reuse swap entry of cache-only swap if not busy. */
731         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
732                 int swap_was_freed;
733                 unlock_cluster(ci);
734                 spin_unlock(&si->lock);
735                 swap_was_freed = __try_to_reclaim_swap(si, offset);
736                 spin_lock(&si->lock);
737                 /* entry was freed successfully, try to use this again */
738                 if (swap_was_freed)
739                         goto checks;
740                 goto scan; /* check next one */
741         }
742
743         if (si->swap_map[offset]) {
744                 unlock_cluster(ci);
745                 if (!n_ret)
746                         goto scan;
747                 else
748                         goto done;
749         }
750         si->swap_map[offset] = usage;
751         inc_cluster_info_page(si, si->cluster_info, offset);
752         unlock_cluster(ci);
753
754         swap_range_alloc(si, offset, 1);
755         si->cluster_next = offset + 1;
756         slots[n_ret++] = swp_entry(si->type, offset);
757
758         /* got enough slots or reach max slots? */
759         if ((n_ret == nr) || (offset >= si->highest_bit))
760                 goto done;
761
762         /* search for next available slot */
763
764         /* time to take a break? */
765         if (unlikely(--latency_ration < 0)) {
766                 if (n_ret)
767                         goto done;
768                 spin_unlock(&si->lock);
769                 cond_resched();
770                 spin_lock(&si->lock);
771                 latency_ration = LATENCY_LIMIT;
772         }
773
774         /* try to get more slots in cluster */
775         if (si->cluster_info) {
776                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
777                         goto checks;
778                 else
779                         goto done;
780         }
781         /* non-ssd case */
782         ++offset;
783
784         /* non-ssd case, still more slots in cluster? */
785         if (si->cluster_nr && !si->swap_map[offset]) {
786                 --si->cluster_nr;
787                 goto checks;
788         }
789
790 done:
791         si->flags -= SWP_SCANNING;
792         return n_ret;
793
794 scan:
795         spin_unlock(&si->lock);
796         while (++offset <= si->highest_bit) {
797                 if (!si->swap_map[offset]) {
798                         spin_lock(&si->lock);
799                         goto checks;
800                 }
801                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
802                         spin_lock(&si->lock);
803                         goto checks;
804                 }
805                 if (unlikely(--latency_ration < 0)) {
806                         cond_resched();
807                         latency_ration = LATENCY_LIMIT;
808                 }
809         }
810         offset = si->lowest_bit;
811         while (offset < scan_base) {
812                 if (!si->swap_map[offset]) {
813                         spin_lock(&si->lock);
814                         goto checks;
815                 }
816                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
817                         spin_lock(&si->lock);
818                         goto checks;
819                 }
820                 if (unlikely(--latency_ration < 0)) {
821                         cond_resched();
822                         latency_ration = LATENCY_LIMIT;
823                 }
824                 offset++;
825         }
826         spin_lock(&si->lock);
827
828 no_page:
829         si->flags -= SWP_SCANNING;
830         return n_ret;
831 }
832
833 #ifdef CONFIG_THP_SWAP
834 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
835 {
836         unsigned long idx;
837         struct swap_cluster_info *ci;
838         unsigned long offset, i;
839         unsigned char *map;
840
841         if (cluster_list_empty(&si->free_clusters))
842                 return 0;
843
844         idx = cluster_list_first(&si->free_clusters);
845         offset = idx * SWAPFILE_CLUSTER;
846         ci = lock_cluster(si, offset);
847         alloc_cluster(si, idx);
848         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, 0);
849
850         map = si->swap_map + offset;
851         for (i = 0; i < SWAPFILE_CLUSTER; i++)
852                 map[i] = SWAP_HAS_CACHE;
853         unlock_cluster(ci);
854         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
855         *slot = swp_entry(si->type, offset);
856
857         return 1;
858 }
859
860 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
861 {
862         unsigned long offset = idx * SWAPFILE_CLUSTER;
863         struct swap_cluster_info *ci;
864
865         ci = lock_cluster(si, offset);
866         cluster_set_count_flag(ci, 0, 0);
867         free_cluster(si, idx);
868         unlock_cluster(ci);
869         swap_range_free(si, offset, SWAPFILE_CLUSTER);
870 }
871 #else
872 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
873 {
874         VM_WARN_ON_ONCE(1);
875         return 0;
876 }
877 #endif /* CONFIG_THP_SWAP */
878
879 static unsigned long scan_swap_map(struct swap_info_struct *si,
880                                    unsigned char usage)
881 {
882         swp_entry_t entry;
883         int n_ret;
884
885         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
886
887         if (n_ret)
888                 return swp_offset(entry);
889         else
890                 return 0;
891
892 }
893
894 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
895 {
896         unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
897         struct swap_info_struct *si, *next;
898         long avail_pgs;
899         int n_ret = 0;
900
901         /* Only single cluster request supported */
902         WARN_ON_ONCE(n_goal > 1 && cluster);
903
904         avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
905         if (avail_pgs <= 0)
906                 goto noswap;
907
908         if (n_goal > SWAP_BATCH)
909                 n_goal = SWAP_BATCH;
910
911         if (n_goal > avail_pgs)
912                 n_goal = avail_pgs;
913
914         atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
915
916         spin_lock(&swap_avail_lock);
917
918 start_over:
919         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
920                 /* requeue si to after same-priority siblings */
921                 plist_requeue(&si->avail_list, &swap_avail_head);
922                 spin_unlock(&swap_avail_lock);
923                 spin_lock(&si->lock);
924                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
925                         spin_lock(&swap_avail_lock);
926                         if (plist_node_empty(&si->avail_list)) {
927                                 spin_unlock(&si->lock);
928                                 goto nextsi;
929                         }
930                         WARN(!si->highest_bit,
931                              "swap_info %d in list but !highest_bit\n",
932                              si->type);
933                         WARN(!(si->flags & SWP_WRITEOK),
934                              "swap_info %d in list but !SWP_WRITEOK\n",
935                              si->type);
936                         plist_del(&si->avail_list, &swap_avail_head);
937                         spin_unlock(&si->lock);
938                         goto nextsi;
939                 }
940                 if (cluster)
941                         n_ret = swap_alloc_cluster(si, swp_entries);
942                 else
943                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
944                                                     n_goal, swp_entries);
945                 spin_unlock(&si->lock);
946                 if (n_ret || cluster)
947                         goto check_out;
948                 pr_debug("scan_swap_map of si %d failed to find offset\n",
949                         si->type);
950
951                 spin_lock(&swap_avail_lock);
952 nextsi:
953                 /*
954                  * if we got here, it's likely that si was almost full before,
955                  * and since scan_swap_map() can drop the si->lock, multiple
956                  * callers probably all tried to get a page from the same si
957                  * and it filled up before we could get one; or, the si filled
958                  * up between us dropping swap_avail_lock and taking si->lock.
959                  * Since we dropped the swap_avail_lock, the swap_avail_head
960                  * list may have been modified; so if next is still in the
961                  * swap_avail_head list then try it, otherwise start over
962                  * if we have not gotten any slots.
963                  */
964                 if (plist_node_empty(&next->avail_list))
965                         goto start_over;
966         }
967
968         spin_unlock(&swap_avail_lock);
969
970 check_out:
971         if (n_ret < n_goal)
972                 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
973                                 &nr_swap_pages);
974 noswap:
975         return n_ret;
976 }
977
978 /* The only caller of this function is now suspend routine */
979 swp_entry_t get_swap_page_of_type(int type)
980 {
981         struct swap_info_struct *si;
982         pgoff_t offset;
983
984         si = swap_info[type];
985         spin_lock(&si->lock);
986         if (si && (si->flags & SWP_WRITEOK)) {
987                 atomic_long_dec(&nr_swap_pages);
988                 /* This is called for allocating swap entry, not cache */
989                 offset = scan_swap_map(si, 1);
990                 if (offset) {
991                         spin_unlock(&si->lock);
992                         return swp_entry(type, offset);
993                 }
994                 atomic_long_inc(&nr_swap_pages);
995         }
996         spin_unlock(&si->lock);
997         return (swp_entry_t) {0};
998 }
999
1000 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1001 {
1002         struct swap_info_struct *p;
1003         unsigned long offset, type;
1004
1005         if (!entry.val)
1006                 goto out;
1007         type = swp_type(entry);
1008         if (type >= nr_swapfiles)
1009                 goto bad_nofile;
1010         p = swap_info[type];
1011         if (!(p->flags & SWP_USED))
1012                 goto bad_device;
1013         offset = swp_offset(entry);
1014         if (offset >= p->max)
1015                 goto bad_offset;
1016         return p;
1017
1018 bad_offset:
1019         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1020         goto out;
1021 bad_device:
1022         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1023         goto out;
1024 bad_nofile:
1025         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1026 out:
1027         return NULL;
1028 }
1029
1030 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1031 {
1032         struct swap_info_struct *p;
1033
1034         p = __swap_info_get(entry);
1035         if (!p)
1036                 goto out;
1037         if (!p->swap_map[swp_offset(entry)])
1038                 goto bad_free;
1039         return p;
1040
1041 bad_free:
1042         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1043         goto out;
1044 out:
1045         return NULL;
1046 }
1047
1048 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1049 {
1050         struct swap_info_struct *p;
1051
1052         p = _swap_info_get(entry);
1053         if (p)
1054                 spin_lock(&p->lock);
1055         return p;
1056 }
1057
1058 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1059                                         struct swap_info_struct *q)
1060 {
1061         struct swap_info_struct *p;
1062
1063         p = _swap_info_get(entry);
1064
1065         if (p != q) {
1066                 if (q != NULL)
1067                         spin_unlock(&q->lock);
1068                 if (p != NULL)
1069                         spin_lock(&p->lock);
1070         }
1071         return p;
1072 }
1073
1074 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1075                                        swp_entry_t entry, unsigned char usage)
1076 {
1077         struct swap_cluster_info *ci;
1078         unsigned long offset = swp_offset(entry);
1079         unsigned char count;
1080         unsigned char has_cache;
1081
1082         ci = lock_cluster_or_swap_info(p, offset);
1083
1084         count = p->swap_map[offset];
1085
1086         has_cache = count & SWAP_HAS_CACHE;
1087         count &= ~SWAP_HAS_CACHE;
1088
1089         if (usage == SWAP_HAS_CACHE) {
1090                 VM_BUG_ON(!has_cache);
1091                 has_cache = 0;
1092         } else if (count == SWAP_MAP_SHMEM) {
1093                 /*
1094                  * Or we could insist on shmem.c using a special
1095                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1096                  */
1097                 count = 0;
1098         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1099                 if (count == COUNT_CONTINUED) {
1100                         if (swap_count_continued(p, offset, count))
1101                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1102                         else
1103                                 count = SWAP_MAP_MAX;
1104                 } else
1105                         count--;
1106         }
1107
1108         usage = count | has_cache;
1109         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1110
1111         unlock_cluster_or_swap_info(p, ci);
1112
1113         return usage;
1114 }
1115
1116 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1117 {
1118         struct swap_cluster_info *ci;
1119         unsigned long offset = swp_offset(entry);
1120         unsigned char count;
1121
1122         ci = lock_cluster(p, offset);
1123         count = p->swap_map[offset];
1124         VM_BUG_ON(count != SWAP_HAS_CACHE);
1125         p->swap_map[offset] = 0;
1126         dec_cluster_info_page(p, p->cluster_info, offset);
1127         unlock_cluster(ci);
1128
1129         mem_cgroup_uncharge_swap(entry, 1);
1130         swap_range_free(p, offset, 1);
1131 }
1132
1133 /*
1134  * Caller has made sure that the swap device corresponding to entry
1135  * is still around or has not been recycled.
1136  */
1137 void swap_free(swp_entry_t entry)
1138 {
1139         struct swap_info_struct *p;
1140
1141         p = _swap_info_get(entry);
1142         if (p) {
1143                 if (!__swap_entry_free(p, entry, 1))
1144                         free_swap_slot(entry);
1145         }
1146 }
1147
1148 /*
1149  * Called after dropping swapcache to decrease refcnt to swap entries.
1150  */
1151 static void swapcache_free(swp_entry_t entry)
1152 {
1153         struct swap_info_struct *p;
1154
1155         p = _swap_info_get(entry);
1156         if (p) {
1157                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1158                         free_swap_slot(entry);
1159         }
1160 }
1161
1162 #ifdef CONFIG_THP_SWAP
1163 static void swapcache_free_cluster(swp_entry_t entry)
1164 {
1165         unsigned long offset = swp_offset(entry);
1166         unsigned long idx = offset / SWAPFILE_CLUSTER;
1167         struct swap_cluster_info *ci;
1168         struct swap_info_struct *si;
1169         unsigned char *map;
1170         unsigned int i;
1171
1172         si = swap_info_get(entry);
1173         if (!si)
1174                 return;
1175
1176         ci = lock_cluster(si, offset);
1177         map = si->swap_map + offset;
1178         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1179                 VM_BUG_ON(map[i] != SWAP_HAS_CACHE);
1180                 map[i] = 0;
1181         }
1182         unlock_cluster(ci);
1183         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1184         swap_free_cluster(si, idx);
1185         spin_unlock(&si->lock);
1186 }
1187 #else
1188 static inline void swapcache_free_cluster(swp_entry_t entry)
1189 {
1190 }
1191 #endif /* CONFIG_THP_SWAP */
1192
1193 void put_swap_page(struct page *page, swp_entry_t entry)
1194 {
1195         if (!PageTransHuge(page))
1196                 swapcache_free(entry);
1197         else
1198                 swapcache_free_cluster(entry);
1199 }
1200
1201 void swapcache_free_entries(swp_entry_t *entries, int n)
1202 {
1203         struct swap_info_struct *p, *prev;
1204         int i;
1205
1206         if (n <= 0)
1207                 return;
1208
1209         prev = NULL;
1210         p = NULL;
1211         for (i = 0; i < n; ++i) {
1212                 p = swap_info_get_cont(entries[i], prev);
1213                 if (p)
1214                         swap_entry_free(p, entries[i]);
1215                 prev = p;
1216         }
1217         if (p)
1218                 spin_unlock(&p->lock);
1219 }
1220
1221 /*
1222  * How many references to page are currently swapped out?
1223  * This does not give an exact answer when swap count is continued,
1224  * but does include the high COUNT_CONTINUED flag to allow for that.
1225  */
1226 int page_swapcount(struct page *page)
1227 {
1228         int count = 0;
1229         struct swap_info_struct *p;
1230         struct swap_cluster_info *ci;
1231         swp_entry_t entry;
1232         unsigned long offset;
1233
1234         entry.val = page_private(page);
1235         p = _swap_info_get(entry);
1236         if (p) {
1237                 offset = swp_offset(entry);
1238                 ci = lock_cluster_or_swap_info(p, offset);
1239                 count = swap_count(p->swap_map[offset]);
1240                 unlock_cluster_or_swap_info(p, ci);
1241         }
1242         return count;
1243 }
1244
1245 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1246 {
1247         int count = 0;
1248         pgoff_t offset = swp_offset(entry);
1249         struct swap_cluster_info *ci;
1250
1251         ci = lock_cluster_or_swap_info(si, offset);
1252         count = swap_count(si->swap_map[offset]);
1253         unlock_cluster_or_swap_info(si, ci);
1254         return count;
1255 }
1256
1257 /*
1258  * How many references to @entry are currently swapped out?
1259  * This does not give an exact answer when swap count is continued,
1260  * but does include the high COUNT_CONTINUED flag to allow for that.
1261  */
1262 int __swp_swapcount(swp_entry_t entry)
1263 {
1264         int count = 0;
1265         struct swap_info_struct *si;
1266
1267         si = __swap_info_get(entry);
1268         if (si)
1269                 count = swap_swapcount(si, entry);
1270         return count;
1271 }
1272
1273 /*
1274  * How many references to @entry are currently swapped out?
1275  * This considers COUNT_CONTINUED so it returns exact answer.
1276  */
1277 int swp_swapcount(swp_entry_t entry)
1278 {
1279         int count, tmp_count, n;
1280         struct swap_info_struct *p;
1281         struct swap_cluster_info *ci;
1282         struct page *page;
1283         pgoff_t offset;
1284         unsigned char *map;
1285
1286         p = _swap_info_get(entry);
1287         if (!p)
1288                 return 0;
1289
1290         offset = swp_offset(entry);
1291
1292         ci = lock_cluster_or_swap_info(p, offset);
1293
1294         count = swap_count(p->swap_map[offset]);
1295         if (!(count & COUNT_CONTINUED))
1296                 goto out;
1297
1298         count &= ~COUNT_CONTINUED;
1299         n = SWAP_MAP_MAX + 1;
1300
1301         page = vmalloc_to_page(p->swap_map + offset);
1302         offset &= ~PAGE_MASK;
1303         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1304
1305         do {
1306                 page = list_next_entry(page, lru);
1307                 map = kmap_atomic(page);
1308                 tmp_count = map[offset];
1309                 kunmap_atomic(map);
1310
1311                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1312                 n *= (SWAP_CONT_MAX + 1);
1313         } while (tmp_count & COUNT_CONTINUED);
1314 out:
1315         unlock_cluster_or_swap_info(p, ci);
1316         return count;
1317 }
1318
1319 /*
1320  * We can write to an anon page without COW if there are no other references
1321  * to it.  And as a side-effect, free up its swap: because the old content
1322  * on disk will never be read, and seeking back there to write new content
1323  * later would only waste time away from clustering.
1324  *
1325  * NOTE: total_mapcount should not be relied upon by the caller if
1326  * reuse_swap_page() returns false, but it may be always overwritten
1327  * (see the other implementation for CONFIG_SWAP=n).
1328  */
1329 bool reuse_swap_page(struct page *page, int *total_mapcount)
1330 {
1331         int count;
1332
1333         VM_BUG_ON_PAGE(!PageLocked(page), page);
1334         if (unlikely(PageKsm(page)))
1335                 return false;
1336         count = page_trans_huge_mapcount(page, total_mapcount);
1337         if (count <= 1 && PageSwapCache(page)) {
1338                 count += page_swapcount(page);
1339                 if (count != 1)
1340                         goto out;
1341                 if (!PageWriteback(page)) {
1342                         delete_from_swap_cache(page);
1343                         SetPageDirty(page);
1344                 } else {
1345                         swp_entry_t entry;
1346                         struct swap_info_struct *p;
1347
1348                         entry.val = page_private(page);
1349                         p = swap_info_get(entry);
1350                         if (p->flags & SWP_STABLE_WRITES) {
1351                                 spin_unlock(&p->lock);
1352                                 return false;
1353                         }
1354                         spin_unlock(&p->lock);
1355                 }
1356         }
1357 out:
1358         return count <= 1;
1359 }
1360
1361 /*
1362  * If swap is getting full, or if there are no more mappings of this page,
1363  * then try_to_free_swap is called to free its swap space.
1364  */
1365 int try_to_free_swap(struct page *page)
1366 {
1367         VM_BUG_ON_PAGE(!PageLocked(page), page);
1368
1369         if (!PageSwapCache(page))
1370                 return 0;
1371         if (PageWriteback(page))
1372                 return 0;
1373         if (page_swapcount(page))
1374                 return 0;
1375
1376         /*
1377          * Once hibernation has begun to create its image of memory,
1378          * there's a danger that one of the calls to try_to_free_swap()
1379          * - most probably a call from __try_to_reclaim_swap() while
1380          * hibernation is allocating its own swap pages for the image,
1381          * but conceivably even a call from memory reclaim - will free
1382          * the swap from a page which has already been recorded in the
1383          * image as a clean swapcache page, and then reuse its swap for
1384          * another page of the image.  On waking from hibernation, the
1385          * original page might be freed under memory pressure, then
1386          * later read back in from swap, now with the wrong data.
1387          *
1388          * Hibernation suspends storage while it is writing the image
1389          * to disk so check that here.
1390          */
1391         if (pm_suspended_storage())
1392                 return 0;
1393
1394         delete_from_swap_cache(page);
1395         SetPageDirty(page);
1396         return 1;
1397 }
1398
1399 /*
1400  * Free the swap entry like above, but also try to
1401  * free the page cache entry if it is the last user.
1402  */
1403 int free_swap_and_cache(swp_entry_t entry)
1404 {
1405         struct swap_info_struct *p;
1406         struct page *page = NULL;
1407         unsigned char count;
1408
1409         if (non_swap_entry(entry))
1410                 return 1;
1411
1412         p = _swap_info_get(entry);
1413         if (p) {
1414                 count = __swap_entry_free(p, entry, 1);
1415                 if (count == SWAP_HAS_CACHE) {
1416                         page = find_get_page(swap_address_space(entry),
1417                                              swp_offset(entry));
1418                         if (page && !trylock_page(page)) {
1419                                 put_page(page);
1420                                 page = NULL;
1421                         }
1422                 } else if (!count)
1423                         free_swap_slot(entry);
1424         }
1425         if (page) {
1426                 /*
1427                  * Not mapped elsewhere, or swap space full? Free it!
1428                  * Also recheck PageSwapCache now page is locked (above).
1429                  */
1430                 if (PageSwapCache(page) && !PageWriteback(page) &&
1431                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1432                     !swap_swapcount(p, entry)) {
1433                         delete_from_swap_cache(page);
1434                         SetPageDirty(page);
1435                 }
1436                 unlock_page(page);
1437                 put_page(page);
1438         }
1439         return p != NULL;
1440 }
1441
1442 #ifdef CONFIG_HIBERNATION
1443 /*
1444  * Find the swap type that corresponds to given device (if any).
1445  *
1446  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1447  * from 0, in which the swap header is expected to be located.
1448  *
1449  * This is needed for the suspend to disk (aka swsusp).
1450  */
1451 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1452 {
1453         struct block_device *bdev = NULL;
1454         int type;
1455
1456         if (device)
1457                 bdev = bdget(device);
1458
1459         spin_lock(&swap_lock);
1460         for (type = 0; type < nr_swapfiles; type++) {
1461                 struct swap_info_struct *sis = swap_info[type];
1462
1463                 if (!(sis->flags & SWP_WRITEOK))
1464                         continue;
1465
1466                 if (!bdev) {
1467                         if (bdev_p)
1468                                 *bdev_p = bdgrab(sis->bdev);
1469
1470                         spin_unlock(&swap_lock);
1471                         return type;
1472                 }
1473                 if (bdev == sis->bdev) {
1474                         struct swap_extent *se = &sis->first_swap_extent;
1475
1476                         if (se->start_block == offset) {
1477                                 if (bdev_p)
1478                                         *bdev_p = bdgrab(sis->bdev);
1479
1480                                 spin_unlock(&swap_lock);
1481                                 bdput(bdev);
1482                                 return type;
1483                         }
1484                 }
1485         }
1486         spin_unlock(&swap_lock);
1487         if (bdev)
1488                 bdput(bdev);
1489
1490         return -ENODEV;
1491 }
1492
1493 /*
1494  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1495  * corresponding to given index in swap_info (swap type).
1496  */
1497 sector_t swapdev_block(int type, pgoff_t offset)
1498 {
1499         struct block_device *bdev;
1500
1501         if ((unsigned int)type >= nr_swapfiles)
1502                 return 0;
1503         if (!(swap_info[type]->flags & SWP_WRITEOK))
1504                 return 0;
1505         return map_swap_entry(swp_entry(type, offset), &bdev);
1506 }
1507
1508 /*
1509  * Return either the total number of swap pages of given type, or the number
1510  * of free pages of that type (depending on @free)
1511  *
1512  * This is needed for software suspend
1513  */
1514 unsigned int count_swap_pages(int type, int free)
1515 {
1516         unsigned int n = 0;
1517
1518         spin_lock(&swap_lock);
1519         if ((unsigned int)type < nr_swapfiles) {
1520                 struct swap_info_struct *sis = swap_info[type];
1521
1522                 spin_lock(&sis->lock);
1523                 if (sis->flags & SWP_WRITEOK) {
1524                         n = sis->pages;
1525                         if (free)
1526                                 n -= sis->inuse_pages;
1527                 }
1528                 spin_unlock(&sis->lock);
1529         }
1530         spin_unlock(&swap_lock);
1531         return n;
1532 }
1533 #endif /* CONFIG_HIBERNATION */
1534
1535 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1536 {
1537         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1538 }
1539
1540 /*
1541  * No need to decide whether this PTE shares the swap entry with others,
1542  * just let do_wp_page work it out if a write is requested later - to
1543  * force COW, vm_page_prot omits write permission from any private vma.
1544  */
1545 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1546                 unsigned long addr, swp_entry_t entry, struct page *page)
1547 {
1548         struct page *swapcache;
1549         struct mem_cgroup *memcg;
1550         spinlock_t *ptl;
1551         pte_t *pte;
1552         int ret = 1;
1553
1554         swapcache = page;
1555         page = ksm_might_need_to_copy(page, vma, addr);
1556         if (unlikely(!page))
1557                 return -ENOMEM;
1558
1559         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1560                                 &memcg, false)) {
1561                 ret = -ENOMEM;
1562                 goto out_nolock;
1563         }
1564
1565         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1566         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1567                 mem_cgroup_cancel_charge(page, memcg, false);
1568                 ret = 0;
1569                 goto out;
1570         }
1571
1572         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1573         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1574         get_page(page);
1575         set_pte_at(vma->vm_mm, addr, pte,
1576                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1577         if (page == swapcache) {
1578                 page_add_anon_rmap(page, vma, addr, false);
1579                 mem_cgroup_commit_charge(page, memcg, true, false);
1580         } else { /* ksm created a completely new copy */
1581                 page_add_new_anon_rmap(page, vma, addr, false);
1582                 mem_cgroup_commit_charge(page, memcg, false, false);
1583                 lru_cache_add_active_or_unevictable(page, vma);
1584         }
1585         swap_free(entry);
1586         /*
1587          * Move the page to the active list so it is not
1588          * immediately swapped out again after swapon.
1589          */
1590         activate_page(page);
1591 out:
1592         pte_unmap_unlock(pte, ptl);
1593 out_nolock:
1594         if (page != swapcache) {
1595                 unlock_page(page);
1596                 put_page(page);
1597         }
1598         return ret;
1599 }
1600
1601 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1602                                 unsigned long addr, unsigned long end,
1603                                 swp_entry_t entry, struct page *page)
1604 {
1605         pte_t swp_pte = swp_entry_to_pte(entry);
1606         pte_t *pte;
1607         int ret = 0;
1608
1609         /*
1610          * We don't actually need pte lock while scanning for swp_pte: since
1611          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1612          * page table while we're scanning; though it could get zapped, and on
1613          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1614          * of unmatched parts which look like swp_pte, so unuse_pte must
1615          * recheck under pte lock.  Scanning without pte lock lets it be
1616          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1617          */
1618         pte = pte_offset_map(pmd, addr);
1619         do {
1620                 /*
1621                  * swapoff spends a _lot_ of time in this loop!
1622                  * Test inline before going to call unuse_pte.
1623                  */
1624                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1625                         pte_unmap(pte);
1626                         ret = unuse_pte(vma, pmd, addr, entry, page);
1627                         if (ret)
1628                                 goto out;
1629                         pte = pte_offset_map(pmd, addr);
1630                 }
1631         } while (pte++, addr += PAGE_SIZE, addr != end);
1632         pte_unmap(pte - 1);
1633 out:
1634         return ret;
1635 }
1636
1637 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1638                                 unsigned long addr, unsigned long end,
1639                                 swp_entry_t entry, struct page *page)
1640 {
1641         pmd_t *pmd;
1642         unsigned long next;
1643         int ret;
1644
1645         pmd = pmd_offset(pud, addr);
1646         do {
1647                 cond_resched();
1648                 next = pmd_addr_end(addr, end);
1649                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1650                         continue;
1651                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1652                 if (ret)
1653                         return ret;
1654         } while (pmd++, addr = next, addr != end);
1655         return 0;
1656 }
1657
1658 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1659                                 unsigned long addr, unsigned long end,
1660                                 swp_entry_t entry, struct page *page)
1661 {
1662         pud_t *pud;
1663         unsigned long next;
1664         int ret;
1665
1666         pud = pud_offset(p4d, addr);
1667         do {
1668                 next = pud_addr_end(addr, end);
1669                 if (pud_none_or_clear_bad(pud))
1670                         continue;
1671                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1672                 if (ret)
1673                         return ret;
1674         } while (pud++, addr = next, addr != end);
1675         return 0;
1676 }
1677
1678 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1679                                 unsigned long addr, unsigned long end,
1680                                 swp_entry_t entry, struct page *page)
1681 {
1682         p4d_t *p4d;
1683         unsigned long next;
1684         int ret;
1685
1686         p4d = p4d_offset(pgd, addr);
1687         do {
1688                 next = p4d_addr_end(addr, end);
1689                 if (p4d_none_or_clear_bad(p4d))
1690                         continue;
1691                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1692                 if (ret)
1693                         return ret;
1694         } while (p4d++, addr = next, addr != end);
1695         return 0;
1696 }
1697
1698 static int unuse_vma(struct vm_area_struct *vma,
1699                                 swp_entry_t entry, struct page *page)
1700 {
1701         pgd_t *pgd;
1702         unsigned long addr, end, next;
1703         int ret;
1704
1705         if (page_anon_vma(page)) {
1706                 addr = page_address_in_vma(page, vma);
1707                 if (addr == -EFAULT)
1708                         return 0;
1709                 else
1710                         end = addr + PAGE_SIZE;
1711         } else {
1712                 addr = vma->vm_start;
1713                 end = vma->vm_end;
1714         }
1715
1716         pgd = pgd_offset(vma->vm_mm, addr);
1717         do {
1718                 next = pgd_addr_end(addr, end);
1719                 if (pgd_none_or_clear_bad(pgd))
1720                         continue;
1721                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1722                 if (ret)
1723                         return ret;
1724         } while (pgd++, addr = next, addr != end);
1725         return 0;
1726 }
1727
1728 static int unuse_mm(struct mm_struct *mm,
1729                                 swp_entry_t entry, struct page *page)
1730 {
1731         struct vm_area_struct *vma;
1732         int ret = 0;
1733
1734         if (!down_read_trylock(&mm->mmap_sem)) {
1735                 /*
1736                  * Activate page so shrink_inactive_list is unlikely to unmap
1737                  * its ptes while lock is dropped, so swapoff can make progress.
1738                  */
1739                 activate_page(page);
1740                 unlock_page(page);
1741                 down_read(&mm->mmap_sem);
1742                 lock_page(page);
1743         }
1744         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1745                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1746                         break;
1747                 cond_resched();
1748         }
1749         up_read(&mm->mmap_sem);
1750         return (ret < 0)? ret: 0;
1751 }
1752
1753 /*
1754  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1755  * from current position to next entry still in use.
1756  * Recycle to start on reaching the end, returning 0 when empty.
1757  */
1758 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1759                                         unsigned int prev, bool frontswap)
1760 {
1761         unsigned int max = si->max;
1762         unsigned int i = prev;
1763         unsigned char count;
1764
1765         /*
1766          * No need for swap_lock here: we're just looking
1767          * for whether an entry is in use, not modifying it; false
1768          * hits are okay, and sys_swapoff() has already prevented new
1769          * allocations from this area (while holding swap_lock).
1770          */
1771         for (;;) {
1772                 if (++i >= max) {
1773                         if (!prev) {
1774                                 i = 0;
1775                                 break;
1776                         }
1777                         /*
1778                          * No entries in use at top of swap_map,
1779                          * loop back to start and recheck there.
1780                          */
1781                         max = prev + 1;
1782                         prev = 0;
1783                         i = 1;
1784                 }
1785                 count = READ_ONCE(si->swap_map[i]);
1786                 if (count && swap_count(count) != SWAP_MAP_BAD)
1787                         if (!frontswap || frontswap_test(si, i))
1788                                 break;
1789                 if ((i % LATENCY_LIMIT) == 0)
1790                         cond_resched();
1791         }
1792         return i;
1793 }
1794
1795 /*
1796  * We completely avoid races by reading each swap page in advance,
1797  * and then search for the process using it.  All the necessary
1798  * page table adjustments can then be made atomically.
1799  *
1800  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1801  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1802  */
1803 int try_to_unuse(unsigned int type, bool frontswap,
1804                  unsigned long pages_to_unuse)
1805 {
1806         struct swap_info_struct *si = swap_info[type];
1807         struct mm_struct *start_mm;
1808         volatile unsigned char *swap_map; /* swap_map is accessed without
1809                                            * locking. Mark it as volatile
1810                                            * to prevent compiler doing
1811                                            * something odd.
1812                                            */
1813         unsigned char swcount;
1814         struct page *page;
1815         swp_entry_t entry;
1816         unsigned int i = 0;
1817         int retval = 0;
1818
1819         /*
1820          * When searching mms for an entry, a good strategy is to
1821          * start at the first mm we freed the previous entry from
1822          * (though actually we don't notice whether we or coincidence
1823          * freed the entry).  Initialize this start_mm with a hold.
1824          *
1825          * A simpler strategy would be to start at the last mm we
1826          * freed the previous entry from; but that would take less
1827          * advantage of mmlist ordering, which clusters forked mms
1828          * together, child after parent.  If we race with dup_mmap(), we
1829          * prefer to resolve parent before child, lest we miss entries
1830          * duplicated after we scanned child: using last mm would invert
1831          * that.
1832          */
1833         start_mm = &init_mm;
1834         mmget(&init_mm);
1835
1836         /*
1837          * Keep on scanning until all entries have gone.  Usually,
1838          * one pass through swap_map is enough, but not necessarily:
1839          * there are races when an instance of an entry might be missed.
1840          */
1841         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1842                 if (signal_pending(current)) {
1843                         retval = -EINTR;
1844                         break;
1845                 }
1846
1847                 /*
1848                  * Get a page for the entry, using the existing swap
1849                  * cache page if there is one.  Otherwise, get a clean
1850                  * page and read the swap into it.
1851                  */
1852                 swap_map = &si->swap_map[i];
1853                 entry = swp_entry(type, i);
1854                 page = read_swap_cache_async(entry,
1855                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1856                 if (!page) {
1857                         /*
1858                          * Either swap_duplicate() failed because entry
1859                          * has been freed independently, and will not be
1860                          * reused since sys_swapoff() already disabled
1861                          * allocation from here, or alloc_page() failed.
1862                          */
1863                         swcount = *swap_map;
1864                         /*
1865                          * We don't hold lock here, so the swap entry could be
1866                          * SWAP_MAP_BAD (when the cluster is discarding).
1867                          * Instead of fail out, We can just skip the swap
1868                          * entry because swapoff will wait for discarding
1869                          * finish anyway.
1870                          */
1871                         if (!swcount || swcount == SWAP_MAP_BAD)
1872                                 continue;
1873                         retval = -ENOMEM;
1874                         break;
1875                 }
1876
1877                 /*
1878                  * Don't hold on to start_mm if it looks like exiting.
1879                  */
1880                 if (atomic_read(&start_mm->mm_users) == 1) {
1881                         mmput(start_mm);
1882                         start_mm = &init_mm;
1883                         mmget(&init_mm);
1884                 }
1885
1886                 /*
1887                  * Wait for and lock page.  When do_swap_page races with
1888                  * try_to_unuse, do_swap_page can handle the fault much
1889                  * faster than try_to_unuse can locate the entry.  This
1890                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1891                  * defer to do_swap_page in such a case - in some tests,
1892                  * do_swap_page and try_to_unuse repeatedly compete.
1893                  */
1894                 wait_on_page_locked(page);
1895                 wait_on_page_writeback(page);
1896                 lock_page(page);
1897                 wait_on_page_writeback(page);
1898
1899                 /*
1900                  * Remove all references to entry.
1901                  */
1902                 swcount = *swap_map;
1903                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1904                         retval = shmem_unuse(entry, page);
1905                         /* page has already been unlocked and released */
1906                         if (retval < 0)
1907                                 break;
1908                         continue;
1909                 }
1910                 if (swap_count(swcount) && start_mm != &init_mm)
1911                         retval = unuse_mm(start_mm, entry, page);
1912
1913                 if (swap_count(*swap_map)) {
1914                         int set_start_mm = (*swap_map >= swcount);
1915                         struct list_head *p = &start_mm->mmlist;
1916                         struct mm_struct *new_start_mm = start_mm;
1917                         struct mm_struct *prev_mm = start_mm;
1918                         struct mm_struct *mm;
1919
1920                         mmget(new_start_mm);
1921                         mmget(prev_mm);
1922                         spin_lock(&mmlist_lock);
1923                         while (swap_count(*swap_map) && !retval &&
1924                                         (p = p->next) != &start_mm->mmlist) {
1925                                 mm = list_entry(p, struct mm_struct, mmlist);
1926                                 if (!mmget_not_zero(mm))
1927                                         continue;
1928                                 spin_unlock(&mmlist_lock);
1929                                 mmput(prev_mm);
1930                                 prev_mm = mm;
1931
1932                                 cond_resched();
1933
1934                                 swcount = *swap_map;
1935                                 if (!swap_count(swcount)) /* any usage ? */
1936                                         ;
1937                                 else if (mm == &init_mm)
1938                                         set_start_mm = 1;
1939                                 else
1940                                         retval = unuse_mm(mm, entry, page);
1941
1942                                 if (set_start_mm && *swap_map < swcount) {
1943                                         mmput(new_start_mm);
1944                                         mmget(mm);
1945                                         new_start_mm = mm;
1946                                         set_start_mm = 0;
1947                                 }
1948                                 spin_lock(&mmlist_lock);
1949                         }
1950                         spin_unlock(&mmlist_lock);
1951                         mmput(prev_mm);
1952                         mmput(start_mm);
1953                         start_mm = new_start_mm;
1954                 }
1955                 if (retval) {
1956                         unlock_page(page);
1957                         put_page(page);
1958                         break;
1959                 }
1960
1961                 /*
1962                  * If a reference remains (rare), we would like to leave
1963                  * the page in the swap cache; but try_to_unmap could
1964                  * then re-duplicate the entry once we drop page lock,
1965                  * so we might loop indefinitely; also, that page could
1966                  * not be swapped out to other storage meanwhile.  So:
1967                  * delete from cache even if there's another reference,
1968                  * after ensuring that the data has been saved to disk -
1969                  * since if the reference remains (rarer), it will be
1970                  * read from disk into another page.  Splitting into two
1971                  * pages would be incorrect if swap supported "shared
1972                  * private" pages, but they are handled by tmpfs files.
1973                  *
1974                  * Given how unuse_vma() targets one particular offset
1975                  * in an anon_vma, once the anon_vma has been determined,
1976                  * this splitting happens to be just what is needed to
1977                  * handle where KSM pages have been swapped out: re-reading
1978                  * is unnecessarily slow, but we can fix that later on.
1979                  */
1980                 if (swap_count(*swap_map) &&
1981                      PageDirty(page) && PageSwapCache(page)) {
1982                         struct writeback_control wbc = {
1983                                 .sync_mode = WB_SYNC_NONE,
1984                         };
1985
1986                         swap_writepage(page, &wbc);
1987                         lock_page(page);
1988                         wait_on_page_writeback(page);
1989                 }
1990
1991                 /*
1992                  * It is conceivable that a racing task removed this page from
1993                  * swap cache just before we acquired the page lock at the top,
1994                  * or while we dropped it in unuse_mm().  The page might even
1995                  * be back in swap cache on another swap area: that we must not
1996                  * delete, since it may not have been written out to swap yet.
1997                  */
1998                 if (PageSwapCache(page) &&
1999                     likely(page_private(page) == entry.val))
2000                         delete_from_swap_cache(page);
2001
2002                 /*
2003                  * So we could skip searching mms once swap count went
2004                  * to 1, we did not mark any present ptes as dirty: must
2005                  * mark page dirty so shrink_page_list will preserve it.
2006                  */
2007                 SetPageDirty(page);
2008                 unlock_page(page);
2009                 put_page(page);
2010
2011                 /*
2012                  * Make sure that we aren't completely killing
2013                  * interactive performance.
2014                  */
2015                 cond_resched();
2016                 if (frontswap && pages_to_unuse > 0) {
2017                         if (!--pages_to_unuse)
2018                                 break;
2019                 }
2020         }
2021
2022         mmput(start_mm);
2023         return retval;
2024 }
2025
2026 /*
2027  * After a successful try_to_unuse, if no swap is now in use, we know
2028  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2029  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2030  * added to the mmlist just after page_duplicate - before would be racy.
2031  */
2032 static void drain_mmlist(void)
2033 {
2034         struct list_head *p, *next;
2035         unsigned int type;
2036
2037         for (type = 0; type < nr_swapfiles; type++)
2038                 if (swap_info[type]->inuse_pages)
2039                         return;
2040         spin_lock(&mmlist_lock);
2041         list_for_each_safe(p, next, &init_mm.mmlist)
2042                 list_del_init(p);
2043         spin_unlock(&mmlist_lock);
2044 }
2045
2046 /*
2047  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2048  * corresponds to page offset for the specified swap entry.
2049  * Note that the type of this function is sector_t, but it returns page offset
2050  * into the bdev, not sector offset.
2051  */
2052 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2053 {
2054         struct swap_info_struct *sis;
2055         struct swap_extent *start_se;
2056         struct swap_extent *se;
2057         pgoff_t offset;
2058
2059         sis = swap_info[swp_type(entry)];
2060         *bdev = sis->bdev;
2061
2062         offset = swp_offset(entry);
2063         start_se = sis->curr_swap_extent;
2064         se = start_se;
2065
2066         for ( ; ; ) {
2067                 if (se->start_page <= offset &&
2068                                 offset < (se->start_page + se->nr_pages)) {
2069                         return se->start_block + (offset - se->start_page);
2070                 }
2071                 se = list_next_entry(se, list);
2072                 sis->curr_swap_extent = se;
2073                 BUG_ON(se == start_se);         /* It *must* be present */
2074         }
2075 }
2076
2077 /*
2078  * Returns the page offset into bdev for the specified page's swap entry.
2079  */
2080 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2081 {
2082         swp_entry_t entry;
2083         entry.val = page_private(page);
2084         return map_swap_entry(entry, bdev);
2085 }
2086
2087 /*
2088  * Free all of a swapdev's extent information
2089  */
2090 static void destroy_swap_extents(struct swap_info_struct *sis)
2091 {
2092         while (!list_empty(&sis->first_swap_extent.list)) {
2093                 struct swap_extent *se;
2094
2095                 se = list_first_entry(&sis->first_swap_extent.list,
2096                                 struct swap_extent, list);
2097                 list_del(&se->list);
2098                 kfree(se);
2099         }
2100
2101         if (sis->flags & SWP_FILE) {
2102                 struct file *swap_file = sis->swap_file;
2103                 struct address_space *mapping = swap_file->f_mapping;
2104
2105                 sis->flags &= ~SWP_FILE;
2106                 mapping->a_ops->swap_deactivate(swap_file);
2107         }
2108 }
2109
2110 /*
2111  * Add a block range (and the corresponding page range) into this swapdev's
2112  * extent list.  The extent list is kept sorted in page order.
2113  *
2114  * This function rather assumes that it is called in ascending page order.
2115  */
2116 int
2117 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2118                 unsigned long nr_pages, sector_t start_block)
2119 {
2120         struct swap_extent *se;
2121         struct swap_extent *new_se;
2122         struct list_head *lh;
2123
2124         if (start_page == 0) {
2125                 se = &sis->first_swap_extent;
2126                 sis->curr_swap_extent = se;
2127                 se->start_page = 0;
2128                 se->nr_pages = nr_pages;
2129                 se->start_block = start_block;
2130                 return 1;
2131         } else {
2132                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2133                 se = list_entry(lh, struct swap_extent, list);
2134                 BUG_ON(se->start_page + se->nr_pages != start_page);
2135                 if (se->start_block + se->nr_pages == start_block) {
2136                         /* Merge it */
2137                         se->nr_pages += nr_pages;
2138                         return 0;
2139                 }
2140         }
2141
2142         /*
2143          * No merge.  Insert a new extent, preserving ordering.
2144          */
2145         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2146         if (new_se == NULL)
2147                 return -ENOMEM;
2148         new_se->start_page = start_page;
2149         new_se->nr_pages = nr_pages;
2150         new_se->start_block = start_block;
2151
2152         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2153         return 1;
2154 }
2155
2156 /*
2157  * A `swap extent' is a simple thing which maps a contiguous range of pages
2158  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2159  * is built at swapon time and is then used at swap_writepage/swap_readpage
2160  * time for locating where on disk a page belongs.
2161  *
2162  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2163  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2164  * swap files identically.
2165  *
2166  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2167  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2168  * swapfiles are handled *identically* after swapon time.
2169  *
2170  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2171  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2172  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2173  * requirements, they are simply tossed out - we will never use those blocks
2174  * for swapping.
2175  *
2176  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2177  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2178  * which will scribble on the fs.
2179  *
2180  * The amount of disk space which a single swap extent represents varies.
2181  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2182  * extents in the list.  To avoid much list walking, we cache the previous
2183  * search location in `curr_swap_extent', and start new searches from there.
2184  * This is extremely effective.  The average number of iterations in
2185  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2186  */
2187 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2188 {
2189         struct file *swap_file = sis->swap_file;
2190         struct address_space *mapping = swap_file->f_mapping;
2191         struct inode *inode = mapping->host;
2192         int ret;
2193
2194         if (S_ISBLK(inode->i_mode)) {
2195                 ret = add_swap_extent(sis, 0, sis->max, 0);
2196                 *span = sis->pages;
2197                 return ret;
2198         }
2199
2200         if (mapping->a_ops->swap_activate) {
2201                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2202                 if (!ret) {
2203                         sis->flags |= SWP_FILE;
2204                         ret = add_swap_extent(sis, 0, sis->max, 0);
2205                         *span = sis->pages;
2206                 }
2207                 return ret;
2208         }
2209
2210         return generic_swapfile_activate(sis, swap_file, span);
2211 }
2212
2213 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2214                                 unsigned char *swap_map,
2215                                 struct swap_cluster_info *cluster_info)
2216 {
2217         if (prio >= 0)
2218                 p->prio = prio;
2219         else
2220                 p->prio = --least_priority;
2221         /*
2222          * the plist prio is negated because plist ordering is
2223          * low-to-high, while swap ordering is high-to-low
2224          */
2225         p->list.prio = -p->prio;
2226         p->avail_list.prio = -p->prio;
2227         p->swap_map = swap_map;
2228         p->cluster_info = cluster_info;
2229         p->flags |= SWP_WRITEOK;
2230         atomic_long_add(p->pages, &nr_swap_pages);
2231         total_swap_pages += p->pages;
2232
2233         assert_spin_locked(&swap_lock);
2234         /*
2235          * both lists are plists, and thus priority ordered.
2236          * swap_active_head needs to be priority ordered for swapoff(),
2237          * which on removal of any swap_info_struct with an auto-assigned
2238          * (i.e. negative) priority increments the auto-assigned priority
2239          * of any lower-priority swap_info_structs.
2240          * swap_avail_head needs to be priority ordered for get_swap_page(),
2241          * which allocates swap pages from the highest available priority
2242          * swap_info_struct.
2243          */
2244         plist_add(&p->list, &swap_active_head);
2245         spin_lock(&swap_avail_lock);
2246         plist_add(&p->avail_list, &swap_avail_head);
2247         spin_unlock(&swap_avail_lock);
2248 }
2249
2250 static void enable_swap_info(struct swap_info_struct *p, int prio,
2251                                 unsigned char *swap_map,
2252                                 struct swap_cluster_info *cluster_info,
2253                                 unsigned long *frontswap_map)
2254 {
2255         frontswap_init(p->type, frontswap_map);
2256         spin_lock(&swap_lock);
2257         spin_lock(&p->lock);
2258          _enable_swap_info(p, prio, swap_map, cluster_info);
2259         spin_unlock(&p->lock);
2260         spin_unlock(&swap_lock);
2261 }
2262
2263 static void reinsert_swap_info(struct swap_info_struct *p)
2264 {
2265         spin_lock(&swap_lock);
2266         spin_lock(&p->lock);
2267         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2268         spin_unlock(&p->lock);
2269         spin_unlock(&swap_lock);
2270 }
2271
2272 bool has_usable_swap(void)
2273 {
2274         bool ret = true;
2275
2276         spin_lock(&swap_lock);
2277         if (plist_head_empty(&swap_active_head))
2278                 ret = false;
2279         spin_unlock(&swap_lock);
2280         return ret;
2281 }
2282
2283 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2284 {
2285         struct swap_info_struct *p = NULL;
2286         unsigned char *swap_map;
2287         struct swap_cluster_info *cluster_info;
2288         unsigned long *frontswap_map;
2289         struct file *swap_file, *victim;
2290         struct address_space *mapping;
2291         struct inode *inode;
2292         struct filename *pathname;
2293         int err, found = 0;
2294         unsigned int old_block_size;
2295
2296         if (!capable(CAP_SYS_ADMIN))
2297                 return -EPERM;
2298
2299         BUG_ON(!current->mm);
2300
2301         pathname = getname(specialfile);
2302         if (IS_ERR(pathname))
2303                 return PTR_ERR(pathname);
2304
2305         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2306         err = PTR_ERR(victim);
2307         if (IS_ERR(victim))
2308                 goto out;
2309
2310         mapping = victim->f_mapping;
2311         spin_lock(&swap_lock);
2312         plist_for_each_entry(p, &swap_active_head, list) {
2313                 if (p->flags & SWP_WRITEOK) {
2314                         if (p->swap_file->f_mapping == mapping) {
2315                                 found = 1;
2316                                 break;
2317                         }
2318                 }
2319         }
2320         if (!found) {
2321                 err = -EINVAL;
2322                 spin_unlock(&swap_lock);
2323                 goto out_dput;
2324         }
2325         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2326                 vm_unacct_memory(p->pages);
2327         else {
2328                 err = -ENOMEM;
2329                 spin_unlock(&swap_lock);
2330                 goto out_dput;
2331         }
2332         spin_lock(&swap_avail_lock);
2333         plist_del(&p->avail_list, &swap_avail_head);
2334         spin_unlock(&swap_avail_lock);
2335         spin_lock(&p->lock);
2336         if (p->prio < 0) {
2337                 struct swap_info_struct *si = p;
2338
2339                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2340                         si->prio++;
2341                         si->list.prio--;
2342                         si->avail_list.prio--;
2343                 }
2344                 least_priority++;
2345         }
2346         plist_del(&p->list, &swap_active_head);
2347         atomic_long_sub(p->pages, &nr_swap_pages);
2348         total_swap_pages -= p->pages;
2349         p->flags &= ~SWP_WRITEOK;
2350         spin_unlock(&p->lock);
2351         spin_unlock(&swap_lock);
2352
2353         disable_swap_slots_cache_lock();
2354
2355         set_current_oom_origin();
2356         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2357         clear_current_oom_origin();
2358
2359         if (err) {
2360                 /* re-insert swap space back into swap_list */
2361                 reinsert_swap_info(p);
2362                 reenable_swap_slots_cache_unlock();
2363                 goto out_dput;
2364         }
2365
2366         reenable_swap_slots_cache_unlock();
2367
2368         flush_work(&p->discard_work);
2369
2370         destroy_swap_extents(p);
2371         if (p->flags & SWP_CONTINUED)
2372                 free_swap_count_continuations(p);
2373
2374         mutex_lock(&swapon_mutex);
2375         spin_lock(&swap_lock);
2376         spin_lock(&p->lock);
2377         drain_mmlist();
2378
2379         /* wait for anyone still in scan_swap_map */
2380         p->highest_bit = 0;             /* cuts scans short */
2381         while (p->flags >= SWP_SCANNING) {
2382                 spin_unlock(&p->lock);
2383                 spin_unlock(&swap_lock);
2384                 schedule_timeout_uninterruptible(1);
2385                 spin_lock(&swap_lock);
2386                 spin_lock(&p->lock);
2387         }
2388
2389         swap_file = p->swap_file;
2390         old_block_size = p->old_block_size;
2391         p->swap_file = NULL;
2392         p->max = 0;
2393         swap_map = p->swap_map;
2394         p->swap_map = NULL;
2395         cluster_info = p->cluster_info;
2396         p->cluster_info = NULL;
2397         frontswap_map = frontswap_map_get(p);
2398         spin_unlock(&p->lock);
2399         spin_unlock(&swap_lock);
2400         frontswap_invalidate_area(p->type);
2401         frontswap_map_set(p, NULL);
2402         mutex_unlock(&swapon_mutex);
2403         free_percpu(p->percpu_cluster);
2404         p->percpu_cluster = NULL;
2405         vfree(swap_map);
2406         kvfree(cluster_info);
2407         kvfree(frontswap_map);
2408         /* Destroy swap account information */
2409         swap_cgroup_swapoff(p->type);
2410         exit_swap_address_space(p->type);
2411
2412         inode = mapping->host;
2413         if (S_ISBLK(inode->i_mode)) {
2414                 struct block_device *bdev = I_BDEV(inode);
2415                 set_blocksize(bdev, old_block_size);
2416                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2417         } else {
2418                 inode_lock(inode);
2419                 inode->i_flags &= ~S_SWAPFILE;
2420                 inode_unlock(inode);
2421         }
2422         filp_close(swap_file, NULL);
2423
2424         /*
2425          * Clear the SWP_USED flag after all resources are freed so that swapon
2426          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2427          * not hold p->lock after we cleared its SWP_WRITEOK.
2428          */
2429         spin_lock(&swap_lock);
2430         p->flags = 0;
2431         spin_unlock(&swap_lock);
2432
2433         err = 0;
2434         atomic_inc(&proc_poll_event);
2435         wake_up_interruptible(&proc_poll_wait);
2436
2437 out_dput:
2438         filp_close(victim, NULL);
2439 out:
2440         putname(pathname);
2441         return err;
2442 }
2443
2444 #ifdef CONFIG_PROC_FS
2445 static unsigned swaps_poll(struct file *file, poll_table *wait)
2446 {
2447         struct seq_file *seq = file->private_data;
2448
2449         poll_wait(file, &proc_poll_wait, wait);
2450
2451         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2452                 seq->poll_event = atomic_read(&proc_poll_event);
2453                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2454         }
2455
2456         return POLLIN | POLLRDNORM;
2457 }
2458
2459 /* iterator */
2460 static void *swap_start(struct seq_file *swap, loff_t *pos)
2461 {
2462         struct swap_info_struct *si;
2463         int type;
2464         loff_t l = *pos;
2465
2466         mutex_lock(&swapon_mutex);
2467
2468         if (!l)
2469                 return SEQ_START_TOKEN;
2470
2471         for (type = 0; type < nr_swapfiles; type++) {
2472                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2473                 si = swap_info[type];
2474                 if (!(si->flags & SWP_USED) || !si->swap_map)
2475                         continue;
2476                 if (!--l)
2477                         return si;
2478         }
2479
2480         return NULL;
2481 }
2482
2483 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2484 {
2485         struct swap_info_struct *si = v;
2486         int type;
2487
2488         if (v == SEQ_START_TOKEN)
2489                 type = 0;
2490         else
2491                 type = si->type + 1;
2492
2493         for (; type < nr_swapfiles; type++) {
2494                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2495                 si = swap_info[type];
2496                 if (!(si->flags & SWP_USED) || !si->swap_map)
2497                         continue;
2498                 ++*pos;
2499                 return si;
2500         }
2501
2502         return NULL;
2503 }
2504
2505 static void swap_stop(struct seq_file *swap, void *v)
2506 {
2507         mutex_unlock(&swapon_mutex);
2508 }
2509
2510 static int swap_show(struct seq_file *swap, void *v)
2511 {
2512         struct swap_info_struct *si = v;
2513         struct file *file;
2514         int len;
2515
2516         if (si == SEQ_START_TOKEN) {
2517                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2518                 return 0;
2519         }
2520
2521         file = si->swap_file;
2522         len = seq_file_path(swap, file, " \t\n\\");
2523         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2524                         len < 40 ? 40 - len : 1, " ",
2525                         S_ISBLK(file_inode(file)->i_mode) ?
2526                                 "partition" : "file\t",
2527                         si->pages << (PAGE_SHIFT - 10),
2528                         si->inuse_pages << (PAGE_SHIFT - 10),
2529                         si->prio);
2530         return 0;
2531 }
2532
2533 static const struct seq_operations swaps_op = {
2534         .start =        swap_start,
2535         .next =         swap_next,
2536         .stop =         swap_stop,
2537         .show =         swap_show
2538 };
2539
2540 static int swaps_open(struct inode *inode, struct file *file)
2541 {
2542         struct seq_file *seq;
2543         int ret;
2544
2545         ret = seq_open(file, &swaps_op);
2546         if (ret)
2547                 return ret;
2548
2549         seq = file->private_data;
2550         seq->poll_event = atomic_read(&proc_poll_event);
2551         return 0;
2552 }
2553
2554 static const struct file_operations proc_swaps_operations = {
2555         .open           = swaps_open,
2556         .read           = seq_read,
2557         .llseek         = seq_lseek,
2558         .release        = seq_release,
2559         .poll           = swaps_poll,
2560 };
2561
2562 static int __init procswaps_init(void)
2563 {
2564         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2565         return 0;
2566 }
2567 __initcall(procswaps_init);
2568 #endif /* CONFIG_PROC_FS */
2569
2570 #ifdef MAX_SWAPFILES_CHECK
2571 static int __init max_swapfiles_check(void)
2572 {
2573         MAX_SWAPFILES_CHECK();
2574         return 0;
2575 }
2576 late_initcall(max_swapfiles_check);
2577 #endif
2578
2579 static struct swap_info_struct *alloc_swap_info(void)
2580 {
2581         struct swap_info_struct *p;
2582         unsigned int type;
2583
2584         p = kzalloc(sizeof(*p), GFP_KERNEL);
2585         if (!p)
2586                 return ERR_PTR(-ENOMEM);
2587
2588         spin_lock(&swap_lock);
2589         for (type = 0; type < nr_swapfiles; type++) {
2590                 if (!(swap_info[type]->flags & SWP_USED))
2591                         break;
2592         }
2593         if (type >= MAX_SWAPFILES) {
2594                 spin_unlock(&swap_lock);
2595                 kfree(p);
2596                 return ERR_PTR(-EPERM);
2597         }
2598         if (type >= nr_swapfiles) {
2599                 p->type = type;
2600                 swap_info[type] = p;
2601                 /*
2602                  * Write swap_info[type] before nr_swapfiles, in case a
2603                  * racing procfs swap_start() or swap_next() is reading them.
2604                  * (We never shrink nr_swapfiles, we never free this entry.)
2605                  */
2606                 smp_wmb();
2607                 nr_swapfiles++;
2608         } else {
2609                 kfree(p);
2610                 p = swap_info[type];
2611                 /*
2612                  * Do not memset this entry: a racing procfs swap_next()
2613                  * would be relying on p->type to remain valid.
2614                  */
2615         }
2616         INIT_LIST_HEAD(&p->first_swap_extent.list);
2617         plist_node_init(&p->list, 0);
2618         plist_node_init(&p->avail_list, 0);
2619         p->flags = SWP_USED;
2620         spin_unlock(&swap_lock);
2621         spin_lock_init(&p->lock);
2622
2623         return p;
2624 }
2625
2626 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2627 {
2628         int error;
2629
2630         if (S_ISBLK(inode->i_mode)) {
2631                 p->bdev = bdgrab(I_BDEV(inode));
2632                 error = blkdev_get(p->bdev,
2633                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2634                 if (error < 0) {
2635                         p->bdev = NULL;
2636                         return error;
2637                 }
2638                 p->old_block_size = block_size(p->bdev);
2639                 error = set_blocksize(p->bdev, PAGE_SIZE);
2640                 if (error < 0)
2641                         return error;
2642                 p->flags |= SWP_BLKDEV;
2643         } else if (S_ISREG(inode->i_mode)) {
2644                 p->bdev = inode->i_sb->s_bdev;
2645                 inode_lock(inode);
2646                 if (IS_SWAPFILE(inode))
2647                         return -EBUSY;
2648         } else
2649                 return -EINVAL;
2650
2651         return 0;
2652 }
2653
2654 static unsigned long read_swap_header(struct swap_info_struct *p,
2655                                         union swap_header *swap_header,
2656                                         struct inode *inode)
2657 {
2658         int i;
2659         unsigned long maxpages;
2660         unsigned long swapfilepages;
2661         unsigned long last_page;
2662
2663         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2664                 pr_err("Unable to find swap-space signature\n");
2665                 return 0;
2666         }
2667
2668         /* swap partition endianess hack... */
2669         if (swab32(swap_header->info.version) == 1) {
2670                 swab32s(&swap_header->info.version);
2671                 swab32s(&swap_header->info.last_page);
2672                 swab32s(&swap_header->info.nr_badpages);
2673                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2674                         return 0;
2675                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2676                         swab32s(&swap_header->info.badpages[i]);
2677         }
2678         /* Check the swap header's sub-version */
2679         if (swap_header->info.version != 1) {
2680                 pr_warn("Unable to handle swap header version %d\n",
2681                         swap_header->info.version);
2682                 return 0;
2683         }
2684
2685         p->lowest_bit  = 1;
2686         p->cluster_next = 1;
2687         p->cluster_nr = 0;
2688
2689         /*
2690          * Find out how many pages are allowed for a single swap
2691          * device. There are two limiting factors: 1) the number
2692          * of bits for the swap offset in the swp_entry_t type, and
2693          * 2) the number of bits in the swap pte as defined by the
2694          * different architectures. In order to find the
2695          * largest possible bit mask, a swap entry with swap type 0
2696          * and swap offset ~0UL is created, encoded to a swap pte,
2697          * decoded to a swp_entry_t again, and finally the swap
2698          * offset is extracted. This will mask all the bits from
2699          * the initial ~0UL mask that can't be encoded in either
2700          * the swp_entry_t or the architecture definition of a
2701          * swap pte.
2702          */
2703         maxpages = swp_offset(pte_to_swp_entry(
2704                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2705         last_page = swap_header->info.last_page;
2706         if (last_page > maxpages) {
2707                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2708                         maxpages << (PAGE_SHIFT - 10),
2709                         last_page << (PAGE_SHIFT - 10));
2710         }
2711         if (maxpages > last_page) {
2712                 maxpages = last_page + 1;
2713                 /* p->max is an unsigned int: don't overflow it */
2714                 if ((unsigned int)maxpages == 0)
2715                         maxpages = UINT_MAX;
2716         }
2717         p->highest_bit = maxpages - 1;
2718
2719         if (!maxpages)
2720                 return 0;
2721         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2722         if (swapfilepages && maxpages > swapfilepages) {
2723                 pr_warn("Swap area shorter than signature indicates\n");
2724                 return 0;
2725         }
2726         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2727                 return 0;
2728         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2729                 return 0;
2730
2731         return maxpages;
2732 }
2733
2734 #define SWAP_CLUSTER_INFO_COLS                                          \
2735         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2736 #define SWAP_CLUSTER_SPACE_COLS                                         \
2737         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2738 #define SWAP_CLUSTER_COLS                                               \
2739         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2740
2741 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2742                                         union swap_header *swap_header,
2743                                         unsigned char *swap_map,
2744                                         struct swap_cluster_info *cluster_info,
2745                                         unsigned long maxpages,
2746                                         sector_t *span)
2747 {
2748         unsigned int j, k;
2749         unsigned int nr_good_pages;
2750         int nr_extents;
2751         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2752         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2753         unsigned long i, idx;
2754
2755         nr_good_pages = maxpages - 1;   /* omit header page */
2756
2757         cluster_list_init(&p->free_clusters);
2758         cluster_list_init(&p->discard_clusters);
2759
2760         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2761                 unsigned int page_nr = swap_header->info.badpages[i];
2762                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2763                         return -EINVAL;
2764                 if (page_nr < maxpages) {
2765                         swap_map[page_nr] = SWAP_MAP_BAD;
2766                         nr_good_pages--;
2767                         /*
2768                          * Haven't marked the cluster free yet, no list
2769                          * operation involved
2770                          */
2771                         inc_cluster_info_page(p, cluster_info, page_nr);
2772                 }
2773         }
2774
2775         /* Haven't marked the cluster free yet, no list operation involved */
2776         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2777                 inc_cluster_info_page(p, cluster_info, i);
2778
2779         if (nr_good_pages) {
2780                 swap_map[0] = SWAP_MAP_BAD;
2781                 /*
2782                  * Not mark the cluster free yet, no list
2783                  * operation involved
2784                  */
2785                 inc_cluster_info_page(p, cluster_info, 0);
2786                 p->max = maxpages;
2787                 p->pages = nr_good_pages;
2788                 nr_extents = setup_swap_extents(p, span);
2789                 if (nr_extents < 0)
2790                         return nr_extents;
2791                 nr_good_pages = p->pages;
2792         }
2793         if (!nr_good_pages) {
2794                 pr_warn("Empty swap-file\n");
2795                 return -EINVAL;
2796         }
2797
2798         if (!cluster_info)
2799                 return nr_extents;
2800
2801
2802         /*
2803          * Reduce false cache line sharing between cluster_info and
2804          * sharing same address space.
2805          */
2806         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2807                 j = (k + col) % SWAP_CLUSTER_COLS;
2808                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2809                         idx = i * SWAP_CLUSTER_COLS + j;
2810                         if (idx >= nr_clusters)
2811                                 continue;
2812                         if (cluster_count(&cluster_info[idx]))
2813                                 continue;
2814                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2815                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2816                                               idx);
2817                 }
2818         }
2819         return nr_extents;
2820 }
2821
2822 /*
2823  * Helper to sys_swapon determining if a given swap
2824  * backing device queue supports DISCARD operations.
2825  */
2826 static bool swap_discardable(struct swap_info_struct *si)
2827 {
2828         struct request_queue *q = bdev_get_queue(si->bdev);
2829
2830         if (!q || !blk_queue_discard(q))
2831                 return false;
2832
2833         return true;
2834 }
2835
2836 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2837 {
2838         struct swap_info_struct *p;
2839         struct filename *name;
2840         struct file *swap_file = NULL;
2841         struct address_space *mapping;
2842         int prio;
2843         int error;
2844         union swap_header *swap_header;
2845         int nr_extents;
2846         sector_t span;
2847         unsigned long maxpages;
2848         unsigned char *swap_map = NULL;
2849         struct swap_cluster_info *cluster_info = NULL;
2850         unsigned long *frontswap_map = NULL;
2851         struct page *page = NULL;
2852         struct inode *inode = NULL;
2853
2854         if (swap_flags & ~SWAP_FLAGS_VALID)
2855                 return -EINVAL;
2856
2857         if (!capable(CAP_SYS_ADMIN))
2858                 return -EPERM;
2859
2860         p = alloc_swap_info();
2861         if (IS_ERR(p))
2862                 return PTR_ERR(p);
2863
2864         INIT_WORK(&p->discard_work, swap_discard_work);
2865
2866         name = getname(specialfile);
2867         if (IS_ERR(name)) {
2868                 error = PTR_ERR(name);
2869                 name = NULL;
2870                 goto bad_swap;
2871         }
2872         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2873         if (IS_ERR(swap_file)) {
2874                 error = PTR_ERR(swap_file);
2875                 swap_file = NULL;
2876                 goto bad_swap;
2877         }
2878
2879         p->swap_file = swap_file;
2880         mapping = swap_file->f_mapping;
2881         inode = mapping->host;
2882
2883         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2884         error = claim_swapfile(p, inode);
2885         if (unlikely(error))
2886                 goto bad_swap;
2887
2888         /*
2889          * Read the swap header.
2890          */
2891         if (!mapping->a_ops->readpage) {
2892                 error = -EINVAL;
2893                 goto bad_swap;
2894         }
2895         page = read_mapping_page(mapping, 0, swap_file);
2896         if (IS_ERR(page)) {
2897                 error = PTR_ERR(page);
2898                 goto bad_swap;
2899         }
2900         swap_header = kmap(page);
2901
2902         maxpages = read_swap_header(p, swap_header, inode);
2903         if (unlikely(!maxpages)) {
2904                 error = -EINVAL;
2905                 goto bad_swap;
2906         }
2907
2908         /* OK, set up the swap map and apply the bad block list */
2909         swap_map = vzalloc(maxpages);
2910         if (!swap_map) {
2911                 error = -ENOMEM;
2912                 goto bad_swap;
2913         }
2914
2915         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2916                 p->flags |= SWP_STABLE_WRITES;
2917
2918         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2919                 int cpu;
2920                 unsigned long ci, nr_cluster;
2921
2922                 p->flags |= SWP_SOLIDSTATE;
2923                 /*
2924                  * select a random position to start with to help wear leveling
2925                  * SSD
2926                  */
2927                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2928                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2929
2930                 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
2931                                         GFP_KERNEL);
2932                 if (!cluster_info) {
2933                         error = -ENOMEM;
2934                         goto bad_swap;
2935                 }
2936
2937                 for (ci = 0; ci < nr_cluster; ci++)
2938                         spin_lock_init(&((cluster_info + ci)->lock));
2939
2940                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2941                 if (!p->percpu_cluster) {
2942                         error = -ENOMEM;
2943                         goto bad_swap;
2944                 }
2945                 for_each_possible_cpu(cpu) {
2946                         struct percpu_cluster *cluster;
2947                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2948                         cluster_set_null(&cluster->index);
2949                 }
2950         }
2951
2952         error = swap_cgroup_swapon(p->type, maxpages);
2953         if (error)
2954                 goto bad_swap;
2955
2956         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2957                 cluster_info, maxpages, &span);
2958         if (unlikely(nr_extents < 0)) {
2959                 error = nr_extents;
2960                 goto bad_swap;
2961         }
2962         /* frontswap enabled? set up bit-per-page map for frontswap */
2963         if (IS_ENABLED(CONFIG_FRONTSWAP))
2964                 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
2965                                          GFP_KERNEL);
2966
2967         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2968                 /*
2969                  * When discard is enabled for swap with no particular
2970                  * policy flagged, we set all swap discard flags here in
2971                  * order to sustain backward compatibility with older
2972                  * swapon(8) releases.
2973                  */
2974                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2975                              SWP_PAGE_DISCARD);
2976
2977                 /*
2978                  * By flagging sys_swapon, a sysadmin can tell us to
2979                  * either do single-time area discards only, or to just
2980                  * perform discards for released swap page-clusters.
2981                  * Now it's time to adjust the p->flags accordingly.
2982                  */
2983                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2984                         p->flags &= ~SWP_PAGE_DISCARD;
2985                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2986                         p->flags &= ~SWP_AREA_DISCARD;
2987
2988                 /* issue a swapon-time discard if it's still required */
2989                 if (p->flags & SWP_AREA_DISCARD) {
2990                         int err = discard_swap(p);
2991                         if (unlikely(err))
2992                                 pr_err("swapon: discard_swap(%p): %d\n",
2993                                         p, err);
2994                 }
2995         }
2996
2997         error = init_swap_address_space(p->type, maxpages);
2998         if (error)
2999                 goto bad_swap;
3000
3001         mutex_lock(&swapon_mutex);
3002         prio = -1;
3003         if (swap_flags & SWAP_FLAG_PREFER)
3004                 prio =
3005                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3006         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3007
3008         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3009                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3010                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3011                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3012                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3013                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3014                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3015                 (frontswap_map) ? "FS" : "");
3016
3017         mutex_unlock(&swapon_mutex);
3018         atomic_inc(&proc_poll_event);
3019         wake_up_interruptible(&proc_poll_wait);
3020
3021         if (S_ISREG(inode->i_mode))
3022                 inode->i_flags |= S_SWAPFILE;
3023         error = 0;
3024         goto out;
3025 bad_swap:
3026         free_percpu(p->percpu_cluster);
3027         p->percpu_cluster = NULL;
3028         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3029                 set_blocksize(p->bdev, p->old_block_size);
3030                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3031         }
3032         destroy_swap_extents(p);
3033         swap_cgroup_swapoff(p->type);
3034         spin_lock(&swap_lock);
3035         p->swap_file = NULL;
3036         p->flags = 0;
3037         spin_unlock(&swap_lock);
3038         vfree(swap_map);
3039         vfree(cluster_info);
3040         if (swap_file) {
3041                 if (inode && S_ISREG(inode->i_mode)) {
3042                         inode_unlock(inode);
3043                         inode = NULL;
3044                 }
3045                 filp_close(swap_file, NULL);
3046         }
3047 out:
3048         if (page && !IS_ERR(page)) {
3049                 kunmap(page);
3050                 put_page(page);
3051         }
3052         if (name)
3053                 putname(name);
3054         if (inode && S_ISREG(inode->i_mode))
3055                 inode_unlock(inode);
3056         if (!error)
3057                 enable_swap_slots_cache();
3058         return error;
3059 }
3060
3061 void si_swapinfo(struct sysinfo *val)
3062 {
3063         unsigned int type;
3064         unsigned long nr_to_be_unused = 0;
3065
3066         spin_lock(&swap_lock);
3067         for (type = 0; type < nr_swapfiles; type++) {
3068                 struct swap_info_struct *si = swap_info[type];
3069
3070                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3071                         nr_to_be_unused += si->inuse_pages;
3072         }
3073         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3074         val->totalswap = total_swap_pages + nr_to_be_unused;
3075         spin_unlock(&swap_lock);
3076 }
3077
3078 /*
3079  * Verify that a swap entry is valid and increment its swap map count.
3080  *
3081  * Returns error code in following case.
3082  * - success -> 0
3083  * - swp_entry is invalid -> EINVAL
3084  * - swp_entry is migration entry -> EINVAL
3085  * - swap-cache reference is requested but there is already one. -> EEXIST
3086  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3087  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3088  */
3089 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3090 {
3091         struct swap_info_struct *p;
3092         struct swap_cluster_info *ci;
3093         unsigned long offset, type;
3094         unsigned char count;
3095         unsigned char has_cache;
3096         int err = -EINVAL;
3097
3098         if (non_swap_entry(entry))
3099                 goto out;
3100
3101         type = swp_type(entry);
3102         if (type >= nr_swapfiles)
3103                 goto bad_file;
3104         p = swap_info[type];
3105         offset = swp_offset(entry);
3106         if (unlikely(offset >= p->max))
3107                 goto out;
3108
3109         ci = lock_cluster_or_swap_info(p, offset);
3110
3111         count = p->swap_map[offset];
3112
3113         /*
3114          * swapin_readahead() doesn't check if a swap entry is valid, so the
3115          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3116          */
3117         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3118                 err = -ENOENT;
3119                 goto unlock_out;
3120         }
3121
3122         has_cache = count & SWAP_HAS_CACHE;
3123         count &= ~SWAP_HAS_CACHE;
3124         err = 0;
3125
3126         if (usage == SWAP_HAS_CACHE) {
3127
3128                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3129                 if (!has_cache && count)
3130                         has_cache = SWAP_HAS_CACHE;
3131                 else if (has_cache)             /* someone else added cache */
3132                         err = -EEXIST;
3133                 else                            /* no users remaining */
3134                         err = -ENOENT;
3135
3136         } else if (count || has_cache) {
3137
3138                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3139                         count += usage;
3140                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3141                         err = -EINVAL;
3142                 else if (swap_count_continued(p, offset, count))
3143                         count = COUNT_CONTINUED;
3144                 else
3145                         err = -ENOMEM;
3146         } else
3147                 err = -ENOENT;                  /* unused swap entry */
3148
3149         p->swap_map[offset] = count | has_cache;
3150
3151 unlock_out:
3152         unlock_cluster_or_swap_info(p, ci);
3153 out:
3154         return err;
3155
3156 bad_file:
3157         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3158         goto out;
3159 }
3160
3161 /*
3162  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3163  * (in which case its reference count is never incremented).
3164  */
3165 void swap_shmem_alloc(swp_entry_t entry)
3166 {
3167         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3168 }
3169
3170 /*
3171  * Increase reference count of swap entry by 1.
3172  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3173  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3174  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3175  * might occur if a page table entry has got corrupted.
3176  */
3177 int swap_duplicate(swp_entry_t entry)
3178 {
3179         int err = 0;
3180
3181         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3182                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3183         return err;
3184 }
3185
3186 /*
3187  * @entry: swap entry for which we allocate swap cache.
3188  *
3189  * Called when allocating swap cache for existing swap entry,
3190  * This can return error codes. Returns 0 at success.
3191  * -EBUSY means there is a swap cache.
3192  * Note: return code is different from swap_duplicate().
3193  */
3194 int swapcache_prepare(swp_entry_t entry)
3195 {
3196         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3197 }
3198
3199 struct swap_info_struct *page_swap_info(struct page *page)
3200 {
3201         swp_entry_t swap = { .val = page_private(page) };
3202         return swap_info[swp_type(swap)];
3203 }
3204
3205 /*
3206  * out-of-line __page_file_ methods to avoid include hell.
3207  */
3208 struct address_space *__page_file_mapping(struct page *page)
3209 {
3210         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3211         return page_swap_info(page)->swap_file->f_mapping;
3212 }
3213 EXPORT_SYMBOL_GPL(__page_file_mapping);
3214
3215 pgoff_t __page_file_index(struct page *page)
3216 {
3217         swp_entry_t swap = { .val = page_private(page) };
3218         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3219         return swp_offset(swap);
3220 }
3221 EXPORT_SYMBOL_GPL(__page_file_index);
3222
3223 /*
3224  * add_swap_count_continuation - called when a swap count is duplicated
3225  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3226  * page of the original vmalloc'ed swap_map, to hold the continuation count
3227  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3228  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3229  *
3230  * These continuation pages are seldom referenced: the common paths all work
3231  * on the original swap_map, only referring to a continuation page when the
3232  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3233  *
3234  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3235  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3236  * can be called after dropping locks.
3237  */
3238 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3239 {
3240         struct swap_info_struct *si;
3241         struct swap_cluster_info *ci;
3242         struct page *head;
3243         struct page *page;
3244         struct page *list_page;
3245         pgoff_t offset;
3246         unsigned char count;
3247
3248         /*
3249          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3250          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3251          */
3252         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3253
3254         si = swap_info_get(entry);
3255         if (!si) {
3256                 /*
3257                  * An acceptable race has occurred since the failing
3258                  * __swap_duplicate(): the swap entry has been freed,
3259                  * perhaps even the whole swap_map cleared for swapoff.
3260                  */
3261                 goto outer;
3262         }
3263
3264         offset = swp_offset(entry);
3265
3266         ci = lock_cluster(si, offset);
3267
3268         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3269
3270         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3271                 /*
3272                  * The higher the swap count, the more likely it is that tasks
3273                  * will race to add swap count continuation: we need to avoid
3274                  * over-provisioning.
3275                  */
3276                 goto out;
3277         }
3278
3279         if (!page) {
3280                 unlock_cluster(ci);
3281                 spin_unlock(&si->lock);
3282                 return -ENOMEM;
3283         }
3284
3285         /*
3286          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3287          * no architecture is using highmem pages for kernel page tables: so it
3288          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3289          */
3290         head = vmalloc_to_page(si->swap_map + offset);
3291         offset &= ~PAGE_MASK;
3292
3293         /*
3294          * Page allocation does not initialize the page's lru field,
3295          * but it does always reset its private field.
3296          */
3297         if (!page_private(head)) {
3298                 BUG_ON(count & COUNT_CONTINUED);
3299                 INIT_LIST_HEAD(&head->lru);
3300                 set_page_private(head, SWP_CONTINUED);
3301                 si->flags |= SWP_CONTINUED;
3302         }
3303
3304         list_for_each_entry(list_page, &head->lru, lru) {
3305                 unsigned char *map;
3306
3307                 /*
3308                  * If the previous map said no continuation, but we've found
3309                  * a continuation page, free our allocation and use this one.
3310                  */
3311                 if (!(count & COUNT_CONTINUED))
3312                         goto out;
3313
3314                 map = kmap_atomic(list_page) + offset;
3315                 count = *map;
3316                 kunmap_atomic(map);
3317
3318                 /*
3319                  * If this continuation count now has some space in it,
3320                  * free our allocation and use this one.
3321                  */
3322                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3323                         goto out;
3324         }
3325
3326         list_add_tail(&page->lru, &head->lru);
3327         page = NULL;                    /* now it's attached, don't free it */
3328 out:
3329         unlock_cluster(ci);
3330         spin_unlock(&si->lock);
3331 outer:
3332         if (page)
3333                 __free_page(page);
3334         return 0;
3335 }
3336
3337 /*
3338  * swap_count_continued - when the original swap_map count is incremented
3339  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3340  * into, carry if so, or else fail until a new continuation page is allocated;
3341  * when the original swap_map count is decremented from 0 with continuation,
3342  * borrow from the continuation and report whether it still holds more.
3343  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3344  * lock.
3345  */
3346 static bool swap_count_continued(struct swap_info_struct *si,
3347                                  pgoff_t offset, unsigned char count)
3348 {
3349         struct page *head;
3350         struct page *page;
3351         unsigned char *map;
3352
3353         head = vmalloc_to_page(si->swap_map + offset);
3354         if (page_private(head) != SWP_CONTINUED) {
3355                 BUG_ON(count & COUNT_CONTINUED);
3356                 return false;           /* need to add count continuation */
3357         }
3358
3359         offset &= ~PAGE_MASK;
3360         page = list_entry(head->lru.next, struct page, lru);
3361         map = kmap_atomic(page) + offset;
3362
3363         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3364                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3365
3366         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3367                 /*
3368                  * Think of how you add 1 to 999
3369                  */
3370                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3371                         kunmap_atomic(map);
3372                         page = list_entry(page->lru.next, struct page, lru);
3373                         BUG_ON(page == head);
3374                         map = kmap_atomic(page) + offset;
3375                 }
3376                 if (*map == SWAP_CONT_MAX) {
3377                         kunmap_atomic(map);
3378                         page = list_entry(page->lru.next, struct page, lru);
3379                         if (page == head)
3380                                 return false;   /* add count continuation */
3381                         map = kmap_atomic(page) + offset;
3382 init_map:               *map = 0;               /* we didn't zero the page */
3383                 }
3384                 *map += 1;
3385                 kunmap_atomic(map);
3386                 page = list_entry(page->lru.prev, struct page, lru);
3387                 while (page != head) {
3388                         map = kmap_atomic(page) + offset;
3389                         *map = COUNT_CONTINUED;
3390                         kunmap_atomic(map);
3391                         page = list_entry(page->lru.prev, struct page, lru);
3392                 }
3393                 return true;                    /* incremented */
3394
3395         } else {                                /* decrementing */
3396                 /*
3397                  * Think of how you subtract 1 from 1000
3398                  */
3399                 BUG_ON(count != COUNT_CONTINUED);
3400                 while (*map == COUNT_CONTINUED) {
3401                         kunmap_atomic(map);
3402                         page = list_entry(page->lru.next, struct page, lru);
3403                         BUG_ON(page == head);
3404                         map = kmap_atomic(page) + offset;
3405                 }
3406                 BUG_ON(*map == 0);
3407                 *map -= 1;
3408                 if (*map == 0)
3409                         count = 0;
3410                 kunmap_atomic(map);
3411                 page = list_entry(page->lru.prev, struct page, lru);
3412                 while (page != head) {
3413                         map = kmap_atomic(page) + offset;
3414                         *map = SWAP_CONT_MAX | count;
3415                         count = COUNT_CONTINUED;
3416                         kunmap_atomic(map);
3417                         page = list_entry(page->lru.prev, struct page, lru);
3418                 }
3419                 return count == COUNT_CONTINUED;
3420         }
3421 }
3422
3423 /*
3424  * free_swap_count_continuations - swapoff free all the continuation pages
3425  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3426  */
3427 static void free_swap_count_continuations(struct swap_info_struct *si)
3428 {
3429         pgoff_t offset;
3430
3431         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3432                 struct page *head;
3433                 head = vmalloc_to_page(si->swap_map + offset);
3434                 if (page_private(head)) {
3435                         struct page *page, *next;
3436
3437                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3438                                 list_del(&page->lru);
3439                                 __free_page(page);
3440                         }
3441                 }
3442         }
3443 }