]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/vmscan.c
Linux 2.6.32.43
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52         /* Incremented by the number of inactive pages that were scanned */
53         unsigned long nr_scanned;
54
55         /* Number of pages freed so far during a call to shrink_zones() */
56         unsigned long nr_reclaimed;
57
58         /* This context's GFP mask */
59         gfp_t gfp_mask;
60
61         int may_writepage;
62
63         /* Can mapped pages be reclaimed? */
64         int may_unmap;
65
66         /* Can pages be swapped as part of reclaim? */
67         int may_swap;
68
69         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71          * In this context, it doesn't matter that we scan the
72          * whole list at once. */
73         int swap_cluster_max;
74
75         int swappiness;
76
77         int all_unreclaimable;
78
79         int order;
80
81         /* Which cgroup do we reclaim from */
82         struct mem_cgroup *mem_cgroup;
83
84         /*
85          * Nodemask of nodes allowed by the caller. If NULL, all nodes
86          * are scanned.
87          */
88         nodemask_t      *nodemask;
89
90         /* Pluggable isolate pages callback */
91         unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92                         unsigned long *scanned, int order, int mode,
93                         struct zone *z, struct mem_cgroup *mem_cont,
94                         int active, int file);
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field)                    \
101         do {                                                            \
102                 if ((_page)->lru.prev != _base) {                       \
103                         struct page *prev;                              \
104                                                                         \
105                         prev = lru_to_page(&(_page->lru));              \
106                         prefetch(&prev->_field);                        \
107                 }                                                       \
108         } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
115         do {                                                            \
116                 if ((_page)->lru.prev != _base) {                       \
117                         struct page *prev;                              \
118                                                                         \
119                         prev = lru_to_page(&(_page->lru));              \
120                         prefetchw(&prev->_field);                       \
121                 }                                                       \
122         } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128  * From 0 .. 100.  Higher means more swappy.
129  */
130 int vm_swappiness = 60;
131 long vm_total_pages;    /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc) (1)
140 #endif
141
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143                                                   struct scan_control *sc)
144 {
145         if (!scanning_global_lru(sc))
146                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148         return &zone->reclaim_stat;
149 }
150
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152                                 struct scan_control *sc, enum lru_list lru)
153 {
154         if (!scanning_global_lru(sc))
155                 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157         return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159
160
161 /*
162  * Add a shrinker callback to be called from the vm
163  */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166         shrinker->nr = 0;
167         down_write(&shrinker_rwsem);
168         list_add_tail(&shrinker->list, &shrinker_list);
169         up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172
173 /*
174  * Remove one
175  */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178         down_write(&shrinker_rwsem);
179         list_del(&shrinker->list);
180         up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183
184 #define SHRINK_BATCH 128
185 /*
186  * Call the shrink functions to age shrinkable caches
187  *
188  * Here we assume it costs one seek to replace a lru page and that it also
189  * takes a seek to recreate a cache object.  With this in mind we age equal
190  * percentages of the lru and ageable caches.  This should balance the seeks
191  * generated by these structures.
192  *
193  * If the vm encountered mapped pages on the LRU it increase the pressure on
194  * slab to avoid swapping.
195  *
196  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197  *
198  * `lru_pages' represents the number of on-LRU pages in all the zones which
199  * are eligible for the caller's allocation attempt.  It is used for balancing
200  * slab reclaim versus page reclaim.
201  *
202  * Returns the number of slab objects which we shrunk.
203  */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205                         unsigned long lru_pages)
206 {
207         struct shrinker *shrinker;
208         unsigned long ret = 0;
209
210         if (scanned == 0)
211                 scanned = SWAP_CLUSTER_MAX;
212
213         if (!down_read_trylock(&shrinker_rwsem))
214                 return 1;       /* Assume we'll be able to shrink next time */
215
216         list_for_each_entry(shrinker, &shrinker_list, list) {
217                 unsigned long long delta;
218                 unsigned long total_scan;
219                 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220
221                 delta = (4 * scanned) / shrinker->seeks;
222                 delta *= max_pass;
223                 do_div(delta, lru_pages + 1);
224                 shrinker->nr += delta;
225                 if (shrinker->nr < 0) {
226                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
227                                "delete nr=%ld\n",
228                                shrinker->shrink, shrinker->nr);
229                         shrinker->nr = max_pass;
230                 }
231
232                 /*
233                  * Avoid risking looping forever due to too large nr value:
234                  * never try to free more than twice the estimate number of
235                  * freeable entries.
236                  */
237                 if (shrinker->nr > max_pass * 2)
238                         shrinker->nr = max_pass * 2;
239
240                 total_scan = shrinker->nr;
241                 shrinker->nr = 0;
242
243                 while (total_scan >= SHRINK_BATCH) {
244                         long this_scan = SHRINK_BATCH;
245                         int shrink_ret;
246                         int nr_before;
247
248                         nr_before = (*shrinker->shrink)(0, gfp_mask);
249                         shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250                         if (shrink_ret == -1)
251                                 break;
252                         if (shrink_ret < nr_before)
253                                 ret += nr_before - shrink_ret;
254                         count_vm_events(SLABS_SCANNED, this_scan);
255                         total_scan -= this_scan;
256
257                         cond_resched();
258                 }
259
260                 shrinker->nr += total_scan;
261         }
262         up_read(&shrinker_rwsem);
263         return ret;
264 }
265
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page *page)
268 {
269         struct address_space *mapping;
270
271         /* Page is in somebody's page tables. */
272         if (page_mapped(page))
273                 return 1;
274
275         /* Be more reluctant to reclaim swapcache than pagecache */
276         if (PageSwapCache(page))
277                 return 1;
278
279         mapping = page_mapping(page);
280         if (!mapping)
281                 return 0;
282
283         /* File is mmap'd by somebody? */
284         return mapping_mapped(mapping);
285 }
286
287 static inline int is_page_cache_freeable(struct page *page)
288 {
289         /*
290          * A freeable page cache page is referenced only by the caller
291          * that isolated the page, the page cache radix tree and
292          * optional buffer heads at page->private.
293          */
294         return page_count(page) - page_has_private(page) == 2;
295 }
296
297 static int may_write_to_queue(struct backing_dev_info *bdi)
298 {
299         if (current->flags & PF_SWAPWRITE)
300                 return 1;
301         if (!bdi_write_congested(bdi))
302                 return 1;
303         if (bdi == current->backing_dev_info)
304                 return 1;
305         return 0;
306 }
307
308 /*
309  * We detected a synchronous write error writing a page out.  Probably
310  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
311  * fsync(), msync() or close().
312  *
313  * The tricky part is that after writepage we cannot touch the mapping: nothing
314  * prevents it from being freed up.  But we have a ref on the page and once
315  * that page is locked, the mapping is pinned.
316  *
317  * We're allowed to run sleeping lock_page() here because we know the caller has
318  * __GFP_FS.
319  */
320 static void handle_write_error(struct address_space *mapping,
321                                 struct page *page, int error)
322 {
323         lock_page(page);
324         if (page_mapping(page) == mapping)
325                 mapping_set_error(mapping, error);
326         unlock_page(page);
327 }
328
329 /* Request for sync pageout. */
330 enum pageout_io {
331         PAGEOUT_IO_ASYNC,
332         PAGEOUT_IO_SYNC,
333 };
334
335 /* possible outcome of pageout() */
336 typedef enum {
337         /* failed to write page out, page is locked */
338         PAGE_KEEP,
339         /* move page to the active list, page is locked */
340         PAGE_ACTIVATE,
341         /* page has been sent to the disk successfully, page is unlocked */
342         PAGE_SUCCESS,
343         /* page is clean and locked */
344         PAGE_CLEAN,
345 } pageout_t;
346
347 /*
348  * pageout is called by shrink_page_list() for each dirty page.
349  * Calls ->writepage().
350  */
351 static pageout_t pageout(struct page *page, struct address_space *mapping,
352                                                 enum pageout_io sync_writeback)
353 {
354         /*
355          * If the page is dirty, only perform writeback if that write
356          * will be non-blocking.  To prevent this allocation from being
357          * stalled by pagecache activity.  But note that there may be
358          * stalls if we need to run get_block().  We could test
359          * PagePrivate for that.
360          *
361          * If this process is currently in generic_file_write() against
362          * this page's queue, we can perform writeback even if that
363          * will block.
364          *
365          * If the page is swapcache, write it back even if that would
366          * block, for some throttling. This happens by accident, because
367          * swap_backing_dev_info is bust: it doesn't reflect the
368          * congestion state of the swapdevs.  Easy to fix, if needed.
369          */
370         if (!is_page_cache_freeable(page))
371                 return PAGE_KEEP;
372         if (!mapping) {
373                 /*
374                  * Some data journaling orphaned pages can have
375                  * page->mapping == NULL while being dirty with clean buffers.
376                  */
377                 if (page_has_private(page)) {
378                         if (try_to_free_buffers(page)) {
379                                 ClearPageDirty(page);
380                                 printk("%s: orphaned page\n", __func__);
381                                 return PAGE_CLEAN;
382                         }
383                 }
384                 return PAGE_KEEP;
385         }
386         if (mapping->a_ops->writepage == NULL)
387                 return PAGE_ACTIVATE;
388         if (!may_write_to_queue(mapping->backing_dev_info))
389                 return PAGE_KEEP;
390
391         if (clear_page_dirty_for_io(page)) {
392                 int res;
393                 struct writeback_control wbc = {
394                         .sync_mode = WB_SYNC_NONE,
395                         .nr_to_write = SWAP_CLUSTER_MAX,
396                         .range_start = 0,
397                         .range_end = LLONG_MAX,
398                         .nonblocking = 1,
399                         .for_reclaim = 1,
400                 };
401
402                 SetPageReclaim(page);
403                 res = mapping->a_ops->writepage(page, &wbc);
404                 if (res < 0)
405                         handle_write_error(mapping, page, res);
406                 if (res == AOP_WRITEPAGE_ACTIVATE) {
407                         ClearPageReclaim(page);
408                         return PAGE_ACTIVATE;
409                 }
410
411                 /*
412                  * Wait on writeback if requested to. This happens when
413                  * direct reclaiming a large contiguous area and the
414                  * first attempt to free a range of pages fails.
415                  */
416                 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
417                         wait_on_page_writeback(page);
418
419                 if (!PageWriteback(page)) {
420                         /* synchronous write or broken a_ops? */
421                         ClearPageReclaim(page);
422                 }
423                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
424                 return PAGE_SUCCESS;
425         }
426
427         return PAGE_CLEAN;
428 }
429
430 /*
431  * Same as remove_mapping, but if the page is removed from the mapping, it
432  * gets returned with a refcount of 0.
433  */
434 static int __remove_mapping(struct address_space *mapping, struct page *page)
435 {
436         BUG_ON(!PageLocked(page));
437         BUG_ON(mapping != page_mapping(page));
438
439         spin_lock_irq(&mapping->tree_lock);
440         /*
441          * The non racy check for a busy page.
442          *
443          * Must be careful with the order of the tests. When someone has
444          * a ref to the page, it may be possible that they dirty it then
445          * drop the reference. So if PageDirty is tested before page_count
446          * here, then the following race may occur:
447          *
448          * get_user_pages(&page);
449          * [user mapping goes away]
450          * write_to(page);
451          *                              !PageDirty(page)    [good]
452          * SetPageDirty(page);
453          * put_page(page);
454          *                              !page_count(page)   [good, discard it]
455          *
456          * [oops, our write_to data is lost]
457          *
458          * Reversing the order of the tests ensures such a situation cannot
459          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
460          * load is not satisfied before that of page->_count.
461          *
462          * Note that if SetPageDirty is always performed via set_page_dirty,
463          * and thus under tree_lock, then this ordering is not required.
464          */
465         if (!page_freeze_refs(page, 2))
466                 goto cannot_free;
467         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
468         if (unlikely(PageDirty(page))) {
469                 page_unfreeze_refs(page, 2);
470                 goto cannot_free;
471         }
472
473         if (PageSwapCache(page)) {
474                 swp_entry_t swap = { .val = page_private(page) };
475                 __delete_from_swap_cache(page);
476                 spin_unlock_irq(&mapping->tree_lock);
477                 swapcache_free(swap, page);
478         } else {
479                 __remove_from_page_cache(page);
480                 spin_unlock_irq(&mapping->tree_lock);
481                 mem_cgroup_uncharge_cache_page(page);
482         }
483
484         return 1;
485
486 cannot_free:
487         spin_unlock_irq(&mapping->tree_lock);
488         return 0;
489 }
490
491 /*
492  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
493  * someone else has a ref on the page, abort and return 0.  If it was
494  * successfully detached, return 1.  Assumes the caller has a single ref on
495  * this page.
496  */
497 int remove_mapping(struct address_space *mapping, struct page *page)
498 {
499         if (__remove_mapping(mapping, page)) {
500                 /*
501                  * Unfreezing the refcount with 1 rather than 2 effectively
502                  * drops the pagecache ref for us without requiring another
503                  * atomic operation.
504                  */
505                 page_unfreeze_refs(page, 1);
506                 return 1;
507         }
508         return 0;
509 }
510
511 /**
512  * putback_lru_page - put previously isolated page onto appropriate LRU list
513  * @page: page to be put back to appropriate lru list
514  *
515  * Add previously isolated @page to appropriate LRU list.
516  * Page may still be unevictable for other reasons.
517  *
518  * lru_lock must not be held, interrupts must be enabled.
519  */
520 void putback_lru_page(struct page *page)
521 {
522         int lru;
523         int active = !!TestClearPageActive(page);
524         int was_unevictable = PageUnevictable(page);
525
526         VM_BUG_ON(PageLRU(page));
527
528 redo:
529         ClearPageUnevictable(page);
530
531         if (page_evictable(page, NULL)) {
532                 /*
533                  * For evictable pages, we can use the cache.
534                  * In event of a race, worst case is we end up with an
535                  * unevictable page on [in]active list.
536                  * We know how to handle that.
537                  */
538                 lru = active + page_lru_base_type(page);
539                 lru_cache_add_lru(page, lru);
540         } else {
541                 /*
542                  * Put unevictable pages directly on zone's unevictable
543                  * list.
544                  */
545                 lru = LRU_UNEVICTABLE;
546                 add_page_to_unevictable_list(page);
547                 /*
548                  * When racing with an mlock clearing (page is
549                  * unlocked), make sure that if the other thread does
550                  * not observe our setting of PG_lru and fails
551                  * isolation, we see PG_mlocked cleared below and move
552                  * the page back to the evictable list.
553                  *
554                  * The other side is TestClearPageMlocked().
555                  */
556                 smp_mb();
557         }
558
559         /*
560          * page's status can change while we move it among lru. If an evictable
561          * page is on unevictable list, it never be freed. To avoid that,
562          * check after we added it to the list, again.
563          */
564         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
565                 if (!isolate_lru_page(page)) {
566                         put_page(page);
567                         goto redo;
568                 }
569                 /* This means someone else dropped this page from LRU
570                  * So, it will be freed or putback to LRU again. There is
571                  * nothing to do here.
572                  */
573         }
574
575         if (was_unevictable && lru != LRU_UNEVICTABLE)
576                 count_vm_event(UNEVICTABLE_PGRESCUED);
577         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
578                 count_vm_event(UNEVICTABLE_PGCULLED);
579
580         put_page(page);         /* drop ref from isolate */
581 }
582
583 /*
584  * shrink_page_list() returns the number of reclaimed pages
585  */
586 static unsigned long shrink_page_list(struct list_head *page_list,
587                                         struct scan_control *sc,
588                                         enum pageout_io sync_writeback)
589 {
590         LIST_HEAD(ret_pages);
591         struct pagevec freed_pvec;
592         int pgactivate = 0;
593         unsigned long nr_reclaimed = 0;
594         unsigned long vm_flags;
595
596         cond_resched();
597
598         pagevec_init(&freed_pvec, 1);
599         while (!list_empty(page_list)) {
600                 struct address_space *mapping;
601                 struct page *page;
602                 int may_enter_fs;
603                 int referenced;
604
605                 cond_resched();
606
607                 page = lru_to_page(page_list);
608                 list_del(&page->lru);
609
610                 if (!trylock_page(page))
611                         goto keep;
612
613                 VM_BUG_ON(PageActive(page));
614
615                 sc->nr_scanned++;
616
617                 if (unlikely(!page_evictable(page, NULL)))
618                         goto cull_mlocked;
619
620                 if (!sc->may_unmap && page_mapped(page))
621                         goto keep_locked;
622
623                 /* Double the slab pressure for mapped and swapcache pages */
624                 if (page_mapped(page) || PageSwapCache(page))
625                         sc->nr_scanned++;
626
627                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
628                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
629
630                 if (PageWriteback(page)) {
631                         /*
632                          * Synchronous reclaim is performed in two passes,
633                          * first an asynchronous pass over the list to
634                          * start parallel writeback, and a second synchronous
635                          * pass to wait for the IO to complete.  Wait here
636                          * for any page for which writeback has already
637                          * started.
638                          */
639                         if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
640                                 wait_on_page_writeback(page);
641                         else
642                                 goto keep_locked;
643                 }
644
645                 referenced = page_referenced(page, 1,
646                                                 sc->mem_cgroup, &vm_flags);
647                 /*
648                  * In active use or really unfreeable?  Activate it.
649                  * If page which have PG_mlocked lost isoltation race,
650                  * try_to_unmap moves it to unevictable list
651                  */
652                 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
653                                         referenced && page_mapping_inuse(page)
654                                         && !(vm_flags & VM_LOCKED))
655                         goto activate_locked;
656
657                 /*
658                  * Anonymous process memory has backing store?
659                  * Try to allocate it some swap space here.
660                  */
661                 if (PageAnon(page) && !PageSwapCache(page)) {
662                         if (!(sc->gfp_mask & __GFP_IO))
663                                 goto keep_locked;
664                         if (!add_to_swap(page))
665                                 goto activate_locked;
666                         may_enter_fs = 1;
667                 }
668
669                 mapping = page_mapping(page);
670
671                 /*
672                  * The page is mapped into the page tables of one or more
673                  * processes. Try to unmap it here.
674                  */
675                 if (page_mapped(page) && mapping) {
676                         switch (try_to_unmap(page, TTU_UNMAP)) {
677                         case SWAP_FAIL:
678                                 goto activate_locked;
679                         case SWAP_AGAIN:
680                                 goto keep_locked;
681                         case SWAP_MLOCK:
682                                 goto cull_mlocked;
683                         case SWAP_SUCCESS:
684                                 ; /* try to free the page below */
685                         }
686                 }
687
688                 if (PageDirty(page)) {
689                         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
690                                 goto keep_locked;
691                         if (!may_enter_fs)
692                                 goto keep_locked;
693                         if (!sc->may_writepage)
694                                 goto keep_locked;
695
696                         /* Page is dirty, try to write it out here */
697                         switch (pageout(page, mapping, sync_writeback)) {
698                         case PAGE_KEEP:
699                                 goto keep_locked;
700                         case PAGE_ACTIVATE:
701                                 goto activate_locked;
702                         case PAGE_SUCCESS:
703                                 if (PageWriteback(page) || PageDirty(page))
704                                         goto keep;
705                                 /*
706                                  * A synchronous write - probably a ramdisk.  Go
707                                  * ahead and try to reclaim the page.
708                                  */
709                                 if (!trylock_page(page))
710                                         goto keep;
711                                 if (PageDirty(page) || PageWriteback(page))
712                                         goto keep_locked;
713                                 mapping = page_mapping(page);
714                         case PAGE_CLEAN:
715                                 ; /* try to free the page below */
716                         }
717                 }
718
719                 /*
720                  * If the page has buffers, try to free the buffer mappings
721                  * associated with this page. If we succeed we try to free
722                  * the page as well.
723                  *
724                  * We do this even if the page is PageDirty().
725                  * try_to_release_page() does not perform I/O, but it is
726                  * possible for a page to have PageDirty set, but it is actually
727                  * clean (all its buffers are clean).  This happens if the
728                  * buffers were written out directly, with submit_bh(). ext3
729                  * will do this, as well as the blockdev mapping.
730                  * try_to_release_page() will discover that cleanness and will
731                  * drop the buffers and mark the page clean - it can be freed.
732                  *
733                  * Rarely, pages can have buffers and no ->mapping.  These are
734                  * the pages which were not successfully invalidated in
735                  * truncate_complete_page().  We try to drop those buffers here
736                  * and if that worked, and the page is no longer mapped into
737                  * process address space (page_count == 1) it can be freed.
738                  * Otherwise, leave the page on the LRU so it is swappable.
739                  */
740                 if (page_has_private(page)) {
741                         if (!try_to_release_page(page, sc->gfp_mask))
742                                 goto activate_locked;
743                         if (!mapping && page_count(page) == 1) {
744                                 unlock_page(page);
745                                 if (put_page_testzero(page))
746                                         goto free_it;
747                                 else {
748                                         /*
749                                          * rare race with speculative reference.
750                                          * the speculative reference will free
751                                          * this page shortly, so we may
752                                          * increment nr_reclaimed here (and
753                                          * leave it off the LRU).
754                                          */
755                                         nr_reclaimed++;
756                                         continue;
757                                 }
758                         }
759                 }
760
761                 if (!mapping || !__remove_mapping(mapping, page))
762                         goto keep_locked;
763
764                 /*
765                  * At this point, we have no other references and there is
766                  * no way to pick any more up (removed from LRU, removed
767                  * from pagecache). Can use non-atomic bitops now (and
768                  * we obviously don't have to worry about waking up a process
769                  * waiting on the page lock, because there are no references.
770                  */
771                 __clear_page_locked(page);
772 free_it:
773                 nr_reclaimed++;
774                 if (!pagevec_add(&freed_pvec, page)) {
775                         __pagevec_free(&freed_pvec);
776                         pagevec_reinit(&freed_pvec);
777                 }
778                 continue;
779
780 cull_mlocked:
781                 if (PageSwapCache(page))
782                         try_to_free_swap(page);
783                 unlock_page(page);
784                 putback_lru_page(page);
785                 continue;
786
787 activate_locked:
788                 /* Not a candidate for swapping, so reclaim swap space. */
789                 if (PageSwapCache(page) && vm_swap_full())
790                         try_to_free_swap(page);
791                 VM_BUG_ON(PageActive(page));
792                 SetPageActive(page);
793                 pgactivate++;
794 keep_locked:
795                 unlock_page(page);
796 keep:
797                 list_add(&page->lru, &ret_pages);
798                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
799         }
800         list_splice(&ret_pages, page_list);
801         if (pagevec_count(&freed_pvec))
802                 __pagevec_free(&freed_pvec);
803         count_vm_events(PGACTIVATE, pgactivate);
804         return nr_reclaimed;
805 }
806
807 /* LRU Isolation modes. */
808 #define ISOLATE_INACTIVE 0      /* Isolate inactive pages. */
809 #define ISOLATE_ACTIVE 1        /* Isolate active pages. */
810 #define ISOLATE_BOTH 2          /* Isolate both active and inactive pages. */
811
812 /*
813  * Attempt to remove the specified page from its LRU.  Only take this page
814  * if it is of the appropriate PageActive status.  Pages which are being
815  * freed elsewhere are also ignored.
816  *
817  * page:        page to consider
818  * mode:        one of the LRU isolation modes defined above
819  *
820  * returns 0 on success, -ve errno on failure.
821  */
822 int __isolate_lru_page(struct page *page, int mode, int file)
823 {
824         int ret = -EINVAL;
825
826         /* Only take pages on the LRU. */
827         if (!PageLRU(page))
828                 return ret;
829
830         /*
831          * When checking the active state, we need to be sure we are
832          * dealing with comparible boolean values.  Take the logical not
833          * of each.
834          */
835         if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
836                 return ret;
837
838         if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
839                 return ret;
840
841         /*
842          * When this function is being called for lumpy reclaim, we
843          * initially look into all LRU pages, active, inactive and
844          * unevictable; only give shrink_page_list evictable pages.
845          */
846         if (PageUnevictable(page))
847                 return ret;
848
849         ret = -EBUSY;
850
851         if (likely(get_page_unless_zero(page))) {
852                 /*
853                  * Be careful not to clear PageLRU until after we're
854                  * sure the page is not being freed elsewhere -- the
855                  * page release code relies on it.
856                  */
857                 ClearPageLRU(page);
858                 ret = 0;
859         }
860
861         return ret;
862 }
863
864 /*
865  * zone->lru_lock is heavily contended.  Some of the functions that
866  * shrink the lists perform better by taking out a batch of pages
867  * and working on them outside the LRU lock.
868  *
869  * For pagecache intensive workloads, this function is the hottest
870  * spot in the kernel (apart from copy_*_user functions).
871  *
872  * Appropriate locks must be held before calling this function.
873  *
874  * @nr_to_scan: The number of pages to look through on the list.
875  * @src:        The LRU list to pull pages off.
876  * @dst:        The temp list to put pages on to.
877  * @scanned:    The number of pages that were scanned.
878  * @order:      The caller's attempted allocation order
879  * @mode:       One of the LRU isolation modes
880  * @file:       True [1] if isolating file [!anon] pages
881  *
882  * returns how many pages were moved onto *@dst.
883  */
884 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
885                 struct list_head *src, struct list_head *dst,
886                 unsigned long *scanned, int order, int mode, int file)
887 {
888         unsigned long nr_taken = 0;
889         unsigned long scan;
890
891         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
892                 struct page *page;
893                 unsigned long pfn;
894                 unsigned long end_pfn;
895                 unsigned long page_pfn;
896                 int zone_id;
897
898                 page = lru_to_page(src);
899                 prefetchw_prev_lru_page(page, src, flags);
900
901                 VM_BUG_ON(!PageLRU(page));
902
903                 switch (__isolate_lru_page(page, mode, file)) {
904                 case 0:
905                         list_move(&page->lru, dst);
906                         mem_cgroup_del_lru(page);
907                         nr_taken++;
908                         break;
909
910                 case -EBUSY:
911                         /* else it is being freed elsewhere */
912                         list_move(&page->lru, src);
913                         mem_cgroup_rotate_lru_list(page, page_lru(page));
914                         continue;
915
916                 default:
917                         BUG();
918                 }
919
920                 if (!order)
921                         continue;
922
923                 /*
924                  * Attempt to take all pages in the order aligned region
925                  * surrounding the tag page.  Only take those pages of
926                  * the same active state as that tag page.  We may safely
927                  * round the target page pfn down to the requested order
928                  * as the mem_map is guarenteed valid out to MAX_ORDER,
929                  * where that page is in a different zone we will detect
930                  * it from its zone id and abort this block scan.
931                  */
932                 zone_id = page_zone_id(page);
933                 page_pfn = page_to_pfn(page);
934                 pfn = page_pfn & ~((1 << order) - 1);
935                 end_pfn = pfn + (1 << order);
936                 for (; pfn < end_pfn; pfn++) {
937                         struct page *cursor_page;
938
939                         /* The target page is in the block, ignore it. */
940                         if (unlikely(pfn == page_pfn))
941                                 continue;
942
943                         /* Avoid holes within the zone. */
944                         if (unlikely(!pfn_valid_within(pfn)))
945                                 break;
946
947                         cursor_page = pfn_to_page(pfn);
948
949                         /* Check that we have not crossed a zone boundary. */
950                         if (unlikely(page_zone_id(cursor_page) != zone_id))
951                                 continue;
952
953                         /*
954                          * If we don't have enough swap space, reclaiming of
955                          * anon page which don't already have a swap slot is
956                          * pointless.
957                          */
958                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
959                                         !PageSwapCache(cursor_page))
960                                 continue;
961
962                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
963                                 list_move(&cursor_page->lru, dst);
964                                 mem_cgroup_del_lru(cursor_page);
965                                 nr_taken++;
966                                 scan++;
967                         }
968                 }
969         }
970
971         *scanned = scan;
972         return nr_taken;
973 }
974
975 static unsigned long isolate_pages_global(unsigned long nr,
976                                         struct list_head *dst,
977                                         unsigned long *scanned, int order,
978                                         int mode, struct zone *z,
979                                         struct mem_cgroup *mem_cont,
980                                         int active, int file)
981 {
982         int lru = LRU_BASE;
983         if (active)
984                 lru += LRU_ACTIVE;
985         if (file)
986                 lru += LRU_FILE;
987         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
988                                                                 mode, file);
989 }
990
991 /*
992  * clear_active_flags() is a helper for shrink_active_list(), clearing
993  * any active bits from the pages in the list.
994  */
995 static unsigned long clear_active_flags(struct list_head *page_list,
996                                         unsigned int *count)
997 {
998         int nr_active = 0;
999         int lru;
1000         struct page *page;
1001
1002         list_for_each_entry(page, page_list, lru) {
1003                 lru = page_lru_base_type(page);
1004                 if (PageActive(page)) {
1005                         lru += LRU_ACTIVE;
1006                         ClearPageActive(page);
1007                         nr_active++;
1008                 }
1009                 count[lru]++;
1010         }
1011
1012         return nr_active;
1013 }
1014
1015 /**
1016  * isolate_lru_page - tries to isolate a page from its LRU list
1017  * @page: page to isolate from its LRU list
1018  *
1019  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1020  * vmstat statistic corresponding to whatever LRU list the page was on.
1021  *
1022  * Returns 0 if the page was removed from an LRU list.
1023  * Returns -EBUSY if the page was not on an LRU list.
1024  *
1025  * The returned page will have PageLRU() cleared.  If it was found on
1026  * the active list, it will have PageActive set.  If it was found on
1027  * the unevictable list, it will have the PageUnevictable bit set. That flag
1028  * may need to be cleared by the caller before letting the page go.
1029  *
1030  * The vmstat statistic corresponding to the list on which the page was
1031  * found will be decremented.
1032  *
1033  * Restrictions:
1034  * (1) Must be called with an elevated refcount on the page. This is a
1035  *     fundamentnal difference from isolate_lru_pages (which is called
1036  *     without a stable reference).
1037  * (2) the lru_lock must not be held.
1038  * (3) interrupts must be enabled.
1039  */
1040 int isolate_lru_page(struct page *page)
1041 {
1042         int ret = -EBUSY;
1043
1044         if (PageLRU(page)) {
1045                 struct zone *zone = page_zone(page);
1046
1047                 spin_lock_irq(&zone->lru_lock);
1048                 if (PageLRU(page) && get_page_unless_zero(page)) {
1049                         int lru = page_lru(page);
1050                         ret = 0;
1051                         ClearPageLRU(page);
1052
1053                         del_page_from_lru_list(zone, page, lru);
1054                 }
1055                 spin_unlock_irq(&zone->lru_lock);
1056         }
1057         return ret;
1058 }
1059
1060 /*
1061  * Are there way too many processes in the direct reclaim path already?
1062  */
1063 static int too_many_isolated(struct zone *zone, int file,
1064                 struct scan_control *sc)
1065 {
1066         unsigned long inactive, isolated;
1067
1068         if (current_is_kswapd())
1069                 return 0;
1070
1071         if (!scanning_global_lru(sc))
1072                 return 0;
1073
1074         if (file) {
1075                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1076                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1077         } else {
1078                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1079                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1080         }
1081
1082         return isolated > inactive;
1083 }
1084
1085 /*
1086  * Returns true if the caller should wait to clean dirty/writeback pages.
1087  *
1088  * If we are direct reclaiming for contiguous pages and we do not reclaim
1089  * everything in the list, try again and wait for writeback IO to complete.
1090  * This will stall high-order allocations noticeably. Only do that when really
1091  * need to free the pages under high memory pressure.
1092  */
1093 static inline bool should_reclaim_stall(unsigned long nr_taken,
1094                                         unsigned long nr_freed,
1095                                         int priority,
1096                                         int lumpy_reclaim,
1097                                         struct scan_control *sc)
1098 {
1099         int lumpy_stall_priority;
1100
1101         /* kswapd should not stall on sync IO */
1102         if (current_is_kswapd())
1103                 return false;
1104
1105         /* Only stall on lumpy reclaim */
1106         if (!lumpy_reclaim)
1107                 return false;
1108
1109         /* If we have relaimed everything on the isolated list, no stall */
1110         if (nr_freed == nr_taken)
1111                 return false;
1112
1113         /*
1114          * For high-order allocations, there are two stall thresholds.
1115          * High-cost allocations stall immediately where as lower
1116          * order allocations such as stacks require the scanning
1117          * priority to be much higher before stalling.
1118          */
1119         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1120                 lumpy_stall_priority = DEF_PRIORITY;
1121         else
1122                 lumpy_stall_priority = DEF_PRIORITY / 3;
1123
1124         return priority <= lumpy_stall_priority;
1125 }
1126
1127 /*
1128  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1129  * of reclaimed pages
1130  */
1131 static unsigned long shrink_inactive_list(unsigned long max_scan,
1132                         struct zone *zone, struct scan_control *sc,
1133                         int priority, int file)
1134 {
1135         LIST_HEAD(page_list);
1136         struct pagevec pvec;
1137         unsigned long nr_scanned = 0;
1138         unsigned long nr_reclaimed = 0;
1139         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1140         int lumpy_reclaim = 0;
1141
1142         while (unlikely(too_many_isolated(zone, file, sc))) {
1143                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1144
1145                 /* We are about to die and free our memory. Return now. */
1146                 if (fatal_signal_pending(current))
1147                         return SWAP_CLUSTER_MAX;
1148         }
1149
1150         /*
1151          * If we need a large contiguous chunk of memory, or have
1152          * trouble getting a small set of contiguous pages, we
1153          * will reclaim both active and inactive pages.
1154          *
1155          * We use the same threshold as pageout congestion_wait below.
1156          */
1157         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1158                 lumpy_reclaim = 1;
1159         else if (sc->order && priority < DEF_PRIORITY - 2)
1160                 lumpy_reclaim = 1;
1161
1162         pagevec_init(&pvec, 1);
1163
1164         lru_add_drain();
1165         spin_lock_irq(&zone->lru_lock);
1166         do {
1167                 struct page *page;
1168                 unsigned long nr_taken;
1169                 unsigned long nr_scan;
1170                 unsigned long nr_freed;
1171                 unsigned long nr_active;
1172                 unsigned int count[NR_LRU_LISTS] = { 0, };
1173                 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1174                 unsigned long nr_anon;
1175                 unsigned long nr_file;
1176
1177                 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1178                              &page_list, &nr_scan, sc->order, mode,
1179                                 zone, sc->mem_cgroup, 0, file);
1180
1181                 if (scanning_global_lru(sc)) {
1182                         zone->pages_scanned += nr_scan;
1183                         if (current_is_kswapd())
1184                                 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1185                                                        nr_scan);
1186                         else
1187                                 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1188                                                        nr_scan);
1189                 }
1190
1191                 if (nr_taken == 0)
1192                         goto done;
1193
1194                 nr_active = clear_active_flags(&page_list, count);
1195                 __count_vm_events(PGDEACTIVATE, nr_active);
1196
1197                 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1198                                                 -count[LRU_ACTIVE_FILE]);
1199                 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1200                                                 -count[LRU_INACTIVE_FILE]);
1201                 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1202                                                 -count[LRU_ACTIVE_ANON]);
1203                 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1204                                                 -count[LRU_INACTIVE_ANON]);
1205
1206                 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1207                 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1208                 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1209                 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1210
1211                 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1212                 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1213                 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1214                 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1215
1216                 spin_unlock_irq(&zone->lru_lock);
1217
1218                 nr_scanned += nr_scan;
1219                 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1220
1221                 /* Check if we should syncronously wait for writeback */
1222                 if (should_reclaim_stall(nr_taken, nr_freed, priority,
1223                                         lumpy_reclaim, sc)) {
1224                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1225
1226                         /*
1227                          * The attempt at page out may have made some
1228                          * of the pages active, mark them inactive again.
1229                          */
1230                         nr_active = clear_active_flags(&page_list, count);
1231                         count_vm_events(PGDEACTIVATE, nr_active);
1232
1233                         nr_freed += shrink_page_list(&page_list, sc,
1234                                                         PAGEOUT_IO_SYNC);
1235                 }
1236
1237                 nr_reclaimed += nr_freed;
1238
1239                 local_irq_disable();
1240                 if (current_is_kswapd())
1241                         __count_vm_events(KSWAPD_STEAL, nr_freed);
1242                 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1243
1244                 spin_lock(&zone->lru_lock);
1245                 /*
1246                  * Put back any unfreeable pages.
1247                  */
1248                 while (!list_empty(&page_list)) {
1249                         int lru;
1250                         page = lru_to_page(&page_list);
1251                         VM_BUG_ON(PageLRU(page));
1252                         list_del(&page->lru);
1253                         if (unlikely(!page_evictable(page, NULL))) {
1254                                 spin_unlock_irq(&zone->lru_lock);
1255                                 putback_lru_page(page);
1256                                 spin_lock_irq(&zone->lru_lock);
1257                                 continue;
1258                         }
1259                         SetPageLRU(page);
1260                         lru = page_lru(page);
1261                         add_page_to_lru_list(zone, page, lru);
1262                         if (is_active_lru(lru)) {
1263                                 int file = is_file_lru(lru);
1264                                 reclaim_stat->recent_rotated[file]++;
1265                         }
1266                         if (!pagevec_add(&pvec, page)) {
1267                                 spin_unlock_irq(&zone->lru_lock);
1268                                 __pagevec_release(&pvec);
1269                                 spin_lock_irq(&zone->lru_lock);
1270                         }
1271                 }
1272                 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1273                 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1274
1275         } while (nr_scanned < max_scan);
1276
1277 done:
1278         spin_unlock_irq(&zone->lru_lock);
1279         pagevec_release(&pvec);
1280         return nr_reclaimed;
1281 }
1282
1283 /*
1284  * We are about to scan this zone at a certain priority level.  If that priority
1285  * level is smaller (ie: more urgent) than the previous priority, then note
1286  * that priority level within the zone.  This is done so that when the next
1287  * process comes in to scan this zone, it will immediately start out at this
1288  * priority level rather than having to build up its own scanning priority.
1289  * Here, this priority affects only the reclaim-mapped threshold.
1290  */
1291 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1292 {
1293         if (priority < zone->prev_priority)
1294                 zone->prev_priority = priority;
1295 }
1296
1297 /*
1298  * This moves pages from the active list to the inactive list.
1299  *
1300  * We move them the other way if the page is referenced by one or more
1301  * processes, from rmap.
1302  *
1303  * If the pages are mostly unmapped, the processing is fast and it is
1304  * appropriate to hold zone->lru_lock across the whole operation.  But if
1305  * the pages are mapped, the processing is slow (page_referenced()) so we
1306  * should drop zone->lru_lock around each page.  It's impossible to balance
1307  * this, so instead we remove the pages from the LRU while processing them.
1308  * It is safe to rely on PG_active against the non-LRU pages in here because
1309  * nobody will play with that bit on a non-LRU page.
1310  *
1311  * The downside is that we have to touch page->_count against each page.
1312  * But we had to alter page->flags anyway.
1313  */
1314
1315 static void move_active_pages_to_lru(struct zone *zone,
1316                                      struct list_head *list,
1317                                      enum lru_list lru)
1318 {
1319         unsigned long pgmoved = 0;
1320         struct pagevec pvec;
1321         struct page *page;
1322
1323         pagevec_init(&pvec, 1);
1324
1325         while (!list_empty(list)) {
1326                 page = lru_to_page(list);
1327
1328                 VM_BUG_ON(PageLRU(page));
1329                 SetPageLRU(page);
1330
1331                 list_move(&page->lru, &zone->lru[lru].list);
1332                 mem_cgroup_add_lru_list(page, lru);
1333                 pgmoved++;
1334
1335                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1336                         spin_unlock_irq(&zone->lru_lock);
1337                         if (buffer_heads_over_limit)
1338                                 pagevec_strip(&pvec);
1339                         __pagevec_release(&pvec);
1340                         spin_lock_irq(&zone->lru_lock);
1341                 }
1342         }
1343         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1344         if (!is_active_lru(lru))
1345                 __count_vm_events(PGDEACTIVATE, pgmoved);
1346 }
1347
1348 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1349                         struct scan_control *sc, int priority, int file)
1350 {
1351         unsigned long nr_taken;
1352         unsigned long pgscanned;
1353         unsigned long vm_flags;
1354         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1355         LIST_HEAD(l_active);
1356         LIST_HEAD(l_inactive);
1357         struct page *page;
1358         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1359         unsigned long nr_rotated = 0;
1360
1361         lru_add_drain();
1362         spin_lock_irq(&zone->lru_lock);
1363         nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1364                                         ISOLATE_ACTIVE, zone,
1365                                         sc->mem_cgroup, 1, file);
1366         /*
1367          * zone->pages_scanned is used for detect zone's oom
1368          * mem_cgroup remembers nr_scan by itself.
1369          */
1370         if (scanning_global_lru(sc)) {
1371                 zone->pages_scanned += pgscanned;
1372         }
1373         reclaim_stat->recent_scanned[file] += nr_taken;
1374
1375         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1376         if (file)
1377                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1378         else
1379                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1380         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1381         spin_unlock_irq(&zone->lru_lock);
1382
1383         while (!list_empty(&l_hold)) {
1384                 cond_resched();
1385                 page = lru_to_page(&l_hold);
1386                 list_del(&page->lru);
1387
1388                 if (unlikely(!page_evictable(page, NULL))) {
1389                         putback_lru_page(page);
1390                         continue;
1391                 }
1392
1393                 /* page_referenced clears PageReferenced */
1394                 if (page_mapping_inuse(page) &&
1395                     page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1396                         nr_rotated++;
1397                         /*
1398                          * Identify referenced, file-backed active pages and
1399                          * give them one more trip around the active list. So
1400                          * that executable code get better chances to stay in
1401                          * memory under moderate memory pressure.  Anon pages
1402                          * are not likely to be evicted by use-once streaming
1403                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1404                          * so we ignore them here.
1405                          */
1406                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1407                                 list_add(&page->lru, &l_active);
1408                                 continue;
1409                         }
1410                 }
1411
1412                 ClearPageActive(page);  /* we are de-activating */
1413                 list_add(&page->lru, &l_inactive);
1414         }
1415
1416         /*
1417          * Move pages back to the lru list.
1418          */
1419         spin_lock_irq(&zone->lru_lock);
1420         /*
1421          * Count referenced pages from currently used mappings as rotated,
1422          * even though only some of them are actually re-activated.  This
1423          * helps balance scan pressure between file and anonymous pages in
1424          * get_scan_ratio.
1425          */
1426         reclaim_stat->recent_rotated[file] += nr_rotated;
1427
1428         move_active_pages_to_lru(zone, &l_active,
1429                                                 LRU_ACTIVE + file * LRU_FILE);
1430         move_active_pages_to_lru(zone, &l_inactive,
1431                                                 LRU_BASE   + file * LRU_FILE);
1432         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1433         spin_unlock_irq(&zone->lru_lock);
1434 }
1435
1436 static int inactive_anon_is_low_global(struct zone *zone)
1437 {
1438         unsigned long active, inactive;
1439
1440         active = zone_page_state(zone, NR_ACTIVE_ANON);
1441         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1442
1443         if (inactive * zone->inactive_ratio < active)
1444                 return 1;
1445
1446         return 0;
1447 }
1448
1449 /**
1450  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1451  * @zone: zone to check
1452  * @sc:   scan control of this context
1453  *
1454  * Returns true if the zone does not have enough inactive anon pages,
1455  * meaning some active anon pages need to be deactivated.
1456  */
1457 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1458 {
1459         int low;
1460
1461         if (scanning_global_lru(sc))
1462                 low = inactive_anon_is_low_global(zone);
1463         else
1464                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1465         return low;
1466 }
1467
1468 static int inactive_file_is_low_global(struct zone *zone)
1469 {
1470         unsigned long active, inactive;
1471
1472         active = zone_page_state(zone, NR_ACTIVE_FILE);
1473         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1474
1475         return (active > inactive);
1476 }
1477
1478 /**
1479  * inactive_file_is_low - check if file pages need to be deactivated
1480  * @zone: zone to check
1481  * @sc:   scan control of this context
1482  *
1483  * When the system is doing streaming IO, memory pressure here
1484  * ensures that active file pages get deactivated, until more
1485  * than half of the file pages are on the inactive list.
1486  *
1487  * Once we get to that situation, protect the system's working
1488  * set from being evicted by disabling active file page aging.
1489  *
1490  * This uses a different ratio than the anonymous pages, because
1491  * the page cache uses a use-once replacement algorithm.
1492  */
1493 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1494 {
1495         int low;
1496
1497         if (scanning_global_lru(sc))
1498                 low = inactive_file_is_low_global(zone);
1499         else
1500                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1501         return low;
1502 }
1503
1504 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1505                                 int file)
1506 {
1507         if (file)
1508                 return inactive_file_is_low(zone, sc);
1509         else
1510                 return inactive_anon_is_low(zone, sc);
1511 }
1512
1513 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1514         struct zone *zone, struct scan_control *sc, int priority)
1515 {
1516         int file = is_file_lru(lru);
1517
1518         if (is_active_lru(lru)) {
1519                 if (inactive_list_is_low(zone, sc, file))
1520                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1521                 return 0;
1522         }
1523
1524         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1525 }
1526
1527 /*
1528  * Determine how aggressively the anon and file LRU lists should be
1529  * scanned.  The relative value of each set of LRU lists is determined
1530  * by looking at the fraction of the pages scanned we did rotate back
1531  * onto the active list instead of evict.
1532  *
1533  * percent[0] specifies how much pressure to put on ram/swap backed
1534  * memory, while percent[1] determines pressure on the file LRUs.
1535  */
1536 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1537                                         unsigned long *percent)
1538 {
1539         unsigned long anon, file, free;
1540         unsigned long anon_prio, file_prio;
1541         unsigned long ap, fp;
1542         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1543
1544         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1545                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1546         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1547                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1548
1549         if (scanning_global_lru(sc)) {
1550                 free  = zone_page_state(zone, NR_FREE_PAGES);
1551                 /* If we have very few page cache pages,
1552                    force-scan anon pages. */
1553                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1554                         percent[0] = 100;
1555                         percent[1] = 0;
1556                         return;
1557                 }
1558         }
1559
1560         /*
1561          * OK, so we have swap space and a fair amount of page cache
1562          * pages.  We use the recently rotated / recently scanned
1563          * ratios to determine how valuable each cache is.
1564          *
1565          * Because workloads change over time (and to avoid overflow)
1566          * we keep these statistics as a floating average, which ends
1567          * up weighing recent references more than old ones.
1568          *
1569          * anon in [0], file in [1]
1570          */
1571         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1572                 spin_lock_irq(&zone->lru_lock);
1573                 reclaim_stat->recent_scanned[0] /= 2;
1574                 reclaim_stat->recent_rotated[0] /= 2;
1575                 spin_unlock_irq(&zone->lru_lock);
1576         }
1577
1578         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1579                 spin_lock_irq(&zone->lru_lock);
1580                 reclaim_stat->recent_scanned[1] /= 2;
1581                 reclaim_stat->recent_rotated[1] /= 2;
1582                 spin_unlock_irq(&zone->lru_lock);
1583         }
1584
1585         /*
1586          * With swappiness at 100, anonymous and file have the same priority.
1587          * This scanning priority is essentially the inverse of IO cost.
1588          */
1589         anon_prio = sc->swappiness;
1590         file_prio = 200 - sc->swappiness;
1591
1592         /*
1593          * The amount of pressure on anon vs file pages is inversely
1594          * proportional to the fraction of recently scanned pages on
1595          * each list that were recently referenced and in active use.
1596          */
1597         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1598         ap /= reclaim_stat->recent_rotated[0] + 1;
1599
1600         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1601         fp /= reclaim_stat->recent_rotated[1] + 1;
1602
1603         /* Normalize to percentages */
1604         percent[0] = 100 * ap / (ap + fp + 1);
1605         percent[1] = 100 - percent[0];
1606 }
1607
1608 /*
1609  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1610  * until we collected @swap_cluster_max pages to scan.
1611  */
1612 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1613                                        unsigned long *nr_saved_scan,
1614                                        unsigned long swap_cluster_max)
1615 {
1616         unsigned long nr;
1617
1618         *nr_saved_scan += nr_to_scan;
1619         nr = *nr_saved_scan;
1620
1621         if (nr >= swap_cluster_max)
1622                 *nr_saved_scan = 0;
1623         else
1624                 nr = 0;
1625
1626         return nr;
1627 }
1628
1629 /*
1630  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1631  */
1632 static void shrink_zone(int priority, struct zone *zone,
1633                                 struct scan_control *sc)
1634 {
1635         unsigned long nr[NR_LRU_LISTS];
1636         unsigned long nr_to_scan;
1637         unsigned long percent[2];       /* anon @ 0; file @ 1 */
1638         enum lru_list l;
1639         unsigned long nr_reclaimed = sc->nr_reclaimed;
1640         unsigned long swap_cluster_max = sc->swap_cluster_max;
1641         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1642         int noswap = 0;
1643
1644         /* If we have no swap space, do not bother scanning anon pages. */
1645         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1646                 noswap = 1;
1647                 percent[0] = 0;
1648                 percent[1] = 100;
1649         } else
1650                 get_scan_ratio(zone, sc, percent);
1651
1652         for_each_evictable_lru(l) {
1653                 int file = is_file_lru(l);
1654                 unsigned long scan;
1655
1656                 scan = zone_nr_lru_pages(zone, sc, l);
1657                 if (priority || noswap) {
1658                         scan >>= priority;
1659                         scan = (scan * percent[file]) / 100;
1660                 }
1661                 nr[l] = nr_scan_try_batch(scan,
1662                                           &reclaim_stat->nr_saved_scan[l],
1663                                           swap_cluster_max);
1664         }
1665
1666         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1667                                         nr[LRU_INACTIVE_FILE]) {
1668                 for_each_evictable_lru(l) {
1669                         if (nr[l]) {
1670                                 nr_to_scan = min(nr[l], swap_cluster_max);
1671                                 nr[l] -= nr_to_scan;
1672
1673                                 nr_reclaimed += shrink_list(l, nr_to_scan,
1674                                                             zone, sc, priority);
1675                         }
1676                 }
1677                 /*
1678                  * On large memory systems, scan >> priority can become
1679                  * really large. This is fine for the starting priority;
1680                  * we want to put equal scanning pressure on each zone.
1681                  * However, if the VM has a harder time of freeing pages,
1682                  * with multiple processes reclaiming pages, the total
1683                  * freeing target can get unreasonably large.
1684                  */
1685                 if (nr_reclaimed > swap_cluster_max &&
1686                         priority < DEF_PRIORITY && !current_is_kswapd())
1687                         break;
1688         }
1689
1690         sc->nr_reclaimed = nr_reclaimed;
1691
1692         /*
1693          * Even if we did not try to evict anon pages at all, we want to
1694          * rebalance the anon lru active/inactive ratio.
1695          */
1696         if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1697                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1698
1699         throttle_vm_writeout(sc->gfp_mask);
1700 }
1701
1702 /*
1703  * This is the direct reclaim path, for page-allocating processes.  We only
1704  * try to reclaim pages from zones which will satisfy the caller's allocation
1705  * request.
1706  *
1707  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1708  * Because:
1709  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1710  *    allocation or
1711  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1712  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1713  *    zone defense algorithm.
1714  *
1715  * If a zone is deemed to be full of pinned pages then just give it a light
1716  * scan then give up on it.
1717  */
1718 static void shrink_zones(int priority, struct zonelist *zonelist,
1719                                         struct scan_control *sc)
1720 {
1721         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1722         struct zoneref *z;
1723         struct zone *zone;
1724
1725         sc->all_unreclaimable = 1;
1726         for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1727                                         sc->nodemask) {
1728                 if (!populated_zone(zone))
1729                         continue;
1730                 /*
1731                  * Take care memory controller reclaiming has small influence
1732                  * to global LRU.
1733                  */
1734                 if (scanning_global_lru(sc)) {
1735                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1736                                 continue;
1737                         note_zone_scanning_priority(zone, priority);
1738
1739                         if (zone_is_all_unreclaimable(zone) &&
1740                                                 priority != DEF_PRIORITY)
1741                                 continue;       /* Let kswapd poll it */
1742                         sc->all_unreclaimable = 0;
1743                 } else {
1744                         /*
1745                          * Ignore cpuset limitation here. We just want to reduce
1746                          * # of used pages by us regardless of memory shortage.
1747                          */
1748                         sc->all_unreclaimable = 0;
1749                         mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1750                                                         priority);
1751                 }
1752
1753                 shrink_zone(priority, zone, sc);
1754         }
1755 }
1756
1757 /*
1758  * This is the main entry point to direct page reclaim.
1759  *
1760  * If a full scan of the inactive list fails to free enough memory then we
1761  * are "out of memory" and something needs to be killed.
1762  *
1763  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1764  * high - the zone may be full of dirty or under-writeback pages, which this
1765  * caller can't do much about.  We kick the writeback threads and take explicit
1766  * naps in the hope that some of these pages can be written.  But if the
1767  * allocating task holds filesystem locks which prevent writeout this might not
1768  * work, and the allocation attempt will fail.
1769  *
1770  * returns:     0, if no pages reclaimed
1771  *              else, the number of pages reclaimed
1772  */
1773 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1774                                         struct scan_control *sc)
1775 {
1776         int priority;
1777         unsigned long ret = 0;
1778         unsigned long total_scanned = 0;
1779         struct reclaim_state *reclaim_state = current->reclaim_state;
1780         unsigned long lru_pages = 0;
1781         struct zoneref *z;
1782         struct zone *zone;
1783         enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1784
1785         delayacct_freepages_start();
1786
1787         if (scanning_global_lru(sc))
1788                 count_vm_event(ALLOCSTALL);
1789         /*
1790          * mem_cgroup will not do shrink_slab.
1791          */
1792         if (scanning_global_lru(sc)) {
1793                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1794
1795                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1796                                 continue;
1797
1798                         lru_pages += zone_reclaimable_pages(zone);
1799                 }
1800         }
1801
1802         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1803                 sc->nr_scanned = 0;
1804                 if (!priority)
1805                         disable_swap_token();
1806                 shrink_zones(priority, zonelist, sc);
1807                 /*
1808                  * Don't shrink slabs when reclaiming memory from
1809                  * over limit cgroups
1810                  */
1811                 if (scanning_global_lru(sc)) {
1812                         shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1813                         if (reclaim_state) {
1814                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1815                                 reclaim_state->reclaimed_slab = 0;
1816                         }
1817                 }
1818                 total_scanned += sc->nr_scanned;
1819                 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1820                         ret = sc->nr_reclaimed;
1821                         goto out;
1822                 }
1823
1824                 /*
1825                  * Try to write back as many pages as we just scanned.  This
1826                  * tends to cause slow streaming writers to write data to the
1827                  * disk smoothly, at the dirtying rate, which is nice.   But
1828                  * that's undesirable in laptop mode, where we *want* lumpy
1829                  * writeout.  So in laptop mode, write out the whole world.
1830                  */
1831                 if (total_scanned > sc->swap_cluster_max +
1832                                         sc->swap_cluster_max / 2) {
1833                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1834                         sc->may_writepage = 1;
1835                 }
1836
1837                 /* Take a nap, wait for some writeback to complete */
1838                 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1839                         congestion_wait(BLK_RW_ASYNC, HZ/10);
1840         }
1841         /* top priority shrink_zones still had more to do? don't OOM, then */
1842         if (!sc->all_unreclaimable && scanning_global_lru(sc))
1843                 ret = sc->nr_reclaimed;
1844 out:
1845         /*
1846          * Now that we've scanned all the zones at this priority level, note
1847          * that level within the zone so that the next thread which performs
1848          * scanning of this zone will immediately start out at this priority
1849          * level.  This affects only the decision whether or not to bring
1850          * mapped pages onto the inactive list.
1851          */
1852         if (priority < 0)
1853                 priority = 0;
1854
1855         if (scanning_global_lru(sc)) {
1856                 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1857
1858                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1859                                 continue;
1860
1861                         zone->prev_priority = priority;
1862                 }
1863         } else
1864                 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1865
1866         delayacct_freepages_end();
1867
1868         return ret;
1869 }
1870
1871 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1872                                 gfp_t gfp_mask, nodemask_t *nodemask)
1873 {
1874         struct scan_control sc = {
1875                 .gfp_mask = gfp_mask,
1876                 .may_writepage = !laptop_mode,
1877                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1878                 .may_unmap = 1,
1879                 .may_swap = 1,
1880                 .swappiness = vm_swappiness,
1881                 .order = order,
1882                 .mem_cgroup = NULL,
1883                 .isolate_pages = isolate_pages_global,
1884                 .nodemask = nodemask,
1885         };
1886
1887         return do_try_to_free_pages(zonelist, &sc);
1888 }
1889
1890 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1891
1892 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1893                                                 gfp_t gfp_mask, bool noswap,
1894                                                 unsigned int swappiness,
1895                                                 struct zone *zone, int nid)
1896 {
1897         struct scan_control sc = {
1898                 .may_writepage = !laptop_mode,
1899                 .may_unmap = 1,
1900                 .may_swap = !noswap,
1901                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1902                 .swappiness = swappiness,
1903                 .order = 0,
1904                 .mem_cgroup = mem,
1905                 .isolate_pages = mem_cgroup_isolate_pages,
1906         };
1907         nodemask_t nm  = nodemask_of_node(nid);
1908
1909         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1910                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1911         sc.nodemask = &nm;
1912         sc.nr_reclaimed = 0;
1913         sc.nr_scanned = 0;
1914         /*
1915          * NOTE: Although we can get the priority field, using it
1916          * here is not a good idea, since it limits the pages we can scan.
1917          * if we don't reclaim here, the shrink_zone from balance_pgdat
1918          * will pick up pages from other mem cgroup's as well. We hack
1919          * the priority and make it zero.
1920          */
1921         shrink_zone(0, zone, &sc);
1922         return sc.nr_reclaimed;
1923 }
1924
1925 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1926                                            gfp_t gfp_mask,
1927                                            bool noswap,
1928                                            unsigned int swappiness)
1929 {
1930         struct zonelist *zonelist;
1931         struct scan_control sc = {
1932                 .may_writepage = !laptop_mode,
1933                 .may_unmap = 1,
1934                 .may_swap = !noswap,
1935                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1936                 .swappiness = swappiness,
1937                 .order = 0,
1938                 .mem_cgroup = mem_cont,
1939                 .isolate_pages = mem_cgroup_isolate_pages,
1940                 .nodemask = NULL, /* we don't care the placement */
1941         };
1942
1943         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1944                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1945         zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1946         return do_try_to_free_pages(zonelist, &sc);
1947 }
1948 #endif
1949
1950 /*
1951  * For kswapd, balance_pgdat() will work across all this node's zones until
1952  * they are all at high_wmark_pages(zone).
1953  *
1954  * Returns the number of pages which were actually freed.
1955  *
1956  * There is special handling here for zones which are full of pinned pages.
1957  * This can happen if the pages are all mlocked, or if they are all used by
1958  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1959  * What we do is to detect the case where all pages in the zone have been
1960  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1961  * dead and from now on, only perform a short scan.  Basically we're polling
1962  * the zone for when the problem goes away.
1963  *
1964  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1965  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1966  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1967  * lower zones regardless of the number of free pages in the lower zones. This
1968  * interoperates with the page allocator fallback scheme to ensure that aging
1969  * of pages is balanced across the zones.
1970  */
1971 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1972 {
1973         int all_zones_ok;
1974         int priority;
1975         int i;
1976         unsigned long total_scanned;
1977         struct reclaim_state *reclaim_state = current->reclaim_state;
1978         struct scan_control sc = {
1979                 .gfp_mask = GFP_KERNEL,
1980                 .may_unmap = 1,
1981                 .may_swap = 1,
1982                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1983                 .swappiness = vm_swappiness,
1984                 .order = order,
1985                 .mem_cgroup = NULL,
1986                 .isolate_pages = isolate_pages_global,
1987         };
1988         /*
1989          * temp_priority is used to remember the scanning priority at which
1990          * this zone was successfully refilled to
1991          * free_pages == high_wmark_pages(zone).
1992          */
1993         int temp_priority[MAX_NR_ZONES];
1994
1995 loop_again:
1996         total_scanned = 0;
1997         sc.nr_reclaimed = 0;
1998         sc.may_writepage = !laptop_mode;
1999         count_vm_event(PAGEOUTRUN);
2000
2001         for (i = 0; i < pgdat->nr_zones; i++)
2002                 temp_priority[i] = DEF_PRIORITY;
2003
2004         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2005                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2006                 unsigned long lru_pages = 0;
2007
2008                 /* The swap token gets in the way of swapout... */
2009                 if (!priority)
2010                         disable_swap_token();
2011
2012                 all_zones_ok = 1;
2013
2014                 /*
2015                  * Scan in the highmem->dma direction for the highest
2016                  * zone which needs scanning
2017                  */
2018                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2019                         struct zone *zone = pgdat->node_zones + i;
2020
2021                         if (!populated_zone(zone))
2022                                 continue;
2023
2024                         if (zone_is_all_unreclaimable(zone) &&
2025                             priority != DEF_PRIORITY)
2026                                 continue;
2027
2028                         /*
2029                          * Do some background aging of the anon list, to give
2030                          * pages a chance to be referenced before reclaiming.
2031                          */
2032                         if (inactive_anon_is_low(zone, &sc))
2033                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2034                                                         &sc, priority, 0);
2035
2036                         if (!zone_watermark_ok(zone, order,
2037                                         high_wmark_pages(zone), 0, 0)) {
2038                                 end_zone = i;
2039                                 break;
2040                         }
2041                 }
2042                 if (i < 0)
2043                         goto out;
2044
2045                 for (i = 0; i <= end_zone; i++) {
2046                         struct zone *zone = pgdat->node_zones + i;
2047
2048                         lru_pages += zone_reclaimable_pages(zone);
2049                 }
2050
2051                 /*
2052                  * Now scan the zone in the dma->highmem direction, stopping
2053                  * at the last zone which needs scanning.
2054                  *
2055                  * We do this because the page allocator works in the opposite
2056                  * direction.  This prevents the page allocator from allocating
2057                  * pages behind kswapd's direction of progress, which would
2058                  * cause too much scanning of the lower zones.
2059                  */
2060                 for (i = 0; i <= end_zone; i++) {
2061                         struct zone *zone = pgdat->node_zones + i;
2062                         int nr_slab;
2063                         int nid, zid;
2064
2065                         if (!populated_zone(zone))
2066                                 continue;
2067
2068                         if (zone_is_all_unreclaimable(zone) &&
2069                                         priority != DEF_PRIORITY)
2070                                 continue;
2071
2072                         if (!zone_watermark_ok(zone, order,
2073                                         high_wmark_pages(zone), end_zone, 0))
2074                                 all_zones_ok = 0;
2075                         temp_priority[i] = priority;
2076                         sc.nr_scanned = 0;
2077                         note_zone_scanning_priority(zone, priority);
2078
2079                         nid = pgdat->node_id;
2080                         zid = zone_idx(zone);
2081                         /*
2082                          * Call soft limit reclaim before calling shrink_zone.
2083                          * For now we ignore the return value
2084                          */
2085                         mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2086                                                         nid, zid);
2087                         /*
2088                          * We put equal pressure on every zone, unless one
2089                          * zone has way too many pages free already.
2090                          */
2091                         if (!zone_watermark_ok(zone, order,
2092                                         8*high_wmark_pages(zone), end_zone, 0))
2093                                 shrink_zone(priority, zone, &sc);
2094                         reclaim_state->reclaimed_slab = 0;
2095                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2096                                                 lru_pages);
2097                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2098                         total_scanned += sc.nr_scanned;
2099                         if (zone_is_all_unreclaimable(zone))
2100                                 continue;
2101                         if (nr_slab == 0 && zone->pages_scanned >=
2102                                         (zone_reclaimable_pages(zone) * 6))
2103                                         zone_set_flag(zone,
2104                                                       ZONE_ALL_UNRECLAIMABLE);
2105                         /*
2106                          * If we've done a decent amount of scanning and
2107                          * the reclaim ratio is low, start doing writepage
2108                          * even in laptop mode
2109                          */
2110                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2111                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2112                                 sc.may_writepage = 1;
2113                 }
2114                 if (all_zones_ok)
2115                         break;          /* kswapd: all done */
2116                 /*
2117                  * OK, kswapd is getting into trouble.  Take a nap, then take
2118                  * another pass across the zones.
2119                  */
2120                 if (total_scanned && priority < DEF_PRIORITY - 2)
2121                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2122
2123                 /*
2124                  * We do this so kswapd doesn't build up large priorities for
2125                  * example when it is freeing in parallel with allocators. It
2126                  * matches the direct reclaim path behaviour in terms of impact
2127                  * on zone->*_priority.
2128                  */
2129                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2130                         break;
2131         }
2132 out:
2133         /*
2134          * Note within each zone the priority level at which this zone was
2135          * brought into a happy state.  So that the next thread which scans this
2136          * zone will start out at that priority level.
2137          */
2138         for (i = 0; i < pgdat->nr_zones; i++) {
2139                 struct zone *zone = pgdat->node_zones + i;
2140
2141                 zone->prev_priority = temp_priority[i];
2142         }
2143         if (!all_zones_ok) {
2144                 cond_resched();
2145
2146                 try_to_freeze();
2147
2148                 /*
2149                  * Fragmentation may mean that the system cannot be
2150                  * rebalanced for high-order allocations in all zones.
2151                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2152                  * it means the zones have been fully scanned and are still
2153                  * not balanced. For high-order allocations, there is
2154                  * little point trying all over again as kswapd may
2155                  * infinite loop.
2156                  *
2157                  * Instead, recheck all watermarks at order-0 as they
2158                  * are the most important. If watermarks are ok, kswapd will go
2159                  * back to sleep. High-order users can still perform direct
2160                  * reclaim if they wish.
2161                  */
2162                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2163                         order = sc.order = 0;
2164
2165                 goto loop_again;
2166         }
2167
2168         return sc.nr_reclaimed;
2169 }
2170
2171 /*
2172  * The background pageout daemon, started as a kernel thread
2173  * from the init process.
2174  *
2175  * This basically trickles out pages so that we have _some_
2176  * free memory available even if there is no other activity
2177  * that frees anything up. This is needed for things like routing
2178  * etc, where we otherwise might have all activity going on in
2179  * asynchronous contexts that cannot page things out.
2180  *
2181  * If there are applications that are active memory-allocators
2182  * (most normal use), this basically shouldn't matter.
2183  */
2184 static int kswapd(void *p)
2185 {
2186         unsigned long order;
2187         pg_data_t *pgdat = (pg_data_t*)p;
2188         struct task_struct *tsk = current;
2189         DEFINE_WAIT(wait);
2190         struct reclaim_state reclaim_state = {
2191                 .reclaimed_slab = 0,
2192         };
2193         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2194
2195         lockdep_set_current_reclaim_state(GFP_KERNEL);
2196
2197         if (!cpumask_empty(cpumask))
2198                 set_cpus_allowed_ptr(tsk, cpumask);
2199         current->reclaim_state = &reclaim_state;
2200
2201         /*
2202          * Tell the memory management that we're a "memory allocator",
2203          * and that if we need more memory we should get access to it
2204          * regardless (see "__alloc_pages()"). "kswapd" should
2205          * never get caught in the normal page freeing logic.
2206          *
2207          * (Kswapd normally doesn't need memory anyway, but sometimes
2208          * you need a small amount of memory in order to be able to
2209          * page out something else, and this flag essentially protects
2210          * us from recursively trying to free more memory as we're
2211          * trying to free the first piece of memory in the first place).
2212          */
2213         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2214         set_freezable();
2215
2216         order = 0;
2217         for ( ; ; ) {
2218                 unsigned long new_order;
2219
2220                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2221                 new_order = pgdat->kswapd_max_order;
2222                 pgdat->kswapd_max_order = 0;
2223                 if (order < new_order) {
2224                         /*
2225                          * Don't sleep if someone wants a larger 'order'
2226                          * allocation
2227                          */
2228                         order = new_order;
2229                 } else {
2230                         if (!freezing(current))
2231                                 schedule();
2232
2233                         order = pgdat->kswapd_max_order;
2234                 }
2235                 finish_wait(&pgdat->kswapd_wait, &wait);
2236
2237                 if (!try_to_freeze()) {
2238                         /* We can speed up thawing tasks if we don't call
2239                          * balance_pgdat after returning from the refrigerator
2240                          */
2241                         balance_pgdat(pgdat, order);
2242                 }
2243         }
2244         return 0;
2245 }
2246
2247 /*
2248  * A zone is low on free memory, so wake its kswapd task to service it.
2249  */
2250 void wakeup_kswapd(struct zone *zone, int order)
2251 {
2252         pg_data_t *pgdat;
2253
2254         if (!populated_zone(zone))
2255                 return;
2256
2257         pgdat = zone->zone_pgdat;
2258         if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2259                 return;
2260         if (pgdat->kswapd_max_order < order)
2261                 pgdat->kswapd_max_order = order;
2262         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2263                 return;
2264         if (!waitqueue_active(&pgdat->kswapd_wait))
2265                 return;
2266         wake_up_interruptible(&pgdat->kswapd_wait);
2267 }
2268
2269 /*
2270  * The reclaimable count would be mostly accurate.
2271  * The less reclaimable pages may be
2272  * - mlocked pages, which will be moved to unevictable list when encountered
2273  * - mapped pages, which may require several travels to be reclaimed
2274  * - dirty pages, which is not "instantly" reclaimable
2275  */
2276 unsigned long global_reclaimable_pages(void)
2277 {
2278         int nr;
2279
2280         nr = global_page_state(NR_ACTIVE_FILE) +
2281              global_page_state(NR_INACTIVE_FILE);
2282
2283         if (nr_swap_pages > 0)
2284                 nr += global_page_state(NR_ACTIVE_ANON) +
2285                       global_page_state(NR_INACTIVE_ANON);
2286
2287         return nr;
2288 }
2289
2290 unsigned long zone_reclaimable_pages(struct zone *zone)
2291 {
2292         int nr;
2293
2294         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2295              zone_page_state(zone, NR_INACTIVE_FILE);
2296
2297         if (nr_swap_pages > 0)
2298                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2299                       zone_page_state(zone, NR_INACTIVE_ANON);
2300
2301         return nr;
2302 }
2303
2304 #ifdef CONFIG_HIBERNATION
2305 /*
2306  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2307  * from LRU lists system-wide, for given pass and priority.
2308  *
2309  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2310  */
2311 static void shrink_all_zones(unsigned long nr_pages, int prio,
2312                                       int pass, struct scan_control *sc)
2313 {
2314         struct zone *zone;
2315         unsigned long nr_reclaimed = 0;
2316         struct zone_reclaim_stat *reclaim_stat;
2317
2318         for_each_populated_zone(zone) {
2319                 enum lru_list l;
2320
2321                 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2322                         continue;
2323
2324                 for_each_evictable_lru(l) {
2325                         enum zone_stat_item ls = NR_LRU_BASE + l;
2326                         unsigned long lru_pages = zone_page_state(zone, ls);
2327
2328                         /* For pass = 0, we don't shrink the active list */
2329                         if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2330                                                 l == LRU_ACTIVE_FILE))
2331                                 continue;
2332
2333                         reclaim_stat = get_reclaim_stat(zone, sc);
2334                         reclaim_stat->nr_saved_scan[l] +=
2335                                                 (lru_pages >> prio) + 1;
2336                         if (reclaim_stat->nr_saved_scan[l]
2337                                                 >= nr_pages || pass > 3) {
2338                                 unsigned long nr_to_scan;
2339
2340                                 reclaim_stat->nr_saved_scan[l] = 0;
2341                                 nr_to_scan = min(nr_pages, lru_pages);
2342                                 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2343                                                                 sc, prio);
2344                                 if (nr_reclaimed >= nr_pages) {
2345                                         sc->nr_reclaimed += nr_reclaimed;
2346                                         return;
2347                                 }
2348                         }
2349                 }
2350         }
2351         sc->nr_reclaimed += nr_reclaimed;
2352 }
2353
2354 /*
2355  * Try to free `nr_pages' of memory, system-wide, and return the number of
2356  * freed pages.
2357  *
2358  * Rather than trying to age LRUs the aim is to preserve the overall
2359  * LRU order by reclaiming preferentially
2360  * inactive > active > active referenced > active mapped
2361  */
2362 unsigned long shrink_all_memory(unsigned long nr_pages)
2363 {
2364         unsigned long lru_pages, nr_slab;
2365         int pass;
2366         struct reclaim_state reclaim_state;
2367         struct scan_control sc = {
2368                 .gfp_mask = GFP_KERNEL,
2369                 .may_unmap = 0,
2370                 .may_writepage = 1,
2371                 .isolate_pages = isolate_pages_global,
2372                 .nr_reclaimed = 0,
2373         };
2374
2375         current->reclaim_state = &reclaim_state;
2376
2377         lru_pages = global_reclaimable_pages();
2378         nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2379         /* If slab caches are huge, it's better to hit them first */
2380         while (nr_slab >= lru_pages) {
2381                 reclaim_state.reclaimed_slab = 0;
2382                 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2383                 if (!reclaim_state.reclaimed_slab)
2384                         break;
2385
2386                 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2387                 if (sc.nr_reclaimed >= nr_pages)
2388                         goto out;
2389
2390                 nr_slab -= reclaim_state.reclaimed_slab;
2391         }
2392
2393         /*
2394          * We try to shrink LRUs in 5 passes:
2395          * 0 = Reclaim from inactive_list only
2396          * 1 = Reclaim from active list but don't reclaim mapped
2397          * 2 = 2nd pass of type 1
2398          * 3 = Reclaim mapped (normal reclaim)
2399          * 4 = 2nd pass of type 3
2400          */
2401         for (pass = 0; pass < 5; pass++) {
2402                 int prio;
2403
2404                 /* Force reclaiming mapped pages in the passes #3 and #4 */
2405                 if (pass > 2)
2406                         sc.may_unmap = 1;
2407
2408                 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2409                         unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2410
2411                         sc.nr_scanned = 0;
2412                         sc.swap_cluster_max = nr_to_scan;
2413                         shrink_all_zones(nr_to_scan, prio, pass, &sc);
2414                         if (sc.nr_reclaimed >= nr_pages)
2415                                 goto out;
2416
2417                         reclaim_state.reclaimed_slab = 0;
2418                         shrink_slab(sc.nr_scanned, sc.gfp_mask,
2419                                     global_reclaimable_pages());
2420                         sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2421                         if (sc.nr_reclaimed >= nr_pages)
2422                                 goto out;
2423
2424                         if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2425                                 congestion_wait(BLK_RW_ASYNC, HZ / 10);
2426                 }
2427         }
2428
2429         /*
2430          * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2431          * something in slab caches
2432          */
2433         if (!sc.nr_reclaimed) {
2434                 do {
2435                         reclaim_state.reclaimed_slab = 0;
2436                         shrink_slab(nr_pages, sc.gfp_mask,
2437                                     global_reclaimable_pages());
2438                         sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2439                 } while (sc.nr_reclaimed < nr_pages &&
2440                                 reclaim_state.reclaimed_slab > 0);
2441         }
2442
2443
2444 out:
2445         current->reclaim_state = NULL;
2446
2447         return sc.nr_reclaimed;
2448 }
2449 #endif /* CONFIG_HIBERNATION */
2450
2451 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2452    not required for correctness.  So if the last cpu in a node goes
2453    away, we get changed to run anywhere: as the first one comes back,
2454    restore their cpu bindings. */
2455 static int __devinit cpu_callback(struct notifier_block *nfb,
2456                                   unsigned long action, void *hcpu)
2457 {
2458         int nid;
2459
2460         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2461                 for_each_node_state(nid, N_HIGH_MEMORY) {
2462                         pg_data_t *pgdat = NODE_DATA(nid);
2463                         const struct cpumask *mask;
2464
2465                         mask = cpumask_of_node(pgdat->node_id);
2466
2467                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2468                                 /* One of our CPUs online: restore mask */
2469                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2470                 }
2471         }
2472         return NOTIFY_OK;
2473 }
2474
2475 /*
2476  * This kswapd start function will be called by init and node-hot-add.
2477  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2478  */
2479 int kswapd_run(int nid)
2480 {
2481         pg_data_t *pgdat = NODE_DATA(nid);
2482         int ret = 0;
2483
2484         if (pgdat->kswapd)
2485                 return 0;
2486
2487         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2488         if (IS_ERR(pgdat->kswapd)) {
2489                 /* failure at boot is fatal */
2490                 BUG_ON(system_state == SYSTEM_BOOTING);
2491                 printk("Failed to start kswapd on node %d\n",nid);
2492                 ret = -1;
2493         }
2494         return ret;
2495 }
2496
2497 static int __init kswapd_init(void)
2498 {
2499         int nid;
2500
2501         swap_setup();
2502         for_each_node_state(nid, N_HIGH_MEMORY)
2503                 kswapd_run(nid);
2504         hotcpu_notifier(cpu_callback, 0);
2505         return 0;
2506 }
2507
2508 module_init(kswapd_init)
2509
2510 #ifdef CONFIG_NUMA
2511 /*
2512  * Zone reclaim mode
2513  *
2514  * If non-zero call zone_reclaim when the number of free pages falls below
2515  * the watermarks.
2516  */
2517 int zone_reclaim_mode __read_mostly;
2518
2519 #define RECLAIM_OFF 0
2520 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
2521 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
2522 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
2523
2524 /*
2525  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2526  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2527  * a zone.
2528  */
2529 #define ZONE_RECLAIM_PRIORITY 4
2530
2531 /*
2532  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2533  * occur.
2534  */
2535 int sysctl_min_unmapped_ratio = 1;
2536
2537 /*
2538  * If the number of slab pages in a zone grows beyond this percentage then
2539  * slab reclaim needs to occur.
2540  */
2541 int sysctl_min_slab_ratio = 5;
2542
2543 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2544 {
2545         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2546         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2547                 zone_page_state(zone, NR_ACTIVE_FILE);
2548
2549         /*
2550          * It's possible for there to be more file mapped pages than
2551          * accounted for by the pages on the file LRU lists because
2552          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2553          */
2554         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2555 }
2556
2557 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2558 static long zone_pagecache_reclaimable(struct zone *zone)
2559 {
2560         long nr_pagecache_reclaimable;
2561         long delta = 0;
2562
2563         /*
2564          * If RECLAIM_SWAP is set, then all file pages are considered
2565          * potentially reclaimable. Otherwise, we have to worry about
2566          * pages like swapcache and zone_unmapped_file_pages() provides
2567          * a better estimate
2568          */
2569         if (zone_reclaim_mode & RECLAIM_SWAP)
2570                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2571         else
2572                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2573
2574         /* If we can't clean pages, remove dirty pages from consideration */
2575         if (!(zone_reclaim_mode & RECLAIM_WRITE))
2576                 delta += zone_page_state(zone, NR_FILE_DIRTY);
2577
2578         /* Watch for any possible underflows due to delta */
2579         if (unlikely(delta > nr_pagecache_reclaimable))
2580                 delta = nr_pagecache_reclaimable;
2581
2582         return nr_pagecache_reclaimable - delta;
2583 }
2584
2585 /*
2586  * Try to free up some pages from this zone through reclaim.
2587  */
2588 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2589 {
2590         /* Minimum pages needed in order to stay on node */
2591         const unsigned long nr_pages = 1 << order;
2592         struct task_struct *p = current;
2593         struct reclaim_state reclaim_state;
2594         int priority;
2595         struct scan_control sc = {
2596                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2597                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2598                 .may_swap = 1,
2599                 .swap_cluster_max = max_t(unsigned long, nr_pages,
2600                                         SWAP_CLUSTER_MAX),
2601                 .gfp_mask = gfp_mask,
2602                 .swappiness = vm_swappiness,
2603                 .order = order,
2604                 .isolate_pages = isolate_pages_global,
2605         };
2606         unsigned long slab_reclaimable;
2607
2608         disable_swap_token();
2609         cond_resched();
2610         /*
2611          * We need to be able to allocate from the reserves for RECLAIM_SWAP
2612          * and we also need to be able to write out pages for RECLAIM_WRITE
2613          * and RECLAIM_SWAP.
2614          */
2615         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2616         reclaim_state.reclaimed_slab = 0;
2617         p->reclaim_state = &reclaim_state;
2618
2619         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2620                 /*
2621                  * Free memory by calling shrink zone with increasing
2622                  * priorities until we have enough memory freed.
2623                  */
2624                 priority = ZONE_RECLAIM_PRIORITY;
2625                 do {
2626                         note_zone_scanning_priority(zone, priority);
2627                         shrink_zone(priority, zone, &sc);
2628                         priority--;
2629                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2630         }
2631
2632         slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2633         if (slab_reclaimable > zone->min_slab_pages) {
2634                 /*
2635                  * shrink_slab() does not currently allow us to determine how
2636                  * many pages were freed in this zone. So we take the current
2637                  * number of slab pages and shake the slab until it is reduced
2638                  * by the same nr_pages that we used for reclaiming unmapped
2639                  * pages.
2640                  *
2641                  * Note that shrink_slab will free memory on all zones and may
2642                  * take a long time.
2643                  */
2644                 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2645                         zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2646                                 slab_reclaimable - nr_pages)
2647                         ;
2648
2649                 /*
2650                  * Update nr_reclaimed by the number of slab pages we
2651                  * reclaimed from this zone.
2652                  */
2653                 sc.nr_reclaimed += slab_reclaimable -
2654                         zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2655         }
2656
2657         p->reclaim_state = NULL;
2658         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2659         return sc.nr_reclaimed >= nr_pages;
2660 }
2661
2662 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2663 {
2664         int node_id;
2665         int ret;
2666
2667         /*
2668          * Zone reclaim reclaims unmapped file backed pages and
2669          * slab pages if we are over the defined limits.
2670          *
2671          * A small portion of unmapped file backed pages is needed for
2672          * file I/O otherwise pages read by file I/O will be immediately
2673          * thrown out if the zone is overallocated. So we do not reclaim
2674          * if less than a specified percentage of the zone is used by
2675          * unmapped file backed pages.
2676          */
2677         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2678             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2679                 return ZONE_RECLAIM_FULL;
2680
2681         if (zone_is_all_unreclaimable(zone))
2682                 return ZONE_RECLAIM_FULL;
2683
2684         /*
2685          * Do not scan if the allocation should not be delayed.
2686          */
2687         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2688                 return ZONE_RECLAIM_NOSCAN;
2689
2690         /*
2691          * Only run zone reclaim on the local zone or on zones that do not
2692          * have associated processors. This will favor the local processor
2693          * over remote processors and spread off node memory allocations
2694          * as wide as possible.
2695          */
2696         node_id = zone_to_nid(zone);
2697         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2698                 return ZONE_RECLAIM_NOSCAN;
2699
2700         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2701                 return ZONE_RECLAIM_NOSCAN;
2702
2703         ret = __zone_reclaim(zone, gfp_mask, order);
2704         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2705
2706         if (!ret)
2707                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2708
2709         return ret;
2710 }
2711 #endif
2712
2713 /*
2714  * page_evictable - test whether a page is evictable
2715  * @page: the page to test
2716  * @vma: the VMA in which the page is or will be mapped, may be NULL
2717  *
2718  * Test whether page is evictable--i.e., should be placed on active/inactive
2719  * lists vs unevictable list.  The vma argument is !NULL when called from the
2720  * fault path to determine how to instantate a new page.
2721  *
2722  * Reasons page might not be evictable:
2723  * (1) page's mapping marked unevictable
2724  * (2) page is part of an mlocked VMA
2725  *
2726  */
2727 int page_evictable(struct page *page, struct vm_area_struct *vma)
2728 {
2729
2730         if (mapping_unevictable(page_mapping(page)))
2731                 return 0;
2732
2733         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2734                 return 0;
2735
2736         return 1;
2737 }
2738
2739 /**
2740  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2741  * @page: page to check evictability and move to appropriate lru list
2742  * @zone: zone page is in
2743  *
2744  * Checks a page for evictability and moves the page to the appropriate
2745  * zone lru list.
2746  *
2747  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2748  * have PageUnevictable set.
2749  */
2750 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2751 {
2752         VM_BUG_ON(PageActive(page));
2753
2754 retry:
2755         ClearPageUnevictable(page);
2756         if (page_evictable(page, NULL)) {
2757                 enum lru_list l = page_lru_base_type(page);
2758
2759                 __dec_zone_state(zone, NR_UNEVICTABLE);
2760                 list_move(&page->lru, &zone->lru[l].list);
2761                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2762                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2763                 __count_vm_event(UNEVICTABLE_PGRESCUED);
2764         } else {
2765                 /*
2766                  * rotate unevictable list
2767                  */
2768                 SetPageUnevictable(page);
2769                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2770                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2771                 if (page_evictable(page, NULL))
2772                         goto retry;
2773         }
2774 }
2775
2776 /**
2777  * scan_mapping_unevictable_pages - scan an address space for evictable pages
2778  * @mapping: struct address_space to scan for evictable pages
2779  *
2780  * Scan all pages in mapping.  Check unevictable pages for
2781  * evictability and move them to the appropriate zone lru list.
2782  */
2783 void scan_mapping_unevictable_pages(struct address_space *mapping)
2784 {
2785         pgoff_t next = 0;
2786         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2787                          PAGE_CACHE_SHIFT;
2788         struct zone *zone;
2789         struct pagevec pvec;
2790
2791         if (mapping->nrpages == 0)
2792                 return;
2793
2794         pagevec_init(&pvec, 0);
2795         while (next < end &&
2796                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2797                 int i;
2798                 int pg_scanned = 0;
2799
2800                 zone = NULL;
2801
2802                 for (i = 0; i < pagevec_count(&pvec); i++) {
2803                         struct page *page = pvec.pages[i];
2804                         pgoff_t page_index = page->index;
2805                         struct zone *pagezone = page_zone(page);
2806
2807                         pg_scanned++;
2808                         if (page_index > next)
2809                                 next = page_index;
2810                         next++;
2811
2812                         if (pagezone != zone) {
2813                                 if (zone)
2814                                         spin_unlock_irq(&zone->lru_lock);
2815                                 zone = pagezone;
2816                                 spin_lock_irq(&zone->lru_lock);
2817                         }
2818
2819                         if (PageLRU(page) && PageUnevictable(page))
2820                                 check_move_unevictable_page(page, zone);
2821                 }
2822                 if (zone)
2823                         spin_unlock_irq(&zone->lru_lock);
2824                 pagevec_release(&pvec);
2825
2826                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2827         }
2828
2829 }
2830
2831 /**
2832  * scan_zone_unevictable_pages - check unevictable list for evictable pages
2833  * @zone - zone of which to scan the unevictable list
2834  *
2835  * Scan @zone's unevictable LRU lists to check for pages that have become
2836  * evictable.  Move those that have to @zone's inactive list where they
2837  * become candidates for reclaim, unless shrink_inactive_zone() decides
2838  * to reactivate them.  Pages that are still unevictable are rotated
2839  * back onto @zone's unevictable list.
2840  */
2841 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2842 static void scan_zone_unevictable_pages(struct zone *zone)
2843 {
2844         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2845         unsigned long scan;
2846         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2847
2848         while (nr_to_scan > 0) {
2849                 unsigned long batch_size = min(nr_to_scan,
2850                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
2851
2852                 spin_lock_irq(&zone->lru_lock);
2853                 for (scan = 0;  scan < batch_size; scan++) {
2854                         struct page *page = lru_to_page(l_unevictable);
2855
2856                         if (!trylock_page(page))
2857                                 continue;
2858
2859                         prefetchw_prev_lru_page(page, l_unevictable, flags);
2860
2861                         if (likely(PageLRU(page) && PageUnevictable(page)))
2862                                 check_move_unevictable_page(page, zone);
2863
2864                         unlock_page(page);
2865                 }
2866                 spin_unlock_irq(&zone->lru_lock);
2867
2868                 nr_to_scan -= batch_size;
2869         }
2870 }
2871
2872
2873 /**
2874  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2875  *
2876  * A really big hammer:  scan all zones' unevictable LRU lists to check for
2877  * pages that have become evictable.  Move those back to the zones'
2878  * inactive list where they become candidates for reclaim.
2879  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2880  * and we add swap to the system.  As such, it runs in the context of a task
2881  * that has possibly/probably made some previously unevictable pages
2882  * evictable.
2883  */
2884 static void scan_all_zones_unevictable_pages(void)
2885 {
2886         struct zone *zone;
2887
2888         for_each_zone(zone) {
2889                 scan_zone_unevictable_pages(zone);
2890         }
2891 }
2892
2893 /*
2894  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
2895  * all nodes' unevictable lists for evictable pages
2896  */
2897 unsigned long scan_unevictable_pages;
2898
2899 int scan_unevictable_handler(struct ctl_table *table, int write,
2900                            void __user *buffer,
2901                            size_t *length, loff_t *ppos)
2902 {
2903         proc_doulongvec_minmax(table, write, buffer, length, ppos);
2904
2905         if (write && *(unsigned long *)table->data)
2906                 scan_all_zones_unevictable_pages();
2907
2908         scan_unevictable_pages = 0;
2909         return 0;
2910 }
2911
2912 /*
2913  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
2914  * a specified node's per zone unevictable lists for evictable pages.
2915  */
2916
2917 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2918                                           struct sysdev_attribute *attr,
2919                                           char *buf)
2920 {
2921         return sprintf(buf, "0\n");     /* always zero; should fit... */
2922 }
2923
2924 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2925                                            struct sysdev_attribute *attr,
2926                                         const char *buf, size_t count)
2927 {
2928         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2929         struct zone *zone;
2930         unsigned long res;
2931         unsigned long req = strict_strtoul(buf, 10, &res);
2932
2933         if (!req)
2934                 return 1;       /* zero is no-op */
2935
2936         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2937                 if (!populated_zone(zone))
2938                         continue;
2939                 scan_zone_unevictable_pages(zone);
2940         }
2941         return 1;
2942 }
2943
2944
2945 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2946                         read_scan_unevictable_node,
2947                         write_scan_unevictable_node);
2948
2949 int scan_unevictable_register_node(struct node *node)
2950 {
2951         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2952 }
2953
2954 void scan_unevictable_unregister_node(struct node *node)
2955 {
2956         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2957 }
2958