]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/vmscan.c
Add support for slice by 8 to existing crc32 algorithm. Also modify
[karo-tx-linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int order;
99
100         /*
101          * Intend to reclaim enough continuous memory rather than reclaim
102          * enough amount of memory. i.e, mode for high order allocation.
103          */
104         reclaim_mode_t reclaim_mode;
105
106         /* Which cgroup do we reclaim from */
107         struct mem_cgroup *mem_cgroup;
108         struct memcg_scanrecord *memcg_record;
109
110         /*
111          * Nodemask of nodes allowed by the caller. If NULL, all nodes
112          * are scanned.
113          */
114         nodemask_t      *nodemask;
115 };
116
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field)                    \
121         do {                                                            \
122                 if ((_page)->lru.prev != _base) {                       \
123                         struct page *prev;                              \
124                                                                         \
125                         prev = lru_to_page(&(_page->lru));              \
126                         prefetch(&prev->_field);                        \
127                 }                                                       \
128         } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
135         do {                                                            \
136                 if ((_page)->lru.prev != _base) {                       \
137                         struct page *prev;                              \
138                                                                         \
139                         prev = lru_to_page(&(_page->lru));              \
140                         prefetchw(&prev->_field);                       \
141                 }                                                       \
142         } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
146
147 /*
148  * From 0 .. 100.  Higher means more swappy.
149  */
150 int vm_swappiness = 60;
151 long vm_total_pages;    /* The total number of pages which the VM controls */
152
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
161
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163                                                   struct scan_control *sc)
164 {
165         if (!scanning_global_lru(sc))
166                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167
168         return &zone->reclaim_stat;
169 }
170
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172                                 struct scan_control *sc, enum lru_list lru)
173 {
174         if (!scanning_global_lru(sc))
175                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
176                                 zone_to_nid(zone), zone_idx(zone), BIT(lru));
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         atomic_long_set(&shrinker->nr_in_batch, 0);
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 long total_scan;
252                 long max_pass;
253                 int shrink_ret = 0;
254                 long nr;
255                 long new_nr;
256                 long batch_size = shrinker->batch ? shrinker->batch
257                                                   : SHRINK_BATCH;
258
259                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
260                 if (max_pass <= 0)
261                         continue;
262
263                 /*
264                  * copy the current shrinker scan count into a local variable
265                  * and zero it so that other concurrent shrinker invocations
266                  * don't also do this scanning work.
267                  */
268                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
269
270                 total_scan = nr;
271                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
272                 delta *= max_pass;
273                 do_div(delta, lru_pages + 1);
274                 total_scan += delta;
275                 if (total_scan < 0) {
276                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
277                                "delete nr=%ld\n",
278                                shrinker->shrink, total_scan);
279                         total_scan = max_pass;
280                 }
281
282                 /*
283                  * We need to avoid excessive windup on filesystem shrinkers
284                  * due to large numbers of GFP_NOFS allocations causing the
285                  * shrinkers to return -1 all the time. This results in a large
286                  * nr being built up so when a shrink that can do some work
287                  * comes along it empties the entire cache due to nr >>>
288                  * max_pass.  This is bad for sustaining a working set in
289                  * memory.
290                  *
291                  * Hence only allow the shrinker to scan the entire cache when
292                  * a large delta change is calculated directly.
293                  */
294                 if (delta < max_pass / 4)
295                         total_scan = min(total_scan, max_pass / 2);
296
297                 /*
298                  * Avoid risking looping forever due to too large nr value:
299                  * never try to free more than twice the estimate number of
300                  * freeable entries.
301                  */
302                 if (total_scan > max_pass * 2)
303                         total_scan = max_pass * 2;
304
305                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
306                                         nr_pages_scanned, lru_pages,
307                                         max_pass, delta, total_scan);
308
309                 while (total_scan >= batch_size) {
310                         int nr_before;
311
312                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
313                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
314                                                         batch_size);
315                         if (shrink_ret == -1)
316                                 break;
317                         if (shrink_ret < nr_before)
318                                 ret += nr_before - shrink_ret;
319                         count_vm_events(SLABS_SCANNED, batch_size);
320                         total_scan -= batch_size;
321
322                         cond_resched();
323                 }
324
325                 /*
326                  * move the unused scan count back into the shrinker in a
327                  * manner that handles concurrent updates. If we exhausted the
328                  * scan, there is no need to do an update.
329                  */
330                 if (total_scan > 0)
331                         new_nr = atomic_long_add_return(total_scan,
332                                         &shrinker->nr_in_batch);
333                 else
334                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
335
336                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
337         }
338         up_read(&shrinker_rwsem);
339 out:
340         cond_resched();
341         return ret;
342 }
343
344 static void set_reclaim_mode(int priority, struct scan_control *sc,
345                                    bool sync)
346 {
347         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
348
349         /*
350          * Initially assume we are entering either lumpy reclaim or
351          * reclaim/compaction.Depending on the order, we will either set the
352          * sync mode or just reclaim order-0 pages later.
353          */
354         if (COMPACTION_BUILD)
355                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
356         else
357                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
358
359         /*
360          * Avoid using lumpy reclaim or reclaim/compaction if possible by
361          * restricting when its set to either costly allocations or when
362          * under memory pressure
363          */
364         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
365                 sc->reclaim_mode |= syncmode;
366         else if (sc->order && priority < DEF_PRIORITY - 2)
367                 sc->reclaim_mode |= syncmode;
368         else
369                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
370 }
371
372 static void reset_reclaim_mode(struct scan_control *sc)
373 {
374         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
375 }
376
377 static inline int is_page_cache_freeable(struct page *page)
378 {
379         /*
380          * A freeable page cache page is referenced only by the caller
381          * that isolated the page, the page cache radix tree and
382          * optional buffer heads at page->private.
383          */
384         return page_count(page) - page_has_private(page) == 2;
385 }
386
387 static int may_write_to_queue(struct backing_dev_info *bdi,
388                               struct scan_control *sc)
389 {
390         if (current->flags & PF_SWAPWRITE)
391                 return 1;
392         if (!bdi_write_congested(bdi))
393                 return 1;
394         if (bdi == current->backing_dev_info)
395                 return 1;
396
397         /* lumpy reclaim for hugepage often need a lot of write */
398         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
399                 return 1;
400         return 0;
401 }
402
403 /*
404  * We detected a synchronous write error writing a page out.  Probably
405  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
406  * fsync(), msync() or close().
407  *
408  * The tricky part is that after writepage we cannot touch the mapping: nothing
409  * prevents it from being freed up.  But we have a ref on the page and once
410  * that page is locked, the mapping is pinned.
411  *
412  * We're allowed to run sleeping lock_page() here because we know the caller has
413  * __GFP_FS.
414  */
415 static void handle_write_error(struct address_space *mapping,
416                                 struct page *page, int error)
417 {
418         lock_page(page);
419         if (page_mapping(page) == mapping)
420                 mapping_set_error(mapping, error);
421         unlock_page(page);
422 }
423
424 /* possible outcome of pageout() */
425 typedef enum {
426         /* failed to write page out, page is locked */
427         PAGE_KEEP,
428         /* move page to the active list, page is locked */
429         PAGE_ACTIVATE,
430         /* page has been sent to the disk successfully, page is unlocked */
431         PAGE_SUCCESS,
432         /* page is clean and locked */
433         PAGE_CLEAN,
434 } pageout_t;
435
436 /*
437  * pageout is called by shrink_page_list() for each dirty page.
438  * Calls ->writepage().
439  */
440 static pageout_t pageout(struct page *page, struct address_space *mapping,
441                          struct scan_control *sc)
442 {
443         /*
444          * If the page is dirty, only perform writeback if that write
445          * will be non-blocking.  To prevent this allocation from being
446          * stalled by pagecache activity.  But note that there may be
447          * stalls if we need to run get_block().  We could test
448          * PagePrivate for that.
449          *
450          * If this process is currently in __generic_file_aio_write() against
451          * this page's queue, we can perform writeback even if that
452          * will block.
453          *
454          * If the page is swapcache, write it back even if that would
455          * block, for some throttling. This happens by accident, because
456          * swap_backing_dev_info is bust: it doesn't reflect the
457          * congestion state of the swapdevs.  Easy to fix, if needed.
458          */
459         if (!is_page_cache_freeable(page))
460                 return PAGE_KEEP;
461         if (!mapping) {
462                 /*
463                  * Some data journaling orphaned pages can have
464                  * page->mapping == NULL while being dirty with clean buffers.
465                  */
466                 if (page_has_private(page)) {
467                         if (try_to_free_buffers(page)) {
468                                 ClearPageDirty(page);
469                                 printk("%s: orphaned page\n", __func__);
470                                 return PAGE_CLEAN;
471                         }
472                 }
473                 return PAGE_KEEP;
474         }
475         if (mapping->a_ops->writepage == NULL)
476                 return PAGE_ACTIVATE;
477         if (!may_write_to_queue(mapping->backing_dev_info, sc))
478                 return PAGE_KEEP;
479
480         if (clear_page_dirty_for_io(page)) {
481                 int res;
482                 struct writeback_control wbc = {
483                         .sync_mode = WB_SYNC_NONE,
484                         .nr_to_write = SWAP_CLUSTER_MAX,
485                         .range_start = 0,
486                         .range_end = LLONG_MAX,
487                         .for_reclaim = 1,
488                 };
489
490                 SetPageReclaim(page);
491                 res = mapping->a_ops->writepage(page, &wbc);
492                 if (res < 0)
493                         handle_write_error(mapping, page, res);
494                 if (res == AOP_WRITEPAGE_ACTIVATE) {
495                         ClearPageReclaim(page);
496                         return PAGE_ACTIVATE;
497                 }
498
499                 if (!PageWriteback(page)) {
500                         /* synchronous write or broken a_ops? */
501                         ClearPageReclaim(page);
502                 }
503                 trace_mm_vmscan_writepage(page,
504                         trace_reclaim_flags(page, sc->reclaim_mode));
505                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
506                 return PAGE_SUCCESS;
507         }
508
509         return PAGE_CLEAN;
510 }
511
512 /*
513  * Same as remove_mapping, but if the page is removed from the mapping, it
514  * gets returned with a refcount of 0.
515  */
516 static int __remove_mapping(struct address_space *mapping, struct page *page)
517 {
518         BUG_ON(!PageLocked(page));
519         BUG_ON(mapping != page_mapping(page));
520
521         spin_lock_irq(&mapping->tree_lock);
522         /*
523          * The non racy check for a busy page.
524          *
525          * Must be careful with the order of the tests. When someone has
526          * a ref to the page, it may be possible that they dirty it then
527          * drop the reference. So if PageDirty is tested before page_count
528          * here, then the following race may occur:
529          *
530          * get_user_pages(&page);
531          * [user mapping goes away]
532          * write_to(page);
533          *                              !PageDirty(page)    [good]
534          * SetPageDirty(page);
535          * put_page(page);
536          *                              !page_count(page)   [good, discard it]
537          *
538          * [oops, our write_to data is lost]
539          *
540          * Reversing the order of the tests ensures such a situation cannot
541          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
542          * load is not satisfied before that of page->_count.
543          *
544          * Note that if SetPageDirty is always performed via set_page_dirty,
545          * and thus under tree_lock, then this ordering is not required.
546          */
547         if (!page_freeze_refs(page, 2))
548                 goto cannot_free;
549         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
550         if (unlikely(PageDirty(page))) {
551                 page_unfreeze_refs(page, 2);
552                 goto cannot_free;
553         }
554
555         if (PageSwapCache(page)) {
556                 swp_entry_t swap = { .val = page_private(page) };
557                 __delete_from_swap_cache(page);
558                 spin_unlock_irq(&mapping->tree_lock);
559                 swapcache_free(swap, page);
560         } else {
561                 void (*freepage)(struct page *);
562
563                 freepage = mapping->a_ops->freepage;
564
565                 __delete_from_page_cache(page);
566                 spin_unlock_irq(&mapping->tree_lock);
567                 mem_cgroup_uncharge_cache_page(page);
568
569                 if (freepage != NULL)
570                         freepage(page);
571         }
572
573         return 1;
574
575 cannot_free:
576         spin_unlock_irq(&mapping->tree_lock);
577         return 0;
578 }
579
580 /*
581  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
582  * someone else has a ref on the page, abort and return 0.  If it was
583  * successfully detached, return 1.  Assumes the caller has a single ref on
584  * this page.
585  */
586 int remove_mapping(struct address_space *mapping, struct page *page)
587 {
588         if (__remove_mapping(mapping, page)) {
589                 /*
590                  * Unfreezing the refcount with 1 rather than 2 effectively
591                  * drops the pagecache ref for us without requiring another
592                  * atomic operation.
593                  */
594                 page_unfreeze_refs(page, 1);
595                 return 1;
596         }
597         return 0;
598 }
599
600 /**
601  * putback_lru_page - put previously isolated page onto appropriate LRU list
602  * @page: page to be put back to appropriate lru list
603  *
604  * Add previously isolated @page to appropriate LRU list.
605  * Page may still be unevictable for other reasons.
606  *
607  * lru_lock must not be held, interrupts must be enabled.
608  */
609 void putback_lru_page(struct page *page)
610 {
611         int lru;
612         int active = !!TestClearPageActive(page);
613         int was_unevictable = PageUnevictable(page);
614
615         VM_BUG_ON(PageLRU(page));
616
617 redo:
618         ClearPageUnevictable(page);
619
620         if (page_evictable(page, NULL)) {
621                 /*
622                  * For evictable pages, we can use the cache.
623                  * In event of a race, worst case is we end up with an
624                  * unevictable page on [in]active list.
625                  * We know how to handle that.
626                  */
627                 lru = active + page_lru_base_type(page);
628                 lru_cache_add_lru(page, lru);
629         } else {
630                 /*
631                  * Put unevictable pages directly on zone's unevictable
632                  * list.
633                  */
634                 lru = LRU_UNEVICTABLE;
635                 add_page_to_unevictable_list(page);
636                 /*
637                  * When racing with an mlock clearing (page is
638                  * unlocked), make sure that if the other thread does
639                  * not observe our setting of PG_lru and fails
640                  * isolation, we see PG_mlocked cleared below and move
641                  * the page back to the evictable list.
642                  *
643                  * The other side is TestClearPageMlocked().
644                  */
645                 smp_mb();
646         }
647
648         /*
649          * page's status can change while we move it among lru. If an evictable
650          * page is on unevictable list, it never be freed. To avoid that,
651          * check after we added it to the list, again.
652          */
653         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654                 if (!isolate_lru_page(page)) {
655                         put_page(page);
656                         goto redo;
657                 }
658                 /* This means someone else dropped this page from LRU
659                  * So, it will be freed or putback to LRU again. There is
660                  * nothing to do here.
661                  */
662         }
663
664         if (was_unevictable && lru != LRU_UNEVICTABLE)
665                 count_vm_event(UNEVICTABLE_PGRESCUED);
666         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667                 count_vm_event(UNEVICTABLE_PGCULLED);
668
669         put_page(page);         /* drop ref from isolate */
670 }
671
672 enum page_references {
673         PAGEREF_RECLAIM,
674         PAGEREF_RECLAIM_CLEAN,
675         PAGEREF_KEEP,
676         PAGEREF_ACTIVATE,
677 };
678
679 static enum page_references page_check_references(struct page *page,
680                                                   struct scan_control *sc)
681 {
682         int referenced_ptes, referenced_page;
683         unsigned long vm_flags;
684
685         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686         referenced_page = TestClearPageReferenced(page);
687
688         /* Lumpy reclaim - ignore references */
689         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690                 return PAGEREF_RECLAIM;
691
692         /*
693          * Mlock lost the isolation race with us.  Let try_to_unmap()
694          * move the page to the unevictable list.
695          */
696         if (vm_flags & VM_LOCKED)
697                 return PAGEREF_RECLAIM;
698
699         if (referenced_ptes) {
700                 if (PageAnon(page))
701                         return PAGEREF_ACTIVATE;
702                 /*
703                  * All mapped pages start out with page table
704                  * references from the instantiating fault, so we need
705                  * to look twice if a mapped file page is used more
706                  * than once.
707                  *
708                  * Mark it and spare it for another trip around the
709                  * inactive list.  Another page table reference will
710                  * lead to its activation.
711                  *
712                  * Note: the mark is set for activated pages as well
713                  * so that recently deactivated but used pages are
714                  * quickly recovered.
715                  */
716                 SetPageReferenced(page);
717
718                 if (referenced_page || referenced_ptes > 1)
719                         return PAGEREF_ACTIVATE;
720
721                 /*
722                  * Activate file-backed executable pages after first usage.
723                  */
724                 if (vm_flags & VM_EXEC)
725                         return PAGEREF_ACTIVATE;
726
727                 return PAGEREF_KEEP;
728         }
729
730         /* Reclaim if clean, defer dirty pages to writeback */
731         if (referenced_page && !PageSwapBacked(page))
732                 return PAGEREF_RECLAIM_CLEAN;
733
734         return PAGEREF_RECLAIM;
735 }
736
737 static noinline_for_stack void free_page_list(struct list_head *free_pages)
738 {
739         struct pagevec freed_pvec;
740         struct page *page, *tmp;
741
742         pagevec_init(&freed_pvec, 1);
743
744         list_for_each_entry_safe(page, tmp, free_pages, lru) {
745                 list_del(&page->lru);
746                 if (!pagevec_add(&freed_pvec, page)) {
747                         __pagevec_free(&freed_pvec);
748                         pagevec_reinit(&freed_pvec);
749                 }
750         }
751
752         pagevec_free(&freed_pvec);
753 }
754
755 /*
756  * shrink_page_list() returns the number of reclaimed pages
757  */
758 static unsigned long shrink_page_list(struct list_head *page_list,
759                                       struct zone *zone,
760                                       struct scan_control *sc,
761                                       int priority,
762                                       unsigned long *ret_nr_dirty,
763                                       unsigned long *ret_nr_writeback)
764 {
765         LIST_HEAD(ret_pages);
766         LIST_HEAD(free_pages);
767         int pgactivate = 0;
768         unsigned long nr_dirty = 0;
769         unsigned long nr_congested = 0;
770         unsigned long nr_reclaimed = 0;
771         unsigned long nr_writeback = 0;
772
773         cond_resched();
774
775         while (!list_empty(page_list)) {
776                 enum page_references references;
777                 struct address_space *mapping;
778                 struct page *page;
779                 int may_enter_fs;
780
781                 cond_resched();
782
783                 page = lru_to_page(page_list);
784                 list_del(&page->lru);
785
786                 if (!trylock_page(page))
787                         goto keep;
788
789                 VM_BUG_ON(PageActive(page));
790                 VM_BUG_ON(page_zone(page) != zone);
791
792                 sc->nr_scanned++;
793
794                 if (unlikely(!page_evictable(page, NULL)))
795                         goto cull_mlocked;
796
797                 if (!sc->may_unmap && page_mapped(page))
798                         goto keep_locked;
799
800                 /* Double the slab pressure for mapped and swapcache pages */
801                 if (page_mapped(page) || PageSwapCache(page))
802                         sc->nr_scanned++;
803
804                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
805                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
806
807                 if (PageWriteback(page)) {
808                         nr_writeback++;
809                         /*
810                          * Synchronous reclaim cannot queue pages for
811                          * writeback due to the possibility of stack overflow
812                          * but if it encounters a page under writeback, wait
813                          * for the IO to complete.
814                          */
815                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816                             may_enter_fs)
817                                 wait_on_page_writeback(page);
818                         else {
819                                 unlock_page(page);
820                                 goto keep_lumpy;
821                         }
822                 }
823
824                 references = page_check_references(page, sc);
825                 switch (references) {
826                 case PAGEREF_ACTIVATE:
827                         goto activate_locked;
828                 case PAGEREF_KEEP:
829                         goto keep_locked;
830                 case PAGEREF_RECLAIM:
831                 case PAGEREF_RECLAIM_CLEAN:
832                         ; /* try to reclaim the page below */
833                 }
834
835                 /*
836                  * Anonymous process memory has backing store?
837                  * Try to allocate it some swap space here.
838                  */
839                 if (PageAnon(page) && !PageSwapCache(page)) {
840                         if (!(sc->gfp_mask & __GFP_IO))
841                                 goto keep_locked;
842                         if (!add_to_swap(page))
843                                 goto activate_locked;
844                         may_enter_fs = 1;
845                 }
846
847                 mapping = page_mapping(page);
848
849                 /*
850                  * The page is mapped into the page tables of one or more
851                  * processes. Try to unmap it here.
852                  */
853                 if (page_mapped(page) && mapping) {
854                         switch (try_to_unmap(page, TTU_UNMAP)) {
855                         case SWAP_FAIL:
856                                 goto activate_locked;
857                         case SWAP_AGAIN:
858                                 goto keep_locked;
859                         case SWAP_MLOCK:
860                                 goto cull_mlocked;
861                         case SWAP_SUCCESS:
862                                 ; /* try to free the page below */
863                         }
864                 }
865
866                 if (PageDirty(page)) {
867                         nr_dirty++;
868
869                         /*
870                          * Only kswapd can writeback filesystem pages to
871                          * avoid risk of stack overflow but do not writeback
872                          * unless under significant pressure.
873                          */
874                         if (page_is_file_cache(page) &&
875                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
876                                 /*
877                                  * Immediately reclaim when written back.
878                                  * Similar in principal to deactivate_page()
879                                  * except we already have the page isolated
880                                  * and know it's dirty
881                                  */
882                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
883                                 SetPageReclaim(page);
884
885                                 goto keep_locked;
886                         }
887
888                         if (references == PAGEREF_RECLAIM_CLEAN)
889                                 goto keep_locked;
890                         if (!may_enter_fs)
891                                 goto keep_locked;
892                         if (!sc->may_writepage)
893                                 goto keep_locked;
894
895                         /* Page is dirty, try to write it out here */
896                         switch (pageout(page, mapping, sc)) {
897                         case PAGE_KEEP:
898                                 nr_congested++;
899                                 goto keep_locked;
900                         case PAGE_ACTIVATE:
901                                 goto activate_locked;
902                         case PAGE_SUCCESS:
903                                 if (PageWriteback(page))
904                                         goto keep_lumpy;
905                                 if (PageDirty(page))
906                                         goto keep;
907
908                                 /*
909                                  * A synchronous write - probably a ramdisk.  Go
910                                  * ahead and try to reclaim the page.
911                                  */
912                                 if (!trylock_page(page))
913                                         goto keep;
914                                 if (PageDirty(page) || PageWriteback(page))
915                                         goto keep_locked;
916                                 mapping = page_mapping(page);
917                         case PAGE_CLEAN:
918                                 ; /* try to free the page below */
919                         }
920                 }
921
922                 /*
923                  * If the page has buffers, try to free the buffer mappings
924                  * associated with this page. If we succeed we try to free
925                  * the page as well.
926                  *
927                  * We do this even if the page is PageDirty().
928                  * try_to_release_page() does not perform I/O, but it is
929                  * possible for a page to have PageDirty set, but it is actually
930                  * clean (all its buffers are clean).  This happens if the
931                  * buffers were written out directly, with submit_bh(). ext3
932                  * will do this, as well as the blockdev mapping.
933                  * try_to_release_page() will discover that cleanness and will
934                  * drop the buffers and mark the page clean - it can be freed.
935                  *
936                  * Rarely, pages can have buffers and no ->mapping.  These are
937                  * the pages which were not successfully invalidated in
938                  * truncate_complete_page().  We try to drop those buffers here
939                  * and if that worked, and the page is no longer mapped into
940                  * process address space (page_count == 1) it can be freed.
941                  * Otherwise, leave the page on the LRU so it is swappable.
942                  */
943                 if (page_has_private(page)) {
944                         if (!try_to_release_page(page, sc->gfp_mask))
945                                 goto activate_locked;
946                         if (!mapping && page_count(page) == 1) {
947                                 unlock_page(page);
948                                 if (put_page_testzero(page))
949                                         goto free_it;
950                                 else {
951                                         /*
952                                          * rare race with speculative reference.
953                                          * the speculative reference will free
954                                          * this page shortly, so we may
955                                          * increment nr_reclaimed here (and
956                                          * leave it off the LRU).
957                                          */
958                                         nr_reclaimed++;
959                                         continue;
960                                 }
961                         }
962                 }
963
964                 if (!mapping || !__remove_mapping(mapping, page))
965                         goto keep_locked;
966
967                 /*
968                  * At this point, we have no other references and there is
969                  * no way to pick any more up (removed from LRU, removed
970                  * from pagecache). Can use non-atomic bitops now (and
971                  * we obviously don't have to worry about waking up a process
972                  * waiting on the page lock, because there are no references.
973                  */
974                 __clear_page_locked(page);
975 free_it:
976                 nr_reclaimed++;
977
978                 /*
979                  * Is there need to periodically free_page_list? It would
980                  * appear not as the counts should be low
981                  */
982                 list_add(&page->lru, &free_pages);
983                 continue;
984
985 cull_mlocked:
986                 if (PageSwapCache(page))
987                         try_to_free_swap(page);
988                 unlock_page(page);
989                 putback_lru_page(page);
990                 reset_reclaim_mode(sc);
991                 continue;
992
993 activate_locked:
994                 /* Not a candidate for swapping, so reclaim swap space. */
995                 if (PageSwapCache(page) && vm_swap_full())
996                         try_to_free_swap(page);
997                 VM_BUG_ON(PageActive(page));
998                 SetPageActive(page);
999                 pgactivate++;
1000 keep_locked:
1001                 unlock_page(page);
1002 keep:
1003                 reset_reclaim_mode(sc);
1004 keep_lumpy:
1005                 list_add(&page->lru, &ret_pages);
1006                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1007         }
1008
1009         /*
1010          * Tag a zone as congested if all the dirty pages encountered were
1011          * backed by a congested BDI. In this case, reclaimers should just
1012          * back off and wait for congestion to clear because further reclaim
1013          * will encounter the same problem
1014          */
1015         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1016                 zone_set_flag(zone, ZONE_CONGESTED);
1017
1018         free_page_list(&free_pages);
1019
1020         list_splice(&ret_pages, page_list);
1021         count_vm_events(PGACTIVATE, pgactivate);
1022         *ret_nr_dirty += nr_dirty;
1023         *ret_nr_writeback += nr_writeback;
1024         return nr_reclaimed;
1025 }
1026
1027 /*
1028  * Attempt to remove the specified page from its LRU.  Only take this page
1029  * if it is of the appropriate PageActive status.  Pages which are being
1030  * freed elsewhere are also ignored.
1031  *
1032  * page:        page to consider
1033  * mode:        one of the LRU isolation modes defined above
1034  *
1035  * returns 0 on success, -ve errno on failure.
1036  */
1037 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1038 {
1039         bool all_lru_mode;
1040         int ret = -EINVAL;
1041
1042         /* Only take pages on the LRU. */
1043         if (!PageLRU(page))
1044                 return ret;
1045
1046         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1047                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1048
1049         /*
1050          * When checking the active state, we need to be sure we are
1051          * dealing with comparible boolean values.  Take the logical not
1052          * of each.
1053          */
1054         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1055                 return ret;
1056
1057         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1058                 return ret;
1059
1060         /*
1061          * When this function is being called for lumpy reclaim, we
1062          * initially look into all LRU pages, active, inactive and
1063          * unevictable; only give shrink_page_list evictable pages.
1064          */
1065         if (PageUnevictable(page))
1066                 return ret;
1067
1068         ret = -EBUSY;
1069
1070         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1071                 return ret;
1072
1073         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1074                 return ret;
1075
1076         if (likely(get_page_unless_zero(page))) {
1077                 /*
1078                  * Be careful not to clear PageLRU until after we're
1079                  * sure the page is not being freed elsewhere -- the
1080                  * page release code relies on it.
1081                  */
1082                 ClearPageLRU(page);
1083                 ret = 0;
1084         }
1085
1086         return ret;
1087 }
1088
1089 /*
1090  * zone->lru_lock is heavily contended.  Some of the functions that
1091  * shrink the lists perform better by taking out a batch of pages
1092  * and working on them outside the LRU lock.
1093  *
1094  * For pagecache intensive workloads, this function is the hottest
1095  * spot in the kernel (apart from copy_*_user functions).
1096  *
1097  * Appropriate locks must be held before calling this function.
1098  *
1099  * @nr_to_scan: The number of pages to look through on the list.
1100  * @src:        The LRU list to pull pages off.
1101  * @dst:        The temp list to put pages on to.
1102  * @scanned:    The number of pages that were scanned.
1103  * @order:      The caller's attempted allocation order
1104  * @mode:       One of the LRU isolation modes
1105  * @file:       True [1] if isolating file [!anon] pages
1106  *
1107  * returns how many pages were moved onto *@dst.
1108  */
1109 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1110                 struct list_head *src, struct list_head *dst,
1111                 unsigned long *scanned, int order, isolate_mode_t mode,
1112                 int file)
1113 {
1114         unsigned long nr_taken = 0;
1115         unsigned long nr_lumpy_taken = 0;
1116         unsigned long nr_lumpy_dirty = 0;
1117         unsigned long nr_lumpy_failed = 0;
1118         unsigned long scan;
1119
1120         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1121                 struct page *page;
1122                 unsigned long pfn;
1123                 unsigned long end_pfn;
1124                 unsigned long page_pfn;
1125                 int zone_id;
1126
1127                 page = lru_to_page(src);
1128                 prefetchw_prev_lru_page(page, src, flags);
1129
1130                 VM_BUG_ON(!PageLRU(page));
1131
1132                 switch (__isolate_lru_page(page, mode, file)) {
1133                 case 0:
1134                         list_move(&page->lru, dst);
1135                         mem_cgroup_del_lru(page);
1136                         nr_taken += hpage_nr_pages(page);
1137                         break;
1138
1139                 case -EBUSY:
1140                         /* else it is being freed elsewhere */
1141                         list_move(&page->lru, src);
1142                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1143                         continue;
1144
1145                 default:
1146                         BUG();
1147                 }
1148
1149                 if (!order)
1150                         continue;
1151
1152                 /*
1153                  * Attempt to take all pages in the order aligned region
1154                  * surrounding the tag page.  Only take those pages of
1155                  * the same active state as that tag page.  We may safely
1156                  * round the target page pfn down to the requested order
1157                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1158                  * where that page is in a different zone we will detect
1159                  * it from its zone id and abort this block scan.
1160                  */
1161                 zone_id = page_zone_id(page);
1162                 page_pfn = page_to_pfn(page);
1163                 pfn = page_pfn & ~((1 << order) - 1);
1164                 end_pfn = pfn + (1 << order);
1165                 for (; pfn < end_pfn; pfn++) {
1166                         struct page *cursor_page;
1167
1168                         /* The target page is in the block, ignore it. */
1169                         if (unlikely(pfn == page_pfn))
1170                                 continue;
1171
1172                         /* Avoid holes within the zone. */
1173                         if (unlikely(!pfn_valid_within(pfn)))
1174                                 break;
1175
1176                         cursor_page = pfn_to_page(pfn);
1177
1178                         /* Check that we have not crossed a zone boundary. */
1179                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1180                                 break;
1181
1182                         /*
1183                          * If we don't have enough swap space, reclaiming of
1184                          * anon page which don't already have a swap slot is
1185                          * pointless.
1186                          */
1187                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1188                             !PageSwapCache(cursor_page))
1189                                 break;
1190
1191                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1192                                 list_move(&cursor_page->lru, dst);
1193                                 mem_cgroup_del_lru(cursor_page);
1194                                 nr_taken += hpage_nr_pages(page);
1195                                 nr_lumpy_taken++;
1196                                 if (PageDirty(cursor_page))
1197                                         nr_lumpy_dirty++;
1198                                 scan++;
1199                         } else {
1200                                 /*
1201                                  * Check if the page is freed already.
1202                                  *
1203                                  * We can't use page_count() as that
1204                                  * requires compound_head and we don't
1205                                  * have a pin on the page here. If a
1206                                  * page is tail, we may or may not
1207                                  * have isolated the head, so assume
1208                                  * it's not free, it'd be tricky to
1209                                  * track the head status without a
1210                                  * page pin.
1211                                  */
1212                                 if (!PageTail(cursor_page) &&
1213                                     !atomic_read(&cursor_page->_count))
1214                                         continue;
1215                                 break;
1216                         }
1217                 }
1218
1219                 /* If we break out of the loop above, lumpy reclaim failed */
1220                 if (pfn < end_pfn)
1221                         nr_lumpy_failed++;
1222         }
1223
1224         *scanned = scan;
1225
1226         trace_mm_vmscan_lru_isolate(order,
1227                         nr_to_scan, scan,
1228                         nr_taken,
1229                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1230                         mode);
1231         return nr_taken;
1232 }
1233
1234 static unsigned long isolate_pages_global(unsigned long nr,
1235                                         struct list_head *dst,
1236                                         unsigned long *scanned, int order,
1237                                         isolate_mode_t mode,
1238                                         struct zone *z, int active, int file)
1239 {
1240         int lru = LRU_BASE;
1241         if (active)
1242                 lru += LRU_ACTIVE;
1243         if (file)
1244                 lru += LRU_FILE;
1245         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1246                                                                 mode, file);
1247 }
1248
1249 /*
1250  * clear_active_flags() is a helper for shrink_active_list(), clearing
1251  * any active bits from the pages in the list.
1252  */
1253 static unsigned long clear_active_flags(struct list_head *page_list,
1254                                         unsigned int *count)
1255 {
1256         int nr_active = 0;
1257         int lru;
1258         struct page *page;
1259
1260         list_for_each_entry(page, page_list, lru) {
1261                 int numpages = hpage_nr_pages(page);
1262                 lru = page_lru_base_type(page);
1263                 if (PageActive(page)) {
1264                         lru += LRU_ACTIVE;
1265                         ClearPageActive(page);
1266                         nr_active += numpages;
1267                 }
1268                 if (count)
1269                         count[lru] += numpages;
1270         }
1271
1272         return nr_active;
1273 }
1274
1275 /**
1276  * isolate_lru_page - tries to isolate a page from its LRU list
1277  * @page: page to isolate from its LRU list
1278  *
1279  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1280  * vmstat statistic corresponding to whatever LRU list the page was on.
1281  *
1282  * Returns 0 if the page was removed from an LRU list.
1283  * Returns -EBUSY if the page was not on an LRU list.
1284  *
1285  * The returned page will have PageLRU() cleared.  If it was found on
1286  * the active list, it will have PageActive set.  If it was found on
1287  * the unevictable list, it will have the PageUnevictable bit set. That flag
1288  * may need to be cleared by the caller before letting the page go.
1289  *
1290  * The vmstat statistic corresponding to the list on which the page was
1291  * found will be decremented.
1292  *
1293  * Restrictions:
1294  * (1) Must be called with an elevated refcount on the page. This is a
1295  *     fundamentnal difference from isolate_lru_pages (which is called
1296  *     without a stable reference).
1297  * (2) the lru_lock must not be held.
1298  * (3) interrupts must be enabled.
1299  */
1300 int isolate_lru_page(struct page *page)
1301 {
1302         int ret = -EBUSY;
1303
1304         VM_BUG_ON(!page_count(page));
1305
1306         if (PageLRU(page)) {
1307                 struct zone *zone = page_zone(page);
1308
1309                 spin_lock_irq(&zone->lru_lock);
1310                 if (PageLRU(page)) {
1311                         int lru = page_lru(page);
1312                         ret = 0;
1313                         get_page(page);
1314                         ClearPageLRU(page);
1315
1316                         del_page_from_lru_list(zone, page, lru);
1317                 }
1318                 spin_unlock_irq(&zone->lru_lock);
1319         }
1320         return ret;
1321 }
1322
1323 /*
1324  * Are there way too many processes in the direct reclaim path already?
1325  */
1326 static int too_many_isolated(struct zone *zone, int file,
1327                 struct scan_control *sc)
1328 {
1329         unsigned long inactive, isolated;
1330
1331         if (current_is_kswapd())
1332                 return 0;
1333
1334         if (!scanning_global_lru(sc))
1335                 return 0;
1336
1337         if (file) {
1338                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1339                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1340         } else {
1341                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1342                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1343         }
1344
1345         return isolated > inactive;
1346 }
1347
1348 /*
1349  * TODO: Try merging with migrations version of putback_lru_pages
1350  */
1351 static noinline_for_stack void
1352 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1353                                 unsigned long nr_anon, unsigned long nr_file,
1354                                 struct list_head *page_list)
1355 {
1356         struct page *page;
1357         struct pagevec pvec;
1358         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1359
1360         pagevec_init(&pvec, 1);
1361
1362         /*
1363          * Put back any unfreeable pages.
1364          */
1365         spin_lock(&zone->lru_lock);
1366         while (!list_empty(page_list)) {
1367                 int lru;
1368                 page = lru_to_page(page_list);
1369                 VM_BUG_ON(PageLRU(page));
1370                 list_del(&page->lru);
1371                 if (unlikely(!page_evictable(page, NULL))) {
1372                         spin_unlock_irq(&zone->lru_lock);
1373                         putback_lru_page(page);
1374                         spin_lock_irq(&zone->lru_lock);
1375                         continue;
1376                 }
1377                 SetPageLRU(page);
1378                 lru = page_lru(page);
1379                 add_page_to_lru_list(zone, page, lru);
1380                 if (is_active_lru(lru)) {
1381                         int file = is_file_lru(lru);
1382                         int numpages = hpage_nr_pages(page);
1383                         reclaim_stat->recent_rotated[file] += numpages;
1384                         if (!scanning_global_lru(sc))
1385                                 sc->memcg_record->nr_rotated[file] += numpages;
1386                 }
1387                 if (!pagevec_add(&pvec, page)) {
1388                         spin_unlock_irq(&zone->lru_lock);
1389                         __pagevec_release(&pvec);
1390                         spin_lock_irq(&zone->lru_lock);
1391                 }
1392         }
1393         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1394         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1395
1396         spin_unlock_irq(&zone->lru_lock);
1397         pagevec_release(&pvec);
1398 }
1399
1400 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1401                                         struct scan_control *sc,
1402                                         unsigned long *nr_anon,
1403                                         unsigned long *nr_file,
1404                                         struct list_head *isolated_list)
1405 {
1406         unsigned long nr_active;
1407         unsigned int count[NR_LRU_LISTS] = { 0, };
1408         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1409
1410         nr_active = clear_active_flags(isolated_list, count);
1411         __count_vm_events(PGDEACTIVATE, nr_active);
1412
1413         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1414                               -count[LRU_ACTIVE_FILE]);
1415         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1416                               -count[LRU_INACTIVE_FILE]);
1417         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1418                               -count[LRU_ACTIVE_ANON]);
1419         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1420                               -count[LRU_INACTIVE_ANON]);
1421
1422         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1423         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1424         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1425         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1426
1427         reclaim_stat->recent_scanned[0] += *nr_anon;
1428         reclaim_stat->recent_scanned[1] += *nr_file;
1429         if (!scanning_global_lru(sc)) {
1430                 sc->memcg_record->nr_scanned[0] += *nr_anon;
1431                 sc->memcg_record->nr_scanned[1] += *nr_file;
1432         }
1433 }
1434
1435 /*
1436  * Returns true if a direct reclaim should wait on pages under writeback.
1437  *
1438  * If we are direct reclaiming for contiguous pages and we do not reclaim
1439  * everything in the list, try again and wait for writeback IO to complete.
1440  * This will stall high-order allocations noticeably. Only do that when really
1441  * need to free the pages under high memory pressure.
1442  */
1443 static inline bool should_reclaim_stall(unsigned long nr_taken,
1444                                         unsigned long nr_freed,
1445                                         int priority,
1446                                         struct scan_control *sc)
1447 {
1448         int lumpy_stall_priority;
1449
1450         /* kswapd should not stall on sync IO */
1451         if (current_is_kswapd())
1452                 return false;
1453
1454         /* Only stall on lumpy reclaim */
1455         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1456                 return false;
1457
1458         /* If we have reclaimed everything on the isolated list, no stall */
1459         if (nr_freed == nr_taken)
1460                 return false;
1461
1462         /*
1463          * For high-order allocations, there are two stall thresholds.
1464          * High-cost allocations stall immediately where as lower
1465          * order allocations such as stacks require the scanning
1466          * priority to be much higher before stalling.
1467          */
1468         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1469                 lumpy_stall_priority = DEF_PRIORITY;
1470         else
1471                 lumpy_stall_priority = DEF_PRIORITY / 3;
1472
1473         return priority <= lumpy_stall_priority;
1474 }
1475
1476 /*
1477  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1478  * of reclaimed pages
1479  */
1480 static noinline_for_stack unsigned long
1481 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1482                         struct scan_control *sc, int priority, int file)
1483 {
1484         LIST_HEAD(page_list);
1485         unsigned long nr_scanned;
1486         unsigned long nr_reclaimed = 0;
1487         unsigned long nr_taken;
1488         unsigned long nr_anon;
1489         unsigned long nr_file;
1490         unsigned long nr_dirty = 0;
1491         unsigned long nr_writeback = 0;
1492         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1493
1494         while (unlikely(too_many_isolated(zone, file, sc))) {
1495                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1496
1497                 /* We are about to die and free our memory. Return now. */
1498                 if (fatal_signal_pending(current))
1499                         return SWAP_CLUSTER_MAX;
1500         }
1501
1502         set_reclaim_mode(priority, sc, false);
1503         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1504                 reclaim_mode |= ISOLATE_ACTIVE;
1505
1506         lru_add_drain();
1507
1508         if (!sc->may_unmap)
1509                 reclaim_mode |= ISOLATE_UNMAPPED;
1510         if (!sc->may_writepage)
1511                 reclaim_mode |= ISOLATE_CLEAN;
1512
1513         spin_lock_irq(&zone->lru_lock);
1514
1515         if (scanning_global_lru(sc)) {
1516                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1517                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1518                 zone->pages_scanned += nr_scanned;
1519                 if (current_is_kswapd())
1520                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1521                                                nr_scanned);
1522                 else
1523                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1524                                                nr_scanned);
1525         } else {
1526                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1527                         &nr_scanned, sc->order, reclaim_mode, zone,
1528                         sc->mem_cgroup, 0, file);
1529                 /*
1530                  * mem_cgroup_isolate_pages() keeps track of
1531                  * scanned pages on its own.
1532                  */
1533         }
1534
1535         if (nr_taken == 0) {
1536                 spin_unlock_irq(&zone->lru_lock);
1537                 return 0;
1538         }
1539
1540         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1541
1542         spin_unlock_irq(&zone->lru_lock);
1543
1544         nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1545                                                 &nr_dirty, &nr_writeback);
1546
1547         /* Check if we should syncronously wait for writeback */
1548         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1549                 set_reclaim_mode(priority, sc, true);
1550                 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1551                                         priority, &nr_dirty, &nr_writeback);
1552         }
1553
1554         if (!scanning_global_lru(sc))
1555                 sc->memcg_record->nr_freed[file] += nr_reclaimed;
1556
1557         local_irq_disable();
1558         if (current_is_kswapd())
1559                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1560         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1561
1562         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1563
1564         /*
1565          * If we have encountered a high number of dirty pages under writeback
1566          * then we are reaching the end of the LRU too quickly and global
1567          * limits are not enough to throttle processes due to the page
1568          * distribution throughout zones. Scale the number of dirty pages that
1569          * must be under writeback before being throttled to priority.
1570          */
1571         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1572                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1573
1574         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1575                 zone_idx(zone),
1576                 nr_scanned, nr_reclaimed,
1577                 priority,
1578                 trace_shrink_flags(file, sc->reclaim_mode));
1579         return nr_reclaimed;
1580 }
1581
1582 /*
1583  * This moves pages from the active list to the inactive list.
1584  *
1585  * We move them the other way if the page is referenced by one or more
1586  * processes, from rmap.
1587  *
1588  * If the pages are mostly unmapped, the processing is fast and it is
1589  * appropriate to hold zone->lru_lock across the whole operation.  But if
1590  * the pages are mapped, the processing is slow (page_referenced()) so we
1591  * should drop zone->lru_lock around each page.  It's impossible to balance
1592  * this, so instead we remove the pages from the LRU while processing them.
1593  * It is safe to rely on PG_active against the non-LRU pages in here because
1594  * nobody will play with that bit on a non-LRU page.
1595  *
1596  * The downside is that we have to touch page->_count against each page.
1597  * But we had to alter page->flags anyway.
1598  */
1599
1600 static void move_active_pages_to_lru(struct zone *zone,
1601                                      struct list_head *list,
1602                                      enum lru_list lru)
1603 {
1604         unsigned long pgmoved = 0;
1605         struct pagevec pvec;
1606         struct page *page;
1607
1608         pagevec_init(&pvec, 1);
1609
1610         while (!list_empty(list)) {
1611                 page = lru_to_page(list);
1612
1613                 VM_BUG_ON(PageLRU(page));
1614                 SetPageLRU(page);
1615
1616                 list_move(&page->lru, &zone->lru[lru].list);
1617                 mem_cgroup_add_lru_list(page, lru);
1618                 pgmoved += hpage_nr_pages(page);
1619
1620                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1621                         spin_unlock_irq(&zone->lru_lock);
1622                         if (buffer_heads_over_limit)
1623                                 pagevec_strip(&pvec);
1624                         __pagevec_release(&pvec);
1625                         spin_lock_irq(&zone->lru_lock);
1626                 }
1627         }
1628         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1629         if (!is_active_lru(lru))
1630                 __count_vm_events(PGDEACTIVATE, pgmoved);
1631 }
1632
1633 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1634                         struct scan_control *sc, int priority, int file)
1635 {
1636         unsigned long nr_taken;
1637         unsigned long pgscanned;
1638         unsigned long vm_flags;
1639         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1640         LIST_HEAD(l_active);
1641         LIST_HEAD(l_inactive);
1642         struct page *page;
1643         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1644         unsigned long nr_rotated = 0;
1645         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1646
1647         lru_add_drain();
1648
1649         if (!sc->may_unmap)
1650                 reclaim_mode |= ISOLATE_UNMAPPED;
1651         if (!sc->may_writepage)
1652                 reclaim_mode |= ISOLATE_CLEAN;
1653
1654         spin_lock_irq(&zone->lru_lock);
1655         if (scanning_global_lru(sc)) {
1656                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1657                                                 &pgscanned, sc->order,
1658                                                 reclaim_mode, zone,
1659                                                 1, file);
1660                 zone->pages_scanned += pgscanned;
1661         } else {
1662                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1663                                                 &pgscanned, sc->order,
1664                                                 reclaim_mode, zone,
1665                                                 sc->mem_cgroup, 1, file);
1666                 /*
1667                  * mem_cgroup_isolate_pages() keeps track of
1668                  * scanned pages on its own.
1669                  */
1670         }
1671
1672         reclaim_stat->recent_scanned[file] += nr_taken;
1673         if (!scanning_global_lru(sc))
1674                 sc->memcg_record->nr_scanned[file] += nr_taken;
1675
1676         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1677         if (file)
1678                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1679         else
1680                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1681         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1682         spin_unlock_irq(&zone->lru_lock);
1683
1684         while (!list_empty(&l_hold)) {
1685                 cond_resched();
1686                 page = lru_to_page(&l_hold);
1687                 list_del(&page->lru);
1688
1689                 if (unlikely(!page_evictable(page, NULL))) {
1690                         putback_lru_page(page);
1691                         continue;
1692                 }
1693
1694                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1695                         nr_rotated += hpage_nr_pages(page);
1696                         /*
1697                          * Identify referenced, file-backed active pages and
1698                          * give them one more trip around the active list. So
1699                          * that executable code get better chances to stay in
1700                          * memory under moderate memory pressure.  Anon pages
1701                          * are not likely to be evicted by use-once streaming
1702                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1703                          * so we ignore them here.
1704                          */
1705                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1706                                 list_add(&page->lru, &l_active);
1707                                 continue;
1708                         }
1709                 }
1710
1711                 ClearPageActive(page);  /* we are de-activating */
1712                 list_add(&page->lru, &l_inactive);
1713         }
1714
1715         /*
1716          * Move pages back to the lru list.
1717          */
1718         spin_lock_irq(&zone->lru_lock);
1719         /*
1720          * Count referenced pages from currently used mappings as rotated,
1721          * even though only some of them are actually re-activated.  This
1722          * helps balance scan pressure between file and anonymous pages in
1723          * get_scan_ratio.
1724          */
1725         reclaim_stat->recent_rotated[file] += nr_rotated;
1726         if (!scanning_global_lru(sc))
1727                 sc->memcg_record->nr_rotated[file] += nr_rotated;
1728
1729         move_active_pages_to_lru(zone, &l_active,
1730                                                 LRU_ACTIVE + file * LRU_FILE);
1731         move_active_pages_to_lru(zone, &l_inactive,
1732                                                 LRU_BASE   + file * LRU_FILE);
1733         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1734         spin_unlock_irq(&zone->lru_lock);
1735 }
1736
1737 #ifdef CONFIG_SWAP
1738 static int inactive_anon_is_low_global(struct zone *zone)
1739 {
1740         unsigned long active, inactive;
1741
1742         active = zone_page_state(zone, NR_ACTIVE_ANON);
1743         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1744
1745         if (inactive * zone->inactive_ratio < active)
1746                 return 1;
1747
1748         return 0;
1749 }
1750
1751 /**
1752  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1753  * @zone: zone to check
1754  * @sc:   scan control of this context
1755  *
1756  * Returns true if the zone does not have enough inactive anon pages,
1757  * meaning some active anon pages need to be deactivated.
1758  */
1759 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1760 {
1761         int low;
1762
1763         /*
1764          * If we don't have swap space, anonymous page deactivation
1765          * is pointless.
1766          */
1767         if (!total_swap_pages)
1768                 return 0;
1769
1770         if (scanning_global_lru(sc))
1771                 low = inactive_anon_is_low_global(zone);
1772         else
1773                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1774         return low;
1775 }
1776 #else
1777 static inline int inactive_anon_is_low(struct zone *zone,
1778                                         struct scan_control *sc)
1779 {
1780         return 0;
1781 }
1782 #endif
1783
1784 static int inactive_file_is_low_global(struct zone *zone)
1785 {
1786         unsigned long active, inactive;
1787
1788         active = zone_page_state(zone, NR_ACTIVE_FILE);
1789         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1790
1791         return (active > inactive);
1792 }
1793
1794 /**
1795  * inactive_file_is_low - check if file pages need to be deactivated
1796  * @zone: zone to check
1797  * @sc:   scan control of this context
1798  *
1799  * When the system is doing streaming IO, memory pressure here
1800  * ensures that active file pages get deactivated, until more
1801  * than half of the file pages are on the inactive list.
1802  *
1803  * Once we get to that situation, protect the system's working
1804  * set from being evicted by disabling active file page aging.
1805  *
1806  * This uses a different ratio than the anonymous pages, because
1807  * the page cache uses a use-once replacement algorithm.
1808  */
1809 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1810 {
1811         int low;
1812
1813         if (scanning_global_lru(sc))
1814                 low = inactive_file_is_low_global(zone);
1815         else
1816                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1817         return low;
1818 }
1819
1820 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1821                                 int file)
1822 {
1823         if (file)
1824                 return inactive_file_is_low(zone, sc);
1825         else
1826                 return inactive_anon_is_low(zone, sc);
1827 }
1828
1829 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1830         struct zone *zone, struct scan_control *sc, int priority)
1831 {
1832         int file = is_file_lru(lru);
1833
1834         if (is_active_lru(lru)) {
1835                 if (inactive_list_is_low(zone, sc, file))
1836                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1837                 return 0;
1838         }
1839
1840         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1841 }
1842
1843 static int vmscan_swappiness(struct scan_control *sc)
1844 {
1845         if (scanning_global_lru(sc))
1846                 return vm_swappiness;
1847         return mem_cgroup_swappiness(sc->mem_cgroup);
1848 }
1849
1850 /*
1851  * Determine how aggressively the anon and file LRU lists should be
1852  * scanned.  The relative value of each set of LRU lists is determined
1853  * by looking at the fraction of the pages scanned we did rotate back
1854  * onto the active list instead of evict.
1855  *
1856  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1857  */
1858 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1859                                         unsigned long *nr, int priority)
1860 {
1861         unsigned long anon, file, free;
1862         unsigned long anon_prio, file_prio;
1863         unsigned long ap, fp;
1864         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1865         u64 fraction[2], denominator;
1866         enum lru_list l;
1867         int noswap = 0;
1868         bool force_scan = false;
1869
1870         /*
1871          * If the zone or memcg is small, nr[l] can be 0.  This
1872          * results in no scanning on this priority and a potential
1873          * priority drop.  Global direct reclaim can go to the next
1874          * zone and tends to have no problems. Global kswapd is for
1875          * zone balancing and it needs to scan a minimum amount. When
1876          * reclaiming for a memcg, a priority drop can cause high
1877          * latencies, so it's better to scan a minimum amount there as
1878          * well.
1879          */
1880         if (scanning_global_lru(sc) && current_is_kswapd())
1881                 force_scan = true;
1882         if (!scanning_global_lru(sc))
1883                 force_scan = true;
1884
1885         /* If we have no swap space, do not bother scanning anon pages. */
1886         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1887                 noswap = 1;
1888                 fraction[0] = 0;
1889                 fraction[1] = 1;
1890                 denominator = 1;
1891                 goto out;
1892         }
1893
1894         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1895                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1896         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1897                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1898
1899         if (scanning_global_lru(sc)) {
1900                 free  = zone_page_state(zone, NR_FREE_PAGES);
1901                 /* If we have very few page cache pages,
1902                    force-scan anon pages. */
1903                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1904                         fraction[0] = 1;
1905                         fraction[1] = 0;
1906                         denominator = 1;
1907                         goto out;
1908                 }
1909         }
1910
1911         /*
1912          * With swappiness at 100, anonymous and file have the same priority.
1913          * This scanning priority is essentially the inverse of IO cost.
1914          */
1915         anon_prio = vmscan_swappiness(sc);
1916         file_prio = 200 - vmscan_swappiness(sc);
1917
1918         /*
1919          * OK, so we have swap space and a fair amount of page cache
1920          * pages.  We use the recently rotated / recently scanned
1921          * ratios to determine how valuable each cache is.
1922          *
1923          * Because workloads change over time (and to avoid overflow)
1924          * we keep these statistics as a floating average, which ends
1925          * up weighing recent references more than old ones.
1926          *
1927          * anon in [0], file in [1]
1928          */
1929         spin_lock_irq(&zone->lru_lock);
1930         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1931                 reclaim_stat->recent_scanned[0] /= 2;
1932                 reclaim_stat->recent_rotated[0] /= 2;
1933         }
1934
1935         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1936                 reclaim_stat->recent_scanned[1] /= 2;
1937                 reclaim_stat->recent_rotated[1] /= 2;
1938         }
1939
1940         /*
1941          * The amount of pressure on anon vs file pages is inversely
1942          * proportional to the fraction of recently scanned pages on
1943          * each list that were recently referenced and in active use.
1944          */
1945         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1946         ap /= reclaim_stat->recent_rotated[0] + 1;
1947
1948         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1949         fp /= reclaim_stat->recent_rotated[1] + 1;
1950         spin_unlock_irq(&zone->lru_lock);
1951
1952         fraction[0] = ap;
1953         fraction[1] = fp;
1954         denominator = ap + fp + 1;
1955 out:
1956         for_each_evictable_lru(l) {
1957                 int file = is_file_lru(l);
1958                 unsigned long scan;
1959
1960                 scan = zone_nr_lru_pages(zone, sc, l);
1961                 if (priority || noswap) {
1962                         scan >>= priority;
1963                         if (!scan && force_scan)
1964                                 scan = SWAP_CLUSTER_MAX;
1965                         scan = div64_u64(scan * fraction[file], denominator);
1966                 }
1967                 nr[l] = scan;
1968         }
1969 }
1970
1971 /*
1972  * Reclaim/compaction depends on a number of pages being freed. To avoid
1973  * disruption to the system, a small number of order-0 pages continue to be
1974  * rotated and reclaimed in the normal fashion. However, by the time we get
1975  * back to the allocator and call try_to_compact_zone(), we ensure that
1976  * there are enough free pages for it to be likely successful
1977  */
1978 static inline bool should_continue_reclaim(struct zone *zone,
1979                                         unsigned long nr_reclaimed,
1980                                         unsigned long nr_scanned,
1981                                         struct scan_control *sc)
1982 {
1983         unsigned long pages_for_compaction;
1984         unsigned long inactive_lru_pages;
1985
1986         /* If not in reclaim/compaction mode, stop */
1987         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1988                 return false;
1989
1990         /* Consider stopping depending on scan and reclaim activity */
1991         if (sc->gfp_mask & __GFP_REPEAT) {
1992                 /*
1993                  * For __GFP_REPEAT allocations, stop reclaiming if the
1994                  * full LRU list has been scanned and we are still failing
1995                  * to reclaim pages. This full LRU scan is potentially
1996                  * expensive but a __GFP_REPEAT caller really wants to succeed
1997                  */
1998                 if (!nr_reclaimed && !nr_scanned)
1999                         return false;
2000         } else {
2001                 /*
2002                  * For non-__GFP_REPEAT allocations which can presumably
2003                  * fail without consequence, stop if we failed to reclaim
2004                  * any pages from the last SWAP_CLUSTER_MAX number of
2005                  * pages that were scanned. This will return to the
2006                  * caller faster at the risk reclaim/compaction and
2007                  * the resulting allocation attempt fails
2008                  */
2009                 if (!nr_reclaimed)
2010                         return false;
2011         }
2012
2013         /*
2014          * If we have not reclaimed enough pages for compaction and the
2015          * inactive lists are large enough, continue reclaiming
2016          */
2017         pages_for_compaction = (2UL << sc->order);
2018         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
2019                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2020         if (sc->nr_reclaimed < pages_for_compaction &&
2021                         inactive_lru_pages > pages_for_compaction)
2022                 return true;
2023
2024         /* If compaction would go ahead or the allocation would succeed, stop */
2025         switch (compaction_suitable(zone, sc->order)) {
2026         case COMPACT_PARTIAL:
2027         case COMPACT_CONTINUE:
2028                 return false;
2029         default:
2030                 return true;
2031         }
2032 }
2033
2034 /*
2035  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2036  */
2037 static void shrink_zone(int priority, struct zone *zone,
2038                                 struct scan_control *sc)
2039 {
2040         unsigned long nr[NR_LRU_LISTS];
2041         unsigned long nr_to_scan;
2042         enum lru_list l;
2043         unsigned long nr_reclaimed, nr_scanned;
2044         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2045         struct blk_plug plug;
2046
2047 restart:
2048         nr_reclaimed = 0;
2049         nr_scanned = sc->nr_scanned;
2050         get_scan_count(zone, sc, nr, priority);
2051
2052         blk_start_plug(&plug);
2053         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2054                                         nr[LRU_INACTIVE_FILE]) {
2055                 for_each_evictable_lru(l) {
2056                         if (nr[l]) {
2057                                 nr_to_scan = min_t(unsigned long,
2058                                                    nr[l], SWAP_CLUSTER_MAX);
2059                                 nr[l] -= nr_to_scan;
2060
2061                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2062                                                             zone, sc, priority);
2063                         }
2064                 }
2065                 /*
2066                  * On large memory systems, scan >> priority can become
2067                  * really large. This is fine for the starting priority;
2068                  * we want to put equal scanning pressure on each zone.
2069                  * However, if the VM has a harder time of freeing pages,
2070                  * with multiple processes reclaiming pages, the total
2071                  * freeing target can get unreasonably large.
2072                  */
2073                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2074                         break;
2075         }
2076         blk_finish_plug(&plug);
2077         sc->nr_reclaimed += nr_reclaimed;
2078
2079         /*
2080          * Even if we did not try to evict anon pages at all, we want to
2081          * rebalance the anon lru active/inactive ratio.
2082          */
2083         if (inactive_anon_is_low(zone, sc))
2084                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2085
2086         /* reclaim/compaction might need reclaim to continue */
2087         if (should_continue_reclaim(zone, nr_reclaimed,
2088                                         sc->nr_scanned - nr_scanned, sc))
2089                 goto restart;
2090
2091         throttle_vm_writeout(sc->gfp_mask);
2092 }
2093
2094 /*
2095  * This is the direct reclaim path, for page-allocating processes.  We only
2096  * try to reclaim pages from zones which will satisfy the caller's allocation
2097  * request.
2098  *
2099  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2100  * Because:
2101  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2102  *    allocation or
2103  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2104  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2105  *    zone defense algorithm.
2106  *
2107  * If a zone is deemed to be full of pinned pages then just give it a light
2108  * scan then give up on it.
2109  */
2110 static void shrink_zones(int priority, struct zonelist *zonelist,
2111                                         struct scan_control *sc)
2112 {
2113         struct zoneref *z;
2114         struct zone *zone;
2115         unsigned long nr_soft_reclaimed;
2116         unsigned long nr_soft_scanned;
2117
2118         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2119                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2120                 if (!populated_zone(zone))
2121                         continue;
2122                 /*
2123                  * Take care memory controller reclaiming has small influence
2124                  * to global LRU.
2125                  */
2126                 if (scanning_global_lru(sc)) {
2127                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2128                                 continue;
2129                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2130                                 continue;       /* Let kswapd poll it */
2131                         /*
2132                          * This steals pages from memory cgroups over softlimit
2133                          * and returns the number of reclaimed pages and
2134                          * scanned pages. This works for global memory pressure
2135                          * and balancing, not for a memcg's limit.
2136                          */
2137                         nr_soft_scanned = 0;
2138                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2139                                                 sc->order, sc->gfp_mask,
2140                                                 &nr_soft_scanned);
2141                         sc->nr_reclaimed += nr_soft_reclaimed;
2142                         sc->nr_scanned += nr_soft_scanned;
2143                         /* need some check for avoid more shrink_zone() */
2144                 }
2145
2146                 shrink_zone(priority, zone, sc);
2147         }
2148 }
2149
2150 static bool zone_reclaimable(struct zone *zone)
2151 {
2152         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2153 }
2154
2155 /* All zones in zonelist are unreclaimable? */
2156 static bool all_unreclaimable(struct zonelist *zonelist,
2157                 struct scan_control *sc)
2158 {
2159         struct zoneref *z;
2160         struct zone *zone;
2161
2162         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2163                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2164                 if (!populated_zone(zone))
2165                         continue;
2166                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2167                         continue;
2168                 if (!zone->all_unreclaimable)
2169                         return false;
2170         }
2171
2172         return true;
2173 }
2174
2175 /*
2176  * This is the main entry point to direct page reclaim.
2177  *
2178  * If a full scan of the inactive list fails to free enough memory then we
2179  * are "out of memory" and something needs to be killed.
2180  *
2181  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2182  * high - the zone may be full of dirty or under-writeback pages, which this
2183  * caller can't do much about.  We kick the writeback threads and take explicit
2184  * naps in the hope that some of these pages can be written.  But if the
2185  * allocating task holds filesystem locks which prevent writeout this might not
2186  * work, and the allocation attempt will fail.
2187  *
2188  * returns:     0, if no pages reclaimed
2189  *              else, the number of pages reclaimed
2190  */
2191 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2192                                         struct scan_control *sc,
2193                                         struct shrink_control *shrink)
2194 {
2195         int priority;
2196         unsigned long total_scanned = 0;
2197         struct reclaim_state *reclaim_state = current->reclaim_state;
2198         struct zoneref *z;
2199         struct zone *zone;
2200         unsigned long writeback_threshold;
2201
2202         get_mems_allowed();
2203         delayacct_freepages_start();
2204
2205         if (scanning_global_lru(sc))
2206                 count_vm_event(ALLOCSTALL);
2207
2208         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2209                 sc->nr_scanned = 0;
2210                 if (!priority)
2211                         disable_swap_token(sc->mem_cgroup);
2212                 shrink_zones(priority, zonelist, sc);
2213                 /*
2214                  * Don't shrink slabs when reclaiming memory from
2215                  * over limit cgroups
2216                  */
2217                 if (scanning_global_lru(sc)) {
2218                         unsigned long lru_pages = 0;
2219                         for_each_zone_zonelist(zone, z, zonelist,
2220                                         gfp_zone(sc->gfp_mask)) {
2221                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2222                                         continue;
2223
2224                                 lru_pages += zone_reclaimable_pages(zone);
2225                         }
2226
2227                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2228                         if (reclaim_state) {
2229                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2230                                 reclaim_state->reclaimed_slab = 0;
2231                         }
2232                 }
2233                 total_scanned += sc->nr_scanned;
2234                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2235                         goto out;
2236
2237                 /*
2238                  * Try to write back as many pages as we just scanned.  This
2239                  * tends to cause slow streaming writers to write data to the
2240                  * disk smoothly, at the dirtying rate, which is nice.   But
2241                  * that's undesirable in laptop mode, where we *want* lumpy
2242                  * writeout.  So in laptop mode, write out the whole world.
2243                  */
2244                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2245                 if (total_scanned > writeback_threshold) {
2246                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2247                         sc->may_writepage = 1;
2248                 }
2249
2250                 /* Take a nap, wait for some writeback to complete */
2251                 if (!sc->hibernation_mode && sc->nr_scanned &&
2252                     priority < DEF_PRIORITY - 2) {
2253                         struct zone *preferred_zone;
2254
2255                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2256                                                 &cpuset_current_mems_allowed,
2257                                                 &preferred_zone);
2258                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2259                 }
2260         }
2261
2262 out:
2263         delayacct_freepages_end();
2264         put_mems_allowed();
2265
2266         if (sc->nr_reclaimed)
2267                 return sc->nr_reclaimed;
2268
2269         /*
2270          * As hibernation is going on, kswapd is freezed so that it can't mark
2271          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2272          * check.
2273          */
2274         if (oom_killer_disabled)
2275                 return 0;
2276
2277         /* top priority shrink_zones still had more to do? don't OOM, then */
2278         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2279                 return 1;
2280
2281         return 0;
2282 }
2283
2284 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2285                                 gfp_t gfp_mask, nodemask_t *nodemask)
2286 {
2287         unsigned long nr_reclaimed;
2288         struct scan_control sc = {
2289                 .gfp_mask = gfp_mask,
2290                 .may_writepage = !laptop_mode,
2291                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2292                 .may_unmap = 1,
2293                 .may_swap = 1,
2294                 .order = order,
2295                 .mem_cgroup = NULL,
2296                 .nodemask = nodemask,
2297         };
2298         struct shrink_control shrink = {
2299                 .gfp_mask = sc.gfp_mask,
2300         };
2301
2302         trace_mm_vmscan_direct_reclaim_begin(order,
2303                                 sc.may_writepage,
2304                                 gfp_mask);
2305
2306         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2307
2308         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2309
2310         return nr_reclaimed;
2311 }
2312
2313 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2314
2315 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2316                                         gfp_t gfp_mask, bool noswap,
2317                                         struct zone *zone,
2318                                         struct memcg_scanrecord *rec,
2319                                         unsigned long *scanned)
2320 {
2321         struct scan_control sc = {
2322                 .nr_scanned = 0,
2323                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2324                 .may_writepage = !laptop_mode,
2325                 .may_unmap = 1,
2326                 .may_swap = !noswap,
2327                 .order = 0,
2328                 .mem_cgroup = mem,
2329                 .memcg_record = rec,
2330         };
2331         ktime_t start, end;
2332
2333         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2334                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2335
2336         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2337                                                       sc.may_writepage,
2338                                                       sc.gfp_mask);
2339
2340         start = ktime_get();
2341         /*
2342          * NOTE: Although we can get the priority field, using it
2343          * here is not a good idea, since it limits the pages we can scan.
2344          * if we don't reclaim here, the shrink_zone from balance_pgdat
2345          * will pick up pages from other mem cgroup's as well. We hack
2346          * the priority and make it zero.
2347          */
2348         shrink_zone(0, zone, &sc);
2349         end = ktime_get();
2350
2351         if (rec)
2352                 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2353         *scanned = sc.nr_scanned;
2354
2355         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2356
2357         return sc.nr_reclaimed;
2358 }
2359
2360 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2361                                            gfp_t gfp_mask,
2362                                            bool noswap,
2363                                            struct memcg_scanrecord *rec)
2364 {
2365         struct zonelist *zonelist;
2366         unsigned long nr_reclaimed;
2367         ktime_t start, end;
2368         int nid;
2369         struct scan_control sc = {
2370                 .may_writepage = !laptop_mode,
2371                 .may_unmap = 1,
2372                 .may_swap = !noswap,
2373                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2374                 .order = 0,
2375                 .mem_cgroup = mem_cont,
2376                 .memcg_record = rec,
2377                 .nodemask = NULL, /* we don't care the placement */
2378                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2379                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2380         };
2381         struct shrink_control shrink = {
2382                 .gfp_mask = sc.gfp_mask,
2383         };
2384
2385         start = ktime_get();
2386         /*
2387          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2388          * take care of from where we get pages. So the node where we start the
2389          * scan does not need to be the current node.
2390          */
2391         nid = mem_cgroup_select_victim_node(mem_cont);
2392
2393         zonelist = NODE_DATA(nid)->node_zonelists;
2394
2395         trace_mm_vmscan_memcg_reclaim_begin(0,
2396                                             sc.may_writepage,
2397                                             sc.gfp_mask);
2398
2399         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2400         end = ktime_get();
2401         if (rec)
2402                 rec->elapsed += ktime_to_ns(ktime_sub(end, start));
2403
2404         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2405
2406         return nr_reclaimed;
2407 }
2408 #endif
2409
2410 /*
2411  * pgdat_balanced is used when checking if a node is balanced for high-order
2412  * allocations. Only zones that meet watermarks and are in a zone allowed
2413  * by the callers classzone_idx are added to balanced_pages. The total of
2414  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2415  * for the node to be considered balanced. Forcing all zones to be balanced
2416  * for high orders can cause excessive reclaim when there are imbalanced zones.
2417  * The choice of 25% is due to
2418  *   o a 16M DMA zone that is balanced will not balance a zone on any
2419  *     reasonable sized machine
2420  *   o On all other machines, the top zone must be at least a reasonable
2421  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2422  *     would need to be at least 256M for it to be balance a whole node.
2423  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2424  *     to balance a node on its own. These seemed like reasonable ratios.
2425  */
2426 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2427                                                 int classzone_idx)
2428 {
2429         unsigned long present_pages = 0;
2430         int i;
2431
2432         for (i = 0; i <= classzone_idx; i++)
2433                 present_pages += pgdat->node_zones[i].present_pages;
2434
2435         /* A special case here: if zone has no page, we think it's balanced */
2436         return balanced_pages >= (present_pages >> 2);
2437 }
2438
2439 /* is kswapd sleeping prematurely? */
2440 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2441                                         int classzone_idx)
2442 {
2443         int i;
2444         unsigned long balanced = 0;
2445         bool all_zones_ok = true;
2446
2447         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2448         if (remaining)
2449                 return true;
2450
2451         /* Check the watermark levels */
2452         for (i = 0; i <= classzone_idx; i++) {
2453                 struct zone *zone = pgdat->node_zones + i;
2454
2455                 if (!populated_zone(zone))
2456                         continue;
2457
2458                 /*
2459                  * balance_pgdat() skips over all_unreclaimable after
2460                  * DEF_PRIORITY. Effectively, it considers them balanced so
2461                  * they must be considered balanced here as well if kswapd
2462                  * is to sleep
2463                  */
2464                 if (zone->all_unreclaimable) {
2465                         balanced += zone->present_pages;
2466                         continue;
2467                 }
2468
2469                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2470                                                         i, 0))
2471                         all_zones_ok = false;
2472                 else
2473                         balanced += zone->present_pages;
2474         }
2475
2476         /*
2477          * For high-order requests, the balanced zones must contain at least
2478          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2479          * must be balanced
2480          */
2481         if (order)
2482                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2483         else
2484                 return !all_zones_ok;
2485 }
2486
2487 /*
2488  * For kswapd, balance_pgdat() will work across all this node's zones until
2489  * they are all at high_wmark_pages(zone).
2490  *
2491  * Returns the final order kswapd was reclaiming at
2492  *
2493  * There is special handling here for zones which are full of pinned pages.
2494  * This can happen if the pages are all mlocked, or if they are all used by
2495  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2496  * What we do is to detect the case where all pages in the zone have been
2497  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2498  * dead and from now on, only perform a short scan.  Basically we're polling
2499  * the zone for when the problem goes away.
2500  *
2501  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2502  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2503  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2504  * lower zones regardless of the number of free pages in the lower zones. This
2505  * interoperates with the page allocator fallback scheme to ensure that aging
2506  * of pages is balanced across the zones.
2507  */
2508 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2509                                                         int *classzone_idx)
2510 {
2511         int all_zones_ok;
2512         unsigned long balanced;
2513         int priority;
2514         int i;
2515         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2516         unsigned long total_scanned;
2517         struct reclaim_state *reclaim_state = current->reclaim_state;
2518         unsigned long nr_soft_reclaimed;
2519         unsigned long nr_soft_scanned;
2520         struct scan_control sc = {
2521                 .gfp_mask = GFP_KERNEL,
2522                 .may_unmap = 1,
2523                 .may_swap = 1,
2524                 /*
2525                  * kswapd doesn't want to be bailed out while reclaim. because
2526                  * we want to put equal scanning pressure on each zone.
2527                  */
2528                 .nr_to_reclaim = ULONG_MAX,
2529                 .order = order,
2530                 .mem_cgroup = NULL,
2531         };
2532         struct shrink_control shrink = {
2533                 .gfp_mask = sc.gfp_mask,
2534         };
2535 loop_again:
2536         total_scanned = 0;
2537         sc.nr_reclaimed = 0;
2538         sc.may_writepage = !laptop_mode;
2539         count_vm_event(PAGEOUTRUN);
2540
2541         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2542                 unsigned long lru_pages = 0;
2543                 int has_under_min_watermark_zone = 0;
2544
2545                 /* The swap token gets in the way of swapout... */
2546                 if (!priority)
2547                         disable_swap_token(NULL);
2548
2549                 all_zones_ok = 1;
2550                 balanced = 0;
2551
2552                 /*
2553                  * Scan in the highmem->dma direction for the highest
2554                  * zone which needs scanning
2555                  */
2556                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2557                         struct zone *zone = pgdat->node_zones + i;
2558
2559                         if (!populated_zone(zone))
2560                                 continue;
2561
2562                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2563                                 continue;
2564
2565                         /*
2566                          * Do some background aging of the anon list, to give
2567                          * pages a chance to be referenced before reclaiming.
2568                          */
2569                         if (inactive_anon_is_low(zone, &sc))
2570                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2571                                                         &sc, priority, 0);
2572
2573                         if (!zone_watermark_ok_safe(zone, order,
2574                                         high_wmark_pages(zone), 0, 0)) {
2575                                 end_zone = i;
2576                                 break;
2577                         } else {
2578                                 /* If balanced, clear the congested flag */
2579                                 zone_clear_flag(zone, ZONE_CONGESTED);
2580                         }
2581                 }
2582                 if (i < 0)
2583                         goto out;
2584
2585                 for (i = 0; i <= end_zone; i++) {
2586                         struct zone *zone = pgdat->node_zones + i;
2587
2588                         lru_pages += zone_reclaimable_pages(zone);
2589                 }
2590
2591                 /*
2592                  * Now scan the zone in the dma->highmem direction, stopping
2593                  * at the last zone which needs scanning.
2594                  *
2595                  * We do this because the page allocator works in the opposite
2596                  * direction.  This prevents the page allocator from allocating
2597                  * pages behind kswapd's direction of progress, which would
2598                  * cause too much scanning of the lower zones.
2599                  */
2600                 for (i = 0; i <= end_zone; i++) {
2601                         struct zone *zone = pgdat->node_zones + i;
2602                         int nr_slab;
2603                         unsigned long balance_gap;
2604
2605                         if (!populated_zone(zone))
2606                                 continue;
2607
2608                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2609                                 continue;
2610
2611                         sc.nr_scanned = 0;
2612
2613                         nr_soft_scanned = 0;
2614                         /*
2615                          * Call soft limit reclaim before calling shrink_zone.
2616                          */
2617                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2618                                                         order, sc.gfp_mask,
2619                                                         &nr_soft_scanned);
2620                         sc.nr_reclaimed += nr_soft_reclaimed;
2621                         total_scanned += nr_soft_scanned;
2622
2623                         /*
2624                          * We put equal pressure on every zone, unless
2625                          * one zone has way too many pages free
2626                          * already. The "too many pages" is defined
2627                          * as the high wmark plus a "gap" where the
2628                          * gap is either the low watermark or 1%
2629                          * of the zone, whichever is smaller.
2630                          */
2631                         balance_gap = min(low_wmark_pages(zone),
2632                                 (zone->present_pages +
2633                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2634                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2635                         if (!zone_watermark_ok_safe(zone, order,
2636                                         high_wmark_pages(zone) + balance_gap,
2637                                         end_zone, 0)) {
2638                                 shrink_zone(priority, zone, &sc);
2639
2640                                 reclaim_state->reclaimed_slab = 0;
2641                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2642                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2643                                 total_scanned += sc.nr_scanned;
2644
2645                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2646                                         zone->all_unreclaimable = 1;
2647                         }
2648
2649                         /*
2650                          * If we've done a decent amount of scanning and
2651                          * the reclaim ratio is low, start doing writepage
2652                          * even in laptop mode
2653                          */
2654                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2655                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2656                                 sc.may_writepage = 1;
2657
2658                         if (zone->all_unreclaimable) {
2659                                 if (end_zone && end_zone == i)
2660                                         end_zone--;
2661                                 continue;
2662                         }
2663
2664                         if (!zone_watermark_ok_safe(zone, order,
2665                                         high_wmark_pages(zone), end_zone, 0)) {
2666                                 all_zones_ok = 0;
2667                                 /*
2668                                  * We are still under min water mark.  This
2669                                  * means that we have a GFP_ATOMIC allocation
2670                                  * failure risk. Hurry up!
2671                                  */
2672                                 if (!zone_watermark_ok_safe(zone, order,
2673                                             min_wmark_pages(zone), end_zone, 0))
2674                                         has_under_min_watermark_zone = 1;
2675                         } else {
2676                                 /*
2677                                  * If a zone reaches its high watermark,
2678                                  * consider it to be no longer congested. It's
2679                                  * possible there are dirty pages backed by
2680                                  * congested BDIs but as pressure is relieved,
2681                                  * spectulatively avoid congestion waits
2682                                  */
2683                                 zone_clear_flag(zone, ZONE_CONGESTED);
2684                                 if (i <= *classzone_idx)
2685                                         balanced += zone->present_pages;
2686                         }
2687
2688                 }
2689                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2690                         break;          /* kswapd: all done */
2691                 /*
2692                  * OK, kswapd is getting into trouble.  Take a nap, then take
2693                  * another pass across the zones.
2694                  */
2695                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2696                         if (has_under_min_watermark_zone)
2697                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2698                         else
2699                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2700                 }
2701
2702                 /*
2703                  * We do this so kswapd doesn't build up large priorities for
2704                  * example when it is freeing in parallel with allocators. It
2705                  * matches the direct reclaim path behaviour in terms of impact
2706                  * on zone->*_priority.
2707                  */
2708                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2709                         break;
2710         }
2711 out:
2712
2713         /*
2714          * order-0: All zones must meet high watermark for a balanced node
2715          * high-order: Balanced zones must make up at least 25% of the node
2716          *             for the node to be balanced
2717          */
2718         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2719                 cond_resched();
2720
2721                 try_to_freeze();
2722
2723                 /*
2724                  * Fragmentation may mean that the system cannot be
2725                  * rebalanced for high-order allocations in all zones.
2726                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2727                  * it means the zones have been fully scanned and are still
2728                  * not balanced. For high-order allocations, there is
2729                  * little point trying all over again as kswapd may
2730                  * infinite loop.
2731                  *
2732                  * Instead, recheck all watermarks at order-0 as they
2733                  * are the most important. If watermarks are ok, kswapd will go
2734                  * back to sleep. High-order users can still perform direct
2735                  * reclaim if they wish.
2736                  */
2737                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2738                         order = sc.order = 0;
2739
2740                 goto loop_again;
2741         }
2742
2743         /*
2744          * If kswapd was reclaiming at a higher order, it has the option of
2745          * sleeping without all zones being balanced. Before it does, it must
2746          * ensure that the watermarks for order-0 on *all* zones are met and
2747          * that the congestion flags are cleared. The congestion flag must
2748          * be cleared as kswapd is the only mechanism that clears the flag
2749          * and it is potentially going to sleep here.
2750          */
2751         if (order) {
2752                 for (i = 0; i <= end_zone; i++) {
2753                         struct zone *zone = pgdat->node_zones + i;
2754
2755                         if (!populated_zone(zone))
2756                                 continue;
2757
2758                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2759                                 continue;
2760
2761                         /* Confirm the zone is balanced for order-0 */
2762                         if (!zone_watermark_ok(zone, 0,
2763                                         high_wmark_pages(zone), 0, 0)) {
2764                                 order = sc.order = 0;
2765                                 goto loop_again;
2766                         }
2767
2768                         /* If balanced, clear the congested flag */
2769                         zone_clear_flag(zone, ZONE_CONGESTED);
2770                         if (i <= *classzone_idx)
2771                                 balanced += zone->present_pages;
2772                 }
2773         }
2774
2775         /*
2776          * Return the order we were reclaiming at so sleeping_prematurely()
2777          * makes a decision on the order we were last reclaiming at. However,
2778          * if another caller entered the allocator slow path while kswapd
2779          * was awake, order will remain at the higher level
2780          */
2781         *classzone_idx = end_zone;
2782         return order;
2783 }
2784
2785 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2786 {
2787         long remaining = 0;
2788         DEFINE_WAIT(wait);
2789
2790         if (freezing(current) || kthread_should_stop())
2791                 return;
2792
2793         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2794
2795         /* Try to sleep for a short interval */
2796         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2797                 remaining = schedule_timeout(HZ/10);
2798                 finish_wait(&pgdat->kswapd_wait, &wait);
2799                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2800         }
2801
2802         /*
2803          * After a short sleep, check if it was a premature sleep. If not, then
2804          * go fully to sleep until explicitly woken up.
2805          */
2806         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2807                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2808
2809                 /*
2810                  * vmstat counters are not perfectly accurate and the estimated
2811                  * value for counters such as NR_FREE_PAGES can deviate from the
2812                  * true value by nr_online_cpus * threshold. To avoid the zone
2813                  * watermarks being breached while under pressure, we reduce the
2814                  * per-cpu vmstat threshold while kswapd is awake and restore
2815                  * them before going back to sleep.
2816                  */
2817                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2818                 schedule();
2819                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2820         } else {
2821                 if (remaining)
2822                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2823                 else
2824                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2825         }
2826         finish_wait(&pgdat->kswapd_wait, &wait);
2827 }
2828
2829 /*
2830  * The background pageout daemon, started as a kernel thread
2831  * from the init process.
2832  *
2833  * This basically trickles out pages so that we have _some_
2834  * free memory available even if there is no other activity
2835  * that frees anything up. This is needed for things like routing
2836  * etc, where we otherwise might have all activity going on in
2837  * asynchronous contexts that cannot page things out.
2838  *
2839  * If there are applications that are active memory-allocators
2840  * (most normal use), this basically shouldn't matter.
2841  */
2842 static int kswapd(void *p)
2843 {
2844         unsigned long order, new_order;
2845         int classzone_idx, new_classzone_idx;
2846         pg_data_t *pgdat = (pg_data_t*)p;
2847         struct task_struct *tsk = current;
2848
2849         struct reclaim_state reclaim_state = {
2850                 .reclaimed_slab = 0,
2851         };
2852         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2853
2854         lockdep_set_current_reclaim_state(GFP_KERNEL);
2855
2856         if (!cpumask_empty(cpumask))
2857                 set_cpus_allowed_ptr(tsk, cpumask);
2858         current->reclaim_state = &reclaim_state;
2859
2860         /*
2861          * Tell the memory management that we're a "memory allocator",
2862          * and that if we need more memory we should get access to it
2863          * regardless (see "__alloc_pages()"). "kswapd" should
2864          * never get caught in the normal page freeing logic.
2865          *
2866          * (Kswapd normally doesn't need memory anyway, but sometimes
2867          * you need a small amount of memory in order to be able to
2868          * page out something else, and this flag essentially protects
2869          * us from recursively trying to free more memory as we're
2870          * trying to free the first piece of memory in the first place).
2871          */
2872         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2873         set_freezable();
2874
2875         order = new_order = 0;
2876         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2877         for ( ; ; ) {
2878                 int ret;
2879
2880                 /*
2881                  * If the last balance_pgdat was unsuccessful it's unlikely a
2882                  * new request of a similar or harder type will succeed soon
2883                  * so consider going to sleep on the basis we reclaimed at
2884                  */
2885                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2886                         new_order = pgdat->kswapd_max_order;
2887                         new_classzone_idx = pgdat->classzone_idx;
2888                         pgdat->kswapd_max_order =  0;
2889                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2890                 }
2891
2892                 if (order < new_order || classzone_idx > new_classzone_idx) {
2893                         /*
2894                          * Don't sleep if someone wants a larger 'order'
2895                          * allocation or has tigher zone constraints
2896                          */
2897                         order = new_order;
2898                         classzone_idx = new_classzone_idx;
2899                 } else {
2900                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2901                         order = pgdat->kswapd_max_order;
2902                         classzone_idx = pgdat->classzone_idx;
2903                         pgdat->kswapd_max_order = 0;
2904                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2905                 }
2906
2907                 ret = try_to_freeze();
2908                 if (kthread_should_stop())
2909                         break;
2910
2911                 /*
2912                  * We can speed up thawing tasks if we don't call balance_pgdat
2913                  * after returning from the refrigerator
2914                  */
2915                 if (!ret) {
2916                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2917                         order = balance_pgdat(pgdat, order, &classzone_idx);
2918                 }
2919         }
2920         return 0;
2921 }
2922
2923 /*
2924  * A zone is low on free memory, so wake its kswapd task to service it.
2925  */
2926 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2927 {
2928         pg_data_t *pgdat;
2929
2930         if (!populated_zone(zone))
2931                 return;
2932
2933         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2934                 return;
2935         pgdat = zone->zone_pgdat;
2936         if (pgdat->kswapd_max_order < order) {
2937                 pgdat->kswapd_max_order = order;
2938                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2939         }
2940         if (!waitqueue_active(&pgdat->kswapd_wait))
2941                 return;
2942         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2943                 return;
2944
2945         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2946         wake_up_interruptible(&pgdat->kswapd_wait);
2947 }
2948
2949 /*
2950  * The reclaimable count would be mostly accurate.
2951  * The less reclaimable pages may be
2952  * - mlocked pages, which will be moved to unevictable list when encountered
2953  * - mapped pages, which may require several travels to be reclaimed
2954  * - dirty pages, which is not "instantly" reclaimable
2955  */
2956 unsigned long global_reclaimable_pages(void)
2957 {
2958         int nr;
2959
2960         nr = global_page_state(NR_ACTIVE_FILE) +
2961              global_page_state(NR_INACTIVE_FILE);
2962
2963         if (nr_swap_pages > 0)
2964                 nr += global_page_state(NR_ACTIVE_ANON) +
2965                       global_page_state(NR_INACTIVE_ANON);
2966
2967         return nr;
2968 }
2969
2970 unsigned long zone_reclaimable_pages(struct zone *zone)
2971 {
2972         int nr;
2973
2974         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2975              zone_page_state(zone, NR_INACTIVE_FILE);
2976
2977         if (nr_swap_pages > 0)
2978                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2979                       zone_page_state(zone, NR_INACTIVE_ANON);
2980
2981         return nr;
2982 }
2983
2984 #ifdef CONFIG_HIBERNATION
2985 /*
2986  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2987  * freed pages.
2988  *
2989  * Rather than trying to age LRUs the aim is to preserve the overall
2990  * LRU order by reclaiming preferentially
2991  * inactive > active > active referenced > active mapped
2992  */
2993 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2994 {
2995         struct reclaim_state reclaim_state;
2996         struct scan_control sc = {
2997                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2998                 .may_swap = 1,
2999                 .may_unmap = 1,
3000                 .may_writepage = 1,
3001                 .nr_to_reclaim = nr_to_reclaim,
3002                 .hibernation_mode = 1,
3003                 .order = 0,
3004         };
3005         struct shrink_control shrink = {
3006                 .gfp_mask = sc.gfp_mask,
3007         };
3008         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3009         struct task_struct *p = current;
3010         unsigned long nr_reclaimed;
3011
3012         p->flags |= PF_MEMALLOC;
3013         lockdep_set_current_reclaim_state(sc.gfp_mask);
3014         reclaim_state.reclaimed_slab = 0;
3015         p->reclaim_state = &reclaim_state;
3016
3017         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3018
3019         p->reclaim_state = NULL;
3020         lockdep_clear_current_reclaim_state();
3021         p->flags &= ~PF_MEMALLOC;
3022
3023         return nr_reclaimed;
3024 }
3025 #endif /* CONFIG_HIBERNATION */
3026
3027 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3028    not required for correctness.  So if the last cpu in a node goes
3029    away, we get changed to run anywhere: as the first one comes back,
3030    restore their cpu bindings. */
3031 static int __devinit cpu_callback(struct notifier_block *nfb,
3032                                   unsigned long action, void *hcpu)
3033 {
3034         int nid;
3035
3036         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3037                 for_each_node_state(nid, N_HIGH_MEMORY) {
3038                         pg_data_t *pgdat = NODE_DATA(nid);
3039                         const struct cpumask *mask;
3040
3041                         mask = cpumask_of_node(pgdat->node_id);
3042
3043                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3044                                 /* One of our CPUs online: restore mask */
3045                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3046                 }
3047         }
3048         return NOTIFY_OK;
3049 }
3050
3051 /*
3052  * This kswapd start function will be called by init and node-hot-add.
3053  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3054  */
3055 int kswapd_run(int nid)
3056 {
3057         pg_data_t *pgdat = NODE_DATA(nid);
3058         int ret = 0;
3059
3060         if (pgdat->kswapd)
3061                 return 0;
3062
3063         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3064         if (IS_ERR(pgdat->kswapd)) {
3065                 /* failure at boot is fatal */
3066                 BUG_ON(system_state == SYSTEM_BOOTING);
3067                 printk("Failed to start kswapd on node %d\n",nid);
3068                 ret = -1;
3069         }
3070         return ret;
3071 }
3072
3073 /*
3074  * Called by memory hotplug when all memory in a node is offlined.
3075  */
3076 void kswapd_stop(int nid)
3077 {
3078         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3079
3080         if (kswapd)
3081                 kthread_stop(kswapd);
3082 }
3083
3084 static int __init kswapd_init(void)
3085 {
3086         int nid;
3087
3088         swap_setup();
3089         for_each_node_state(nid, N_HIGH_MEMORY)
3090                 kswapd_run(nid);
3091         hotcpu_notifier(cpu_callback, 0);
3092         return 0;
3093 }
3094
3095 module_init(kswapd_init)
3096
3097 #ifdef CONFIG_NUMA
3098 /*
3099  * Zone reclaim mode
3100  *
3101  * If non-zero call zone_reclaim when the number of free pages falls below
3102  * the watermarks.
3103  */
3104 int zone_reclaim_mode __read_mostly;
3105
3106 #define RECLAIM_OFF 0
3107 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3108 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3109 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3110
3111 /*
3112  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3113  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3114  * a zone.
3115  */
3116 #define ZONE_RECLAIM_PRIORITY 4
3117
3118 /*
3119  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3120  * occur.
3121  */
3122 int sysctl_min_unmapped_ratio = 1;
3123
3124 /*
3125  * If the number of slab pages in a zone grows beyond this percentage then
3126  * slab reclaim needs to occur.
3127  */
3128 int sysctl_min_slab_ratio = 5;
3129
3130 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3131 {
3132         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3133         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3134                 zone_page_state(zone, NR_ACTIVE_FILE);
3135
3136         /*
3137          * It's possible for there to be more file mapped pages than
3138          * accounted for by the pages on the file LRU lists because
3139          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3140          */
3141         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3142 }
3143
3144 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3145 static long zone_pagecache_reclaimable(struct zone *zone)
3146 {
3147         long nr_pagecache_reclaimable;
3148         long delta = 0;
3149
3150         /*
3151          * If RECLAIM_SWAP is set, then all file pages are considered
3152          * potentially reclaimable. Otherwise, we have to worry about
3153          * pages like swapcache and zone_unmapped_file_pages() provides
3154          * a better estimate
3155          */
3156         if (zone_reclaim_mode & RECLAIM_SWAP)
3157                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3158         else
3159                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3160
3161         /* If we can't clean pages, remove dirty pages from consideration */
3162         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3163                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3164
3165         /* Watch for any possible underflows due to delta */
3166         if (unlikely(delta > nr_pagecache_reclaimable))
3167                 delta = nr_pagecache_reclaimable;
3168
3169         return nr_pagecache_reclaimable - delta;
3170 }
3171
3172 /*
3173  * Try to free up some pages from this zone through reclaim.
3174  */
3175 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3176 {
3177         /* Minimum pages needed in order to stay on node */
3178         const unsigned long nr_pages = 1 << order;
3179         struct task_struct *p = current;
3180         struct reclaim_state reclaim_state;
3181         int priority;
3182         struct scan_control sc = {
3183                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3184                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3185                 .may_swap = 1,
3186                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3187                                        SWAP_CLUSTER_MAX),
3188                 .gfp_mask = gfp_mask,
3189                 .order = order,
3190         };
3191         struct shrink_control shrink = {
3192                 .gfp_mask = sc.gfp_mask,
3193         };
3194         unsigned long nr_slab_pages0, nr_slab_pages1;
3195
3196         cond_resched();
3197         /*
3198          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3199          * and we also need to be able to write out pages for RECLAIM_WRITE
3200          * and RECLAIM_SWAP.
3201          */
3202         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3203         lockdep_set_current_reclaim_state(gfp_mask);
3204         reclaim_state.reclaimed_slab = 0;
3205         p->reclaim_state = &reclaim_state;
3206
3207         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3208                 /*
3209                  * Free memory by calling shrink zone with increasing
3210                  * priorities until we have enough memory freed.
3211                  */
3212                 priority = ZONE_RECLAIM_PRIORITY;
3213                 do {
3214                         shrink_zone(priority, zone, &sc);
3215                         priority--;
3216                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3217         }
3218
3219         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3220         if (nr_slab_pages0 > zone->min_slab_pages) {
3221                 /*
3222                  * shrink_slab() does not currently allow us to determine how
3223                  * many pages were freed in this zone. So we take the current
3224                  * number of slab pages and shake the slab until it is reduced
3225                  * by the same nr_pages that we used for reclaiming unmapped
3226                  * pages.
3227                  *
3228                  * Note that shrink_slab will free memory on all zones and may
3229                  * take a long time.
3230                  */
3231                 for (;;) {
3232                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3233
3234                         /* No reclaimable slab or very low memory pressure */
3235                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3236                                 break;
3237
3238                         /* Freed enough memory */
3239                         nr_slab_pages1 = zone_page_state(zone,
3240                                                         NR_SLAB_RECLAIMABLE);
3241                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3242                                 break;
3243                 }
3244
3245                 /*
3246                  * Update nr_reclaimed by the number of slab pages we
3247                  * reclaimed from this zone.
3248                  */
3249                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3250                 if (nr_slab_pages1 < nr_slab_pages0)
3251                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3252         }
3253
3254         p->reclaim_state = NULL;
3255         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3256         lockdep_clear_current_reclaim_state();
3257         return sc.nr_reclaimed >= nr_pages;
3258 }
3259
3260 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3261 {
3262         int node_id;
3263         int ret;
3264
3265         /*
3266          * Zone reclaim reclaims unmapped file backed pages and
3267          * slab pages if we are over the defined limits.
3268          *
3269          * A small portion of unmapped file backed pages is needed for
3270          * file I/O otherwise pages read by file I/O will be immediately
3271          * thrown out if the zone is overallocated. So we do not reclaim
3272          * if less than a specified percentage of the zone is used by
3273          * unmapped file backed pages.
3274          */
3275         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3276             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3277                 return ZONE_RECLAIM_FULL;
3278
3279         if (zone->all_unreclaimable)
3280                 return ZONE_RECLAIM_FULL;
3281
3282         /*
3283          * Do not scan if the allocation should not be delayed.
3284          */
3285         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3286                 return ZONE_RECLAIM_NOSCAN;
3287
3288         /*
3289          * Only run zone reclaim on the local zone or on zones that do not
3290          * have associated processors. This will favor the local processor
3291          * over remote processors and spread off node memory allocations
3292          * as wide as possible.
3293          */
3294         node_id = zone_to_nid(zone);
3295         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3296                 return ZONE_RECLAIM_NOSCAN;
3297
3298         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3299                 return ZONE_RECLAIM_NOSCAN;
3300
3301         ret = __zone_reclaim(zone, gfp_mask, order);
3302         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3303
3304         if (!ret)
3305                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3306
3307         return ret;
3308 }
3309 #endif
3310
3311 /*
3312  * page_evictable - test whether a page is evictable
3313  * @page: the page to test
3314  * @vma: the VMA in which the page is or will be mapped, may be NULL
3315  *
3316  * Test whether page is evictable--i.e., should be placed on active/inactive
3317  * lists vs unevictable list.  The vma argument is !NULL when called from the
3318  * fault path to determine how to instantate a new page.
3319  *
3320  * Reasons page might not be evictable:
3321  * (1) page's mapping marked unevictable
3322  * (2) page is part of an mlocked VMA
3323  *
3324  */
3325 int page_evictable(struct page *page, struct vm_area_struct *vma)
3326 {
3327
3328         if (mapping_unevictable(page_mapping(page)))
3329                 return 0;
3330
3331         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3332                 return 0;
3333
3334         return 1;
3335 }
3336
3337 /**
3338  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3339  * @page: page to check evictability and move to appropriate lru list
3340  * @zone: zone page is in
3341  *
3342  * Checks a page for evictability and moves the page to the appropriate
3343  * zone lru list.
3344  *
3345  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3346  * have PageUnevictable set.
3347  */
3348 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3349 {
3350         VM_BUG_ON(PageActive(page));
3351
3352 retry:
3353         ClearPageUnevictable(page);
3354         if (page_evictable(page, NULL)) {
3355                 enum lru_list l = page_lru_base_type(page);
3356
3357                 __dec_zone_state(zone, NR_UNEVICTABLE);
3358                 list_move(&page->lru, &zone->lru[l].list);
3359                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3360                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3361                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3362         } else {
3363                 /*
3364                  * rotate unevictable list
3365                  */
3366                 SetPageUnevictable(page);
3367                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3368                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3369                 if (page_evictable(page, NULL))
3370                         goto retry;
3371         }
3372 }
3373
3374 /**
3375  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3376  * @mapping: struct address_space to scan for evictable pages
3377  *
3378  * Scan all pages in mapping.  Check unevictable pages for
3379  * evictability and move them to the appropriate zone lru list.
3380  */
3381 void scan_mapping_unevictable_pages(struct address_space *mapping)
3382 {
3383         pgoff_t next = 0;
3384         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3385                          PAGE_CACHE_SHIFT;
3386         struct zone *zone;
3387         struct pagevec pvec;
3388
3389         if (mapping->nrpages == 0)
3390                 return;
3391
3392         pagevec_init(&pvec, 0);
3393         while (next < end &&
3394                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3395                 int i;
3396                 int pg_scanned = 0;
3397
3398                 zone = NULL;
3399
3400                 for (i = 0; i < pagevec_count(&pvec); i++) {
3401                         struct page *page = pvec.pages[i];
3402                         pgoff_t page_index = page->index;
3403                         struct zone *pagezone = page_zone(page);
3404
3405                         pg_scanned++;
3406                         if (page_index > next)
3407                                 next = page_index;
3408                         next++;
3409
3410                         if (pagezone != zone) {
3411                                 if (zone)
3412                                         spin_unlock_irq(&zone->lru_lock);
3413                                 zone = pagezone;
3414                                 spin_lock_irq(&zone->lru_lock);
3415                         }
3416
3417                         if (PageLRU(page) && PageUnevictable(page))
3418                                 check_move_unevictable_page(page, zone);
3419                 }
3420                 if (zone)
3421                         spin_unlock_irq(&zone->lru_lock);
3422                 pagevec_release(&pvec);
3423
3424                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3425         }
3426
3427 }
3428
3429 /**
3430  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3431  * @zone - zone of which to scan the unevictable list
3432  *
3433  * Scan @zone's unevictable LRU lists to check for pages that have become
3434  * evictable.  Move those that have to @zone's inactive list where they
3435  * become candidates for reclaim, unless shrink_inactive_zone() decides
3436  * to reactivate them.  Pages that are still unevictable are rotated
3437  * back onto @zone's unevictable list.
3438  */
3439 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3440 static void scan_zone_unevictable_pages(struct zone *zone)
3441 {
3442         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3443         unsigned long scan;
3444         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3445
3446         while (nr_to_scan > 0) {
3447                 unsigned long batch_size = min(nr_to_scan,
3448                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3449
3450                 spin_lock_irq(&zone->lru_lock);
3451                 for (scan = 0;  scan < batch_size; scan++) {
3452                         struct page *page = lru_to_page(l_unevictable);
3453
3454                         if (!trylock_page(page))
3455                                 continue;
3456
3457                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3458
3459                         if (likely(PageLRU(page) && PageUnevictable(page)))
3460                                 check_move_unevictable_page(page, zone);
3461
3462                         unlock_page(page);
3463                 }
3464                 spin_unlock_irq(&zone->lru_lock);
3465
3466                 nr_to_scan -= batch_size;
3467         }
3468 }
3469
3470
3471 /**
3472  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3473  *
3474  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3475  * pages that have become evictable.  Move those back to the zones'
3476  * inactive list where they become candidates for reclaim.
3477  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3478  * and we add swap to the system.  As such, it runs in the context of a task
3479  * that has possibly/probably made some previously unevictable pages
3480  * evictable.
3481  */
3482 static void scan_all_zones_unevictable_pages(void)
3483 {
3484         struct zone *zone;
3485
3486         for_each_zone(zone) {
3487                 scan_zone_unevictable_pages(zone);
3488         }
3489 }
3490
3491 /*
3492  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3493  * all nodes' unevictable lists for evictable pages
3494  */
3495 unsigned long scan_unevictable_pages;
3496
3497 int scan_unevictable_handler(struct ctl_table *table, int write,
3498                            void __user *buffer,
3499                            size_t *length, loff_t *ppos)
3500 {
3501         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3502
3503         if (write && *(unsigned long *)table->data)
3504                 scan_all_zones_unevictable_pages();
3505
3506         scan_unevictable_pages = 0;
3507         return 0;
3508 }
3509
3510 #ifdef CONFIG_NUMA
3511 /*
3512  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3513  * a specified node's per zone unevictable lists for evictable pages.
3514  */
3515
3516 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3517                                           struct sysdev_attribute *attr,
3518                                           char *buf)
3519 {
3520         return sprintf(buf, "0\n");     /* always zero; should fit... */
3521 }
3522
3523 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3524                                            struct sysdev_attribute *attr,
3525                                         const char *buf, size_t count)
3526 {
3527         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3528         struct zone *zone;
3529         unsigned long res;
3530         unsigned long req = strict_strtoul(buf, 10, &res);
3531
3532         if (!req)
3533                 return 1;       /* zero is no-op */
3534
3535         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3536                 if (!populated_zone(zone))
3537                         continue;
3538                 scan_zone_unevictable_pages(zone);
3539         }
3540         return 1;
3541 }
3542
3543
3544 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3545                         read_scan_unevictable_node,
3546                         write_scan_unevictable_node);
3547
3548 int scan_unevictable_register_node(struct node *node)
3549 {
3550         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3551 }
3552
3553 void scan_unevictable_unregister_node(struct node *node)
3554 {
3555         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3556 }
3557 #endif