2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
98 int sysctl_tcp_early_retrans __read_mostly = 3;
99 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 #define REXMIT_NONE 0 /* no loss recovery to do */
125 #define REXMIT_LOST 1 /* retransmit packets marked lost */
126 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
128 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
131 static bool __once __read_mostly;
134 struct net_device *dev;
139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
140 if (!dev || len >= dev->mtu)
141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 dev ? dev->name : "Unknown driver");
147 /* Adapt the MSS value used to make delayed ack decision to the
150 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
152 struct inet_connection_sock *icsk = inet_csk(sk);
153 const unsigned int lss = icsk->icsk_ack.last_seg_size;
156 icsk->icsk_ack.last_seg_size = 0;
158 /* skb->len may jitter because of SACKs, even if peer
159 * sends good full-sized frames.
161 len = skb_shinfo(skb)->gso_size ? : skb->len;
162 if (len >= icsk->icsk_ack.rcv_mss) {
163 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
165 /* Account for possibly-removed options */
166 if (unlikely(len > icsk->icsk_ack.rcv_mss +
167 MAX_TCP_OPTION_SPACE))
168 tcp_gro_dev_warn(sk, skb, len);
170 /* Otherwise, we make more careful check taking into account,
171 * that SACKs block is variable.
173 * "len" is invariant segment length, including TCP header.
175 len += skb->data - skb_transport_header(skb);
176 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
177 /* If PSH is not set, packet should be
178 * full sized, provided peer TCP is not badly broken.
179 * This observation (if it is correct 8)) allows
180 * to handle super-low mtu links fairly.
182 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
183 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
184 /* Subtract also invariant (if peer is RFC compliant),
185 * tcp header plus fixed timestamp option length.
186 * Resulting "len" is MSS free of SACK jitter.
188 len -= tcp_sk(sk)->tcp_header_len;
189 icsk->icsk_ack.last_seg_size = len;
191 icsk->icsk_ack.rcv_mss = len;
195 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
201 static void tcp_incr_quickack(struct sock *sk)
203 struct inet_connection_sock *icsk = inet_csk(sk);
204 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
208 if (quickacks > icsk->icsk_ack.quick)
209 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
212 static void tcp_enter_quickack_mode(struct sock *sk)
214 struct inet_connection_sock *icsk = inet_csk(sk);
215 tcp_incr_quickack(sk);
216 icsk->icsk_ack.pingpong = 0;
217 icsk->icsk_ack.ato = TCP_ATO_MIN;
220 /* Send ACKs quickly, if "quick" count is not exhausted
221 * and the session is not interactive.
224 static bool tcp_in_quickack_mode(struct sock *sk)
226 const struct inet_connection_sock *icsk = inet_csk(sk);
227 const struct dst_entry *dst = __sk_dst_get(sk);
229 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
230 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
233 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
235 if (tp->ecn_flags & TCP_ECN_OK)
236 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
239 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
241 if (tcp_hdr(skb)->cwr)
242 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
245 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
250 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
252 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
253 case INET_ECN_NOT_ECT:
254 /* Funny extension: if ECT is not set on a segment,
255 * and we already seen ECT on a previous segment,
256 * it is probably a retransmit.
258 if (tp->ecn_flags & TCP_ECN_SEEN)
259 tcp_enter_quickack_mode((struct sock *)tp);
262 if (tcp_ca_needs_ecn((struct sock *)tp))
263 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
265 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
266 /* Better not delay acks, sender can have a very low cwnd */
267 tcp_enter_quickack_mode((struct sock *)tp);
268 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
270 tp->ecn_flags |= TCP_ECN_SEEN;
273 if (tcp_ca_needs_ecn((struct sock *)tp))
274 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
275 tp->ecn_flags |= TCP_ECN_SEEN;
280 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
282 if (tp->ecn_flags & TCP_ECN_OK)
283 __tcp_ecn_check_ce(tp, skb);
286 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
288 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
289 tp->ecn_flags &= ~TCP_ECN_OK;
292 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
294 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
295 tp->ecn_flags &= ~TCP_ECN_OK;
298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
300 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
305 /* Buffer size and advertised window tuning.
307 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
310 static void tcp_sndbuf_expand(struct sock *sk)
312 const struct tcp_sock *tp = tcp_sk(sk);
313 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
317 /* Worst case is non GSO/TSO : each frame consumes one skb
318 * and skb->head is kmalloced using power of two area of memory
320 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
324 per_mss = roundup_pow_of_two(per_mss) +
325 SKB_DATA_ALIGN(sizeof(struct sk_buff));
327 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
328 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
330 /* Fast Recovery (RFC 5681 3.2) :
331 * Cubic needs 1.7 factor, rounded to 2 to include
332 * extra cushion (application might react slowly to POLLOUT)
334 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
335 sndmem *= nr_segs * per_mss;
337 if (sk->sk_sndbuf < sndmem)
338 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
343 * All tcp_full_space() is split to two parts: "network" buffer, allocated
344 * forward and advertised in receiver window (tp->rcv_wnd) and
345 * "application buffer", required to isolate scheduling/application
346 * latencies from network.
347 * window_clamp is maximal advertised window. It can be less than
348 * tcp_full_space(), in this case tcp_full_space() - window_clamp
349 * is reserved for "application" buffer. The less window_clamp is
350 * the smoother our behaviour from viewpoint of network, but the lower
351 * throughput and the higher sensitivity of the connection to losses. 8)
353 * rcv_ssthresh is more strict window_clamp used at "slow start"
354 * phase to predict further behaviour of this connection.
355 * It is used for two goals:
356 * - to enforce header prediction at sender, even when application
357 * requires some significant "application buffer". It is check #1.
358 * - to prevent pruning of receive queue because of misprediction
359 * of receiver window. Check #2.
361 * The scheme does not work when sender sends good segments opening
362 * window and then starts to feed us spaghetti. But it should work
363 * in common situations. Otherwise, we have to rely on queue collapsing.
366 /* Slow part of check#2. */
367 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
369 struct tcp_sock *tp = tcp_sk(sk);
371 int truesize = tcp_win_from_space(skb->truesize) >> 1;
372 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
374 while (tp->rcv_ssthresh <= window) {
375 if (truesize <= skb->len)
376 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
384 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
386 struct tcp_sock *tp = tcp_sk(sk);
389 if (tp->rcv_ssthresh < tp->window_clamp &&
390 (int)tp->rcv_ssthresh < tcp_space(sk) &&
391 !tcp_under_memory_pressure(sk)) {
394 /* Check #2. Increase window, if skb with such overhead
395 * will fit to rcvbuf in future.
397 if (tcp_win_from_space(skb->truesize) <= skb->len)
398 incr = 2 * tp->advmss;
400 incr = __tcp_grow_window(sk, skb);
403 incr = max_t(int, incr, 2 * skb->len);
404 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
406 inet_csk(sk)->icsk_ack.quick |= 1;
411 /* 3. Tuning rcvbuf, when connection enters established state. */
412 static void tcp_fixup_rcvbuf(struct sock *sk)
414 u32 mss = tcp_sk(sk)->advmss;
417 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
418 tcp_default_init_rwnd(mss);
420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 * Allow enough cushion so that sender is not limited by our window
423 if (sysctl_tcp_moderate_rcvbuf)
426 if (sk->sk_rcvbuf < rcvmem)
427 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
430 /* 4. Try to fixup all. It is made immediately after connection enters
433 void tcp_init_buffer_space(struct sock *sk)
435 struct tcp_sock *tp = tcp_sk(sk);
438 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
439 tcp_fixup_rcvbuf(sk);
440 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
441 tcp_sndbuf_expand(sk);
443 tp->rcvq_space.space = tp->rcv_wnd;
444 skb_mstamp_get(&tp->tcp_mstamp);
445 tp->rcvq_space.time = tp->tcp_mstamp;
446 tp->rcvq_space.seq = tp->copied_seq;
448 maxwin = tcp_full_space(sk);
450 if (tp->window_clamp >= maxwin) {
451 tp->window_clamp = maxwin;
453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 tp->window_clamp = max(maxwin -
455 (maxwin >> sysctl_tcp_app_win),
459 /* Force reservation of one segment. */
460 if (sysctl_tcp_app_win &&
461 tp->window_clamp > 2 * tp->advmss &&
462 tp->window_clamp + tp->advmss > maxwin)
463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 tp->snd_cwnd_stamp = tcp_time_stamp;
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock *sk)
472 struct tcp_sock *tp = tcp_sk(sk);
473 struct inet_connection_sock *icsk = inet_csk(sk);
475 icsk->icsk_ack.quick = 0;
477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 !tcp_under_memory_pressure(sk) &&
480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
488 /* Initialize RCV_MSS value.
489 * RCV_MSS is an our guess about MSS used by the peer.
490 * We haven't any direct information about the MSS.
491 * It's better to underestimate the RCV_MSS rather than overestimate.
492 * Overestimations make us ACKing less frequently than needed.
493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
495 void tcp_initialize_rcv_mss(struct sock *sk)
497 const struct tcp_sock *tp = tcp_sk(sk);
498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
500 hint = min(hint, tp->rcv_wnd / 2);
501 hint = min(hint, TCP_MSS_DEFAULT);
502 hint = max(hint, TCP_MIN_MSS);
504 inet_csk(sk)->icsk_ack.rcv_mss = hint;
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
508 /* Receiver "autotuning" code.
510 * The algorithm for RTT estimation w/o timestamps is based on
511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512 * <http://public.lanl.gov/radiant/pubs.html#DRS>
514 * More detail on this code can be found at
515 * <http://staff.psc.edu/jheffner/>,
516 * though this reference is out of date. A new paper
519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
521 u32 new_sample = tp->rcv_rtt_est.rtt_us;
527 if (new_sample != 0) {
528 /* If we sample in larger samples in the non-timestamp
529 * case, we could grossly overestimate the RTT especially
530 * with chatty applications or bulk transfer apps which
531 * are stalled on filesystem I/O.
533 * Also, since we are only going for a minimum in the
534 * non-timestamp case, we do not smooth things out
535 * else with timestamps disabled convergence takes too
539 m -= (new_sample >> 3);
547 /* No previous measure. */
551 tp->rcv_rtt_est.rtt_us = new_sample;
554 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
558 if (tp->rcv_rtt_est.time.v64 == 0)
560 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
562 delta_us = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcv_rtt_est.time);
563 tcp_rcv_rtt_update(tp, delta_us, 1);
566 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
567 tp->rcv_rtt_est.time = tp->tcp_mstamp;
570 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
571 const struct sk_buff *skb)
573 struct tcp_sock *tp = tcp_sk(sk);
574 if (tp->rx_opt.rcv_tsecr &&
575 (TCP_SKB_CB(skb)->end_seq -
576 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
577 tcp_rcv_rtt_update(tp,
578 jiffies_to_usecs(tcp_time_stamp -
579 tp->rx_opt.rcv_tsecr),
584 * This function should be called every time data is copied to user space.
585 * It calculates the appropriate TCP receive buffer space.
587 void tcp_rcv_space_adjust(struct sock *sk)
589 struct tcp_sock *tp = tcp_sk(sk);
593 time = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcvq_space.time);
594 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
597 /* Number of bytes copied to user in last RTT */
598 copied = tp->copied_seq - tp->rcvq_space.seq;
599 if (copied <= tp->rcvq_space.space)
603 * copied = bytes received in previous RTT, our base window
604 * To cope with packet losses, we need a 2x factor
605 * To cope with slow start, and sender growing its cwin by 100 %
606 * every RTT, we need a 4x factor, because the ACK we are sending
607 * now is for the next RTT, not the current one :
608 * <prev RTT . ><current RTT .. ><next RTT .... >
611 if (sysctl_tcp_moderate_rcvbuf &&
612 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
613 int rcvwin, rcvmem, rcvbuf;
615 /* minimal window to cope with packet losses, assuming
616 * steady state. Add some cushion because of small variations.
618 rcvwin = (copied << 1) + 16 * tp->advmss;
620 /* If rate increased by 25%,
621 * assume slow start, rcvwin = 3 * copied
622 * If rate increased by 50%,
623 * assume sender can use 2x growth, rcvwin = 4 * copied
626 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
628 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
631 rcvwin += (rcvwin >> 1);
634 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
635 while (tcp_win_from_space(rcvmem) < tp->advmss)
638 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
639 if (rcvbuf > sk->sk_rcvbuf) {
640 sk->sk_rcvbuf = rcvbuf;
642 /* Make the window clamp follow along. */
643 tp->window_clamp = rcvwin;
646 tp->rcvq_space.space = copied;
649 tp->rcvq_space.seq = tp->copied_seq;
650 tp->rcvq_space.time = tp->tcp_mstamp;
653 /* There is something which you must keep in mind when you analyze the
654 * behavior of the tp->ato delayed ack timeout interval. When a
655 * connection starts up, we want to ack as quickly as possible. The
656 * problem is that "good" TCP's do slow start at the beginning of data
657 * transmission. The means that until we send the first few ACK's the
658 * sender will sit on his end and only queue most of his data, because
659 * he can only send snd_cwnd unacked packets at any given time. For
660 * each ACK we send, he increments snd_cwnd and transmits more of his
663 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
665 struct tcp_sock *tp = tcp_sk(sk);
666 struct inet_connection_sock *icsk = inet_csk(sk);
669 inet_csk_schedule_ack(sk);
671 tcp_measure_rcv_mss(sk, skb);
673 tcp_rcv_rtt_measure(tp);
675 now = tcp_time_stamp;
677 if (!icsk->icsk_ack.ato) {
678 /* The _first_ data packet received, initialize
679 * delayed ACK engine.
681 tcp_incr_quickack(sk);
682 icsk->icsk_ack.ato = TCP_ATO_MIN;
684 int m = now - icsk->icsk_ack.lrcvtime;
686 if (m <= TCP_ATO_MIN / 2) {
687 /* The fastest case is the first. */
688 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
689 } else if (m < icsk->icsk_ack.ato) {
690 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
691 if (icsk->icsk_ack.ato > icsk->icsk_rto)
692 icsk->icsk_ack.ato = icsk->icsk_rto;
693 } else if (m > icsk->icsk_rto) {
694 /* Too long gap. Apparently sender failed to
695 * restart window, so that we send ACKs quickly.
697 tcp_incr_quickack(sk);
701 icsk->icsk_ack.lrcvtime = now;
703 tcp_ecn_check_ce(tp, skb);
706 tcp_grow_window(sk, skb);
709 /* Called to compute a smoothed rtt estimate. The data fed to this
710 * routine either comes from timestamps, or from segments that were
711 * known _not_ to have been retransmitted [see Karn/Partridge
712 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
713 * piece by Van Jacobson.
714 * NOTE: the next three routines used to be one big routine.
715 * To save cycles in the RFC 1323 implementation it was better to break
716 * it up into three procedures. -- erics
718 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
720 struct tcp_sock *tp = tcp_sk(sk);
721 long m = mrtt_us; /* RTT */
722 u32 srtt = tp->srtt_us;
724 /* The following amusing code comes from Jacobson's
725 * article in SIGCOMM '88. Note that rtt and mdev
726 * are scaled versions of rtt and mean deviation.
727 * This is designed to be as fast as possible
728 * m stands for "measurement".
730 * On a 1990 paper the rto value is changed to:
731 * RTO = rtt + 4 * mdev
733 * Funny. This algorithm seems to be very broken.
734 * These formulae increase RTO, when it should be decreased, increase
735 * too slowly, when it should be increased quickly, decrease too quickly
736 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
737 * does not matter how to _calculate_ it. Seems, it was trap
738 * that VJ failed to avoid. 8)
741 m -= (srtt >> 3); /* m is now error in rtt est */
742 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
744 m = -m; /* m is now abs(error) */
745 m -= (tp->mdev_us >> 2); /* similar update on mdev */
746 /* This is similar to one of Eifel findings.
747 * Eifel blocks mdev updates when rtt decreases.
748 * This solution is a bit different: we use finer gain
749 * for mdev in this case (alpha*beta).
750 * Like Eifel it also prevents growth of rto,
751 * but also it limits too fast rto decreases,
752 * happening in pure Eifel.
757 m -= (tp->mdev_us >> 2); /* similar update on mdev */
759 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
760 if (tp->mdev_us > tp->mdev_max_us) {
761 tp->mdev_max_us = tp->mdev_us;
762 if (tp->mdev_max_us > tp->rttvar_us)
763 tp->rttvar_us = tp->mdev_max_us;
765 if (after(tp->snd_una, tp->rtt_seq)) {
766 if (tp->mdev_max_us < tp->rttvar_us)
767 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
768 tp->rtt_seq = tp->snd_nxt;
769 tp->mdev_max_us = tcp_rto_min_us(sk);
772 /* no previous measure. */
773 srtt = m << 3; /* take the measured time to be rtt */
774 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
775 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
776 tp->mdev_max_us = tp->rttvar_us;
777 tp->rtt_seq = tp->snd_nxt;
779 tp->srtt_us = max(1U, srtt);
782 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
783 * Note: TCP stack does not yet implement pacing.
784 * FQ packet scheduler can be used to implement cheap but effective
785 * TCP pacing, to smooth the burst on large writes when packets
786 * in flight is significantly lower than cwnd (or rwin)
788 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
789 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
791 static void tcp_update_pacing_rate(struct sock *sk)
793 const struct tcp_sock *tp = tcp_sk(sk);
796 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
797 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
799 /* current rate is (cwnd * mss) / srtt
800 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
801 * In Congestion Avoidance phase, set it to 120 % the current rate.
803 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
804 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
805 * end of slow start and should slow down.
807 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
808 rate *= sysctl_tcp_pacing_ss_ratio;
810 rate *= sysctl_tcp_pacing_ca_ratio;
812 rate *= max(tp->snd_cwnd, tp->packets_out);
814 if (likely(tp->srtt_us))
815 do_div(rate, tp->srtt_us);
817 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
818 * without any lock. We want to make sure compiler wont store
819 * intermediate values in this location.
821 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
822 sk->sk_max_pacing_rate);
825 /* Calculate rto without backoff. This is the second half of Van Jacobson's
826 * routine referred to above.
828 static void tcp_set_rto(struct sock *sk)
830 const struct tcp_sock *tp = tcp_sk(sk);
831 /* Old crap is replaced with new one. 8)
834 * 1. If rtt variance happened to be less 50msec, it is hallucination.
835 * It cannot be less due to utterly erratic ACK generation made
836 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
837 * to do with delayed acks, because at cwnd>2 true delack timeout
838 * is invisible. Actually, Linux-2.4 also generates erratic
839 * ACKs in some circumstances.
841 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
843 /* 2. Fixups made earlier cannot be right.
844 * If we do not estimate RTO correctly without them,
845 * all the algo is pure shit and should be replaced
846 * with correct one. It is exactly, which we pretend to do.
849 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
850 * guarantees that rto is higher.
855 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
857 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
860 cwnd = TCP_INIT_CWND;
861 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
865 * Packet counting of FACK is based on in-order assumptions, therefore TCP
866 * disables it when reordering is detected
868 void tcp_disable_fack(struct tcp_sock *tp)
870 /* RFC3517 uses different metric in lost marker => reset on change */
872 tp->lost_skb_hint = NULL;
873 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
876 /* Take a notice that peer is sending D-SACKs */
877 static void tcp_dsack_seen(struct tcp_sock *tp)
879 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
882 static void tcp_update_reordering(struct sock *sk, const int metric,
885 struct tcp_sock *tp = tcp_sk(sk);
888 if (metric > tp->reordering) {
889 tp->reordering = min(sysctl_tcp_max_reordering, metric);
891 #if FASTRETRANS_DEBUG > 1
892 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
893 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
897 tp->undo_marker ? tp->undo_retrans : 0);
899 tcp_disable_fack(tp);
904 /* This exciting event is worth to be remembered. 8) */
906 mib_idx = LINUX_MIB_TCPTSREORDER;
907 else if (tcp_is_reno(tp))
908 mib_idx = LINUX_MIB_TCPRENOREORDER;
909 else if (tcp_is_fack(tp))
910 mib_idx = LINUX_MIB_TCPFACKREORDER;
912 mib_idx = LINUX_MIB_TCPSACKREORDER;
914 NET_INC_STATS(sock_net(sk), mib_idx);
917 /* This must be called before lost_out is incremented */
918 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
920 if (!tp->retransmit_skb_hint ||
921 before(TCP_SKB_CB(skb)->seq,
922 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
923 tp->retransmit_skb_hint = skb;
926 /* Sum the number of packets on the wire we have marked as lost.
927 * There are two cases we care about here:
928 * a) Packet hasn't been marked lost (nor retransmitted),
929 * and this is the first loss.
930 * b) Packet has been marked both lost and retransmitted,
931 * and this means we think it was lost again.
933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
935 __u8 sacked = TCP_SKB_CB(skb)->sacked;
937 if (!(sacked & TCPCB_LOST) ||
938 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
939 tp->lost += tcp_skb_pcount(skb);
942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 tcp_verify_retransmit_hint(tp, skb);
947 tp->lost_out += tcp_skb_pcount(skb);
948 tcp_sum_lost(tp, skb);
949 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
955 tcp_verify_retransmit_hint(tp, skb);
957 tcp_sum_lost(tp, skb);
958 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 tp->lost_out += tcp_skb_pcount(skb);
960 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
964 /* This procedure tags the retransmission queue when SACKs arrive.
966 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
967 * Packets in queue with these bits set are counted in variables
968 * sacked_out, retrans_out and lost_out, correspondingly.
970 * Valid combinations are:
971 * Tag InFlight Description
972 * 0 1 - orig segment is in flight.
973 * S 0 - nothing flies, orig reached receiver.
974 * L 0 - nothing flies, orig lost by net.
975 * R 2 - both orig and retransmit are in flight.
976 * L|R 1 - orig is lost, retransmit is in flight.
977 * S|R 1 - orig reached receiver, retrans is still in flight.
978 * (L|S|R is logically valid, it could occur when L|R is sacked,
979 * but it is equivalent to plain S and code short-curcuits it to S.
980 * L|S is logically invalid, it would mean -1 packet in flight 8))
982 * These 6 states form finite state machine, controlled by the following events:
983 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
984 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
985 * 3. Loss detection event of two flavors:
986 * A. Scoreboard estimator decided the packet is lost.
987 * A'. Reno "three dupacks" marks head of queue lost.
988 * A''. Its FACK modification, head until snd.fack is lost.
989 * B. SACK arrives sacking SND.NXT at the moment, when the
990 * segment was retransmitted.
991 * 4. D-SACK added new rule: D-SACK changes any tag to S.
993 * It is pleasant to note, that state diagram turns out to be commutative,
994 * so that we are allowed not to be bothered by order of our actions,
995 * when multiple events arrive simultaneously. (see the function below).
997 * Reordering detection.
998 * --------------------
999 * Reordering metric is maximal distance, which a packet can be displaced
1000 * in packet stream. With SACKs we can estimate it:
1002 * 1. SACK fills old hole and the corresponding segment was not
1003 * ever retransmitted -> reordering. Alas, we cannot use it
1004 * when segment was retransmitted.
1005 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1006 * for retransmitted and already SACKed segment -> reordering..
1007 * Both of these heuristics are not used in Loss state, when we cannot
1008 * account for retransmits accurately.
1010 * SACK block validation.
1011 * ----------------------
1013 * SACK block range validation checks that the received SACK block fits to
1014 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1015 * Note that SND.UNA is not included to the range though being valid because
1016 * it means that the receiver is rather inconsistent with itself reporting
1017 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1018 * perfectly valid, however, in light of RFC2018 which explicitly states
1019 * that "SACK block MUST reflect the newest segment. Even if the newest
1020 * segment is going to be discarded ...", not that it looks very clever
1021 * in case of head skb. Due to potentional receiver driven attacks, we
1022 * choose to avoid immediate execution of a walk in write queue due to
1023 * reneging and defer head skb's loss recovery to standard loss recovery
1024 * procedure that will eventually trigger (nothing forbids us doing this).
1026 * Implements also blockage to start_seq wrap-around. Problem lies in the
1027 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1028 * there's no guarantee that it will be before snd_nxt (n). The problem
1029 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1032 * <- outs wnd -> <- wrapzone ->
1033 * u e n u_w e_w s n_w
1035 * |<------------+------+----- TCP seqno space --------------+---------->|
1036 * ...-- <2^31 ->| |<--------...
1037 * ...---- >2^31 ------>| |<--------...
1039 * Current code wouldn't be vulnerable but it's better still to discard such
1040 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1041 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1042 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1043 * equal to the ideal case (infinite seqno space without wrap caused issues).
1045 * With D-SACK the lower bound is extended to cover sequence space below
1046 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1047 * again, D-SACK block must not to go across snd_una (for the same reason as
1048 * for the normal SACK blocks, explained above). But there all simplicity
1049 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1050 * fully below undo_marker they do not affect behavior in anyway and can
1051 * therefore be safely ignored. In rare cases (which are more or less
1052 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1053 * fragmentation and packet reordering past skb's retransmission. To consider
1054 * them correctly, the acceptable range must be extended even more though
1055 * the exact amount is rather hard to quantify. However, tp->max_window can
1056 * be used as an exaggerated estimate.
1058 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1059 u32 start_seq, u32 end_seq)
1061 /* Too far in future, or reversed (interpretation is ambiguous) */
1062 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1065 /* Nasty start_seq wrap-around check (see comments above) */
1066 if (!before(start_seq, tp->snd_nxt))
1069 /* In outstanding window? ...This is valid exit for D-SACKs too.
1070 * start_seq == snd_una is non-sensical (see comments above)
1072 if (after(start_seq, tp->snd_una))
1075 if (!is_dsack || !tp->undo_marker)
1078 /* ...Then it's D-SACK, and must reside below snd_una completely */
1079 if (after(end_seq, tp->snd_una))
1082 if (!before(start_seq, tp->undo_marker))
1086 if (!after(end_seq, tp->undo_marker))
1089 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1090 * start_seq < undo_marker and end_seq >= undo_marker.
1092 return !before(start_seq, end_seq - tp->max_window);
1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 struct tcp_sack_block_wire *sp, int num_sacks,
1099 struct tcp_sock *tp = tcp_sk(sk);
1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 bool dup_sack = false;
1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1107 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 } else if (num_sacks > 1) {
1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1112 if (!after(end_seq_0, end_seq_1) &&
1113 !before(start_seq_0, start_seq_1)) {
1116 NET_INC_STATS(sock_net(sk),
1117 LINUX_MIB_TCPDSACKOFORECV);
1121 /* D-SACK for already forgotten data... Do dumb counting. */
1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 !after(end_seq_0, prior_snd_una) &&
1124 after(end_seq_0, tp->undo_marker))
1130 struct tcp_sacktag_state {
1133 /* Timestamps for earliest and latest never-retransmitted segment
1134 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1135 * but congestion control should still get an accurate delay signal.
1137 struct skb_mstamp first_sackt;
1138 struct skb_mstamp last_sackt;
1139 struct rate_sample *rate;
1143 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1144 * the incoming SACK may not exactly match but we can find smaller MSS
1145 * aligned portion of it that matches. Therefore we might need to fragment
1146 * which may fail and creates some hassle (caller must handle error case
1149 * FIXME: this could be merged to shift decision code
1151 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1152 u32 start_seq, u32 end_seq)
1156 unsigned int pkt_len;
1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1160 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1162 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1163 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1164 mss = tcp_skb_mss(skb);
1165 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1168 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1172 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1177 /* Round if necessary so that SACKs cover only full MSSes
1178 * and/or the remaining small portion (if present)
1180 if (pkt_len > mss) {
1181 unsigned int new_len = (pkt_len / mss) * mss;
1182 if (!in_sack && new_len < pkt_len) {
1184 if (new_len >= skb->len)
1189 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1197 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1198 static u8 tcp_sacktag_one(struct sock *sk,
1199 struct tcp_sacktag_state *state, u8 sacked,
1200 u32 start_seq, u32 end_seq,
1201 int dup_sack, int pcount,
1202 const struct skb_mstamp *xmit_time)
1204 struct tcp_sock *tp = tcp_sk(sk);
1205 int fack_count = state->fack_count;
1207 /* Account D-SACK for retransmitted packet. */
1208 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1209 if (tp->undo_marker && tp->undo_retrans > 0 &&
1210 after(end_seq, tp->undo_marker))
1212 if (sacked & TCPCB_SACKED_ACKED)
1213 state->reord = min(fack_count, state->reord);
1216 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1217 if (!after(end_seq, tp->snd_una))
1220 if (!(sacked & TCPCB_SACKED_ACKED)) {
1221 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1223 if (sacked & TCPCB_SACKED_RETRANS) {
1224 /* If the segment is not tagged as lost,
1225 * we do not clear RETRANS, believing
1226 * that retransmission is still in flight.
1228 if (sacked & TCPCB_LOST) {
1229 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1230 tp->lost_out -= pcount;
1231 tp->retrans_out -= pcount;
1234 if (!(sacked & TCPCB_RETRANS)) {
1235 /* New sack for not retransmitted frame,
1236 * which was in hole. It is reordering.
1238 if (before(start_seq,
1239 tcp_highest_sack_seq(tp)))
1240 state->reord = min(fack_count,
1242 if (!after(end_seq, tp->high_seq))
1243 state->flag |= FLAG_ORIG_SACK_ACKED;
1244 if (state->first_sackt.v64 == 0)
1245 state->first_sackt = *xmit_time;
1246 state->last_sackt = *xmit_time;
1249 if (sacked & TCPCB_LOST) {
1250 sacked &= ~TCPCB_LOST;
1251 tp->lost_out -= pcount;
1255 sacked |= TCPCB_SACKED_ACKED;
1256 state->flag |= FLAG_DATA_SACKED;
1257 tp->sacked_out += pcount;
1258 tp->delivered += pcount; /* Out-of-order packets delivered */
1260 fack_count += pcount;
1262 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1263 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1264 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1265 tp->lost_cnt_hint += pcount;
1267 if (fack_count > tp->fackets_out)
1268 tp->fackets_out = fack_count;
1271 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1272 * frames and clear it. undo_retrans is decreased above, L|R frames
1273 * are accounted above as well.
1275 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1276 sacked &= ~TCPCB_SACKED_RETRANS;
1277 tp->retrans_out -= pcount;
1283 /* Shift newly-SACKed bytes from this skb to the immediately previous
1284 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1286 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1287 struct tcp_sacktag_state *state,
1288 unsigned int pcount, int shifted, int mss,
1291 struct tcp_sock *tp = tcp_sk(sk);
1292 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1293 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1294 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1298 /* Adjust counters and hints for the newly sacked sequence
1299 * range but discard the return value since prev is already
1300 * marked. We must tag the range first because the seq
1301 * advancement below implicitly advances
1302 * tcp_highest_sack_seq() when skb is highest_sack.
1304 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1305 start_seq, end_seq, dup_sack, pcount,
1307 tcp_rate_skb_delivered(sk, skb, state->rate);
1309 if (skb == tp->lost_skb_hint)
1310 tp->lost_cnt_hint += pcount;
1312 TCP_SKB_CB(prev)->end_seq += shifted;
1313 TCP_SKB_CB(skb)->seq += shifted;
1315 tcp_skb_pcount_add(prev, pcount);
1316 BUG_ON(tcp_skb_pcount(skb) < pcount);
1317 tcp_skb_pcount_add(skb, -pcount);
1319 /* When we're adding to gso_segs == 1, gso_size will be zero,
1320 * in theory this shouldn't be necessary but as long as DSACK
1321 * code can come after this skb later on it's better to keep
1322 * setting gso_size to something.
1324 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1325 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1327 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1328 if (tcp_skb_pcount(skb) <= 1)
1329 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1331 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1332 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1335 BUG_ON(!tcp_skb_pcount(skb));
1336 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1340 /* Whole SKB was eaten :-) */
1342 if (skb == tp->retransmit_skb_hint)
1343 tp->retransmit_skb_hint = prev;
1344 if (skb == tp->lost_skb_hint) {
1345 tp->lost_skb_hint = prev;
1346 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1349 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1350 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1351 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1352 TCP_SKB_CB(prev)->end_seq++;
1354 if (skb == tcp_highest_sack(sk))
1355 tcp_advance_highest_sack(sk, skb);
1357 tcp_skb_collapse_tstamp(prev, skb);
1358 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1359 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1361 tcp_unlink_write_queue(skb, sk);
1362 sk_wmem_free_skb(sk, skb);
1364 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1369 /* I wish gso_size would have a bit more sane initialization than
1370 * something-or-zero which complicates things
1372 static int tcp_skb_seglen(const struct sk_buff *skb)
1374 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1377 /* Shifting pages past head area doesn't work */
1378 static int skb_can_shift(const struct sk_buff *skb)
1380 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1383 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1386 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1387 struct tcp_sacktag_state *state,
1388 u32 start_seq, u32 end_seq,
1391 struct tcp_sock *tp = tcp_sk(sk);
1392 struct sk_buff *prev;
1398 if (!sk_can_gso(sk))
1401 /* Normally R but no L won't result in plain S */
1403 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1405 if (!skb_can_shift(skb))
1407 /* This frame is about to be dropped (was ACKed). */
1408 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1411 /* Can only happen with delayed DSACK + discard craziness */
1412 if (unlikely(skb == tcp_write_queue_head(sk)))
1414 prev = tcp_write_queue_prev(sk, skb);
1416 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1419 if (!tcp_skb_can_collapse_to(prev))
1422 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1423 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1427 pcount = tcp_skb_pcount(skb);
1428 mss = tcp_skb_seglen(skb);
1430 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1431 * drop this restriction as unnecessary
1433 if (mss != tcp_skb_seglen(prev))
1436 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1438 /* CHECKME: This is non-MSS split case only?, this will
1439 * cause skipped skbs due to advancing loop btw, original
1440 * has that feature too
1442 if (tcp_skb_pcount(skb) <= 1)
1445 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1447 /* TODO: head merge to next could be attempted here
1448 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1449 * though it might not be worth of the additional hassle
1451 * ...we can probably just fallback to what was done
1452 * previously. We could try merging non-SACKed ones
1453 * as well but it probably isn't going to buy off
1454 * because later SACKs might again split them, and
1455 * it would make skb timestamp tracking considerably
1461 len = end_seq - TCP_SKB_CB(skb)->seq;
1463 BUG_ON(len > skb->len);
1465 /* MSS boundaries should be honoured or else pcount will
1466 * severely break even though it makes things bit trickier.
1467 * Optimize common case to avoid most of the divides
1469 mss = tcp_skb_mss(skb);
1471 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1472 * drop this restriction as unnecessary
1474 if (mss != tcp_skb_seglen(prev))
1479 } else if (len < mss) {
1487 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1488 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1491 if (!skb_shift(prev, skb, len))
1493 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1496 /* Hole filled allows collapsing with the next as well, this is very
1497 * useful when hole on every nth skb pattern happens
1499 if (prev == tcp_write_queue_tail(sk))
1501 skb = tcp_write_queue_next(sk, prev);
1503 if (!skb_can_shift(skb) ||
1504 (skb == tcp_send_head(sk)) ||
1505 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1506 (mss != tcp_skb_seglen(skb)))
1510 if (skb_shift(prev, skb, len)) {
1511 pcount += tcp_skb_pcount(skb);
1512 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1516 state->fack_count += pcount;
1523 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1527 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1528 struct tcp_sack_block *next_dup,
1529 struct tcp_sacktag_state *state,
1530 u32 start_seq, u32 end_seq,
1533 struct tcp_sock *tp = tcp_sk(sk);
1534 struct sk_buff *tmp;
1536 tcp_for_write_queue_from(skb, sk) {
1538 bool dup_sack = dup_sack_in;
1540 if (skb == tcp_send_head(sk))
1543 /* queue is in-order => we can short-circuit the walk early */
1544 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1548 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1549 in_sack = tcp_match_skb_to_sack(sk, skb,
1550 next_dup->start_seq,
1556 /* skb reference here is a bit tricky to get right, since
1557 * shifting can eat and free both this skb and the next,
1558 * so not even _safe variant of the loop is enough.
1561 tmp = tcp_shift_skb_data(sk, skb, state,
1562 start_seq, end_seq, dup_sack);
1571 in_sack = tcp_match_skb_to_sack(sk, skb,
1577 if (unlikely(in_sack < 0))
1581 TCP_SKB_CB(skb)->sacked =
1584 TCP_SKB_CB(skb)->sacked,
1585 TCP_SKB_CB(skb)->seq,
1586 TCP_SKB_CB(skb)->end_seq,
1588 tcp_skb_pcount(skb),
1590 tcp_rate_skb_delivered(sk, skb, state->rate);
1592 if (!before(TCP_SKB_CB(skb)->seq,
1593 tcp_highest_sack_seq(tp)))
1594 tcp_advance_highest_sack(sk, skb);
1597 state->fack_count += tcp_skb_pcount(skb);
1602 /* Avoid all extra work that is being done by sacktag while walking in
1605 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1606 struct tcp_sacktag_state *state,
1609 tcp_for_write_queue_from(skb, sk) {
1610 if (skb == tcp_send_head(sk))
1613 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1616 state->fack_count += tcp_skb_pcount(skb);
1621 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1623 struct tcp_sack_block *next_dup,
1624 struct tcp_sacktag_state *state,
1630 if (before(next_dup->start_seq, skip_to_seq)) {
1631 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1632 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1633 next_dup->start_seq, next_dup->end_seq,
1640 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1642 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1646 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1647 u32 prior_snd_una, struct tcp_sacktag_state *state)
1649 struct tcp_sock *tp = tcp_sk(sk);
1650 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1651 TCP_SKB_CB(ack_skb)->sacked);
1652 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1653 struct tcp_sack_block sp[TCP_NUM_SACKS];
1654 struct tcp_sack_block *cache;
1655 struct sk_buff *skb;
1656 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1658 bool found_dup_sack = false;
1660 int first_sack_index;
1663 state->reord = tp->packets_out;
1665 if (!tp->sacked_out) {
1666 if (WARN_ON(tp->fackets_out))
1667 tp->fackets_out = 0;
1668 tcp_highest_sack_reset(sk);
1671 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1672 num_sacks, prior_snd_una);
1673 if (found_dup_sack) {
1674 state->flag |= FLAG_DSACKING_ACK;
1675 tp->delivered++; /* A spurious retransmission is delivered */
1678 /* Eliminate too old ACKs, but take into
1679 * account more or less fresh ones, they can
1680 * contain valid SACK info.
1682 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1685 if (!tp->packets_out)
1689 first_sack_index = 0;
1690 for (i = 0; i < num_sacks; i++) {
1691 bool dup_sack = !i && found_dup_sack;
1693 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1694 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1696 if (!tcp_is_sackblock_valid(tp, dup_sack,
1697 sp[used_sacks].start_seq,
1698 sp[used_sacks].end_seq)) {
1702 if (!tp->undo_marker)
1703 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1705 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1707 /* Don't count olds caused by ACK reordering */
1708 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1709 !after(sp[used_sacks].end_seq, tp->snd_una))
1711 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1714 NET_INC_STATS(sock_net(sk), mib_idx);
1716 first_sack_index = -1;
1720 /* Ignore very old stuff early */
1721 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1727 /* order SACK blocks to allow in order walk of the retrans queue */
1728 for (i = used_sacks - 1; i > 0; i--) {
1729 for (j = 0; j < i; j++) {
1730 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1731 swap(sp[j], sp[j + 1]);
1733 /* Track where the first SACK block goes to */
1734 if (j == first_sack_index)
1735 first_sack_index = j + 1;
1740 skb = tcp_write_queue_head(sk);
1741 state->fack_count = 0;
1744 if (!tp->sacked_out) {
1745 /* It's already past, so skip checking against it */
1746 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1748 cache = tp->recv_sack_cache;
1749 /* Skip empty blocks in at head of the cache */
1750 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1755 while (i < used_sacks) {
1756 u32 start_seq = sp[i].start_seq;
1757 u32 end_seq = sp[i].end_seq;
1758 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1759 struct tcp_sack_block *next_dup = NULL;
1761 if (found_dup_sack && ((i + 1) == first_sack_index))
1762 next_dup = &sp[i + 1];
1764 /* Skip too early cached blocks */
1765 while (tcp_sack_cache_ok(tp, cache) &&
1766 !before(start_seq, cache->end_seq))
1769 /* Can skip some work by looking recv_sack_cache? */
1770 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1771 after(end_seq, cache->start_seq)) {
1774 if (before(start_seq, cache->start_seq)) {
1775 skb = tcp_sacktag_skip(skb, sk, state,
1777 skb = tcp_sacktag_walk(skb, sk, next_dup,
1784 /* Rest of the block already fully processed? */
1785 if (!after(end_seq, cache->end_seq))
1788 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1792 /* ...tail remains todo... */
1793 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1794 /* ...but better entrypoint exists! */
1795 skb = tcp_highest_sack(sk);
1798 state->fack_count = tp->fackets_out;
1803 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1804 /* Check overlap against next cached too (past this one already) */
1809 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1810 skb = tcp_highest_sack(sk);
1813 state->fack_count = tp->fackets_out;
1815 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1818 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1819 start_seq, end_seq, dup_sack);
1825 /* Clear the head of the cache sack blocks so we can skip it next time */
1826 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1827 tp->recv_sack_cache[i].start_seq = 0;
1828 tp->recv_sack_cache[i].end_seq = 0;
1830 for (j = 0; j < used_sacks; j++)
1831 tp->recv_sack_cache[i++] = sp[j];
1833 if ((state->reord < tp->fackets_out) &&
1834 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1835 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1837 tcp_verify_left_out(tp);
1840 #if FASTRETRANS_DEBUG > 0
1841 WARN_ON((int)tp->sacked_out < 0);
1842 WARN_ON((int)tp->lost_out < 0);
1843 WARN_ON((int)tp->retrans_out < 0);
1844 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1849 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1850 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1852 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1856 holes = max(tp->lost_out, 1U);
1857 holes = min(holes, tp->packets_out);
1859 if ((tp->sacked_out + holes) > tp->packets_out) {
1860 tp->sacked_out = tp->packets_out - holes;
1866 /* If we receive more dupacks than we expected counting segments
1867 * in assumption of absent reordering, interpret this as reordering.
1868 * The only another reason could be bug in receiver TCP.
1870 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1872 struct tcp_sock *tp = tcp_sk(sk);
1873 if (tcp_limit_reno_sacked(tp))
1874 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1877 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1879 static void tcp_add_reno_sack(struct sock *sk)
1881 struct tcp_sock *tp = tcp_sk(sk);
1882 u32 prior_sacked = tp->sacked_out;
1885 tcp_check_reno_reordering(sk, 0);
1886 if (tp->sacked_out > prior_sacked)
1887 tp->delivered++; /* Some out-of-order packet is delivered */
1888 tcp_verify_left_out(tp);
1891 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1893 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1895 struct tcp_sock *tp = tcp_sk(sk);
1898 /* One ACK acked hole. The rest eat duplicate ACKs. */
1899 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1900 if (acked - 1 >= tp->sacked_out)
1903 tp->sacked_out -= acked - 1;
1905 tcp_check_reno_reordering(sk, acked);
1906 tcp_verify_left_out(tp);
1909 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1914 void tcp_clear_retrans(struct tcp_sock *tp)
1916 tp->retrans_out = 0;
1918 tp->undo_marker = 0;
1919 tp->undo_retrans = -1;
1920 tp->fackets_out = 0;
1924 static inline void tcp_init_undo(struct tcp_sock *tp)
1926 tp->undo_marker = tp->snd_una;
1927 /* Retransmission still in flight may cause DSACKs later. */
1928 tp->undo_retrans = tp->retrans_out ? : -1;
1931 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1932 * and reset tags completely, otherwise preserve SACKs. If receiver
1933 * dropped its ofo queue, we will know this due to reneging detection.
1935 void tcp_enter_loss(struct sock *sk)
1937 const struct inet_connection_sock *icsk = inet_csk(sk);
1938 struct tcp_sock *tp = tcp_sk(sk);
1939 struct net *net = sock_net(sk);
1940 struct sk_buff *skb;
1941 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1942 bool is_reneg; /* is receiver reneging on SACKs? */
1945 /* Reduce ssthresh if it has not yet been made inside this window. */
1946 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1947 !after(tp->high_seq, tp->snd_una) ||
1948 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1949 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1950 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1951 tcp_ca_event(sk, CA_EVENT_LOSS);
1955 tp->snd_cwnd_cnt = 0;
1956 tp->snd_cwnd_stamp = tcp_time_stamp;
1958 tp->retrans_out = 0;
1961 if (tcp_is_reno(tp))
1962 tcp_reset_reno_sack(tp);
1964 skb = tcp_write_queue_head(sk);
1965 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1967 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1969 tp->fackets_out = 0;
1971 tcp_clear_all_retrans_hints(tp);
1973 tcp_for_write_queue(skb, sk) {
1974 if (skb == tcp_send_head(sk))
1977 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1980 tcp_sum_lost(tp, skb);
1981 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1983 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1984 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1985 tp->lost_out += tcp_skb_pcount(skb);
1988 tcp_verify_left_out(tp);
1990 /* Timeout in disordered state after receiving substantial DUPACKs
1991 * suggests that the degree of reordering is over-estimated.
1993 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1994 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1995 tp->reordering = min_t(unsigned int, tp->reordering,
1996 net->ipv4.sysctl_tcp_reordering);
1997 tcp_set_ca_state(sk, TCP_CA_Loss);
1998 tp->high_seq = tp->snd_nxt;
1999 tcp_ecn_queue_cwr(tp);
2001 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2002 * loss recovery is underway except recurring timeout(s) on
2003 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2005 * In theory F-RTO can be used repeatedly during loss recovery.
2006 * In practice this interacts badly with broken middle-boxes that
2007 * falsely raise the receive window, which results in repeated
2008 * timeouts and stop-and-go behavior.
2010 tp->frto = sysctl_tcp_frto &&
2011 (new_recovery || icsk->icsk_retransmits) &&
2012 !inet_csk(sk)->icsk_mtup.probe_size;
2015 /* If ACK arrived pointing to a remembered SACK, it means that our
2016 * remembered SACKs do not reflect real state of receiver i.e.
2017 * receiver _host_ is heavily congested (or buggy).
2019 * To avoid big spurious retransmission bursts due to transient SACK
2020 * scoreboard oddities that look like reneging, we give the receiver a
2021 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2022 * restore sanity to the SACK scoreboard. If the apparent reneging
2023 * persists until this RTO then we'll clear the SACK scoreboard.
2025 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2027 if (flag & FLAG_SACK_RENEGING) {
2028 struct tcp_sock *tp = tcp_sk(sk);
2029 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2030 msecs_to_jiffies(10));
2032 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2033 delay, TCP_RTO_MAX);
2039 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2041 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2044 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2045 * counter when SACK is enabled (without SACK, sacked_out is used for
2048 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2049 * segments up to the highest received SACK block so far and holes in
2052 * With reordering, holes may still be in flight, so RFC3517 recovery
2053 * uses pure sacked_out (total number of SACKed segments) even though
2054 * it violates the RFC that uses duplicate ACKs, often these are equal
2055 * but when e.g. out-of-window ACKs or packet duplication occurs,
2056 * they differ. Since neither occurs due to loss, TCP should really
2059 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2061 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2064 /* Linux NewReno/SACK/FACK/ECN state machine.
2065 * --------------------------------------
2067 * "Open" Normal state, no dubious events, fast path.
2068 * "Disorder" In all the respects it is "Open",
2069 * but requires a bit more attention. It is entered when
2070 * we see some SACKs or dupacks. It is split of "Open"
2071 * mainly to move some processing from fast path to slow one.
2072 * "CWR" CWND was reduced due to some Congestion Notification event.
2073 * It can be ECN, ICMP source quench, local device congestion.
2074 * "Recovery" CWND was reduced, we are fast-retransmitting.
2075 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2077 * tcp_fastretrans_alert() is entered:
2078 * - each incoming ACK, if state is not "Open"
2079 * - when arrived ACK is unusual, namely:
2084 * Counting packets in flight is pretty simple.
2086 * in_flight = packets_out - left_out + retrans_out
2088 * packets_out is SND.NXT-SND.UNA counted in packets.
2090 * retrans_out is number of retransmitted segments.
2092 * left_out is number of segments left network, but not ACKed yet.
2094 * left_out = sacked_out + lost_out
2096 * sacked_out: Packets, which arrived to receiver out of order
2097 * and hence not ACKed. With SACKs this number is simply
2098 * amount of SACKed data. Even without SACKs
2099 * it is easy to give pretty reliable estimate of this number,
2100 * counting duplicate ACKs.
2102 * lost_out: Packets lost by network. TCP has no explicit
2103 * "loss notification" feedback from network (for now).
2104 * It means that this number can be only _guessed_.
2105 * Actually, it is the heuristics to predict lossage that
2106 * distinguishes different algorithms.
2108 * F.e. after RTO, when all the queue is considered as lost,
2109 * lost_out = packets_out and in_flight = retrans_out.
2111 * Essentially, we have now a few algorithms detecting
2114 * If the receiver supports SACK:
2116 * RFC6675/3517: It is the conventional algorithm. A packet is
2117 * considered lost if the number of higher sequence packets
2118 * SACKed is greater than or equal the DUPACK thoreshold
2119 * (reordering). This is implemented in tcp_mark_head_lost and
2120 * tcp_update_scoreboard.
2122 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2123 * (2017-) that checks timing instead of counting DUPACKs.
2124 * Essentially a packet is considered lost if it's not S/ACKed
2125 * after RTT + reordering_window, where both metrics are
2126 * dynamically measured and adjusted. This is implemented in
2127 * tcp_rack_mark_lost.
2129 * FACK (Disabled by default. Subsumbed by RACK):
2130 * It is the simplest heuristics. As soon as we decided
2131 * that something is lost, we decide that _all_ not SACKed
2132 * packets until the most forward SACK are lost. I.e.
2133 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2134 * It is absolutely correct estimate, if network does not reorder
2135 * packets. And it loses any connection to reality when reordering
2136 * takes place. We use FACK by default until reordering
2137 * is suspected on the path to this destination.
2139 * If the receiver does not support SACK:
2141 * NewReno (RFC6582): in Recovery we assume that one segment
2142 * is lost (classic Reno). While we are in Recovery and
2143 * a partial ACK arrives, we assume that one more packet
2144 * is lost (NewReno). This heuristics are the same in NewReno
2147 * Really tricky (and requiring careful tuning) part of algorithm
2148 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2149 * The first determines the moment _when_ we should reduce CWND and,
2150 * hence, slow down forward transmission. In fact, it determines the moment
2151 * when we decide that hole is caused by loss, rather than by a reorder.
2153 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2154 * holes, caused by lost packets.
2156 * And the most logically complicated part of algorithm is undo
2157 * heuristics. We detect false retransmits due to both too early
2158 * fast retransmit (reordering) and underestimated RTO, analyzing
2159 * timestamps and D-SACKs. When we detect that some segments were
2160 * retransmitted by mistake and CWND reduction was wrong, we undo
2161 * window reduction and abort recovery phase. This logic is hidden
2162 * inside several functions named tcp_try_undo_<something>.
2165 /* This function decides, when we should leave Disordered state
2166 * and enter Recovery phase, reducing congestion window.
2168 * Main question: may we further continue forward transmission
2169 * with the same cwnd?
2171 static bool tcp_time_to_recover(struct sock *sk, int flag)
2173 struct tcp_sock *tp = tcp_sk(sk);
2175 /* Trick#1: The loss is proven. */
2179 /* Not-A-Trick#2 : Classic rule... */
2180 if (tcp_dupack_heuristics(tp) > tp->reordering)
2186 /* Detect loss in event "A" above by marking head of queue up as lost.
2187 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2188 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2189 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2190 * the maximum SACKed segments to pass before reaching this limit.
2192 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2194 struct tcp_sock *tp = tcp_sk(sk);
2195 struct sk_buff *skb;
2196 int cnt, oldcnt, lost;
2198 /* Use SACK to deduce losses of new sequences sent during recovery */
2199 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2201 WARN_ON(packets > tp->packets_out);
2202 if (tp->lost_skb_hint) {
2203 skb = tp->lost_skb_hint;
2204 cnt = tp->lost_cnt_hint;
2205 /* Head already handled? */
2206 if (mark_head && skb != tcp_write_queue_head(sk))
2209 skb = tcp_write_queue_head(sk);
2213 tcp_for_write_queue_from(skb, sk) {
2214 if (skb == tcp_send_head(sk))
2216 /* TODO: do this better */
2217 /* this is not the most efficient way to do this... */
2218 tp->lost_skb_hint = skb;
2219 tp->lost_cnt_hint = cnt;
2221 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2225 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2226 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2227 cnt += tcp_skb_pcount(skb);
2229 if (cnt > packets) {
2230 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2231 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2232 (oldcnt >= packets))
2235 mss = tcp_skb_mss(skb);
2236 /* If needed, chop off the prefix to mark as lost. */
2237 lost = (packets - oldcnt) * mss;
2238 if (lost < skb->len &&
2239 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2244 tcp_skb_mark_lost(tp, skb);
2249 tcp_verify_left_out(tp);
2252 /* Account newly detected lost packet(s) */
2254 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2256 struct tcp_sock *tp = tcp_sk(sk);
2258 if (tcp_is_reno(tp)) {
2259 tcp_mark_head_lost(sk, 1, 1);
2260 } else if (tcp_is_fack(tp)) {
2261 int lost = tp->fackets_out - tp->reordering;
2264 tcp_mark_head_lost(sk, lost, 0);
2266 int sacked_upto = tp->sacked_out - tp->reordering;
2267 if (sacked_upto >= 0)
2268 tcp_mark_head_lost(sk, sacked_upto, 0);
2269 else if (fast_rexmit)
2270 tcp_mark_head_lost(sk, 1, 1);
2274 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2276 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2277 before(tp->rx_opt.rcv_tsecr, when);
2280 /* skb is spurious retransmitted if the returned timestamp echo
2281 * reply is prior to the skb transmission time
2283 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2284 const struct sk_buff *skb)
2286 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2287 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2290 /* Nothing was retransmitted or returned timestamp is less
2291 * than timestamp of the first retransmission.
2293 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2295 return !tp->retrans_stamp ||
2296 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2299 /* Undo procedures. */
2301 /* We can clear retrans_stamp when there are no retransmissions in the
2302 * window. It would seem that it is trivially available for us in
2303 * tp->retrans_out, however, that kind of assumptions doesn't consider
2304 * what will happen if errors occur when sending retransmission for the
2305 * second time. ...It could the that such segment has only
2306 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2307 * the head skb is enough except for some reneging corner cases that
2308 * are not worth the effort.
2310 * Main reason for all this complexity is the fact that connection dying
2311 * time now depends on the validity of the retrans_stamp, in particular,
2312 * that successive retransmissions of a segment must not advance
2313 * retrans_stamp under any conditions.
2315 static bool tcp_any_retrans_done(const struct sock *sk)
2317 const struct tcp_sock *tp = tcp_sk(sk);
2318 struct sk_buff *skb;
2320 if (tp->retrans_out)
2323 skb = tcp_write_queue_head(sk);
2324 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2330 #if FASTRETRANS_DEBUG > 1
2331 static void DBGUNDO(struct sock *sk, const char *msg)
2333 struct tcp_sock *tp = tcp_sk(sk);
2334 struct inet_sock *inet = inet_sk(sk);
2336 if (sk->sk_family == AF_INET) {
2337 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2339 &inet->inet_daddr, ntohs(inet->inet_dport),
2340 tp->snd_cwnd, tcp_left_out(tp),
2341 tp->snd_ssthresh, tp->prior_ssthresh,
2344 #if IS_ENABLED(CONFIG_IPV6)
2345 else if (sk->sk_family == AF_INET6) {
2346 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2348 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2349 tp->snd_cwnd, tcp_left_out(tp),
2350 tp->snd_ssthresh, tp->prior_ssthresh,
2356 #define DBGUNDO(x...) do { } while (0)
2359 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2361 struct tcp_sock *tp = tcp_sk(sk);
2364 struct sk_buff *skb;
2366 tcp_for_write_queue(skb, sk) {
2367 if (skb == tcp_send_head(sk))
2369 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2372 tcp_clear_all_retrans_hints(tp);
2375 if (tp->prior_ssthresh) {
2376 const struct inet_connection_sock *icsk = inet_csk(sk);
2378 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2380 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2381 tp->snd_ssthresh = tp->prior_ssthresh;
2382 tcp_ecn_withdraw_cwr(tp);
2385 tp->snd_cwnd_stamp = tcp_time_stamp;
2386 tp->undo_marker = 0;
2389 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2391 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2394 /* People celebrate: "We love our President!" */
2395 static bool tcp_try_undo_recovery(struct sock *sk)
2397 struct tcp_sock *tp = tcp_sk(sk);
2399 if (tcp_may_undo(tp)) {
2402 /* Happy end! We did not retransmit anything
2403 * or our original transmission succeeded.
2405 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2406 tcp_undo_cwnd_reduction(sk, false);
2407 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2408 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2410 mib_idx = LINUX_MIB_TCPFULLUNDO;
2412 NET_INC_STATS(sock_net(sk), mib_idx);
2414 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2415 /* Hold old state until something *above* high_seq
2416 * is ACKed. For Reno it is MUST to prevent false
2417 * fast retransmits (RFC2582). SACK TCP is safe. */
2418 if (!tcp_any_retrans_done(sk))
2419 tp->retrans_stamp = 0;
2422 tcp_set_ca_state(sk, TCP_CA_Open);
2426 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2427 static bool tcp_try_undo_dsack(struct sock *sk)
2429 struct tcp_sock *tp = tcp_sk(sk);
2431 if (tp->undo_marker && !tp->undo_retrans) {
2432 DBGUNDO(sk, "D-SACK");
2433 tcp_undo_cwnd_reduction(sk, false);
2434 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2440 /* Undo during loss recovery after partial ACK or using F-RTO. */
2441 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2443 struct tcp_sock *tp = tcp_sk(sk);
2445 if (frto_undo || tcp_may_undo(tp)) {
2446 tcp_undo_cwnd_reduction(sk, true);
2448 DBGUNDO(sk, "partial loss");
2449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2451 NET_INC_STATS(sock_net(sk),
2452 LINUX_MIB_TCPSPURIOUSRTOS);
2453 inet_csk(sk)->icsk_retransmits = 0;
2454 if (frto_undo || tcp_is_sack(tp))
2455 tcp_set_ca_state(sk, TCP_CA_Open);
2461 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2462 * It computes the number of packets to send (sndcnt) based on packets newly
2464 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2465 * cwnd reductions across a full RTT.
2466 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2467 * But when the retransmits are acked without further losses, PRR
2468 * slow starts cwnd up to ssthresh to speed up the recovery.
2470 static void tcp_init_cwnd_reduction(struct sock *sk)
2472 struct tcp_sock *tp = tcp_sk(sk);
2474 tp->high_seq = tp->snd_nxt;
2475 tp->tlp_high_seq = 0;
2476 tp->snd_cwnd_cnt = 0;
2477 tp->prior_cwnd = tp->snd_cwnd;
2478 tp->prr_delivered = 0;
2480 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2481 tcp_ecn_queue_cwr(tp);
2484 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2486 struct tcp_sock *tp = tcp_sk(sk);
2488 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2490 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2493 tp->prr_delivered += newly_acked_sacked;
2495 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2497 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2498 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2499 !(flag & FLAG_LOST_RETRANS)) {
2500 sndcnt = min_t(int, delta,
2501 max_t(int, tp->prr_delivered - tp->prr_out,
2502 newly_acked_sacked) + 1);
2504 sndcnt = min(delta, newly_acked_sacked);
2506 /* Force a fast retransmit upon entering fast recovery */
2507 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2508 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2511 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2513 struct tcp_sock *tp = tcp_sk(sk);
2515 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2518 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2519 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2520 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2521 tp->snd_cwnd = tp->snd_ssthresh;
2522 tp->snd_cwnd_stamp = tcp_time_stamp;
2524 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2527 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2528 void tcp_enter_cwr(struct sock *sk)
2530 struct tcp_sock *tp = tcp_sk(sk);
2532 tp->prior_ssthresh = 0;
2533 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2534 tp->undo_marker = 0;
2535 tcp_init_cwnd_reduction(sk);
2536 tcp_set_ca_state(sk, TCP_CA_CWR);
2539 EXPORT_SYMBOL(tcp_enter_cwr);
2541 static void tcp_try_keep_open(struct sock *sk)
2543 struct tcp_sock *tp = tcp_sk(sk);
2544 int state = TCP_CA_Open;
2546 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2547 state = TCP_CA_Disorder;
2549 if (inet_csk(sk)->icsk_ca_state != state) {
2550 tcp_set_ca_state(sk, state);
2551 tp->high_seq = tp->snd_nxt;
2555 static void tcp_try_to_open(struct sock *sk, int flag)
2557 struct tcp_sock *tp = tcp_sk(sk);
2559 tcp_verify_left_out(tp);
2561 if (!tcp_any_retrans_done(sk))
2562 tp->retrans_stamp = 0;
2564 if (flag & FLAG_ECE)
2567 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2568 tcp_try_keep_open(sk);
2572 static void tcp_mtup_probe_failed(struct sock *sk)
2574 struct inet_connection_sock *icsk = inet_csk(sk);
2576 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2577 icsk->icsk_mtup.probe_size = 0;
2578 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2581 static void tcp_mtup_probe_success(struct sock *sk)
2583 struct tcp_sock *tp = tcp_sk(sk);
2584 struct inet_connection_sock *icsk = inet_csk(sk);
2586 /* FIXME: breaks with very large cwnd */
2587 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2588 tp->snd_cwnd = tp->snd_cwnd *
2589 tcp_mss_to_mtu(sk, tp->mss_cache) /
2590 icsk->icsk_mtup.probe_size;
2591 tp->snd_cwnd_cnt = 0;
2592 tp->snd_cwnd_stamp = tcp_time_stamp;
2593 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2595 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2596 icsk->icsk_mtup.probe_size = 0;
2597 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2598 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2601 /* Do a simple retransmit without using the backoff mechanisms in
2602 * tcp_timer. This is used for path mtu discovery.
2603 * The socket is already locked here.
2605 void tcp_simple_retransmit(struct sock *sk)
2607 const struct inet_connection_sock *icsk = inet_csk(sk);
2608 struct tcp_sock *tp = tcp_sk(sk);
2609 struct sk_buff *skb;
2610 unsigned int mss = tcp_current_mss(sk);
2611 u32 prior_lost = tp->lost_out;
2613 tcp_for_write_queue(skb, sk) {
2614 if (skb == tcp_send_head(sk))
2616 if (tcp_skb_seglen(skb) > mss &&
2617 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2618 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2619 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2620 tp->retrans_out -= tcp_skb_pcount(skb);
2622 tcp_skb_mark_lost_uncond_verify(tp, skb);
2626 tcp_clear_retrans_hints_partial(tp);
2628 if (prior_lost == tp->lost_out)
2631 if (tcp_is_reno(tp))
2632 tcp_limit_reno_sacked(tp);
2634 tcp_verify_left_out(tp);
2636 /* Don't muck with the congestion window here.
2637 * Reason is that we do not increase amount of _data_
2638 * in network, but units changed and effective
2639 * cwnd/ssthresh really reduced now.
2641 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2642 tp->high_seq = tp->snd_nxt;
2643 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2644 tp->prior_ssthresh = 0;
2645 tp->undo_marker = 0;
2646 tcp_set_ca_state(sk, TCP_CA_Loss);
2648 tcp_xmit_retransmit_queue(sk);
2650 EXPORT_SYMBOL(tcp_simple_retransmit);
2652 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2654 struct tcp_sock *tp = tcp_sk(sk);
2657 if (tcp_is_reno(tp))
2658 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2660 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2662 NET_INC_STATS(sock_net(sk), mib_idx);
2664 tp->prior_ssthresh = 0;
2667 if (!tcp_in_cwnd_reduction(sk)) {
2669 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670 tcp_init_cwnd_reduction(sk);
2672 tcp_set_ca_state(sk, TCP_CA_Recovery);
2675 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2676 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2678 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2681 struct tcp_sock *tp = tcp_sk(sk);
2682 bool recovered = !before(tp->snd_una, tp->high_seq);
2684 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2685 tcp_try_undo_loss(sk, false))
2688 /* The ACK (s)acks some never-retransmitted data meaning not all
2689 * the data packets before the timeout were lost. Therefore we
2690 * undo the congestion window and state. This is essentially
2691 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2692 * a retransmitted skb is permantly marked, we can apply such an
2693 * operation even if F-RTO was not used.
2695 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2696 tcp_try_undo_loss(sk, tp->undo_marker))
2699 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2700 if (after(tp->snd_nxt, tp->high_seq)) {
2701 if (flag & FLAG_DATA_SACKED || is_dupack)
2702 tp->frto = 0; /* Step 3.a. loss was real */
2703 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2704 tp->high_seq = tp->snd_nxt;
2705 /* Step 2.b. Try send new data (but deferred until cwnd
2706 * is updated in tcp_ack()). Otherwise fall back to
2707 * the conventional recovery.
2709 if (tcp_send_head(sk) &&
2710 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2711 *rexmit = REXMIT_NEW;
2719 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2720 tcp_try_undo_recovery(sk);
2723 if (tcp_is_reno(tp)) {
2724 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2725 * delivered. Lower inflight to clock out (re)tranmissions.
2727 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2728 tcp_add_reno_sack(sk);
2729 else if (flag & FLAG_SND_UNA_ADVANCED)
2730 tcp_reset_reno_sack(tp);
2732 *rexmit = REXMIT_LOST;
2735 /* Undo during fast recovery after partial ACK. */
2736 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2738 struct tcp_sock *tp = tcp_sk(sk);
2740 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2741 /* Plain luck! Hole if filled with delayed
2742 * packet, rather than with a retransmit.
2744 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2746 /* We are getting evidence that the reordering degree is higher
2747 * than we realized. If there are no retransmits out then we
2748 * can undo. Otherwise we clock out new packets but do not
2749 * mark more packets lost or retransmit more.
2751 if (tp->retrans_out)
2754 if (!tcp_any_retrans_done(sk))
2755 tp->retrans_stamp = 0;
2757 DBGUNDO(sk, "partial recovery");
2758 tcp_undo_cwnd_reduction(sk, true);
2759 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2760 tcp_try_keep_open(sk);
2766 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2768 struct tcp_sock *tp = tcp_sk(sk);
2770 /* Use RACK to detect loss */
2771 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2772 u32 prior_retrans = tp->retrans_out;
2774 tcp_rack_mark_lost(sk);
2775 if (prior_retrans > tp->retrans_out)
2776 *ack_flag |= FLAG_LOST_RETRANS;
2780 /* Process an event, which can update packets-in-flight not trivially.
2781 * Main goal of this function is to calculate new estimate for left_out,
2782 * taking into account both packets sitting in receiver's buffer and
2783 * packets lost by network.
2785 * Besides that it updates the congestion state when packet loss or ECN
2786 * is detected. But it does not reduce the cwnd, it is done by the
2787 * congestion control later.
2789 * It does _not_ decide what to send, it is made in function
2790 * tcp_xmit_retransmit_queue().
2792 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2793 bool is_dupack, int *ack_flag, int *rexmit)
2795 struct inet_connection_sock *icsk = inet_csk(sk);
2796 struct tcp_sock *tp = tcp_sk(sk);
2797 int fast_rexmit = 0, flag = *ack_flag;
2798 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2799 (tcp_fackets_out(tp) > tp->reordering));
2801 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2803 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2804 tp->fackets_out = 0;
2806 /* Now state machine starts.
2807 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2808 if (flag & FLAG_ECE)
2809 tp->prior_ssthresh = 0;
2811 /* B. In all the states check for reneging SACKs. */
2812 if (tcp_check_sack_reneging(sk, flag))
2815 /* C. Check consistency of the current state. */
2816 tcp_verify_left_out(tp);
2818 /* D. Check state exit conditions. State can be terminated
2819 * when high_seq is ACKed. */
2820 if (icsk->icsk_ca_state == TCP_CA_Open) {
2821 WARN_ON(tp->retrans_out != 0);
2822 tp->retrans_stamp = 0;
2823 } else if (!before(tp->snd_una, tp->high_seq)) {
2824 switch (icsk->icsk_ca_state) {
2826 /* CWR is to be held something *above* high_seq
2827 * is ACKed for CWR bit to reach receiver. */
2828 if (tp->snd_una != tp->high_seq) {
2829 tcp_end_cwnd_reduction(sk);
2830 tcp_set_ca_state(sk, TCP_CA_Open);
2834 case TCP_CA_Recovery:
2835 if (tcp_is_reno(tp))
2836 tcp_reset_reno_sack(tp);
2837 if (tcp_try_undo_recovery(sk))
2839 tcp_end_cwnd_reduction(sk);
2844 /* E. Process state. */
2845 switch (icsk->icsk_ca_state) {
2846 case TCP_CA_Recovery:
2847 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2848 if (tcp_is_reno(tp) && is_dupack)
2849 tcp_add_reno_sack(sk);
2851 if (tcp_try_undo_partial(sk, acked))
2853 /* Partial ACK arrived. Force fast retransmit. */
2854 do_lost = tcp_is_reno(tp) ||
2855 tcp_fackets_out(tp) > tp->reordering;
2857 if (tcp_try_undo_dsack(sk)) {
2858 tcp_try_keep_open(sk);
2861 tcp_rack_identify_loss(sk, ack_flag);
2864 tcp_process_loss(sk, flag, is_dupack, rexmit);
2865 tcp_rack_identify_loss(sk, ack_flag);
2866 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2867 (*ack_flag & FLAG_LOST_RETRANS)))
2869 /* Change state if cwnd is undone or retransmits are lost */
2871 if (tcp_is_reno(tp)) {
2872 if (flag & FLAG_SND_UNA_ADVANCED)
2873 tcp_reset_reno_sack(tp);
2875 tcp_add_reno_sack(sk);
2878 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2879 tcp_try_undo_dsack(sk);
2881 tcp_rack_identify_loss(sk, ack_flag);
2882 if (!tcp_time_to_recover(sk, flag)) {
2883 tcp_try_to_open(sk, flag);
2887 /* MTU probe failure: don't reduce cwnd */
2888 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2889 icsk->icsk_mtup.probe_size &&
2890 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2891 tcp_mtup_probe_failed(sk);
2892 /* Restores the reduction we did in tcp_mtup_probe() */
2894 tcp_simple_retransmit(sk);
2898 /* Otherwise enter Recovery state */
2899 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2904 tcp_update_scoreboard(sk, fast_rexmit);
2905 *rexmit = REXMIT_LOST;
2908 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2910 struct tcp_sock *tp = tcp_sk(sk);
2911 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2913 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2914 rtt_us ? : jiffies_to_usecs(1));
2917 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2918 long seq_rtt_us, long sack_rtt_us,
2921 const struct tcp_sock *tp = tcp_sk(sk);
2923 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2924 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2925 * Karn's algorithm forbids taking RTT if some retransmitted data
2926 * is acked (RFC6298).
2929 seq_rtt_us = sack_rtt_us;
2931 /* RTTM Rule: A TSecr value received in a segment is used to
2932 * update the averaged RTT measurement only if the segment
2933 * acknowledges some new data, i.e., only if it advances the
2934 * left edge of the send window.
2935 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2937 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2939 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2940 tp->rx_opt.rcv_tsecr);
2944 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2945 * always taken together with ACK, SACK, or TS-opts. Any negative
2946 * values will be skipped with the seq_rtt_us < 0 check above.
2948 tcp_update_rtt_min(sk, ca_rtt_us);
2949 tcp_rtt_estimator(sk, seq_rtt_us);
2952 /* RFC6298: only reset backoff on valid RTT measurement. */
2953 inet_csk(sk)->icsk_backoff = 0;
2957 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2958 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2962 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2963 struct skb_mstamp now;
2965 skb_mstamp_get(&now);
2966 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2969 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2973 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2975 const struct inet_connection_sock *icsk = inet_csk(sk);
2977 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2978 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2981 /* Restart timer after forward progress on connection.
2982 * RFC2988 recommends to restart timer to now+rto.
2984 void tcp_rearm_rto(struct sock *sk)
2986 const struct inet_connection_sock *icsk = inet_csk(sk);
2987 struct tcp_sock *tp = tcp_sk(sk);
2989 /* If the retrans timer is currently being used by Fast Open
2990 * for SYN-ACK retrans purpose, stay put.
2992 if (tp->fastopen_rsk)
2995 if (!tp->packets_out) {
2996 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2998 u32 rto = inet_csk(sk)->icsk_rto;
2999 /* Offset the time elapsed after installing regular RTO */
3000 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3001 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3002 struct sk_buff *skb = tcp_write_queue_head(sk);
3003 const u32 rto_time_stamp =
3004 tcp_skb_timestamp(skb) + rto;
3005 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3006 /* delta may not be positive if the socket is locked
3007 * when the retrans timer fires and is rescheduled.
3012 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3017 /* If we get here, the whole TSO packet has not been acked. */
3018 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3020 struct tcp_sock *tp = tcp_sk(sk);
3023 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3025 packets_acked = tcp_skb_pcount(skb);
3026 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3028 packets_acked -= tcp_skb_pcount(skb);
3030 if (packets_acked) {
3031 BUG_ON(tcp_skb_pcount(skb) == 0);
3032 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3035 return packets_acked;
3038 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3041 const struct skb_shared_info *shinfo;
3043 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3044 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3047 shinfo = skb_shinfo(skb);
3048 if (!before(shinfo->tskey, prior_snd_una) &&
3049 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3050 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3053 /* Remove acknowledged frames from the retransmission queue. If our packet
3054 * is before the ack sequence we can discard it as it's confirmed to have
3055 * arrived at the other end.
3057 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3058 u32 prior_snd_una, int *acked,
3059 struct tcp_sacktag_state *sack)
3061 const struct inet_connection_sock *icsk = inet_csk(sk);
3062 struct skb_mstamp first_ackt, last_ackt;
3063 struct tcp_sock *tp = tcp_sk(sk);
3064 struct skb_mstamp *now = &tp->tcp_mstamp;
3065 u32 prior_sacked = tp->sacked_out;
3066 u32 reord = tp->packets_out;
3067 bool fully_acked = true;
3068 long sack_rtt_us = -1L;
3069 long seq_rtt_us = -1L;
3070 long ca_rtt_us = -1L;
3071 struct sk_buff *skb;
3073 u32 last_in_flight = 0;
3079 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3080 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3081 u8 sacked = scb->sacked;
3084 tcp_ack_tstamp(sk, skb, prior_snd_una);
3086 /* Determine how many packets and what bytes were acked, tso and else */
3087 if (after(scb->end_seq, tp->snd_una)) {
3088 if (tcp_skb_pcount(skb) == 1 ||
3089 !after(tp->snd_una, scb->seq))
3092 acked_pcount = tcp_tso_acked(sk, skb);
3095 fully_acked = false;
3097 /* Speedup tcp_unlink_write_queue() and next loop */
3098 prefetchw(skb->next);
3099 acked_pcount = tcp_skb_pcount(skb);
3102 if (unlikely(sacked & TCPCB_RETRANS)) {
3103 if (sacked & TCPCB_SACKED_RETRANS)
3104 tp->retrans_out -= acked_pcount;
3105 flag |= FLAG_RETRANS_DATA_ACKED;
3106 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3107 last_ackt = skb->skb_mstamp;
3108 WARN_ON_ONCE(last_ackt.v64 == 0);
3109 if (!first_ackt.v64)
3110 first_ackt = last_ackt;
3112 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3113 reord = min(pkts_acked, reord);
3114 if (!after(scb->end_seq, tp->high_seq))
3115 flag |= FLAG_ORIG_SACK_ACKED;
3118 if (sacked & TCPCB_SACKED_ACKED) {
3119 tp->sacked_out -= acked_pcount;
3120 } else if (tcp_is_sack(tp)) {
3121 tp->delivered += acked_pcount;
3122 if (!tcp_skb_spurious_retrans(tp, skb))
3123 tcp_rack_advance(tp, sacked, scb->end_seq,
3126 if (sacked & TCPCB_LOST)
3127 tp->lost_out -= acked_pcount;
3129 tp->packets_out -= acked_pcount;
3130 pkts_acked += acked_pcount;
3131 tcp_rate_skb_delivered(sk, skb, sack->rate);
3133 /* Initial outgoing SYN's get put onto the write_queue
3134 * just like anything else we transmit. It is not
3135 * true data, and if we misinform our callers that
3136 * this ACK acks real data, we will erroneously exit
3137 * connection startup slow start one packet too
3138 * quickly. This is severely frowned upon behavior.
3140 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3141 flag |= FLAG_DATA_ACKED;
3143 flag |= FLAG_SYN_ACKED;
3144 tp->retrans_stamp = 0;
3150 tcp_unlink_write_queue(skb, sk);
3151 sk_wmem_free_skb(sk, skb);
3152 if (unlikely(skb == tp->retransmit_skb_hint))
3153 tp->retransmit_skb_hint = NULL;
3154 if (unlikely(skb == tp->lost_skb_hint))
3155 tp->lost_skb_hint = NULL;
3159 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3161 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3162 tp->snd_up = tp->snd_una;
3164 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3165 flag |= FLAG_SACK_RENEGING;
3167 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3168 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3169 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3171 if (sack->first_sackt.v64) {
3172 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3173 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3175 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3176 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3179 if (flag & FLAG_ACKED) {
3181 if (unlikely(icsk->icsk_mtup.probe_size &&
3182 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3183 tcp_mtup_probe_success(sk);
3186 if (tcp_is_reno(tp)) {
3187 tcp_remove_reno_sacks(sk, pkts_acked);
3191 /* Non-retransmitted hole got filled? That's reordering */
3192 if (reord < prior_fackets)
3193 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3195 delta = tcp_is_fack(tp) ? pkts_acked :
3196 prior_sacked - tp->sacked_out;
3197 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3200 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3202 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3203 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3204 /* Do not re-arm RTO if the sack RTT is measured from data sent
3205 * after when the head was last (re)transmitted. Otherwise the
3206 * timeout may continue to extend in loss recovery.
3211 if (icsk->icsk_ca_ops->pkts_acked) {
3212 struct ack_sample sample = { .pkts_acked = pkts_acked,
3213 .rtt_us = ca_rtt_us,
3214 .in_flight = last_in_flight };
3216 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3219 #if FASTRETRANS_DEBUG > 0
3220 WARN_ON((int)tp->sacked_out < 0);
3221 WARN_ON((int)tp->lost_out < 0);
3222 WARN_ON((int)tp->retrans_out < 0);
3223 if (!tp->packets_out && tcp_is_sack(tp)) {
3224 icsk = inet_csk(sk);
3226 pr_debug("Leak l=%u %d\n",
3227 tp->lost_out, icsk->icsk_ca_state);
3230 if (tp->sacked_out) {
3231 pr_debug("Leak s=%u %d\n",
3232 tp->sacked_out, icsk->icsk_ca_state);
3235 if (tp->retrans_out) {
3236 pr_debug("Leak r=%u %d\n",
3237 tp->retrans_out, icsk->icsk_ca_state);
3238 tp->retrans_out = 0;
3242 *acked = pkts_acked;
3246 static void tcp_ack_probe(struct sock *sk)
3248 const struct tcp_sock *tp = tcp_sk(sk);
3249 struct inet_connection_sock *icsk = inet_csk(sk);
3251 /* Was it a usable window open? */
3253 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3254 icsk->icsk_backoff = 0;
3255 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3256 /* Socket must be waked up by subsequent tcp_data_snd_check().
3257 * This function is not for random using!
3260 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3262 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3267 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3269 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3270 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3273 /* Decide wheather to run the increase function of congestion control. */
3274 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3276 /* If reordering is high then always grow cwnd whenever data is
3277 * delivered regardless of its ordering. Otherwise stay conservative
3278 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3279 * new SACK or ECE mark may first advance cwnd here and later reduce
3280 * cwnd in tcp_fastretrans_alert() based on more states.
3282 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3283 return flag & FLAG_FORWARD_PROGRESS;
3285 return flag & FLAG_DATA_ACKED;
3288 /* The "ultimate" congestion control function that aims to replace the rigid
3289 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3290 * It's called toward the end of processing an ACK with precise rate
3291 * information. All transmission or retransmission are delayed afterwards.
3293 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3294 int flag, const struct rate_sample *rs)
3296 const struct inet_connection_sock *icsk = inet_csk(sk);
3298 if (icsk->icsk_ca_ops->cong_control) {
3299 icsk->icsk_ca_ops->cong_control(sk, rs);
3303 if (tcp_in_cwnd_reduction(sk)) {
3304 /* Reduce cwnd if state mandates */
3305 tcp_cwnd_reduction(sk, acked_sacked, flag);
3306 } else if (tcp_may_raise_cwnd(sk, flag)) {
3307 /* Advance cwnd if state allows */
3308 tcp_cong_avoid(sk, ack, acked_sacked);
3310 tcp_update_pacing_rate(sk);
3313 /* Check that window update is acceptable.
3314 * The function assumes that snd_una<=ack<=snd_next.
3316 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3317 const u32 ack, const u32 ack_seq,
3320 return after(ack, tp->snd_una) ||
3321 after(ack_seq, tp->snd_wl1) ||
3322 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3325 /* If we update tp->snd_una, also update tp->bytes_acked */
3326 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3328 u32 delta = ack - tp->snd_una;
3330 sock_owned_by_me((struct sock *)tp);
3331 tp->bytes_acked += delta;
3335 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3336 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3338 u32 delta = seq - tp->rcv_nxt;
3340 sock_owned_by_me((struct sock *)tp);
3341 tp->bytes_received += delta;
3345 /* Update our send window.
3347 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3348 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3350 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3353 struct tcp_sock *tp = tcp_sk(sk);
3355 u32 nwin = ntohs(tcp_hdr(skb)->window);
3357 if (likely(!tcp_hdr(skb)->syn))
3358 nwin <<= tp->rx_opt.snd_wscale;
3360 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3361 flag |= FLAG_WIN_UPDATE;
3362 tcp_update_wl(tp, ack_seq);
3364 if (tp->snd_wnd != nwin) {
3367 /* Note, it is the only place, where
3368 * fast path is recovered for sending TCP.
3371 tcp_fast_path_check(sk);
3373 if (tcp_send_head(sk))
3374 tcp_slow_start_after_idle_check(sk);
3376 if (nwin > tp->max_window) {
3377 tp->max_window = nwin;
3378 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3383 tcp_snd_una_update(tp, ack);
3388 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3389 u32 *last_oow_ack_time)
3391 if (*last_oow_ack_time) {
3392 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3394 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3395 NET_INC_STATS(net, mib_idx);
3396 return true; /* rate-limited: don't send yet! */
3400 *last_oow_ack_time = tcp_time_stamp;
3402 return false; /* not rate-limited: go ahead, send dupack now! */
3405 /* Return true if we're currently rate-limiting out-of-window ACKs and
3406 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3407 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3408 * attacks that send repeated SYNs or ACKs for the same connection. To
3409 * do this, we do not send a duplicate SYNACK or ACK if the remote
3410 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3412 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3413 int mib_idx, u32 *last_oow_ack_time)
3415 /* Data packets without SYNs are not likely part of an ACK loop. */
3416 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3420 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3423 /* RFC 5961 7 [ACK Throttling] */
3424 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3426 /* unprotected vars, we dont care of overwrites */
3427 static u32 challenge_timestamp;
3428 static unsigned int challenge_count;
3429 struct tcp_sock *tp = tcp_sk(sk);
3432 /* First check our per-socket dupack rate limit. */
3433 if (__tcp_oow_rate_limited(sock_net(sk),
3434 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3435 &tp->last_oow_ack_time))
3438 /* Then check host-wide RFC 5961 rate limit. */
3440 if (now != challenge_timestamp) {
3441 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3443 challenge_timestamp = now;
3444 WRITE_ONCE(challenge_count, half +
3445 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3447 count = READ_ONCE(challenge_count);
3449 WRITE_ONCE(challenge_count, count - 1);
3450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3455 static void tcp_store_ts_recent(struct tcp_sock *tp)
3457 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3458 tp->rx_opt.ts_recent_stamp = get_seconds();
3461 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3463 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3464 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3465 * extra check below makes sure this can only happen
3466 * for pure ACK frames. -DaveM
3468 * Not only, also it occurs for expired timestamps.
3471 if (tcp_paws_check(&tp->rx_opt, 0))
3472 tcp_store_ts_recent(tp);
3476 /* This routine deals with acks during a TLP episode.
3477 * We mark the end of a TLP episode on receiving TLP dupack or when
3478 * ack is after tlp_high_seq.
3479 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3481 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3483 struct tcp_sock *tp = tcp_sk(sk);
3485 if (before(ack, tp->tlp_high_seq))
3488 if (flag & FLAG_DSACKING_ACK) {
3489 /* This DSACK means original and TLP probe arrived; no loss */
3490 tp->tlp_high_seq = 0;
3491 } else if (after(ack, tp->tlp_high_seq)) {
3492 /* ACK advances: there was a loss, so reduce cwnd. Reset
3493 * tlp_high_seq in tcp_init_cwnd_reduction()
3495 tcp_init_cwnd_reduction(sk);
3496 tcp_set_ca_state(sk, TCP_CA_CWR);
3497 tcp_end_cwnd_reduction(sk);
3498 tcp_try_keep_open(sk);
3499 NET_INC_STATS(sock_net(sk),
3500 LINUX_MIB_TCPLOSSPROBERECOVERY);
3501 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3502 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3503 /* Pure dupack: original and TLP probe arrived; no loss */
3504 tp->tlp_high_seq = 0;
3508 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3510 const struct inet_connection_sock *icsk = inet_csk(sk);
3512 if (icsk->icsk_ca_ops->in_ack_event)
3513 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3516 /* Congestion control has updated the cwnd already. So if we're in
3517 * loss recovery then now we do any new sends (for FRTO) or
3518 * retransmits (for CA_Loss or CA_recovery) that make sense.
3520 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3522 struct tcp_sock *tp = tcp_sk(sk);
3524 if (rexmit == REXMIT_NONE)
3527 if (unlikely(rexmit == 2)) {
3528 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3530 if (after(tp->snd_nxt, tp->high_seq))
3534 tcp_xmit_retransmit_queue(sk);
3537 /* This routine deals with incoming acks, but not outgoing ones. */
3538 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3540 struct inet_connection_sock *icsk = inet_csk(sk);
3541 struct tcp_sock *tp = tcp_sk(sk);
3542 struct tcp_sacktag_state sack_state;
3543 struct rate_sample rs = { .prior_delivered = 0 };
3544 u32 prior_snd_una = tp->snd_una;
3545 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3546 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3547 bool is_dupack = false;
3549 int prior_packets = tp->packets_out;
3550 u32 delivered = tp->delivered;
3551 u32 lost = tp->lost;
3552 int acked = 0; /* Number of packets newly acked */
3553 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3555 sack_state.first_sackt.v64 = 0;
3556 sack_state.rate = &rs;
3558 /* We very likely will need to access write queue head. */
3559 prefetchw(sk->sk_write_queue.next);
3561 /* If the ack is older than previous acks
3562 * then we can probably ignore it.
3564 if (before(ack, prior_snd_una)) {
3565 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3566 if (before(ack, prior_snd_una - tp->max_window)) {
3567 tcp_send_challenge_ack(sk, skb);
3573 /* If the ack includes data we haven't sent yet, discard
3574 * this segment (RFC793 Section 3.9).
3576 if (after(ack, tp->snd_nxt))
3579 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3582 if (after(ack, prior_snd_una)) {
3583 flag |= FLAG_SND_UNA_ADVANCED;
3584 icsk->icsk_retransmits = 0;
3587 prior_fackets = tp->fackets_out;
3588 rs.prior_in_flight = tcp_packets_in_flight(tp);
3590 /* ts_recent update must be made after we are sure that the packet
3593 if (flag & FLAG_UPDATE_TS_RECENT)
3594 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3596 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3597 /* Window is constant, pure forward advance.
3598 * No more checks are required.
3599 * Note, we use the fact that SND.UNA>=SND.WL2.
3601 tcp_update_wl(tp, ack_seq);
3602 tcp_snd_una_update(tp, ack);
3603 flag |= FLAG_WIN_UPDATE;
3605 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3609 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3611 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3614 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3616 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3618 if (TCP_SKB_CB(skb)->sacked)
3619 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3622 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3624 ack_ev_flags |= CA_ACK_ECE;
3627 if (flag & FLAG_WIN_UPDATE)
3628 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3630 tcp_in_ack_event(sk, ack_ev_flags);
3633 /* We passed data and got it acked, remove any soft error
3634 * log. Something worked...
3636 sk->sk_err_soft = 0;
3637 icsk->icsk_probes_out = 0;
3638 tp->rcv_tstamp = tcp_time_stamp;
3642 /* See if we can take anything off of the retransmit queue. */
3643 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3646 if (tcp_ack_is_dubious(sk, flag)) {
3647 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3648 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3650 if (tp->tlp_high_seq)
3651 tcp_process_tlp_ack(sk, ack, flag);
3653 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3656 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3657 tcp_schedule_loss_probe(sk);
3658 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3659 lost = tp->lost - lost; /* freshly marked lost */
3660 tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3661 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3662 tcp_xmit_recovery(sk, rexmit);
3666 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3667 if (flag & FLAG_DSACKING_ACK)
3668 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3669 /* If this ack opens up a zero window, clear backoff. It was
3670 * being used to time the probes, and is probably far higher than
3671 * it needs to be for normal retransmission.
3673 if (tcp_send_head(sk))
3676 if (tp->tlp_high_seq)
3677 tcp_process_tlp_ack(sk, ack, flag);
3681 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3685 /* If data was SACKed, tag it and see if we should send more data.
3686 * If data was DSACKed, see if we can undo a cwnd reduction.
3688 if (TCP_SKB_CB(skb)->sacked) {
3689 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3691 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3692 tcp_xmit_recovery(sk, rexmit);
3695 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3699 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3700 bool syn, struct tcp_fastopen_cookie *foc,
3703 /* Valid only in SYN or SYN-ACK with an even length. */
3704 if (!foc || !syn || len < 0 || (len & 1))
3707 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3708 len <= TCP_FASTOPEN_COOKIE_MAX)
3709 memcpy(foc->val, cookie, len);
3716 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3717 * But, this can also be called on packets in the established flow when
3718 * the fast version below fails.
3720 void tcp_parse_options(const struct sk_buff *skb,
3721 struct tcp_options_received *opt_rx, int estab,
3722 struct tcp_fastopen_cookie *foc)
3724 const unsigned char *ptr;
3725 const struct tcphdr *th = tcp_hdr(skb);
3726 int length = (th->doff * 4) - sizeof(struct tcphdr);
3728 ptr = (const unsigned char *)(th + 1);
3729 opt_rx->saw_tstamp = 0;
3731 while (length > 0) {
3732 int opcode = *ptr++;
3738 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3743 if (opsize < 2) /* "silly options" */
3745 if (opsize > length)
3746 return; /* don't parse partial options */
3749 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3750 u16 in_mss = get_unaligned_be16(ptr);
3752 if (opt_rx->user_mss &&
3753 opt_rx->user_mss < in_mss)
3754 in_mss = opt_rx->user_mss;
3755 opt_rx->mss_clamp = in_mss;
3760 if (opsize == TCPOLEN_WINDOW && th->syn &&
3761 !estab && sysctl_tcp_window_scaling) {
3762 __u8 snd_wscale = *(__u8 *)ptr;
3763 opt_rx->wscale_ok = 1;
3764 if (snd_wscale > TCP_MAX_WSCALE) {
3765 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3769 snd_wscale = TCP_MAX_WSCALE;
3771 opt_rx->snd_wscale = snd_wscale;
3774 case TCPOPT_TIMESTAMP:
3775 if ((opsize == TCPOLEN_TIMESTAMP) &&
3776 ((estab && opt_rx->tstamp_ok) ||
3777 (!estab && sysctl_tcp_timestamps))) {
3778 opt_rx->saw_tstamp = 1;
3779 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3780 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3783 case TCPOPT_SACK_PERM:
3784 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3785 !estab && sysctl_tcp_sack) {
3786 opt_rx->sack_ok = TCP_SACK_SEEN;
3787 tcp_sack_reset(opt_rx);
3792 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3793 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3795 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3798 #ifdef CONFIG_TCP_MD5SIG
3801 * The MD5 Hash has already been
3802 * checked (see tcp_v{4,6}_do_rcv()).
3806 case TCPOPT_FASTOPEN:
3807 tcp_parse_fastopen_option(
3808 opsize - TCPOLEN_FASTOPEN_BASE,
3809 ptr, th->syn, foc, false);
3813 /* Fast Open option shares code 254 using a
3814 * 16 bits magic number.
3816 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3817 get_unaligned_be16(ptr) ==
3818 TCPOPT_FASTOPEN_MAGIC)
3819 tcp_parse_fastopen_option(opsize -
3820 TCPOLEN_EXP_FASTOPEN_BASE,
3821 ptr + 2, th->syn, foc, true);
3830 EXPORT_SYMBOL(tcp_parse_options);
3832 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3834 const __be32 *ptr = (const __be32 *)(th + 1);
3836 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3837 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3838 tp->rx_opt.saw_tstamp = 1;
3840 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3843 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3845 tp->rx_opt.rcv_tsecr = 0;
3851 /* Fast parse options. This hopes to only see timestamps.
3852 * If it is wrong it falls back on tcp_parse_options().
3854 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3855 const struct tcphdr *th, struct tcp_sock *tp)
3857 /* In the spirit of fast parsing, compare doff directly to constant
3858 * values. Because equality is used, short doff can be ignored here.
3860 if (th->doff == (sizeof(*th) / 4)) {
3861 tp->rx_opt.saw_tstamp = 0;
3863 } else if (tp->rx_opt.tstamp_ok &&
3864 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3865 if (tcp_parse_aligned_timestamp(tp, th))
3869 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3870 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3871 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3876 #ifdef CONFIG_TCP_MD5SIG
3878 * Parse MD5 Signature option
3880 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3882 int length = (th->doff << 2) - sizeof(*th);
3883 const u8 *ptr = (const u8 *)(th + 1);
3885 /* If the TCP option is too short, we can short cut */
3886 if (length < TCPOLEN_MD5SIG)
3889 while (length > 0) {
3890 int opcode = *ptr++;
3901 if (opsize < 2 || opsize > length)
3903 if (opcode == TCPOPT_MD5SIG)
3904 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3911 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3914 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3916 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3917 * it can pass through stack. So, the following predicate verifies that
3918 * this segment is not used for anything but congestion avoidance or
3919 * fast retransmit. Moreover, we even are able to eliminate most of such
3920 * second order effects, if we apply some small "replay" window (~RTO)
3921 * to timestamp space.
3923 * All these measures still do not guarantee that we reject wrapped ACKs
3924 * on networks with high bandwidth, when sequence space is recycled fastly,
3925 * but it guarantees that such events will be very rare and do not affect
3926 * connection seriously. This doesn't look nice, but alas, PAWS is really
3929 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3930 * states that events when retransmit arrives after original data are rare.
3931 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3932 * the biggest problem on large power networks even with minor reordering.
3933 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3934 * up to bandwidth of 18Gigabit/sec. 8) ]
3937 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3939 const struct tcp_sock *tp = tcp_sk(sk);
3940 const struct tcphdr *th = tcp_hdr(skb);
3941 u32 seq = TCP_SKB_CB(skb)->seq;
3942 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3944 return (/* 1. Pure ACK with correct sequence number. */
3945 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3947 /* 2. ... and duplicate ACK. */
3948 ack == tp->snd_una &&
3950 /* 3. ... and does not update window. */
3951 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3953 /* 4. ... and sits in replay window. */
3954 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3957 static inline bool tcp_paws_discard(const struct sock *sk,
3958 const struct sk_buff *skb)
3960 const struct tcp_sock *tp = tcp_sk(sk);
3962 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3963 !tcp_disordered_ack(sk, skb);
3966 /* Check segment sequence number for validity.
3968 * Segment controls are considered valid, if the segment
3969 * fits to the window after truncation to the window. Acceptability
3970 * of data (and SYN, FIN, of course) is checked separately.
3971 * See tcp_data_queue(), for example.
3973 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3974 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3975 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3976 * (borrowed from freebsd)
3979 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3981 return !before(end_seq, tp->rcv_wup) &&
3982 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3985 /* When we get a reset we do this. */
3986 void tcp_reset(struct sock *sk)
3988 /* We want the right error as BSD sees it (and indeed as we do). */
3989 switch (sk->sk_state) {
3991 sk->sk_err = ECONNREFUSED;
3993 case TCP_CLOSE_WAIT:
3999 sk->sk_err = ECONNRESET;
4001 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4006 if (!sock_flag(sk, SOCK_DEAD))
4007 sk->sk_error_report(sk);
4011 * Process the FIN bit. This now behaves as it is supposed to work
4012 * and the FIN takes effect when it is validly part of sequence
4013 * space. Not before when we get holes.
4015 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4016 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4019 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4020 * close and we go into CLOSING (and later onto TIME-WAIT)
4022 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4024 void tcp_fin(struct sock *sk)
4026 struct tcp_sock *tp = tcp_sk(sk);
4028 inet_csk_schedule_ack(sk);
4030 sk->sk_shutdown |= RCV_SHUTDOWN;
4031 sock_set_flag(sk, SOCK_DONE);
4033 switch (sk->sk_state) {
4035 case TCP_ESTABLISHED:
4036 /* Move to CLOSE_WAIT */
4037 tcp_set_state(sk, TCP_CLOSE_WAIT);
4038 inet_csk(sk)->icsk_ack.pingpong = 1;
4041 case TCP_CLOSE_WAIT:
4043 /* Received a retransmission of the FIN, do
4048 /* RFC793: Remain in the LAST-ACK state. */
4052 /* This case occurs when a simultaneous close
4053 * happens, we must ack the received FIN and
4054 * enter the CLOSING state.
4057 tcp_set_state(sk, TCP_CLOSING);
4060 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4062 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4065 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4066 * cases we should never reach this piece of code.
4068 pr_err("%s: Impossible, sk->sk_state=%d\n",
4069 __func__, sk->sk_state);
4073 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4074 * Probably, we should reset in this case. For now drop them.
4076 skb_rbtree_purge(&tp->out_of_order_queue);
4077 if (tcp_is_sack(tp))
4078 tcp_sack_reset(&tp->rx_opt);
4081 if (!sock_flag(sk, SOCK_DEAD)) {
4082 sk->sk_state_change(sk);
4084 /* Do not send POLL_HUP for half duplex close. */
4085 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4086 sk->sk_state == TCP_CLOSE)
4087 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4089 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4093 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4096 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4097 if (before(seq, sp->start_seq))
4098 sp->start_seq = seq;
4099 if (after(end_seq, sp->end_seq))
4100 sp->end_seq = end_seq;
4106 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4108 struct tcp_sock *tp = tcp_sk(sk);
4110 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4113 if (before(seq, tp->rcv_nxt))
4114 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4116 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4118 NET_INC_STATS(sock_net(sk), mib_idx);
4120 tp->rx_opt.dsack = 1;
4121 tp->duplicate_sack[0].start_seq = seq;
4122 tp->duplicate_sack[0].end_seq = end_seq;
4126 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4128 struct tcp_sock *tp = tcp_sk(sk);
4130 if (!tp->rx_opt.dsack)
4131 tcp_dsack_set(sk, seq, end_seq);
4133 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4136 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4138 struct tcp_sock *tp = tcp_sk(sk);
4140 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4141 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4142 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4143 tcp_enter_quickack_mode(sk);
4145 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4146 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4148 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4149 end_seq = tp->rcv_nxt;
4150 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4157 /* These routines update the SACK block as out-of-order packets arrive or
4158 * in-order packets close up the sequence space.
4160 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4163 struct tcp_sack_block *sp = &tp->selective_acks[0];
4164 struct tcp_sack_block *swalk = sp + 1;
4166 /* See if the recent change to the first SACK eats into
4167 * or hits the sequence space of other SACK blocks, if so coalesce.
4169 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4170 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4173 /* Zap SWALK, by moving every further SACK up by one slot.
4174 * Decrease num_sacks.
4176 tp->rx_opt.num_sacks--;
4177 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4181 this_sack++, swalk++;
4185 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4187 struct tcp_sock *tp = tcp_sk(sk);
4188 struct tcp_sack_block *sp = &tp->selective_acks[0];
4189 int cur_sacks = tp->rx_opt.num_sacks;
4195 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4196 if (tcp_sack_extend(sp, seq, end_seq)) {
4197 /* Rotate this_sack to the first one. */
4198 for (; this_sack > 0; this_sack--, sp--)
4199 swap(*sp, *(sp - 1));
4201 tcp_sack_maybe_coalesce(tp);
4206 /* Could not find an adjacent existing SACK, build a new one,
4207 * put it at the front, and shift everyone else down. We
4208 * always know there is at least one SACK present already here.
4210 * If the sack array is full, forget about the last one.
4212 if (this_sack >= TCP_NUM_SACKS) {
4214 tp->rx_opt.num_sacks--;
4217 for (; this_sack > 0; this_sack--, sp--)
4221 /* Build the new head SACK, and we're done. */
4222 sp->start_seq = seq;
4223 sp->end_seq = end_seq;
4224 tp->rx_opt.num_sacks++;
4227 /* RCV.NXT advances, some SACKs should be eaten. */
4229 static void tcp_sack_remove(struct tcp_sock *tp)
4231 struct tcp_sack_block *sp = &tp->selective_acks[0];
4232 int num_sacks = tp->rx_opt.num_sacks;
4235 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4236 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4237 tp->rx_opt.num_sacks = 0;
4241 for (this_sack = 0; this_sack < num_sacks;) {
4242 /* Check if the start of the sack is covered by RCV.NXT. */
4243 if (!before(tp->rcv_nxt, sp->start_seq)) {
4246 /* RCV.NXT must cover all the block! */
4247 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4249 /* Zap this SACK, by moving forward any other SACKS. */
4250 for (i = this_sack+1; i < num_sacks; i++)
4251 tp->selective_acks[i-1] = tp->selective_acks[i];
4258 tp->rx_opt.num_sacks = num_sacks;
4262 * tcp_try_coalesce - try to merge skb to prior one
4265 * @from: buffer to add in queue
4266 * @fragstolen: pointer to boolean
4268 * Before queueing skb @from after @to, try to merge them
4269 * to reduce overall memory use and queue lengths, if cost is small.
4270 * Packets in ofo or receive queues can stay a long time.
4271 * Better try to coalesce them right now to avoid future collapses.
4272 * Returns true if caller should free @from instead of queueing it
4274 static bool tcp_try_coalesce(struct sock *sk,
4276 struct sk_buff *from,
4281 *fragstolen = false;
4283 /* Its possible this segment overlaps with prior segment in queue */
4284 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4287 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4290 atomic_add(delta, &sk->sk_rmem_alloc);
4291 sk_mem_charge(sk, delta);
4292 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4293 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4294 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4295 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4299 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4301 sk_drops_add(sk, skb);
4305 /* This one checks to see if we can put data from the
4306 * out_of_order queue into the receive_queue.
4308 static void tcp_ofo_queue(struct sock *sk)
4310 struct tcp_sock *tp = tcp_sk(sk);
4311 __u32 dsack_high = tp->rcv_nxt;
4312 bool fin, fragstolen, eaten;
4313 struct sk_buff *skb, *tail;
4316 p = rb_first(&tp->out_of_order_queue);
4318 skb = rb_entry(p, struct sk_buff, rbnode);
4319 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4322 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4323 __u32 dsack = dsack_high;
4324 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4325 dsack_high = TCP_SKB_CB(skb)->end_seq;
4326 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4329 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4331 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4332 SOCK_DEBUG(sk, "ofo packet was already received\n");
4336 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4337 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4338 TCP_SKB_CB(skb)->end_seq);
4340 tail = skb_peek_tail(&sk->sk_receive_queue);
4341 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4342 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4343 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4345 __skb_queue_tail(&sk->sk_receive_queue, skb);
4347 kfree_skb_partial(skb, fragstolen);
4349 if (unlikely(fin)) {
4351 /* tcp_fin() purges tp->out_of_order_queue,
4352 * so we must end this loop right now.
4359 static bool tcp_prune_ofo_queue(struct sock *sk);
4360 static int tcp_prune_queue(struct sock *sk);
4362 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4365 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4366 !sk_rmem_schedule(sk, skb, size)) {
4368 if (tcp_prune_queue(sk) < 0)
4371 while (!sk_rmem_schedule(sk, skb, size)) {
4372 if (!tcp_prune_ofo_queue(sk))
4379 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4381 struct tcp_sock *tp = tcp_sk(sk);
4382 struct rb_node **p, *q, *parent;
4383 struct sk_buff *skb1;
4387 tcp_ecn_check_ce(tp, skb);
4389 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4390 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4395 /* Disable header prediction. */
4397 inet_csk_schedule_ack(sk);
4399 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4400 seq = TCP_SKB_CB(skb)->seq;
4401 end_seq = TCP_SKB_CB(skb)->end_seq;
4402 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4403 tp->rcv_nxt, seq, end_seq);
4405 p = &tp->out_of_order_queue.rb_node;
4406 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4407 /* Initial out of order segment, build 1 SACK. */
4408 if (tcp_is_sack(tp)) {
4409 tp->rx_opt.num_sacks = 1;
4410 tp->selective_acks[0].start_seq = seq;
4411 tp->selective_acks[0].end_seq = end_seq;
4413 rb_link_node(&skb->rbnode, NULL, p);
4414 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4415 tp->ooo_last_skb = skb;
4419 /* In the typical case, we are adding an skb to the end of the list.
4420 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4422 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4424 tcp_grow_window(sk, skb);
4425 kfree_skb_partial(skb, fragstolen);
4429 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4430 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4431 parent = &tp->ooo_last_skb->rbnode;
4432 p = &parent->rb_right;
4436 /* Find place to insert this segment. Handle overlaps on the way. */
4440 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4441 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4442 p = &parent->rb_left;
4445 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4446 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4447 /* All the bits are present. Drop. */
4448 NET_INC_STATS(sock_net(sk),
4449 LINUX_MIB_TCPOFOMERGE);
4452 tcp_dsack_set(sk, seq, end_seq);
4455 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4456 /* Partial overlap. */
4457 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4459 /* skb's seq == skb1's seq and skb covers skb1.
4460 * Replace skb1 with skb.
4462 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4463 &tp->out_of_order_queue);
4464 tcp_dsack_extend(sk,
4465 TCP_SKB_CB(skb1)->seq,
4466 TCP_SKB_CB(skb1)->end_seq);
4467 NET_INC_STATS(sock_net(sk),
4468 LINUX_MIB_TCPOFOMERGE);
4472 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4475 p = &parent->rb_right;
4478 /* Insert segment into RB tree. */
4479 rb_link_node(&skb->rbnode, parent, p);
4480 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4483 /* Remove other segments covered by skb. */
4484 while ((q = rb_next(&skb->rbnode)) != NULL) {
4485 skb1 = rb_entry(q, struct sk_buff, rbnode);
4487 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4489 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4490 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4494 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4495 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4496 TCP_SKB_CB(skb1)->end_seq);
4497 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4500 /* If there is no skb after us, we are the last_skb ! */
4502 tp->ooo_last_skb = skb;
4505 if (tcp_is_sack(tp))
4506 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4509 tcp_grow_window(sk, skb);
4511 skb_set_owner_r(skb, sk);
4515 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4519 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4521 __skb_pull(skb, hdrlen);
4523 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4524 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4526 __skb_queue_tail(&sk->sk_receive_queue, skb);
4527 skb_set_owner_r(skb, sk);
4532 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4534 struct sk_buff *skb;
4542 if (size > PAGE_SIZE) {
4543 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4545 data_len = npages << PAGE_SHIFT;
4546 size = data_len + (size & ~PAGE_MASK);
4548 skb = alloc_skb_with_frags(size - data_len, data_len,
4549 PAGE_ALLOC_COSTLY_ORDER,
4550 &err, sk->sk_allocation);
4554 skb_put(skb, size - data_len);
4555 skb->data_len = data_len;
4558 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4561 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4565 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4566 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4567 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4569 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4570 WARN_ON_ONCE(fragstolen); /* should not happen */
4582 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4584 struct tcp_sock *tp = tcp_sk(sk);
4585 bool fragstolen = false;
4588 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4593 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4595 tcp_ecn_accept_cwr(tp, skb);
4597 tp->rx_opt.dsack = 0;
4599 /* Queue data for delivery to the user.
4600 * Packets in sequence go to the receive queue.
4601 * Out of sequence packets to the out_of_order_queue.
4603 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4604 if (tcp_receive_window(tp) == 0)
4607 /* Ok. In sequence. In window. */
4608 if (tp->ucopy.task == current &&
4609 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4610 sock_owned_by_user(sk) && !tp->urg_data) {
4611 int chunk = min_t(unsigned int, skb->len,
4614 __set_current_state(TASK_RUNNING);
4616 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4617 tp->ucopy.len -= chunk;
4618 tp->copied_seq += chunk;
4619 eaten = (chunk == skb->len);
4620 tcp_rcv_space_adjust(sk);
4627 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4628 sk_forced_mem_schedule(sk, skb->truesize);
4629 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4632 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4634 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4636 tcp_event_data_recv(sk, skb);
4637 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4640 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4643 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4644 * gap in queue is filled.
4646 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4647 inet_csk(sk)->icsk_ack.pingpong = 0;
4650 if (tp->rx_opt.num_sacks)
4651 tcp_sack_remove(tp);
4653 tcp_fast_path_check(sk);
4656 kfree_skb_partial(skb, fragstolen);
4657 if (!sock_flag(sk, SOCK_DEAD))
4658 sk->sk_data_ready(sk);
4662 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4663 /* A retransmit, 2nd most common case. Force an immediate ack. */
4664 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4665 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4668 tcp_enter_quickack_mode(sk);
4669 inet_csk_schedule_ack(sk);
4675 /* Out of window. F.e. zero window probe. */
4676 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4679 tcp_enter_quickack_mode(sk);
4681 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4682 /* Partial packet, seq < rcv_next < end_seq */
4683 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4684 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4685 TCP_SKB_CB(skb)->end_seq);
4687 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4689 /* If window is closed, drop tail of packet. But after
4690 * remembering D-SACK for its head made in previous line.
4692 if (!tcp_receive_window(tp))
4697 tcp_data_queue_ofo(sk, skb);
4700 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4703 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4705 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4708 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4709 struct sk_buff_head *list,
4710 struct rb_root *root)
4712 struct sk_buff *next = tcp_skb_next(skb, list);
4715 __skb_unlink(skb, list);
4717 rb_erase(&skb->rbnode, root);
4720 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4725 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4726 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4728 struct rb_node **p = &root->rb_node;
4729 struct rb_node *parent = NULL;
4730 struct sk_buff *skb1;
4734 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4735 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4736 p = &parent->rb_left;
4738 p = &parent->rb_right;
4740 rb_link_node(&skb->rbnode, parent, p);
4741 rb_insert_color(&skb->rbnode, root);
4744 /* Collapse contiguous sequence of skbs head..tail with
4745 * sequence numbers start..end.
4747 * If tail is NULL, this means until the end of the queue.
4749 * Segments with FIN/SYN are not collapsed (only because this
4753 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4754 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4756 struct sk_buff *skb = head, *n;
4757 struct sk_buff_head tmp;
4760 /* First, check that queue is collapsible and find
4761 * the point where collapsing can be useful.
4764 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4765 n = tcp_skb_next(skb, list);
4767 /* No new bits? It is possible on ofo queue. */
4768 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4769 skb = tcp_collapse_one(sk, skb, list, root);
4775 /* The first skb to collapse is:
4777 * - bloated or contains data before "start" or
4778 * overlaps to the next one.
4780 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4781 (tcp_win_from_space(skb->truesize) > skb->len ||
4782 before(TCP_SKB_CB(skb)->seq, start))) {
4783 end_of_skbs = false;
4787 if (n && n != tail &&
4788 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4789 end_of_skbs = false;
4793 /* Decided to skip this, advance start seq. */
4794 start = TCP_SKB_CB(skb)->end_seq;
4797 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4800 __skb_queue_head_init(&tmp);
4802 while (before(start, end)) {
4803 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4804 struct sk_buff *nskb;
4806 nskb = alloc_skb(copy, GFP_ATOMIC);
4810 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4811 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4813 __skb_queue_before(list, skb, nskb);
4815 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4816 skb_set_owner_r(nskb, sk);
4818 /* Copy data, releasing collapsed skbs. */
4820 int offset = start - TCP_SKB_CB(skb)->seq;
4821 int size = TCP_SKB_CB(skb)->end_seq - start;
4825 size = min(copy, size);
4826 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4828 TCP_SKB_CB(nskb)->end_seq += size;
4832 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4833 skb = tcp_collapse_one(sk, skb, list, root);
4836 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4842 skb_queue_walk_safe(&tmp, skb, n)
4843 tcp_rbtree_insert(root, skb);
4846 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4847 * and tcp_collapse() them until all the queue is collapsed.
4849 static void tcp_collapse_ofo_queue(struct sock *sk)
4851 struct tcp_sock *tp = tcp_sk(sk);
4852 struct sk_buff *skb, *head;
4856 p = rb_first(&tp->out_of_order_queue);
4857 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4860 p = rb_last(&tp->out_of_order_queue);
4861 /* Note: This is possible p is NULL here. We do not
4862 * use rb_entry_safe(), as ooo_last_skb is valid only
4863 * if rbtree is not empty.
4865 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4868 start = TCP_SKB_CB(skb)->seq;
4869 end = TCP_SKB_CB(skb)->end_seq;
4871 for (head = skb;;) {
4872 skb = tcp_skb_next(skb, NULL);
4874 /* Range is terminated when we see a gap or when
4875 * we are at the queue end.
4878 after(TCP_SKB_CB(skb)->seq, end) ||
4879 before(TCP_SKB_CB(skb)->end_seq, start)) {
4880 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4881 head, skb, start, end);
4885 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4886 start = TCP_SKB_CB(skb)->seq;
4887 if (after(TCP_SKB_CB(skb)->end_seq, end))
4888 end = TCP_SKB_CB(skb)->end_seq;
4893 * Clean the out-of-order queue to make room.
4894 * We drop high sequences packets to :
4895 * 1) Let a chance for holes to be filled.
4896 * 2) not add too big latencies if thousands of packets sit there.
4897 * (But if application shrinks SO_RCVBUF, we could still end up
4898 * freeing whole queue here)
4900 * Return true if queue has shrunk.
4902 static bool tcp_prune_ofo_queue(struct sock *sk)
4904 struct tcp_sock *tp = tcp_sk(sk);
4905 struct rb_node *node, *prev;
4907 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4910 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4911 node = &tp->ooo_last_skb->rbnode;
4913 prev = rb_prev(node);
4914 rb_erase(node, &tp->out_of_order_queue);
4915 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4917 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4918 !tcp_under_memory_pressure(sk))
4922 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4924 /* Reset SACK state. A conforming SACK implementation will
4925 * do the same at a timeout based retransmit. When a connection
4926 * is in a sad state like this, we care only about integrity
4927 * of the connection not performance.
4929 if (tp->rx_opt.sack_ok)
4930 tcp_sack_reset(&tp->rx_opt);
4934 /* Reduce allocated memory if we can, trying to get
4935 * the socket within its memory limits again.
4937 * Return less than zero if we should start dropping frames
4938 * until the socket owning process reads some of the data
4939 * to stabilize the situation.
4941 static int tcp_prune_queue(struct sock *sk)
4943 struct tcp_sock *tp = tcp_sk(sk);
4945 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4947 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4949 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4950 tcp_clamp_window(sk);
4951 else if (tcp_under_memory_pressure(sk))
4952 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4954 tcp_collapse_ofo_queue(sk);
4955 if (!skb_queue_empty(&sk->sk_receive_queue))
4956 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4957 skb_peek(&sk->sk_receive_queue),
4959 tp->copied_seq, tp->rcv_nxt);
4962 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4965 /* Collapsing did not help, destructive actions follow.
4966 * This must not ever occur. */
4968 tcp_prune_ofo_queue(sk);
4970 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4973 /* If we are really being abused, tell the caller to silently
4974 * drop receive data on the floor. It will get retransmitted
4975 * and hopefully then we'll have sufficient space.
4977 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4979 /* Massive buffer overcommit. */
4984 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4986 const struct tcp_sock *tp = tcp_sk(sk);
4988 /* If the user specified a specific send buffer setting, do
4991 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4994 /* If we are under global TCP memory pressure, do not expand. */
4995 if (tcp_under_memory_pressure(sk))
4998 /* If we are under soft global TCP memory pressure, do not expand. */
4999 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5002 /* If we filled the congestion window, do not expand. */
5003 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5009 /* When incoming ACK allowed to free some skb from write_queue,
5010 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5011 * on the exit from tcp input handler.
5013 * PROBLEM: sndbuf expansion does not work well with largesend.
5015 static void tcp_new_space(struct sock *sk)
5017 struct tcp_sock *tp = tcp_sk(sk);
5019 if (tcp_should_expand_sndbuf(sk)) {
5020 tcp_sndbuf_expand(sk);
5021 tp->snd_cwnd_stamp = tcp_time_stamp;
5024 sk->sk_write_space(sk);
5027 static void tcp_check_space(struct sock *sk)
5029 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5030 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5031 /* pairs with tcp_poll() */
5033 if (sk->sk_socket &&
5034 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5036 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5037 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5042 static inline void tcp_data_snd_check(struct sock *sk)
5044 tcp_push_pending_frames(sk);
5045 tcp_check_space(sk);
5049 * Check if sending an ack is needed.
5051 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5053 struct tcp_sock *tp = tcp_sk(sk);
5055 /* More than one full frame received... */
5056 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5057 /* ... and right edge of window advances far enough.
5058 * (tcp_recvmsg() will send ACK otherwise). Or...
5060 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5061 /* We ACK each frame or... */
5062 tcp_in_quickack_mode(sk) ||
5063 /* We have out of order data. */
5064 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5065 /* Then ack it now */
5068 /* Else, send delayed ack. */
5069 tcp_send_delayed_ack(sk);
5073 static inline void tcp_ack_snd_check(struct sock *sk)
5075 if (!inet_csk_ack_scheduled(sk)) {
5076 /* We sent a data segment already. */
5079 __tcp_ack_snd_check(sk, 1);
5083 * This routine is only called when we have urgent data
5084 * signaled. Its the 'slow' part of tcp_urg. It could be
5085 * moved inline now as tcp_urg is only called from one
5086 * place. We handle URGent data wrong. We have to - as
5087 * BSD still doesn't use the correction from RFC961.
5088 * For 1003.1g we should support a new option TCP_STDURG to permit
5089 * either form (or just set the sysctl tcp_stdurg).
5092 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5094 struct tcp_sock *tp = tcp_sk(sk);
5095 u32 ptr = ntohs(th->urg_ptr);
5097 if (ptr && !sysctl_tcp_stdurg)
5099 ptr += ntohl(th->seq);
5101 /* Ignore urgent data that we've already seen and read. */
5102 if (after(tp->copied_seq, ptr))
5105 /* Do not replay urg ptr.
5107 * NOTE: interesting situation not covered by specs.
5108 * Misbehaving sender may send urg ptr, pointing to segment,
5109 * which we already have in ofo queue. We are not able to fetch
5110 * such data and will stay in TCP_URG_NOTYET until will be eaten
5111 * by recvmsg(). Seems, we are not obliged to handle such wicked
5112 * situations. But it is worth to think about possibility of some
5113 * DoSes using some hypothetical application level deadlock.
5115 if (before(ptr, tp->rcv_nxt))
5118 /* Do we already have a newer (or duplicate) urgent pointer? */
5119 if (tp->urg_data && !after(ptr, tp->urg_seq))
5122 /* Tell the world about our new urgent pointer. */
5125 /* We may be adding urgent data when the last byte read was
5126 * urgent. To do this requires some care. We cannot just ignore
5127 * tp->copied_seq since we would read the last urgent byte again
5128 * as data, nor can we alter copied_seq until this data arrives
5129 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5131 * NOTE. Double Dutch. Rendering to plain English: author of comment
5132 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5133 * and expect that both A and B disappear from stream. This is _wrong_.
5134 * Though this happens in BSD with high probability, this is occasional.
5135 * Any application relying on this is buggy. Note also, that fix "works"
5136 * only in this artificial test. Insert some normal data between A and B and we will
5137 * decline of BSD again. Verdict: it is better to remove to trap
5140 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5141 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5142 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5144 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5145 __skb_unlink(skb, &sk->sk_receive_queue);
5150 tp->urg_data = TCP_URG_NOTYET;
5153 /* Disable header prediction. */
5157 /* This is the 'fast' part of urgent handling. */
5158 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5160 struct tcp_sock *tp = tcp_sk(sk);
5162 /* Check if we get a new urgent pointer - normally not. */
5164 tcp_check_urg(sk, th);
5166 /* Do we wait for any urgent data? - normally not... */
5167 if (tp->urg_data == TCP_URG_NOTYET) {
5168 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5171 /* Is the urgent pointer pointing into this packet? */
5172 if (ptr < skb->len) {
5174 if (skb_copy_bits(skb, ptr, &tmp, 1))
5176 tp->urg_data = TCP_URG_VALID | tmp;
5177 if (!sock_flag(sk, SOCK_DEAD))
5178 sk->sk_data_ready(sk);
5183 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5185 struct tcp_sock *tp = tcp_sk(sk);
5186 int chunk = skb->len - hlen;
5189 if (skb_csum_unnecessary(skb))
5190 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5192 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5195 tp->ucopy.len -= chunk;
5196 tp->copied_seq += chunk;
5197 tcp_rcv_space_adjust(sk);
5203 /* Accept RST for rcv_nxt - 1 after a FIN.
5204 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5205 * FIN is sent followed by a RST packet. The RST is sent with the same
5206 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5207 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5208 * ACKs on the closed socket. In addition middleboxes can drop either the
5209 * challenge ACK or a subsequent RST.
5211 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5213 struct tcp_sock *tp = tcp_sk(sk);
5215 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5216 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5220 /* Does PAWS and seqno based validation of an incoming segment, flags will
5221 * play significant role here.
5223 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5224 const struct tcphdr *th, int syn_inerr)
5226 struct tcp_sock *tp = tcp_sk(sk);
5227 bool rst_seq_match = false;
5229 /* RFC1323: H1. Apply PAWS check first. */
5230 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5231 tcp_paws_discard(sk, skb)) {
5233 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5234 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5235 LINUX_MIB_TCPACKSKIPPEDPAWS,
5236 &tp->last_oow_ack_time))
5237 tcp_send_dupack(sk, skb);
5240 /* Reset is accepted even if it did not pass PAWS. */
5243 /* Step 1: check sequence number */
5244 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5245 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5246 * (RST) segments are validated by checking their SEQ-fields."
5247 * And page 69: "If an incoming segment is not acceptable,
5248 * an acknowledgment should be sent in reply (unless the RST
5249 * bit is set, if so drop the segment and return)".
5254 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5255 LINUX_MIB_TCPACKSKIPPEDSEQ,
5256 &tp->last_oow_ack_time))
5257 tcp_send_dupack(sk, skb);
5258 } else if (tcp_reset_check(sk, skb)) {
5264 /* Step 2: check RST bit */
5266 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5267 * FIN and SACK too if available):
5268 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5269 * the right-most SACK block,
5271 * RESET the connection
5273 * Send a challenge ACK
5275 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5276 tcp_reset_check(sk, skb)) {
5277 rst_seq_match = true;
5278 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5279 struct tcp_sack_block *sp = &tp->selective_acks[0];
5280 int max_sack = sp[0].end_seq;
5283 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5285 max_sack = after(sp[this_sack].end_seq,
5287 sp[this_sack].end_seq : max_sack;
5290 if (TCP_SKB_CB(skb)->seq == max_sack)
5291 rst_seq_match = true;
5297 /* Disable TFO if RST is out-of-order
5298 * and no data has been received
5299 * for current active TFO socket
5301 if (tp->syn_fastopen && !tp->data_segs_in &&
5302 sk->sk_state == TCP_ESTABLISHED)
5303 tcp_fastopen_active_disable(sk);
5304 tcp_send_challenge_ack(sk, skb);
5309 /* step 3: check security and precedence [ignored] */
5311 /* step 4: Check for a SYN
5312 * RFC 5961 4.2 : Send a challenge ack
5317 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5318 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5319 tcp_send_challenge_ack(sk, skb);
5331 * TCP receive function for the ESTABLISHED state.
5333 * It is split into a fast path and a slow path. The fast path is
5335 * - A zero window was announced from us - zero window probing
5336 * is only handled properly in the slow path.
5337 * - Out of order segments arrived.
5338 * - Urgent data is expected.
5339 * - There is no buffer space left
5340 * - Unexpected TCP flags/window values/header lengths are received
5341 * (detected by checking the TCP header against pred_flags)
5342 * - Data is sent in both directions. Fast path only supports pure senders
5343 * or pure receivers (this means either the sequence number or the ack
5344 * value must stay constant)
5345 * - Unexpected TCP option.
5347 * When these conditions are not satisfied it drops into a standard
5348 * receive procedure patterned after RFC793 to handle all cases.
5349 * The first three cases are guaranteed by proper pred_flags setting,
5350 * the rest is checked inline. Fast processing is turned on in
5351 * tcp_data_queue when everything is OK.
5353 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5354 const struct tcphdr *th, unsigned int len)
5356 struct tcp_sock *tp = tcp_sk(sk);
5358 skb_mstamp_get(&tp->tcp_mstamp);
5359 if (unlikely(!sk->sk_rx_dst))
5360 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5362 * Header prediction.
5363 * The code loosely follows the one in the famous
5364 * "30 instruction TCP receive" Van Jacobson mail.
5366 * Van's trick is to deposit buffers into socket queue
5367 * on a device interrupt, to call tcp_recv function
5368 * on the receive process context and checksum and copy
5369 * the buffer to user space. smart...
5371 * Our current scheme is not silly either but we take the
5372 * extra cost of the net_bh soft interrupt processing...
5373 * We do checksum and copy also but from device to kernel.
5376 tp->rx_opt.saw_tstamp = 0;
5378 /* pred_flags is 0xS?10 << 16 + snd_wnd
5379 * if header_prediction is to be made
5380 * 'S' will always be tp->tcp_header_len >> 2
5381 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5382 * turn it off (when there are holes in the receive
5383 * space for instance)
5384 * PSH flag is ignored.
5387 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5388 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5389 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5390 int tcp_header_len = tp->tcp_header_len;
5392 /* Timestamp header prediction: tcp_header_len
5393 * is automatically equal to th->doff*4 due to pred_flags
5397 /* Check timestamp */
5398 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5399 /* No? Slow path! */
5400 if (!tcp_parse_aligned_timestamp(tp, th))
5403 /* If PAWS failed, check it more carefully in slow path */
5404 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5407 /* DO NOT update ts_recent here, if checksum fails
5408 * and timestamp was corrupted part, it will result
5409 * in a hung connection since we will drop all
5410 * future packets due to the PAWS test.
5414 if (len <= tcp_header_len) {
5415 /* Bulk data transfer: sender */
5416 if (len == tcp_header_len) {
5417 /* Predicted packet is in window by definition.
5418 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5419 * Hence, check seq<=rcv_wup reduces to:
5421 if (tcp_header_len ==
5422 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5423 tp->rcv_nxt == tp->rcv_wup)
5424 tcp_store_ts_recent(tp);
5426 /* We know that such packets are checksummed
5429 tcp_ack(sk, skb, 0);
5431 tcp_data_snd_check(sk);
5433 } else { /* Header too small */
5434 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5439 bool fragstolen = false;
5441 if (tp->ucopy.task == current &&
5442 tp->copied_seq == tp->rcv_nxt &&
5443 len - tcp_header_len <= tp->ucopy.len &&
5444 sock_owned_by_user(sk)) {
5445 __set_current_state(TASK_RUNNING);
5447 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5448 /* Predicted packet is in window by definition.
5449 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5450 * Hence, check seq<=rcv_wup reduces to:
5452 if (tcp_header_len ==
5453 (sizeof(struct tcphdr) +
5454 TCPOLEN_TSTAMP_ALIGNED) &&
5455 tp->rcv_nxt == tp->rcv_wup)
5456 tcp_store_ts_recent(tp);
5458 tcp_rcv_rtt_measure_ts(sk, skb);
5460 __skb_pull(skb, tcp_header_len);
5461 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5462 NET_INC_STATS(sock_net(sk),
5463 LINUX_MIB_TCPHPHITSTOUSER);
5468 if (tcp_checksum_complete(skb))
5471 if ((int)skb->truesize > sk->sk_forward_alloc)
5474 /* Predicted packet is in window by definition.
5475 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5476 * Hence, check seq<=rcv_wup reduces to:
5478 if (tcp_header_len ==
5479 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5480 tp->rcv_nxt == tp->rcv_wup)
5481 tcp_store_ts_recent(tp);
5483 tcp_rcv_rtt_measure_ts(sk, skb);
5485 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5487 /* Bulk data transfer: receiver */
5488 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5492 tcp_event_data_recv(sk, skb);
5494 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5495 /* Well, only one small jumplet in fast path... */
5496 tcp_ack(sk, skb, FLAG_DATA);
5497 tcp_data_snd_check(sk);
5498 if (!inet_csk_ack_scheduled(sk))
5502 __tcp_ack_snd_check(sk, 0);
5505 kfree_skb_partial(skb, fragstolen);
5506 sk->sk_data_ready(sk);
5512 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5515 if (!th->ack && !th->rst && !th->syn)
5519 * Standard slow path.
5522 if (!tcp_validate_incoming(sk, skb, th, 1))
5526 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5529 tcp_rcv_rtt_measure_ts(sk, skb);
5531 /* Process urgent data. */
5532 tcp_urg(sk, skb, th);
5534 /* step 7: process the segment text */
5535 tcp_data_queue(sk, skb);
5537 tcp_data_snd_check(sk);
5538 tcp_ack_snd_check(sk);
5542 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5543 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5548 EXPORT_SYMBOL(tcp_rcv_established);
5550 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5552 struct tcp_sock *tp = tcp_sk(sk);
5553 struct inet_connection_sock *icsk = inet_csk(sk);
5555 tcp_set_state(sk, TCP_ESTABLISHED);
5556 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5559 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5560 security_inet_conn_established(sk, skb);
5563 /* Make sure socket is routed, for correct metrics. */
5564 icsk->icsk_af_ops->rebuild_header(sk);
5566 tcp_init_metrics(sk);
5568 tcp_init_congestion_control(sk);
5570 /* Prevent spurious tcp_cwnd_restart() on first data
5573 tp->lsndtime = tcp_time_stamp;
5575 tcp_init_buffer_space(sk);
5577 if (sock_flag(sk, SOCK_KEEPOPEN))
5578 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5580 if (!tp->rx_opt.snd_wscale)
5581 __tcp_fast_path_on(tp, tp->snd_wnd);
5587 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5588 struct tcp_fastopen_cookie *cookie)
5590 struct tcp_sock *tp = tcp_sk(sk);
5591 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5592 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5593 bool syn_drop = false;
5595 if (mss == tp->rx_opt.user_mss) {
5596 struct tcp_options_received opt;
5598 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5599 tcp_clear_options(&opt);
5600 opt.user_mss = opt.mss_clamp = 0;
5601 tcp_parse_options(synack, &opt, 0, NULL);
5602 mss = opt.mss_clamp;
5605 if (!tp->syn_fastopen) {
5606 /* Ignore an unsolicited cookie */
5608 } else if (tp->total_retrans) {
5609 /* SYN timed out and the SYN-ACK neither has a cookie nor
5610 * acknowledges data. Presumably the remote received only
5611 * the retransmitted (regular) SYNs: either the original
5612 * SYN-data or the corresponding SYN-ACK was dropped.
5614 syn_drop = (cookie->len < 0 && data);
5615 } else if (cookie->len < 0 && !tp->syn_data) {
5616 /* We requested a cookie but didn't get it. If we did not use
5617 * the (old) exp opt format then try so next time (try_exp=1).
5618 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5620 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5623 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5625 if (data) { /* Retransmit unacked data in SYN */
5626 tcp_for_write_queue_from(data, sk) {
5627 if (data == tcp_send_head(sk) ||
5628 __tcp_retransmit_skb(sk, data, 1))
5632 NET_INC_STATS(sock_net(sk),
5633 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5636 tp->syn_data_acked = tp->syn_data;
5637 if (tp->syn_data_acked)
5638 NET_INC_STATS(sock_net(sk),
5639 LINUX_MIB_TCPFASTOPENACTIVE);
5641 tcp_fastopen_add_skb(sk, synack);
5646 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5647 const struct tcphdr *th)
5649 struct inet_connection_sock *icsk = inet_csk(sk);
5650 struct tcp_sock *tp = tcp_sk(sk);
5651 struct tcp_fastopen_cookie foc = { .len = -1 };
5652 int saved_clamp = tp->rx_opt.mss_clamp;
5655 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5656 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5657 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5661 * "If the state is SYN-SENT then
5662 * first check the ACK bit
5663 * If the ACK bit is set
5664 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5665 * a reset (unless the RST bit is set, if so drop
5666 * the segment and return)"
5668 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5669 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5670 goto reset_and_undo;
5672 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5673 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5675 NET_INC_STATS(sock_net(sk),
5676 LINUX_MIB_PAWSACTIVEREJECTED);
5677 goto reset_and_undo;
5680 /* Now ACK is acceptable.
5682 * "If the RST bit is set
5683 * If the ACK was acceptable then signal the user "error:
5684 * connection reset", drop the segment, enter CLOSED state,
5685 * delete TCB, and return."
5694 * "fifth, if neither of the SYN or RST bits is set then
5695 * drop the segment and return."
5701 goto discard_and_undo;
5704 * "If the SYN bit is on ...
5705 * are acceptable then ...
5706 * (our SYN has been ACKed), change the connection
5707 * state to ESTABLISHED..."
5710 tcp_ecn_rcv_synack(tp, th);
5712 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5713 tcp_ack(sk, skb, FLAG_SLOWPATH);
5715 /* Ok.. it's good. Set up sequence numbers and
5716 * move to established.
5718 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5719 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5721 /* RFC1323: The window in SYN & SYN/ACK segments is
5724 tp->snd_wnd = ntohs(th->window);
5726 if (!tp->rx_opt.wscale_ok) {
5727 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5728 tp->window_clamp = min(tp->window_clamp, 65535U);
5731 if (tp->rx_opt.saw_tstamp) {
5732 tp->rx_opt.tstamp_ok = 1;
5733 tp->tcp_header_len =
5734 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5736 tcp_store_ts_recent(tp);
5738 tp->tcp_header_len = sizeof(struct tcphdr);
5741 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5742 tcp_enable_fack(tp);
5745 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5746 tcp_initialize_rcv_mss(sk);
5748 /* Remember, tcp_poll() does not lock socket!
5749 * Change state from SYN-SENT only after copied_seq
5750 * is initialized. */
5751 tp->copied_seq = tp->rcv_nxt;
5755 tcp_finish_connect(sk, skb);
5757 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5758 tcp_rcv_fastopen_synack(sk, skb, &foc);
5760 if (!sock_flag(sk, SOCK_DEAD)) {
5761 sk->sk_state_change(sk);
5762 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5766 if (sk->sk_write_pending ||
5767 icsk->icsk_accept_queue.rskq_defer_accept ||
5768 icsk->icsk_ack.pingpong) {
5769 /* Save one ACK. Data will be ready after
5770 * several ticks, if write_pending is set.
5772 * It may be deleted, but with this feature tcpdumps
5773 * look so _wonderfully_ clever, that I was not able
5774 * to stand against the temptation 8) --ANK
5776 inet_csk_schedule_ack(sk);
5777 tcp_enter_quickack_mode(sk);
5778 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5779 TCP_DELACK_MAX, TCP_RTO_MAX);
5790 /* No ACK in the segment */
5794 * "If the RST bit is set
5796 * Otherwise (no ACK) drop the segment and return."
5799 goto discard_and_undo;
5803 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5804 tcp_paws_reject(&tp->rx_opt, 0))
5805 goto discard_and_undo;
5808 /* We see SYN without ACK. It is attempt of
5809 * simultaneous connect with crossed SYNs.
5810 * Particularly, it can be connect to self.
5812 tcp_set_state(sk, TCP_SYN_RECV);
5814 if (tp->rx_opt.saw_tstamp) {
5815 tp->rx_opt.tstamp_ok = 1;
5816 tcp_store_ts_recent(tp);
5817 tp->tcp_header_len =
5818 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5820 tp->tcp_header_len = sizeof(struct tcphdr);
5823 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5824 tp->copied_seq = tp->rcv_nxt;
5825 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5827 /* RFC1323: The window in SYN & SYN/ACK segments is
5830 tp->snd_wnd = ntohs(th->window);
5831 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5832 tp->max_window = tp->snd_wnd;
5834 tcp_ecn_rcv_syn(tp, th);
5837 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5838 tcp_initialize_rcv_mss(sk);
5840 tcp_send_synack(sk);
5842 /* Note, we could accept data and URG from this segment.
5843 * There are no obstacles to make this (except that we must
5844 * either change tcp_recvmsg() to prevent it from returning data
5845 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5847 * However, if we ignore data in ACKless segments sometimes,
5848 * we have no reasons to accept it sometimes.
5849 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5850 * is not flawless. So, discard packet for sanity.
5851 * Uncomment this return to process the data.
5858 /* "fifth, if neither of the SYN or RST bits is set then
5859 * drop the segment and return."
5863 tcp_clear_options(&tp->rx_opt);
5864 tp->rx_opt.mss_clamp = saved_clamp;
5868 tcp_clear_options(&tp->rx_opt);
5869 tp->rx_opt.mss_clamp = saved_clamp;
5874 * This function implements the receiving procedure of RFC 793 for
5875 * all states except ESTABLISHED and TIME_WAIT.
5876 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5877 * address independent.
5880 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5882 struct tcp_sock *tp = tcp_sk(sk);
5883 struct inet_connection_sock *icsk = inet_csk(sk);
5884 const struct tcphdr *th = tcp_hdr(skb);
5885 struct request_sock *req;
5889 switch (sk->sk_state) {
5903 /* It is possible that we process SYN packets from backlog,
5904 * so we need to make sure to disable BH right there.
5907 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5918 tp->rx_opt.saw_tstamp = 0;
5919 skb_mstamp_get(&tp->tcp_mstamp);
5920 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5924 /* Do step6 onward by hand. */
5925 tcp_urg(sk, skb, th);
5927 tcp_data_snd_check(sk);
5931 skb_mstamp_get(&tp->tcp_mstamp);
5932 tp->rx_opt.saw_tstamp = 0;
5933 req = tp->fastopen_rsk;
5935 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5936 sk->sk_state != TCP_FIN_WAIT1);
5938 if (!tcp_check_req(sk, skb, req, true))
5942 if (!th->ack && !th->rst && !th->syn)
5945 if (!tcp_validate_incoming(sk, skb, th, 0))
5948 /* step 5: check the ACK field */
5949 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5950 FLAG_UPDATE_TS_RECENT) > 0;
5952 switch (sk->sk_state) {
5958 tcp_synack_rtt_meas(sk, req);
5960 /* Once we leave TCP_SYN_RECV, we no longer need req
5964 inet_csk(sk)->icsk_retransmits = 0;
5965 reqsk_fastopen_remove(sk, req, false);
5967 /* Make sure socket is routed, for correct metrics. */
5968 icsk->icsk_af_ops->rebuild_header(sk);
5969 tcp_init_congestion_control(sk);
5972 tp->copied_seq = tp->rcv_nxt;
5973 tcp_init_buffer_space(sk);
5976 tcp_set_state(sk, TCP_ESTABLISHED);
5977 sk->sk_state_change(sk);
5979 /* Note, that this wakeup is only for marginal crossed SYN case.
5980 * Passively open sockets are not waked up, because
5981 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5984 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5986 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5987 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5988 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5990 if (tp->rx_opt.tstamp_ok)
5991 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5994 /* Re-arm the timer because data may have been sent out.
5995 * This is similar to the regular data transmission case
5996 * when new data has just been ack'ed.
5998 * (TFO) - we could try to be more aggressive and
5999 * retransmitting any data sooner based on when they
6004 tcp_init_metrics(sk);
6006 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6007 tcp_update_pacing_rate(sk);
6009 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6010 tp->lsndtime = tcp_time_stamp;
6012 tcp_initialize_rcv_mss(sk);
6013 tcp_fast_path_on(tp);
6016 case TCP_FIN_WAIT1: {
6019 /* If we enter the TCP_FIN_WAIT1 state and we are a
6020 * Fast Open socket and this is the first acceptable
6021 * ACK we have received, this would have acknowledged
6022 * our SYNACK so stop the SYNACK timer.
6025 /* Return RST if ack_seq is invalid.
6026 * Note that RFC793 only says to generate a
6027 * DUPACK for it but for TCP Fast Open it seems
6028 * better to treat this case like TCP_SYN_RECV
6033 /* We no longer need the request sock. */
6034 reqsk_fastopen_remove(sk, req, false);
6037 if (tp->snd_una != tp->write_seq)
6040 tcp_set_state(sk, TCP_FIN_WAIT2);
6041 sk->sk_shutdown |= SEND_SHUTDOWN;
6045 if (!sock_flag(sk, SOCK_DEAD)) {
6046 /* Wake up lingering close() */
6047 sk->sk_state_change(sk);
6051 if (tp->linger2 < 0) {
6053 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6056 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6057 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6058 /* Receive out of order FIN after close() */
6059 if (tp->syn_fastopen && th->fin)
6060 tcp_fastopen_active_disable(sk);
6062 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6066 tmo = tcp_fin_time(sk);
6067 if (tmo > TCP_TIMEWAIT_LEN) {
6068 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6069 } else if (th->fin || sock_owned_by_user(sk)) {
6070 /* Bad case. We could lose such FIN otherwise.
6071 * It is not a big problem, but it looks confusing
6072 * and not so rare event. We still can lose it now,
6073 * if it spins in bh_lock_sock(), but it is really
6076 inet_csk_reset_keepalive_timer(sk, tmo);
6078 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6085 if (tp->snd_una == tp->write_seq) {
6086 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6092 if (tp->snd_una == tp->write_seq) {
6093 tcp_update_metrics(sk);
6100 /* step 6: check the URG bit */
6101 tcp_urg(sk, skb, th);
6103 /* step 7: process the segment text */
6104 switch (sk->sk_state) {
6105 case TCP_CLOSE_WAIT:
6108 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6112 /* RFC 793 says to queue data in these states,
6113 * RFC 1122 says we MUST send a reset.
6114 * BSD 4.4 also does reset.
6116 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6117 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6118 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6119 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6125 case TCP_ESTABLISHED:
6126 tcp_data_queue(sk, skb);
6131 /* tcp_data could move socket to TIME-WAIT */
6132 if (sk->sk_state != TCP_CLOSE) {
6133 tcp_data_snd_check(sk);
6134 tcp_ack_snd_check(sk);
6143 EXPORT_SYMBOL(tcp_rcv_state_process);
6145 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6147 struct inet_request_sock *ireq = inet_rsk(req);
6149 if (family == AF_INET)
6150 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6151 &ireq->ir_rmt_addr, port);
6152 #if IS_ENABLED(CONFIG_IPV6)
6153 else if (family == AF_INET6)
6154 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6155 &ireq->ir_v6_rmt_addr, port);
6159 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6161 * If we receive a SYN packet with these bits set, it means a
6162 * network is playing bad games with TOS bits. In order to
6163 * avoid possible false congestion notifications, we disable
6164 * TCP ECN negotiation.
6166 * Exception: tcp_ca wants ECN. This is required for DCTCP
6167 * congestion control: Linux DCTCP asserts ECT on all packets,
6168 * including SYN, which is most optimal solution; however,
6169 * others, such as FreeBSD do not.
6171 static void tcp_ecn_create_request(struct request_sock *req,
6172 const struct sk_buff *skb,
6173 const struct sock *listen_sk,
6174 const struct dst_entry *dst)
6176 const struct tcphdr *th = tcp_hdr(skb);
6177 const struct net *net = sock_net(listen_sk);
6178 bool th_ecn = th->ece && th->cwr;
6185 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6186 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6187 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6189 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6190 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6191 inet_rsk(req)->ecn_ok = 1;
6194 static void tcp_openreq_init(struct request_sock *req,
6195 const struct tcp_options_received *rx_opt,
6196 struct sk_buff *skb, const struct sock *sk)
6198 struct inet_request_sock *ireq = inet_rsk(req);
6200 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6202 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6203 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6204 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6205 tcp_rsk(req)->last_oow_ack_time = 0;
6206 req->mss = rx_opt->mss_clamp;
6207 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6208 ireq->tstamp_ok = rx_opt->tstamp_ok;
6209 ireq->sack_ok = rx_opt->sack_ok;
6210 ireq->snd_wscale = rx_opt->snd_wscale;
6211 ireq->wscale_ok = rx_opt->wscale_ok;
6214 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6215 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6216 ireq->ir_mark = inet_request_mark(sk, skb);
6219 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6220 struct sock *sk_listener,
6221 bool attach_listener)
6223 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6227 struct inet_request_sock *ireq = inet_rsk(req);
6229 kmemcheck_annotate_bitfield(ireq, flags);
6231 #if IS_ENABLED(CONFIG_IPV6)
6232 ireq->pktopts = NULL;
6234 atomic64_set(&ireq->ir_cookie, 0);
6235 ireq->ireq_state = TCP_NEW_SYN_RECV;
6236 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6237 ireq->ireq_family = sk_listener->sk_family;
6242 EXPORT_SYMBOL(inet_reqsk_alloc);
6245 * Return true if a syncookie should be sent
6247 static bool tcp_syn_flood_action(const struct sock *sk,
6248 const struct sk_buff *skb,
6251 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6252 const char *msg = "Dropping request";
6253 bool want_cookie = false;
6254 struct net *net = sock_net(sk);
6256 #ifdef CONFIG_SYN_COOKIES
6257 if (net->ipv4.sysctl_tcp_syncookies) {
6258 msg = "Sending cookies";
6260 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6263 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6265 if (!queue->synflood_warned &&
6266 net->ipv4.sysctl_tcp_syncookies != 2 &&
6267 xchg(&queue->synflood_warned, 1) == 0)
6268 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6269 proto, ntohs(tcp_hdr(skb)->dest), msg);
6274 static void tcp_reqsk_record_syn(const struct sock *sk,
6275 struct request_sock *req,
6276 const struct sk_buff *skb)
6278 if (tcp_sk(sk)->save_syn) {
6279 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6282 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6285 memcpy(©[1], skb_network_header(skb), len);
6286 req->saved_syn = copy;
6291 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6292 const struct tcp_request_sock_ops *af_ops,
6293 struct sock *sk, struct sk_buff *skb)
6295 struct tcp_fastopen_cookie foc = { .len = -1 };
6296 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6297 struct tcp_options_received tmp_opt;
6298 struct tcp_sock *tp = tcp_sk(sk);
6299 struct net *net = sock_net(sk);
6300 struct sock *fastopen_sk = NULL;
6301 struct dst_entry *dst = NULL;
6302 struct request_sock *req;
6303 bool want_cookie = false;
6306 /* TW buckets are converted to open requests without
6307 * limitations, they conserve resources and peer is
6308 * evidently real one.
6310 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6311 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6312 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6317 if (sk_acceptq_is_full(sk)) {
6318 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6322 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6326 tcp_rsk(req)->af_specific = af_ops;
6327 tcp_rsk(req)->ts_off = 0;
6329 tcp_clear_options(&tmp_opt);
6330 tmp_opt.mss_clamp = af_ops->mss_clamp;
6331 tmp_opt.user_mss = tp->rx_opt.user_mss;
6332 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6334 if (want_cookie && !tmp_opt.saw_tstamp)
6335 tcp_clear_options(&tmp_opt);
6337 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6338 tcp_openreq_init(req, &tmp_opt, skb, sk);
6339 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6341 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6342 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6344 af_ops->init_req(req, sk, skb);
6346 if (security_inet_conn_request(sk, skb, req))
6349 if (tmp_opt.tstamp_ok)
6350 tcp_rsk(req)->ts_off = af_ops->init_ts_off(skb);
6352 if (!want_cookie && !isn) {
6353 /* Kill the following clause, if you dislike this way. */
6354 if (!net->ipv4.sysctl_tcp_syncookies &&
6355 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6356 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6357 !tcp_peer_is_proven(req, dst)) {
6358 /* Without syncookies last quarter of
6359 * backlog is filled with destinations,
6360 * proven to be alive.
6361 * It means that we continue to communicate
6362 * to destinations, already remembered
6363 * to the moment of synflood.
6365 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6367 goto drop_and_release;
6370 isn = af_ops->init_seq(skb);
6373 dst = af_ops->route_req(sk, &fl, req);
6378 tcp_ecn_create_request(req, skb, sk, dst);
6381 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6382 req->cookie_ts = tmp_opt.tstamp_ok;
6383 if (!tmp_opt.tstamp_ok)
6384 inet_rsk(req)->ecn_ok = 0;
6387 tcp_rsk(req)->snt_isn = isn;
6388 tcp_rsk(req)->txhash = net_tx_rndhash();
6389 tcp_openreq_init_rwin(req, sk, dst);
6391 tcp_reqsk_record_syn(sk, req, skb);
6392 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6395 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6396 &foc, TCP_SYNACK_FASTOPEN);
6397 /* Add the child socket directly into the accept queue */
6398 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6399 sk->sk_data_ready(sk);
6400 bh_unlock_sock(fastopen_sk);
6401 sock_put(fastopen_sk);
6403 tcp_rsk(req)->tfo_listener = false;
6405 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6406 af_ops->send_synack(sk, dst, &fl, req, &foc,
6407 !want_cookie ? TCP_SYNACK_NORMAL :
6425 EXPORT_SYMBOL(tcp_conn_request);