]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/socket.c
vfs: Remove the range_cont writeback mode.
[karo-tx-linux.git] / net / socket.c
1 /*
2  * NET          An implementation of the SOCKET network access protocol.
3  *
4  * Version:     @(#)socket.c    1.1.93  18/02/95
5  *
6  * Authors:     Orest Zborowski, <obz@Kodak.COM>
7  *              Ross Biro
8  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
12  *                                      shutdown()
13  *              Alan Cox        :       verify_area() fixes
14  *              Alan Cox        :       Removed DDI
15  *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
16  *              Alan Cox        :       Moved a load of checks to the very
17  *                                      top level.
18  *              Alan Cox        :       Move address structures to/from user
19  *                                      mode above the protocol layers.
20  *              Rob Janssen     :       Allow 0 length sends.
21  *              Alan Cox        :       Asynchronous I/O support (cribbed from the
22  *                                      tty drivers).
23  *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
24  *              Jeff Uphoff     :       Made max number of sockets command-line
25  *                                      configurable.
26  *              Matti Aarnio    :       Made the number of sockets dynamic,
27  *                                      to be allocated when needed, and mr.
28  *                                      Uphoff's max is used as max to be
29  *                                      allowed to allocate.
30  *              Linus           :       Argh. removed all the socket allocation
31  *                                      altogether: it's in the inode now.
32  *              Alan Cox        :       Made sock_alloc()/sock_release() public
33  *                                      for NetROM and future kernel nfsd type
34  *                                      stuff.
35  *              Alan Cox        :       sendmsg/recvmsg basics.
36  *              Tom Dyas        :       Export net symbols.
37  *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
38  *              Alan Cox        :       Added thread locking to sys_* calls
39  *                                      for sockets. May have errors at the
40  *                                      moment.
41  *              Kevin Buhr      :       Fixed the dumb errors in the above.
42  *              Andi Kleen      :       Some small cleanups, optimizations,
43  *                                      and fixed a copy_from_user() bug.
44  *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
45  *              Tigran Aivazian :       Made listen(2) backlog sanity checks
46  *                                      protocol-independent
47  *
48  *
49  *              This program is free software; you can redistribute it and/or
50  *              modify it under the terms of the GNU General Public License
51  *              as published by the Free Software Foundation; either version
52  *              2 of the License, or (at your option) any later version.
53  *
54  *
55  *      This module is effectively the top level interface to the BSD socket
56  *      paradigm.
57  *
58  *      Based upon Swansea University Computer Society NET3.039
59  */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/thread_info.h>
73 #include <linux/wanrouter.h>
74 #include <linux/if_bridge.h>
75 #include <linux/if_frad.h>
76 #include <linux/if_vlan.h>
77 #include <linux/init.h>
78 #include <linux/poll.h>
79 #include <linux/cache.h>
80 #include <linux/module.h>
81 #include <linux/highmem.h>
82 #include <linux/mount.h>
83 #include <linux/security.h>
84 #include <linux/syscalls.h>
85 #include <linux/compat.h>
86 #include <linux/kmod.h>
87 #include <linux/audit.h>
88 #include <linux/wireless.h>
89 #include <linux/nsproxy.h>
90
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
101 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
102                          unsigned long nr_segs, loff_t pos);
103 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
104                           unsigned long nr_segs, loff_t pos);
105 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
106
107 static int sock_close(struct inode *inode, struct file *file);
108 static unsigned int sock_poll(struct file *file,
109                               struct poll_table_struct *wait);
110 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
111 #ifdef CONFIG_COMPAT
112 static long compat_sock_ioctl(struct file *file,
113                               unsigned int cmd, unsigned long arg);
114 #endif
115 static int sock_fasync(int fd, struct file *filp, int on);
116 static ssize_t sock_sendpage(struct file *file, struct page *page,
117                              int offset, size_t size, loff_t *ppos, int more);
118 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
119                                 struct pipe_inode_info *pipe, size_t len,
120                                 unsigned int flags);
121
122 /*
123  *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
124  *      in the operation structures but are done directly via the socketcall() multiplexor.
125  */
126
127 static const struct file_operations socket_file_ops = {
128         .owner =        THIS_MODULE,
129         .llseek =       no_llseek,
130         .aio_read =     sock_aio_read,
131         .aio_write =    sock_aio_write,
132         .poll =         sock_poll,
133         .unlocked_ioctl = sock_ioctl,
134 #ifdef CONFIG_COMPAT
135         .compat_ioctl = compat_sock_ioctl,
136 #endif
137         .mmap =         sock_mmap,
138         .open =         sock_no_open,   /* special open code to disallow open via /proc */
139         .release =      sock_close,
140         .fasync =       sock_fasync,
141         .sendpage =     sock_sendpage,
142         .splice_write = generic_splice_sendpage,
143         .splice_read =  sock_splice_read,
144 };
145
146 /*
147  *      The protocol list. Each protocol is registered in here.
148  */
149
150 static DEFINE_SPINLOCK(net_family_lock);
151 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
152
153 /*
154  *      Statistics counters of the socket lists
155  */
156
157 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
158
159 /*
160  * Support routines.
161  * Move socket addresses back and forth across the kernel/user
162  * divide and look after the messy bits.
163  */
164
165 #define MAX_SOCK_ADDR   128             /* 108 for Unix domain -
166                                            16 for IP, 16 for IPX,
167                                            24 for IPv6,
168                                            about 80 for AX.25
169                                            must be at least one bigger than
170                                            the AF_UNIX size (see net/unix/af_unix.c
171                                            :unix_mkname()).
172                                          */
173
174 /**
175  *      move_addr_to_kernel     -       copy a socket address into kernel space
176  *      @uaddr: Address in user space
177  *      @kaddr: Address in kernel space
178  *      @ulen: Length in user space
179  *
180  *      The address is copied into kernel space. If the provided address is
181  *      too long an error code of -EINVAL is returned. If the copy gives
182  *      invalid addresses -EFAULT is returned. On a success 0 is returned.
183  */
184
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 {
187         if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188                 return -EINVAL;
189         if (ulen == 0)
190                 return 0;
191         if (copy_from_user(kaddr, uaddr, ulen))
192                 return -EFAULT;
193         return audit_sockaddr(ulen, kaddr);
194 }
195
196 /**
197  *      move_addr_to_user       -       copy an address to user space
198  *      @kaddr: kernel space address
199  *      @klen: length of address in kernel
200  *      @uaddr: user space address
201  *      @ulen: pointer to user length field
202  *
203  *      The value pointed to by ulen on entry is the buffer length available.
204  *      This is overwritten with the buffer space used. -EINVAL is returned
205  *      if an overlong buffer is specified or a negative buffer size. -EFAULT
206  *      is returned if either the buffer or the length field are not
207  *      accessible.
208  *      After copying the data up to the limit the user specifies, the true
209  *      length of the data is written over the length limit the user
210  *      specified. Zero is returned for a success.
211  */
212
213 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
214                       int __user *ulen)
215 {
216         int err;
217         int len;
218
219         err = get_user(len, ulen);
220         if (err)
221                 return err;
222         if (len > klen)
223                 len = klen;
224         if (len < 0 || len > sizeof(struct sockaddr_storage))
225                 return -EINVAL;
226         if (len) {
227                 if (audit_sockaddr(klen, kaddr))
228                         return -ENOMEM;
229                 if (copy_to_user(uaddr, kaddr, len))
230                         return -EFAULT;
231         }
232         /*
233          *      "fromlen shall refer to the value before truncation.."
234          *                      1003.1g
235          */
236         return __put_user(klen, ulen);
237 }
238
239 #define SOCKFS_MAGIC 0x534F434B
240
241 static struct kmem_cache *sock_inode_cachep __read_mostly;
242
243 static struct inode *sock_alloc_inode(struct super_block *sb)
244 {
245         struct socket_alloc *ei;
246
247         ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248         if (!ei)
249                 return NULL;
250         init_waitqueue_head(&ei->socket.wait);
251
252         ei->socket.fasync_list = NULL;
253         ei->socket.state = SS_UNCONNECTED;
254         ei->socket.flags = 0;
255         ei->socket.ops = NULL;
256         ei->socket.sk = NULL;
257         ei->socket.file = NULL;
258
259         return &ei->vfs_inode;
260 }
261
262 static void sock_destroy_inode(struct inode *inode)
263 {
264         kmem_cache_free(sock_inode_cachep,
265                         container_of(inode, struct socket_alloc, vfs_inode));
266 }
267
268 static void init_once(void *foo)
269 {
270         struct socket_alloc *ei = (struct socket_alloc *)foo;
271
272         inode_init_once(&ei->vfs_inode);
273 }
274
275 static int init_inodecache(void)
276 {
277         sock_inode_cachep = kmem_cache_create("sock_inode_cache",
278                                               sizeof(struct socket_alloc),
279                                               0,
280                                               (SLAB_HWCACHE_ALIGN |
281                                                SLAB_RECLAIM_ACCOUNT |
282                                                SLAB_MEM_SPREAD),
283                                               init_once);
284         if (sock_inode_cachep == NULL)
285                 return -ENOMEM;
286         return 0;
287 }
288
289 static struct super_operations sockfs_ops = {
290         .alloc_inode =  sock_alloc_inode,
291         .destroy_inode =sock_destroy_inode,
292         .statfs =       simple_statfs,
293 };
294
295 static int sockfs_get_sb(struct file_system_type *fs_type,
296                          int flags, const char *dev_name, void *data,
297                          struct vfsmount *mnt)
298 {
299         return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
300                              mnt);
301 }
302
303 static struct vfsmount *sock_mnt __read_mostly;
304
305 static struct file_system_type sock_fs_type = {
306         .name =         "sockfs",
307         .get_sb =       sockfs_get_sb,
308         .kill_sb =      kill_anon_super,
309 };
310
311 static int sockfs_delete_dentry(struct dentry *dentry)
312 {
313         /*
314          * At creation time, we pretended this dentry was hashed
315          * (by clearing DCACHE_UNHASHED bit in d_flags)
316          * At delete time, we restore the truth : not hashed.
317          * (so that dput() can proceed correctly)
318          */
319         dentry->d_flags |= DCACHE_UNHASHED;
320         return 0;
321 }
322
323 /*
324  * sockfs_dname() is called from d_path().
325  */
326 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
327 {
328         return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
329                                 dentry->d_inode->i_ino);
330 }
331
332 static struct dentry_operations sockfs_dentry_operations = {
333         .d_delete = sockfs_delete_dentry,
334         .d_dname  = sockfs_dname,
335 };
336
337 /*
338  *      Obtains the first available file descriptor and sets it up for use.
339  *
340  *      These functions create file structures and maps them to fd space
341  *      of the current process. On success it returns file descriptor
342  *      and file struct implicitly stored in sock->file.
343  *      Note that another thread may close file descriptor before we return
344  *      from this function. We use the fact that now we do not refer
345  *      to socket after mapping. If one day we will need it, this
346  *      function will increment ref. count on file by 1.
347  *
348  *      In any case returned fd MAY BE not valid!
349  *      This race condition is unavoidable
350  *      with shared fd spaces, we cannot solve it inside kernel,
351  *      but we take care of internal coherence yet.
352  */
353
354 static int sock_alloc_fd(struct file **filep, int flags)
355 {
356         int fd;
357
358         fd = get_unused_fd_flags(flags);
359         if (likely(fd >= 0)) {
360                 struct file *file = get_empty_filp();
361
362                 *filep = file;
363                 if (unlikely(!file)) {
364                         put_unused_fd(fd);
365                         return -ENFILE;
366                 }
367         } else
368                 *filep = NULL;
369         return fd;
370 }
371
372 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
373 {
374         struct dentry *dentry;
375         struct qstr name = { .name = "" };
376
377         dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
378         if (unlikely(!dentry))
379                 return -ENOMEM;
380
381         dentry->d_op = &sockfs_dentry_operations;
382         /*
383          * We dont want to push this dentry into global dentry hash table.
384          * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
385          * This permits a working /proc/$pid/fd/XXX on sockets
386          */
387         dentry->d_flags &= ~DCACHE_UNHASHED;
388         d_instantiate(dentry, SOCK_INODE(sock));
389
390         sock->file = file;
391         init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
392                   &socket_file_ops);
393         SOCK_INODE(sock)->i_fop = &socket_file_ops;
394         file->f_flags = O_RDWR | (flags & O_NONBLOCK);
395         file->f_pos = 0;
396         file->private_data = sock;
397
398         return 0;
399 }
400
401 int sock_map_fd(struct socket *sock, int flags)
402 {
403         struct file *newfile;
404         int fd = sock_alloc_fd(&newfile, flags);
405
406         if (likely(fd >= 0)) {
407                 int err = sock_attach_fd(sock, newfile, flags);
408
409                 if (unlikely(err < 0)) {
410                         put_filp(newfile);
411                         put_unused_fd(fd);
412                         return err;
413                 }
414                 fd_install(fd, newfile);
415         }
416         return fd;
417 }
418
419 static struct socket *sock_from_file(struct file *file, int *err)
420 {
421         if (file->f_op == &socket_file_ops)
422                 return file->private_data;      /* set in sock_map_fd */
423
424         *err = -ENOTSOCK;
425         return NULL;
426 }
427
428 /**
429  *      sockfd_lookup   -       Go from a file number to its socket slot
430  *      @fd: file handle
431  *      @err: pointer to an error code return
432  *
433  *      The file handle passed in is locked and the socket it is bound
434  *      too is returned. If an error occurs the err pointer is overwritten
435  *      with a negative errno code and NULL is returned. The function checks
436  *      for both invalid handles and passing a handle which is not a socket.
437  *
438  *      On a success the socket object pointer is returned.
439  */
440
441 struct socket *sockfd_lookup(int fd, int *err)
442 {
443         struct file *file;
444         struct socket *sock;
445
446         file = fget(fd);
447         if (!file) {
448                 *err = -EBADF;
449                 return NULL;
450         }
451
452         sock = sock_from_file(file, err);
453         if (!sock)
454                 fput(file);
455         return sock;
456 }
457
458 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
459 {
460         struct file *file;
461         struct socket *sock;
462
463         *err = -EBADF;
464         file = fget_light(fd, fput_needed);
465         if (file) {
466                 sock = sock_from_file(file, err);
467                 if (sock)
468                         return sock;
469                 fput_light(file, *fput_needed);
470         }
471         return NULL;
472 }
473
474 /**
475  *      sock_alloc      -       allocate a socket
476  *
477  *      Allocate a new inode and socket object. The two are bound together
478  *      and initialised. The socket is then returned. If we are out of inodes
479  *      NULL is returned.
480  */
481
482 static struct socket *sock_alloc(void)
483 {
484         struct inode *inode;
485         struct socket *sock;
486
487         inode = new_inode(sock_mnt->mnt_sb);
488         if (!inode)
489                 return NULL;
490
491         sock = SOCKET_I(inode);
492
493         inode->i_mode = S_IFSOCK | S_IRWXUGO;
494         inode->i_uid = current->fsuid;
495         inode->i_gid = current->fsgid;
496
497         get_cpu_var(sockets_in_use)++;
498         put_cpu_var(sockets_in_use);
499         return sock;
500 }
501
502 /*
503  *      In theory you can't get an open on this inode, but /proc provides
504  *      a back door. Remember to keep it shut otherwise you'll let the
505  *      creepy crawlies in.
506  */
507
508 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
509 {
510         return -ENXIO;
511 }
512
513 const struct file_operations bad_sock_fops = {
514         .owner = THIS_MODULE,
515         .open = sock_no_open,
516 };
517
518 /**
519  *      sock_release    -       close a socket
520  *      @sock: socket to close
521  *
522  *      The socket is released from the protocol stack if it has a release
523  *      callback, and the inode is then released if the socket is bound to
524  *      an inode not a file.
525  */
526
527 void sock_release(struct socket *sock)
528 {
529         if (sock->ops) {
530                 struct module *owner = sock->ops->owner;
531
532                 sock->ops->release(sock);
533                 sock->ops = NULL;
534                 module_put(owner);
535         }
536
537         if (sock->fasync_list)
538                 printk(KERN_ERR "sock_release: fasync list not empty!\n");
539
540         get_cpu_var(sockets_in_use)--;
541         put_cpu_var(sockets_in_use);
542         if (!sock->file) {
543                 iput(SOCK_INODE(sock));
544                 return;
545         }
546         sock->file = NULL;
547 }
548
549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
550                                  struct msghdr *msg, size_t size)
551 {
552         struct sock_iocb *si = kiocb_to_siocb(iocb);
553         int err;
554
555         si->sock = sock;
556         si->scm = NULL;
557         si->msg = msg;
558         si->size = size;
559
560         err = security_socket_sendmsg(sock, msg, size);
561         if (err)
562                 return err;
563
564         return sock->ops->sendmsg(iocb, sock, msg, size);
565 }
566
567 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
568 {
569         struct kiocb iocb;
570         struct sock_iocb siocb;
571         int ret;
572
573         init_sync_kiocb(&iocb, NULL);
574         iocb.private = &siocb;
575         ret = __sock_sendmsg(&iocb, sock, msg, size);
576         if (-EIOCBQUEUED == ret)
577                 ret = wait_on_sync_kiocb(&iocb);
578         return ret;
579 }
580
581 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
582                    struct kvec *vec, size_t num, size_t size)
583 {
584         mm_segment_t oldfs = get_fs();
585         int result;
586
587         set_fs(KERNEL_DS);
588         /*
589          * the following is safe, since for compiler definitions of kvec and
590          * iovec are identical, yielding the same in-core layout and alignment
591          */
592         msg->msg_iov = (struct iovec *)vec;
593         msg->msg_iovlen = num;
594         result = sock_sendmsg(sock, msg, size);
595         set_fs(oldfs);
596         return result;
597 }
598
599 /*
600  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
601  */
602 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
603         struct sk_buff *skb)
604 {
605         ktime_t kt = skb->tstamp;
606
607         if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
608                 struct timeval tv;
609                 /* Race occurred between timestamp enabling and packet
610                    receiving.  Fill in the current time for now. */
611                 if (kt.tv64 == 0)
612                         kt = ktime_get_real();
613                 skb->tstamp = kt;
614                 tv = ktime_to_timeval(kt);
615                 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
616         } else {
617                 struct timespec ts;
618                 /* Race occurred between timestamp enabling and packet
619                    receiving.  Fill in the current time for now. */
620                 if (kt.tv64 == 0)
621                         kt = ktime_get_real();
622                 skb->tstamp = kt;
623                 ts = ktime_to_timespec(kt);
624                 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
625         }
626 }
627
628 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
629
630 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
631                                  struct msghdr *msg, size_t size, int flags)
632 {
633         int err;
634         struct sock_iocb *si = kiocb_to_siocb(iocb);
635
636         si->sock = sock;
637         si->scm = NULL;
638         si->msg = msg;
639         si->size = size;
640         si->flags = flags;
641
642         err = security_socket_recvmsg(sock, msg, size, flags);
643         if (err)
644                 return err;
645
646         return sock->ops->recvmsg(iocb, sock, msg, size, flags);
647 }
648
649 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
650                  size_t size, int flags)
651 {
652         struct kiocb iocb;
653         struct sock_iocb siocb;
654         int ret;
655
656         init_sync_kiocb(&iocb, NULL);
657         iocb.private = &siocb;
658         ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
659         if (-EIOCBQUEUED == ret)
660                 ret = wait_on_sync_kiocb(&iocb);
661         return ret;
662 }
663
664 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
665                    struct kvec *vec, size_t num, size_t size, int flags)
666 {
667         mm_segment_t oldfs = get_fs();
668         int result;
669
670         set_fs(KERNEL_DS);
671         /*
672          * the following is safe, since for compiler definitions of kvec and
673          * iovec are identical, yielding the same in-core layout and alignment
674          */
675         msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
676         result = sock_recvmsg(sock, msg, size, flags);
677         set_fs(oldfs);
678         return result;
679 }
680
681 static void sock_aio_dtor(struct kiocb *iocb)
682 {
683         kfree(iocb->private);
684 }
685
686 static ssize_t sock_sendpage(struct file *file, struct page *page,
687                              int offset, size_t size, loff_t *ppos, int more)
688 {
689         struct socket *sock;
690         int flags;
691
692         sock = file->private_data;
693
694         flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
695         if (more)
696                 flags |= MSG_MORE;
697
698         return kernel_sendpage(sock, page, offset, size, flags);
699 }
700
701 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
702                                 struct pipe_inode_info *pipe, size_t len,
703                                 unsigned int flags)
704 {
705         struct socket *sock = file->private_data;
706
707         if (unlikely(!sock->ops->splice_read))
708                 return -EINVAL;
709
710         return sock->ops->splice_read(sock, ppos, pipe, len, flags);
711 }
712
713 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
714                                          struct sock_iocb *siocb)
715 {
716         if (!is_sync_kiocb(iocb)) {
717                 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
718                 if (!siocb)
719                         return NULL;
720                 iocb->ki_dtor = sock_aio_dtor;
721         }
722
723         siocb->kiocb = iocb;
724         iocb->private = siocb;
725         return siocb;
726 }
727
728 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
729                 struct file *file, const struct iovec *iov,
730                 unsigned long nr_segs)
731 {
732         struct socket *sock = file->private_data;
733         size_t size = 0;
734         int i;
735
736         for (i = 0; i < nr_segs; i++)
737                 size += iov[i].iov_len;
738
739         msg->msg_name = NULL;
740         msg->msg_namelen = 0;
741         msg->msg_control = NULL;
742         msg->msg_controllen = 0;
743         msg->msg_iov = (struct iovec *)iov;
744         msg->msg_iovlen = nr_segs;
745         msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
746
747         return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
748 }
749
750 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
751                                 unsigned long nr_segs, loff_t pos)
752 {
753         struct sock_iocb siocb, *x;
754
755         if (pos != 0)
756                 return -ESPIPE;
757
758         if (iocb->ki_left == 0) /* Match SYS5 behaviour */
759                 return 0;
760
761
762         x = alloc_sock_iocb(iocb, &siocb);
763         if (!x)
764                 return -ENOMEM;
765         return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
766 }
767
768 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
769                         struct file *file, const struct iovec *iov,
770                         unsigned long nr_segs)
771 {
772         struct socket *sock = file->private_data;
773         size_t size = 0;
774         int i;
775
776         for (i = 0; i < nr_segs; i++)
777                 size += iov[i].iov_len;
778
779         msg->msg_name = NULL;
780         msg->msg_namelen = 0;
781         msg->msg_control = NULL;
782         msg->msg_controllen = 0;
783         msg->msg_iov = (struct iovec *)iov;
784         msg->msg_iovlen = nr_segs;
785         msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
786         if (sock->type == SOCK_SEQPACKET)
787                 msg->msg_flags |= MSG_EOR;
788
789         return __sock_sendmsg(iocb, sock, msg, size);
790 }
791
792 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
793                           unsigned long nr_segs, loff_t pos)
794 {
795         struct sock_iocb siocb, *x;
796
797         if (pos != 0)
798                 return -ESPIPE;
799
800         x = alloc_sock_iocb(iocb, &siocb);
801         if (!x)
802                 return -ENOMEM;
803
804         return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
805 }
806
807 /*
808  * Atomic setting of ioctl hooks to avoid race
809  * with module unload.
810  */
811
812 static DEFINE_MUTEX(br_ioctl_mutex);
813 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
814
815 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
816 {
817         mutex_lock(&br_ioctl_mutex);
818         br_ioctl_hook = hook;
819         mutex_unlock(&br_ioctl_mutex);
820 }
821
822 EXPORT_SYMBOL(brioctl_set);
823
824 static DEFINE_MUTEX(vlan_ioctl_mutex);
825 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
826
827 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
828 {
829         mutex_lock(&vlan_ioctl_mutex);
830         vlan_ioctl_hook = hook;
831         mutex_unlock(&vlan_ioctl_mutex);
832 }
833
834 EXPORT_SYMBOL(vlan_ioctl_set);
835
836 static DEFINE_MUTEX(dlci_ioctl_mutex);
837 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
838
839 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
840 {
841         mutex_lock(&dlci_ioctl_mutex);
842         dlci_ioctl_hook = hook;
843         mutex_unlock(&dlci_ioctl_mutex);
844 }
845
846 EXPORT_SYMBOL(dlci_ioctl_set);
847
848 /*
849  *      With an ioctl, arg may well be a user mode pointer, but we don't know
850  *      what to do with it - that's up to the protocol still.
851  */
852
853 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
854 {
855         struct socket *sock;
856         struct sock *sk;
857         void __user *argp = (void __user *)arg;
858         int pid, err;
859         struct net *net;
860
861         sock = file->private_data;
862         sk = sock->sk;
863         net = sock_net(sk);
864         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
865                 err = dev_ioctl(net, cmd, argp);
866         } else
867 #ifdef CONFIG_WIRELESS_EXT
868         if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
869                 err = dev_ioctl(net, cmd, argp);
870         } else
871 #endif                          /* CONFIG_WIRELESS_EXT */
872                 switch (cmd) {
873                 case FIOSETOWN:
874                 case SIOCSPGRP:
875                         err = -EFAULT;
876                         if (get_user(pid, (int __user *)argp))
877                                 break;
878                         err = f_setown(sock->file, pid, 1);
879                         break;
880                 case FIOGETOWN:
881                 case SIOCGPGRP:
882                         err = put_user(f_getown(sock->file),
883                                        (int __user *)argp);
884                         break;
885                 case SIOCGIFBR:
886                 case SIOCSIFBR:
887                 case SIOCBRADDBR:
888                 case SIOCBRDELBR:
889                         err = -ENOPKG;
890                         if (!br_ioctl_hook)
891                                 request_module("bridge");
892
893                         mutex_lock(&br_ioctl_mutex);
894                         if (br_ioctl_hook)
895                                 err = br_ioctl_hook(net, cmd, argp);
896                         mutex_unlock(&br_ioctl_mutex);
897                         break;
898                 case SIOCGIFVLAN:
899                 case SIOCSIFVLAN:
900                         err = -ENOPKG;
901                         if (!vlan_ioctl_hook)
902                                 request_module("8021q");
903
904                         mutex_lock(&vlan_ioctl_mutex);
905                         if (vlan_ioctl_hook)
906                                 err = vlan_ioctl_hook(net, argp);
907                         mutex_unlock(&vlan_ioctl_mutex);
908                         break;
909                 case SIOCADDDLCI:
910                 case SIOCDELDLCI:
911                         err = -ENOPKG;
912                         if (!dlci_ioctl_hook)
913                                 request_module("dlci");
914
915                         mutex_lock(&dlci_ioctl_mutex);
916                         if (dlci_ioctl_hook)
917                                 err = dlci_ioctl_hook(cmd, argp);
918                         mutex_unlock(&dlci_ioctl_mutex);
919                         break;
920                 default:
921                         err = sock->ops->ioctl(sock, cmd, arg);
922
923                         /*
924                          * If this ioctl is unknown try to hand it down
925                          * to the NIC driver.
926                          */
927                         if (err == -ENOIOCTLCMD)
928                                 err = dev_ioctl(net, cmd, argp);
929                         break;
930                 }
931         return err;
932 }
933
934 int sock_create_lite(int family, int type, int protocol, struct socket **res)
935 {
936         int err;
937         struct socket *sock = NULL;
938
939         err = security_socket_create(family, type, protocol, 1);
940         if (err)
941                 goto out;
942
943         sock = sock_alloc();
944         if (!sock) {
945                 err = -ENOMEM;
946                 goto out;
947         }
948
949         sock->type = type;
950         err = security_socket_post_create(sock, family, type, protocol, 1);
951         if (err)
952                 goto out_release;
953
954 out:
955         *res = sock;
956         return err;
957 out_release:
958         sock_release(sock);
959         sock = NULL;
960         goto out;
961 }
962
963 /* No kernel lock held - perfect */
964 static unsigned int sock_poll(struct file *file, poll_table *wait)
965 {
966         struct socket *sock;
967
968         /*
969          *      We can't return errors to poll, so it's either yes or no.
970          */
971         sock = file->private_data;
972         return sock->ops->poll(file, sock, wait);
973 }
974
975 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
976 {
977         struct socket *sock = file->private_data;
978
979         return sock->ops->mmap(file, sock, vma);
980 }
981
982 static int sock_close(struct inode *inode, struct file *filp)
983 {
984         /*
985          *      It was possible the inode is NULL we were
986          *      closing an unfinished socket.
987          */
988
989         if (!inode) {
990                 printk(KERN_DEBUG "sock_close: NULL inode\n");
991                 return 0;
992         }
993         sock_fasync(-1, filp, 0);
994         sock_release(SOCKET_I(inode));
995         return 0;
996 }
997
998 /*
999  *      Update the socket async list
1000  *
1001  *      Fasync_list locking strategy.
1002  *
1003  *      1. fasync_list is modified only under process context socket lock
1004  *         i.e. under semaphore.
1005  *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1006  *         or under socket lock.
1007  *      3. fasync_list can be used from softirq context, so that
1008  *         modification under socket lock have to be enhanced with
1009  *         write_lock_bh(&sk->sk_callback_lock).
1010  *                                                      --ANK (990710)
1011  */
1012
1013 static int sock_fasync(int fd, struct file *filp, int on)
1014 {
1015         struct fasync_struct *fa, *fna = NULL, **prev;
1016         struct socket *sock;
1017         struct sock *sk;
1018
1019         if (on) {
1020                 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1021                 if (fna == NULL)
1022                         return -ENOMEM;
1023         }
1024
1025         sock = filp->private_data;
1026
1027         sk = sock->sk;
1028         if (sk == NULL) {
1029                 kfree(fna);
1030                 return -EINVAL;
1031         }
1032
1033         lock_sock(sk);
1034
1035         prev = &(sock->fasync_list);
1036
1037         for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1038                 if (fa->fa_file == filp)
1039                         break;
1040
1041         if (on) {
1042                 if (fa != NULL) {
1043                         write_lock_bh(&sk->sk_callback_lock);
1044                         fa->fa_fd = fd;
1045                         write_unlock_bh(&sk->sk_callback_lock);
1046
1047                         kfree(fna);
1048                         goto out;
1049                 }
1050                 fna->fa_file = filp;
1051                 fna->fa_fd = fd;
1052                 fna->magic = FASYNC_MAGIC;
1053                 fna->fa_next = sock->fasync_list;
1054                 write_lock_bh(&sk->sk_callback_lock);
1055                 sock->fasync_list = fna;
1056                 write_unlock_bh(&sk->sk_callback_lock);
1057         } else {
1058                 if (fa != NULL) {
1059                         write_lock_bh(&sk->sk_callback_lock);
1060                         *prev = fa->fa_next;
1061                         write_unlock_bh(&sk->sk_callback_lock);
1062                         kfree(fa);
1063                 }
1064         }
1065
1066 out:
1067         release_sock(sock->sk);
1068         return 0;
1069 }
1070
1071 /* This function may be called only under socket lock or callback_lock */
1072
1073 int sock_wake_async(struct socket *sock, int how, int band)
1074 {
1075         if (!sock || !sock->fasync_list)
1076                 return -1;
1077         switch (how) {
1078         case SOCK_WAKE_WAITD:
1079                 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1080                         break;
1081                 goto call_kill;
1082         case SOCK_WAKE_SPACE:
1083                 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1084                         break;
1085                 /* fall through */
1086         case SOCK_WAKE_IO:
1087 call_kill:
1088                 __kill_fasync(sock->fasync_list, SIGIO, band);
1089                 break;
1090         case SOCK_WAKE_URG:
1091                 __kill_fasync(sock->fasync_list, SIGURG, band);
1092         }
1093         return 0;
1094 }
1095
1096 static int __sock_create(struct net *net, int family, int type, int protocol,
1097                          struct socket **res, int kern)
1098 {
1099         int err;
1100         struct socket *sock;
1101         const struct net_proto_family *pf;
1102
1103         /*
1104          *      Check protocol is in range
1105          */
1106         if (family < 0 || family >= NPROTO)
1107                 return -EAFNOSUPPORT;
1108         if (type < 0 || type >= SOCK_MAX)
1109                 return -EINVAL;
1110
1111         /* Compatibility.
1112
1113            This uglymoron is moved from INET layer to here to avoid
1114            deadlock in module load.
1115          */
1116         if (family == PF_INET && type == SOCK_PACKET) {
1117                 static int warned;
1118                 if (!warned) {
1119                         warned = 1;
1120                         printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1121                                current->comm);
1122                 }
1123                 family = PF_PACKET;
1124         }
1125
1126         err = security_socket_create(family, type, protocol, kern);
1127         if (err)
1128                 return err;
1129
1130         /*
1131          *      Allocate the socket and allow the family to set things up. if
1132          *      the protocol is 0, the family is instructed to select an appropriate
1133          *      default.
1134          */
1135         sock = sock_alloc();
1136         if (!sock) {
1137                 if (net_ratelimit())
1138                         printk(KERN_WARNING "socket: no more sockets\n");
1139                 return -ENFILE; /* Not exactly a match, but its the
1140                                    closest posix thing */
1141         }
1142
1143         sock->type = type;
1144
1145 #if defined(CONFIG_KMOD)
1146         /* Attempt to load a protocol module if the find failed.
1147          *
1148          * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1149          * requested real, full-featured networking support upon configuration.
1150          * Otherwise module support will break!
1151          */
1152         if (net_families[family] == NULL)
1153                 request_module("net-pf-%d", family);
1154 #endif
1155
1156         rcu_read_lock();
1157         pf = rcu_dereference(net_families[family]);
1158         err = -EAFNOSUPPORT;
1159         if (!pf)
1160                 goto out_release;
1161
1162         /*
1163          * We will call the ->create function, that possibly is in a loadable
1164          * module, so we have to bump that loadable module refcnt first.
1165          */
1166         if (!try_module_get(pf->owner))
1167                 goto out_release;
1168
1169         /* Now protected by module ref count */
1170         rcu_read_unlock();
1171
1172         err = pf->create(net, sock, protocol);
1173         if (err < 0)
1174                 goto out_module_put;
1175
1176         /*
1177          * Now to bump the refcnt of the [loadable] module that owns this
1178          * socket at sock_release time we decrement its refcnt.
1179          */
1180         if (!try_module_get(sock->ops->owner))
1181                 goto out_module_busy;
1182
1183         /*
1184          * Now that we're done with the ->create function, the [loadable]
1185          * module can have its refcnt decremented
1186          */
1187         module_put(pf->owner);
1188         err = security_socket_post_create(sock, family, type, protocol, kern);
1189         if (err)
1190                 goto out_sock_release;
1191         *res = sock;
1192
1193         return 0;
1194
1195 out_module_busy:
1196         err = -EAFNOSUPPORT;
1197 out_module_put:
1198         sock->ops = NULL;
1199         module_put(pf->owner);
1200 out_sock_release:
1201         sock_release(sock);
1202         return err;
1203
1204 out_release:
1205         rcu_read_unlock();
1206         goto out_sock_release;
1207 }
1208
1209 int sock_create(int family, int type, int protocol, struct socket **res)
1210 {
1211         return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1212 }
1213
1214 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1215 {
1216         return __sock_create(&init_net, family, type, protocol, res, 1);
1217 }
1218
1219 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1220 {
1221         int retval;
1222         struct socket *sock;
1223         int flags;
1224
1225         /* Check the SOCK_* constants for consistency.  */
1226         BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1227         BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1228         BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1229         BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1230
1231         flags = type & ~SOCK_TYPE_MASK;
1232         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1233                 return -EINVAL;
1234         type &= SOCK_TYPE_MASK;
1235
1236         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1237                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1238
1239         retval = sock_create(family, type, protocol, &sock);
1240         if (retval < 0)
1241                 goto out;
1242
1243         retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1244         if (retval < 0)
1245                 goto out_release;
1246
1247 out:
1248         /* It may be already another descriptor 8) Not kernel problem. */
1249         return retval;
1250
1251 out_release:
1252         sock_release(sock);
1253         return retval;
1254 }
1255
1256 /*
1257  *      Create a pair of connected sockets.
1258  */
1259
1260 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1261                 int __user *, usockvec)
1262 {
1263         struct socket *sock1, *sock2;
1264         int fd1, fd2, err;
1265         struct file *newfile1, *newfile2;
1266         int flags;
1267
1268         flags = type & ~SOCK_TYPE_MASK;
1269         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1270                 return -EINVAL;
1271         type &= SOCK_TYPE_MASK;
1272
1273         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1274                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1275
1276         /*
1277          * Obtain the first socket and check if the underlying protocol
1278          * supports the socketpair call.
1279          */
1280
1281         err = sock_create(family, type, protocol, &sock1);
1282         if (err < 0)
1283                 goto out;
1284
1285         err = sock_create(family, type, protocol, &sock2);
1286         if (err < 0)
1287                 goto out_release_1;
1288
1289         err = sock1->ops->socketpair(sock1, sock2);
1290         if (err < 0)
1291                 goto out_release_both;
1292
1293         fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1294         if (unlikely(fd1 < 0)) {
1295                 err = fd1;
1296                 goto out_release_both;
1297         }
1298
1299         fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1300         if (unlikely(fd2 < 0)) {
1301                 err = fd2;
1302                 put_filp(newfile1);
1303                 put_unused_fd(fd1);
1304                 goto out_release_both;
1305         }
1306
1307         err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1308         if (unlikely(err < 0)) {
1309                 goto out_fd2;
1310         }
1311
1312         err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1313         if (unlikely(err < 0)) {
1314                 fput(newfile1);
1315                 goto out_fd1;
1316         }
1317
1318         err = audit_fd_pair(fd1, fd2);
1319         if (err < 0) {
1320                 fput(newfile1);
1321                 fput(newfile2);
1322                 goto out_fd;
1323         }
1324
1325         fd_install(fd1, newfile1);
1326         fd_install(fd2, newfile2);
1327         /* fd1 and fd2 may be already another descriptors.
1328          * Not kernel problem.
1329          */
1330
1331         err = put_user(fd1, &usockvec[0]);
1332         if (!err)
1333                 err = put_user(fd2, &usockvec[1]);
1334         if (!err)
1335                 return 0;
1336
1337         sys_close(fd2);
1338         sys_close(fd1);
1339         return err;
1340
1341 out_release_both:
1342         sock_release(sock2);
1343 out_release_1:
1344         sock_release(sock1);
1345 out:
1346         return err;
1347
1348 out_fd2:
1349         put_filp(newfile1);
1350         sock_release(sock1);
1351 out_fd1:
1352         put_filp(newfile2);
1353         sock_release(sock2);
1354 out_fd:
1355         put_unused_fd(fd1);
1356         put_unused_fd(fd2);
1357         goto out;
1358 }
1359
1360 /*
1361  *      Bind a name to a socket. Nothing much to do here since it's
1362  *      the protocol's responsibility to handle the local address.
1363  *
1364  *      We move the socket address to kernel space before we call
1365  *      the protocol layer (having also checked the address is ok).
1366  */
1367
1368 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1369 {
1370         struct socket *sock;
1371         struct sockaddr_storage address;
1372         int err, fput_needed;
1373
1374         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1375         if (sock) {
1376                 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1377                 if (err >= 0) {
1378                         err = security_socket_bind(sock,
1379                                                    (struct sockaddr *)&address,
1380                                                    addrlen);
1381                         if (!err)
1382                                 err = sock->ops->bind(sock,
1383                                                       (struct sockaddr *)
1384                                                       &address, addrlen);
1385                 }
1386                 fput_light(sock->file, fput_needed);
1387         }
1388         return err;
1389 }
1390
1391 /*
1392  *      Perform a listen. Basically, we allow the protocol to do anything
1393  *      necessary for a listen, and if that works, we mark the socket as
1394  *      ready for listening.
1395  */
1396
1397 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1398 {
1399         struct socket *sock;
1400         int err, fput_needed;
1401         int somaxconn;
1402
1403         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1404         if (sock) {
1405                 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1406                 if ((unsigned)backlog > somaxconn)
1407                         backlog = somaxconn;
1408
1409                 err = security_socket_listen(sock, backlog);
1410                 if (!err)
1411                         err = sock->ops->listen(sock, backlog);
1412
1413                 fput_light(sock->file, fput_needed);
1414         }
1415         return err;
1416 }
1417
1418 /*
1419  *      For accept, we attempt to create a new socket, set up the link
1420  *      with the client, wake up the client, then return the new
1421  *      connected fd. We collect the address of the connector in kernel
1422  *      space and move it to user at the very end. This is unclean because
1423  *      we open the socket then return an error.
1424  *
1425  *      1003.1g adds the ability to recvmsg() to query connection pending
1426  *      status to recvmsg. We need to add that support in a way thats
1427  *      clean when we restucture accept also.
1428  */
1429
1430 long do_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1431                int __user *upeer_addrlen, int flags)
1432 {
1433         struct socket *sock, *newsock;
1434         struct file *newfile;
1435         int err, len, newfd, fput_needed;
1436         struct sockaddr_storage address;
1437
1438         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1439                 return -EINVAL;
1440
1441         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1442                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1443
1444         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1445         if (!sock)
1446                 goto out;
1447
1448         err = -ENFILE;
1449         if (!(newsock = sock_alloc()))
1450                 goto out_put;
1451
1452         newsock->type = sock->type;
1453         newsock->ops = sock->ops;
1454
1455         /*
1456          * We don't need try_module_get here, as the listening socket (sock)
1457          * has the protocol module (sock->ops->owner) held.
1458          */
1459         __module_get(newsock->ops->owner);
1460
1461         newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1462         if (unlikely(newfd < 0)) {
1463                 err = newfd;
1464                 sock_release(newsock);
1465                 goto out_put;
1466         }
1467
1468         err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1469         if (err < 0)
1470                 goto out_fd_simple;
1471
1472         err = security_socket_accept(sock, newsock);
1473         if (err)
1474                 goto out_fd;
1475
1476         err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1477         if (err < 0)
1478                 goto out_fd;
1479
1480         if (upeer_sockaddr) {
1481                 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1482                                           &len, 2) < 0) {
1483                         err = -ECONNABORTED;
1484                         goto out_fd;
1485                 }
1486                 err = move_addr_to_user((struct sockaddr *)&address,
1487                                         len, upeer_sockaddr, upeer_addrlen);
1488                 if (err < 0)
1489                         goto out_fd;
1490         }
1491
1492         /* File flags are not inherited via accept() unlike another OSes. */
1493
1494         fd_install(newfd, newfile);
1495         err = newfd;
1496
1497         security_socket_post_accept(sock, newsock);
1498
1499 out_put:
1500         fput_light(sock->file, fput_needed);
1501 out:
1502         return err;
1503 out_fd_simple:
1504         sock_release(newsock);
1505         put_filp(newfile);
1506         put_unused_fd(newfd);
1507         goto out_put;
1508 out_fd:
1509         fput(newfile);
1510         put_unused_fd(newfd);
1511         goto out_put;
1512 }
1513
1514 #if 0
1515 #ifdef HAVE_SET_RESTORE_SIGMASK
1516 asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr,
1517                             int __user *upeer_addrlen,
1518                             const sigset_t __user *sigmask,
1519                             size_t sigsetsize, int flags)
1520 {
1521         sigset_t ksigmask, sigsaved;
1522         int ret;
1523
1524         if (sigmask) {
1525                 /* XXX: Don't preclude handling different sized sigset_t's.  */
1526                 if (sigsetsize != sizeof(sigset_t))
1527                         return -EINVAL;
1528                 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1529                         return -EFAULT;
1530
1531                 sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
1532                 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1533         }
1534
1535         ret = do_accept(fd, upeer_sockaddr, upeer_addrlen, flags);
1536
1537         if (ret < 0 && signal_pending(current)) {
1538                 /*
1539                  * Don't restore the signal mask yet. Let do_signal() deliver
1540                  * the signal on the way back to userspace, before the signal
1541                  * mask is restored.
1542                  */
1543                 if (sigmask) {
1544                         memcpy(&current->saved_sigmask, &sigsaved,
1545                                sizeof(sigsaved));
1546                         set_restore_sigmask();
1547                 }
1548         } else if (sigmask)
1549                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1550
1551         return ret;
1552 }
1553 #else
1554 asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr,
1555                             int __user *upeer_addrlen,
1556                             const sigset_t __user *sigmask,
1557                             size_t sigsetsize, int flags)
1558 {
1559         /* The platform does not support restoring the signal mask in the
1560          * return path.  So we do not allow using paccept() with a signal
1561          * mask.  */
1562         if (sigmask)
1563                 return -EINVAL;
1564
1565         return do_accept(fd, upeer_sockaddr, upeer_addrlen, flags);
1566 }
1567 #endif
1568 #endif
1569
1570 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1571                 int __user *, upeer_addrlen)
1572 {
1573         return do_accept(fd, upeer_sockaddr, upeer_addrlen, 0);
1574 }
1575
1576 /*
1577  *      Attempt to connect to a socket with the server address.  The address
1578  *      is in user space so we verify it is OK and move it to kernel space.
1579  *
1580  *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1581  *      break bindings
1582  *
1583  *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1584  *      other SEQPACKET protocols that take time to connect() as it doesn't
1585  *      include the -EINPROGRESS status for such sockets.
1586  */
1587
1588 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1589                 int, addrlen)
1590 {
1591         struct socket *sock;
1592         struct sockaddr_storage address;
1593         int err, fput_needed;
1594
1595         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1596         if (!sock)
1597                 goto out;
1598         err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1599         if (err < 0)
1600                 goto out_put;
1601
1602         err =
1603             security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1604         if (err)
1605                 goto out_put;
1606
1607         err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1608                                  sock->file->f_flags);
1609 out_put:
1610         fput_light(sock->file, fput_needed);
1611 out:
1612         return err;
1613 }
1614
1615 /*
1616  *      Get the local address ('name') of a socket object. Move the obtained
1617  *      name to user space.
1618  */
1619
1620 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1621                 int __user *, usockaddr_len)
1622 {
1623         struct socket *sock;
1624         struct sockaddr_storage address;
1625         int len, err, fput_needed;
1626
1627         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1628         if (!sock)
1629                 goto out;
1630
1631         err = security_socket_getsockname(sock);
1632         if (err)
1633                 goto out_put;
1634
1635         err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1636         if (err)
1637                 goto out_put;
1638         err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1639
1640 out_put:
1641         fput_light(sock->file, fput_needed);
1642 out:
1643         return err;
1644 }
1645
1646 /*
1647  *      Get the remote address ('name') of a socket object. Move the obtained
1648  *      name to user space.
1649  */
1650
1651 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1652                 int __user *, usockaddr_len)
1653 {
1654         struct socket *sock;
1655         struct sockaddr_storage address;
1656         int len, err, fput_needed;
1657
1658         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1659         if (sock != NULL) {
1660                 err = security_socket_getpeername(sock);
1661                 if (err) {
1662                         fput_light(sock->file, fput_needed);
1663                         return err;
1664                 }
1665
1666                 err =
1667                     sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1668                                        1);
1669                 if (!err)
1670                         err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1671                                                 usockaddr_len);
1672                 fput_light(sock->file, fput_needed);
1673         }
1674         return err;
1675 }
1676
1677 /*
1678  *      Send a datagram to a given address. We move the address into kernel
1679  *      space and check the user space data area is readable before invoking
1680  *      the protocol.
1681  */
1682
1683 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1684                 unsigned, flags, struct sockaddr __user *, addr,
1685                 int, addr_len)
1686 {
1687         struct socket *sock;
1688         struct sockaddr_storage address;
1689         int err;
1690         struct msghdr msg;
1691         struct iovec iov;
1692         int fput_needed;
1693
1694         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695         if (!sock)
1696                 goto out;
1697
1698         iov.iov_base = buff;
1699         iov.iov_len = len;
1700         msg.msg_name = NULL;
1701         msg.msg_iov = &iov;
1702         msg.msg_iovlen = 1;
1703         msg.msg_control = NULL;
1704         msg.msg_controllen = 0;
1705         msg.msg_namelen = 0;
1706         if (addr) {
1707                 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1708                 if (err < 0)
1709                         goto out_put;
1710                 msg.msg_name = (struct sockaddr *)&address;
1711                 msg.msg_namelen = addr_len;
1712         }
1713         if (sock->file->f_flags & O_NONBLOCK)
1714                 flags |= MSG_DONTWAIT;
1715         msg.msg_flags = flags;
1716         err = sock_sendmsg(sock, &msg, len);
1717
1718 out_put:
1719         fput_light(sock->file, fput_needed);
1720 out:
1721         return err;
1722 }
1723
1724 /*
1725  *      Send a datagram down a socket.
1726  */
1727
1728 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1729                 unsigned, flags)
1730 {
1731         return sys_sendto(fd, buff, len, flags, NULL, 0);
1732 }
1733
1734 /*
1735  *      Receive a frame from the socket and optionally record the address of the
1736  *      sender. We verify the buffers are writable and if needed move the
1737  *      sender address from kernel to user space.
1738  */
1739
1740 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1741                 unsigned, flags, struct sockaddr __user *, addr,
1742                 int __user *, addr_len)
1743 {
1744         struct socket *sock;
1745         struct iovec iov;
1746         struct msghdr msg;
1747         struct sockaddr_storage address;
1748         int err, err2;
1749         int fput_needed;
1750
1751         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1752         if (!sock)
1753                 goto out;
1754
1755         msg.msg_control = NULL;
1756         msg.msg_controllen = 0;
1757         msg.msg_iovlen = 1;
1758         msg.msg_iov = &iov;
1759         iov.iov_len = size;
1760         iov.iov_base = ubuf;
1761         msg.msg_name = (struct sockaddr *)&address;
1762         msg.msg_namelen = sizeof(address);
1763         if (sock->file->f_flags & O_NONBLOCK)
1764                 flags |= MSG_DONTWAIT;
1765         err = sock_recvmsg(sock, &msg, size, flags);
1766
1767         if (err >= 0 && addr != NULL) {
1768                 err2 = move_addr_to_user((struct sockaddr *)&address,
1769                                          msg.msg_namelen, addr, addr_len);
1770                 if (err2 < 0)
1771                         err = err2;
1772         }
1773
1774         fput_light(sock->file, fput_needed);
1775 out:
1776         return err;
1777 }
1778
1779 /*
1780  *      Receive a datagram from a socket.
1781  */
1782
1783 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1784                          unsigned flags)
1785 {
1786         return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1787 }
1788
1789 /*
1790  *      Set a socket option. Because we don't know the option lengths we have
1791  *      to pass the user mode parameter for the protocols to sort out.
1792  */
1793
1794 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1795                 char __user *, optval, int, optlen)
1796 {
1797         int err, fput_needed;
1798         struct socket *sock;
1799
1800         if (optlen < 0)
1801                 return -EINVAL;
1802
1803         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1804         if (sock != NULL) {
1805                 err = security_socket_setsockopt(sock, level, optname);
1806                 if (err)
1807                         goto out_put;
1808
1809                 if (level == SOL_SOCKET)
1810                         err =
1811                             sock_setsockopt(sock, level, optname, optval,
1812                                             optlen);
1813                 else
1814                         err =
1815                             sock->ops->setsockopt(sock, level, optname, optval,
1816                                                   optlen);
1817 out_put:
1818                 fput_light(sock->file, fput_needed);
1819         }
1820         return err;
1821 }
1822
1823 /*
1824  *      Get a socket option. Because we don't know the option lengths we have
1825  *      to pass a user mode parameter for the protocols to sort out.
1826  */
1827
1828 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1829                 char __user *, optval, int __user *, optlen)
1830 {
1831         int err, fput_needed;
1832         struct socket *sock;
1833
1834         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1835         if (sock != NULL) {
1836                 err = security_socket_getsockopt(sock, level, optname);
1837                 if (err)
1838                         goto out_put;
1839
1840                 if (level == SOL_SOCKET)
1841                         err =
1842                             sock_getsockopt(sock, level, optname, optval,
1843                                             optlen);
1844                 else
1845                         err =
1846                             sock->ops->getsockopt(sock, level, optname, optval,
1847                                                   optlen);
1848 out_put:
1849                 fput_light(sock->file, fput_needed);
1850         }
1851         return err;
1852 }
1853
1854 /*
1855  *      Shutdown a socket.
1856  */
1857
1858 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1859 {
1860         int err, fput_needed;
1861         struct socket *sock;
1862
1863         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1864         if (sock != NULL) {
1865                 err = security_socket_shutdown(sock, how);
1866                 if (!err)
1867                         err = sock->ops->shutdown(sock, how);
1868                 fput_light(sock->file, fput_needed);
1869         }
1870         return err;
1871 }
1872
1873 /* A couple of helpful macros for getting the address of the 32/64 bit
1874  * fields which are the same type (int / unsigned) on our platforms.
1875  */
1876 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1877 #define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1878 #define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1879
1880 /*
1881  *      BSD sendmsg interface
1882  */
1883
1884 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1885 {
1886         struct compat_msghdr __user *msg_compat =
1887             (struct compat_msghdr __user *)msg;
1888         struct socket *sock;
1889         struct sockaddr_storage address;
1890         struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1891         unsigned char ctl[sizeof(struct cmsghdr) + 20]
1892             __attribute__ ((aligned(sizeof(__kernel_size_t))));
1893         /* 20 is size of ipv6_pktinfo */
1894         unsigned char *ctl_buf = ctl;
1895         struct msghdr msg_sys;
1896         int err, ctl_len, iov_size, total_len;
1897         int fput_needed;
1898
1899         err = -EFAULT;
1900         if (MSG_CMSG_COMPAT & flags) {
1901                 if (get_compat_msghdr(&msg_sys, msg_compat))
1902                         return -EFAULT;
1903         }
1904         else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1905                 return -EFAULT;
1906
1907         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1908         if (!sock)
1909                 goto out;
1910
1911         /* do not move before msg_sys is valid */
1912         err = -EMSGSIZE;
1913         if (msg_sys.msg_iovlen > UIO_MAXIOV)
1914                 goto out_put;
1915
1916         /* Check whether to allocate the iovec area */
1917         err = -ENOMEM;
1918         iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1919         if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1920                 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1921                 if (!iov)
1922                         goto out_put;
1923         }
1924
1925         /* This will also move the address data into kernel space */
1926         if (MSG_CMSG_COMPAT & flags) {
1927                 err = verify_compat_iovec(&msg_sys, iov,
1928                                           (struct sockaddr *)&address,
1929                                           VERIFY_READ);
1930         } else
1931                 err = verify_iovec(&msg_sys, iov,
1932                                    (struct sockaddr *)&address,
1933                                    VERIFY_READ);
1934         if (err < 0)
1935                 goto out_freeiov;
1936         total_len = err;
1937
1938         err = -ENOBUFS;
1939
1940         if (msg_sys.msg_controllen > INT_MAX)
1941                 goto out_freeiov;
1942         ctl_len = msg_sys.msg_controllen;
1943         if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1944                 err =
1945                     cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1946                                                      sizeof(ctl));
1947                 if (err)
1948                         goto out_freeiov;
1949                 ctl_buf = msg_sys.msg_control;
1950                 ctl_len = msg_sys.msg_controllen;
1951         } else if (ctl_len) {
1952                 if (ctl_len > sizeof(ctl)) {
1953                         ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1954                         if (ctl_buf == NULL)
1955                                 goto out_freeiov;
1956                 }
1957                 err = -EFAULT;
1958                 /*
1959                  * Careful! Before this, msg_sys.msg_control contains a user pointer.
1960                  * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1961                  * checking falls down on this.
1962                  */
1963                 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1964                                    ctl_len))
1965                         goto out_freectl;
1966                 msg_sys.msg_control = ctl_buf;
1967         }
1968         msg_sys.msg_flags = flags;
1969
1970         if (sock->file->f_flags & O_NONBLOCK)
1971                 msg_sys.msg_flags |= MSG_DONTWAIT;
1972         err = sock_sendmsg(sock, &msg_sys, total_len);
1973
1974 out_freectl:
1975         if (ctl_buf != ctl)
1976                 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1977 out_freeiov:
1978         if (iov != iovstack)
1979                 sock_kfree_s(sock->sk, iov, iov_size);
1980 out_put:
1981         fput_light(sock->file, fput_needed);
1982 out:
1983         return err;
1984 }
1985
1986 /*
1987  *      BSD recvmsg interface
1988  */
1989
1990 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
1991                 unsigned int, flags)
1992 {
1993         struct compat_msghdr __user *msg_compat =
1994             (struct compat_msghdr __user *)msg;
1995         struct socket *sock;
1996         struct iovec iovstack[UIO_FASTIOV];
1997         struct iovec *iov = iovstack;
1998         struct msghdr msg_sys;
1999         unsigned long cmsg_ptr;
2000         int err, iov_size, total_len, len;
2001         int fput_needed;
2002
2003         /* kernel mode address */
2004         struct sockaddr_storage addr;
2005
2006         /* user mode address pointers */
2007         struct sockaddr __user *uaddr;
2008         int __user *uaddr_len;
2009
2010         if (MSG_CMSG_COMPAT & flags) {
2011                 if (get_compat_msghdr(&msg_sys, msg_compat))
2012                         return -EFAULT;
2013         }
2014         else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
2015                 return -EFAULT;
2016
2017         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2018         if (!sock)
2019                 goto out;
2020
2021         err = -EMSGSIZE;
2022         if (msg_sys.msg_iovlen > UIO_MAXIOV)
2023                 goto out_put;
2024
2025         /* Check whether to allocate the iovec area */
2026         err = -ENOMEM;
2027         iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
2028         if (msg_sys.msg_iovlen > UIO_FASTIOV) {
2029                 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2030                 if (!iov)
2031                         goto out_put;
2032         }
2033
2034         /*
2035          *      Save the user-mode address (verify_iovec will change the
2036          *      kernel msghdr to use the kernel address space)
2037          */
2038
2039         uaddr = (__force void __user *)msg_sys.msg_name;
2040         uaddr_len = COMPAT_NAMELEN(msg);
2041         if (MSG_CMSG_COMPAT & flags) {
2042                 err = verify_compat_iovec(&msg_sys, iov,
2043                                           (struct sockaddr *)&addr,
2044                                           VERIFY_WRITE);
2045         } else
2046                 err = verify_iovec(&msg_sys, iov,
2047                                    (struct sockaddr *)&addr,
2048                                    VERIFY_WRITE);
2049         if (err < 0)
2050                 goto out_freeiov;
2051         total_len = err;
2052
2053         cmsg_ptr = (unsigned long)msg_sys.msg_control;
2054         msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2055
2056         if (sock->file->f_flags & O_NONBLOCK)
2057                 flags |= MSG_DONTWAIT;
2058         err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2059         if (err < 0)
2060                 goto out_freeiov;
2061         len = err;
2062
2063         if (uaddr != NULL) {
2064                 err = move_addr_to_user((struct sockaddr *)&addr,
2065                                         msg_sys.msg_namelen, uaddr,
2066                                         uaddr_len);
2067                 if (err < 0)
2068                         goto out_freeiov;
2069         }
2070         err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2071                          COMPAT_FLAGS(msg));
2072         if (err)
2073                 goto out_freeiov;
2074         if (MSG_CMSG_COMPAT & flags)
2075                 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2076                                  &msg_compat->msg_controllen);
2077         else
2078                 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2079                                  &msg->msg_controllen);
2080         if (err)
2081                 goto out_freeiov;
2082         err = len;
2083
2084 out_freeiov:
2085         if (iov != iovstack)
2086                 sock_kfree_s(sock->sk, iov, iov_size);
2087 out_put:
2088         fput_light(sock->file, fput_needed);
2089 out:
2090         return err;
2091 }
2092
2093 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2094
2095 /* Argument list sizes for sys_socketcall */
2096 #define AL(x) ((x) * sizeof(unsigned long))
2097 static const unsigned char nargs[19]={
2098         AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2099         AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2100         AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2101         AL(6)
2102 };
2103
2104 #undef AL
2105
2106 /*
2107  *      System call vectors.
2108  *
2109  *      Argument checking cleaned up. Saved 20% in size.
2110  *  This function doesn't need to set the kernel lock because
2111  *  it is set by the callees.
2112  */
2113
2114 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2115 {
2116         unsigned long a[6];
2117         unsigned long a0, a1;
2118         int err;
2119
2120         if (call < 1 || call > SYS_PACCEPT)
2121                 return -EINVAL;
2122
2123         /* copy_from_user should be SMP safe. */
2124         if (copy_from_user(a, args, nargs[call]))
2125                 return -EFAULT;
2126
2127         err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2128         if (err)
2129                 return err;
2130
2131         a0 = a[0];
2132         a1 = a[1];
2133
2134         switch (call) {
2135         case SYS_SOCKET:
2136                 err = sys_socket(a0, a1, a[2]);
2137                 break;
2138         case SYS_BIND:
2139                 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2140                 break;
2141         case SYS_CONNECT:
2142                 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2143                 break;
2144         case SYS_LISTEN:
2145                 err = sys_listen(a0, a1);
2146                 break;
2147         case SYS_ACCEPT:
2148                 err =
2149                     do_accept(a0, (struct sockaddr __user *)a1,
2150                               (int __user *)a[2], 0);
2151                 break;
2152         case SYS_GETSOCKNAME:
2153                 err =
2154                     sys_getsockname(a0, (struct sockaddr __user *)a1,
2155                                     (int __user *)a[2]);
2156                 break;
2157         case SYS_GETPEERNAME:
2158                 err =
2159                     sys_getpeername(a0, (struct sockaddr __user *)a1,
2160                                     (int __user *)a[2]);
2161                 break;
2162         case SYS_SOCKETPAIR:
2163                 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2164                 break;
2165         case SYS_SEND:
2166                 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2167                 break;
2168         case SYS_SENDTO:
2169                 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2170                                  (struct sockaddr __user *)a[4], a[5]);
2171                 break;
2172         case SYS_RECV:
2173                 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2174                 break;
2175         case SYS_RECVFROM:
2176                 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2177                                    (struct sockaddr __user *)a[4],
2178                                    (int __user *)a[5]);
2179                 break;
2180         case SYS_SHUTDOWN:
2181                 err = sys_shutdown(a0, a1);
2182                 break;
2183         case SYS_SETSOCKOPT:
2184                 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2185                 break;
2186         case SYS_GETSOCKOPT:
2187                 err =
2188                     sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2189                                    (int __user *)a[4]);
2190                 break;
2191         case SYS_SENDMSG:
2192                 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2193                 break;
2194         case SYS_RECVMSG:
2195                 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2196                 break;
2197         case SYS_PACCEPT:
2198                 err =
2199                     sys_paccept(a0, (struct sockaddr __user *)a1,
2200                                 (int __user *)a[2],
2201                                 (const sigset_t __user *) a[3],
2202                                 a[4], a[5]);
2203                 break;
2204         default:
2205                 err = -EINVAL;
2206                 break;
2207         }
2208         return err;
2209 }
2210
2211 #endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2212
2213 /**
2214  *      sock_register - add a socket protocol handler
2215  *      @ops: description of protocol
2216  *
2217  *      This function is called by a protocol handler that wants to
2218  *      advertise its address family, and have it linked into the
2219  *      socket interface. The value ops->family coresponds to the
2220  *      socket system call protocol family.
2221  */
2222 int sock_register(const struct net_proto_family *ops)
2223 {
2224         int err;
2225
2226         if (ops->family >= NPROTO) {
2227                 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2228                        NPROTO);
2229                 return -ENOBUFS;
2230         }
2231
2232         spin_lock(&net_family_lock);
2233         if (net_families[ops->family])
2234                 err = -EEXIST;
2235         else {
2236                 net_families[ops->family] = ops;
2237                 err = 0;
2238         }
2239         spin_unlock(&net_family_lock);
2240
2241         printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2242         return err;
2243 }
2244
2245 /**
2246  *      sock_unregister - remove a protocol handler
2247  *      @family: protocol family to remove
2248  *
2249  *      This function is called by a protocol handler that wants to
2250  *      remove its address family, and have it unlinked from the
2251  *      new socket creation.
2252  *
2253  *      If protocol handler is a module, then it can use module reference
2254  *      counts to protect against new references. If protocol handler is not
2255  *      a module then it needs to provide its own protection in
2256  *      the ops->create routine.
2257  */
2258 void sock_unregister(int family)
2259 {
2260         BUG_ON(family < 0 || family >= NPROTO);
2261
2262         spin_lock(&net_family_lock);
2263         net_families[family] = NULL;
2264         spin_unlock(&net_family_lock);
2265
2266         synchronize_rcu();
2267
2268         printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2269 }
2270
2271 static int __init sock_init(void)
2272 {
2273         /*
2274          *      Initialize sock SLAB cache.
2275          */
2276
2277         sk_init();
2278
2279         /*
2280          *      Initialize skbuff SLAB cache
2281          */
2282         skb_init();
2283
2284         /*
2285          *      Initialize the protocols module.
2286          */
2287
2288         init_inodecache();
2289         register_filesystem(&sock_fs_type);
2290         sock_mnt = kern_mount(&sock_fs_type);
2291
2292         /* The real protocol initialization is performed in later initcalls.
2293          */
2294
2295 #ifdef CONFIG_NETFILTER
2296         netfilter_init();
2297 #endif
2298
2299         return 0;
2300 }
2301
2302 core_initcall(sock_init);       /* early initcall */
2303
2304 #ifdef CONFIG_PROC_FS
2305 void socket_seq_show(struct seq_file *seq)
2306 {
2307         int cpu;
2308         int counter = 0;
2309
2310         for_each_possible_cpu(cpu)
2311             counter += per_cpu(sockets_in_use, cpu);
2312
2313         /* It can be negative, by the way. 8) */
2314         if (counter < 0)
2315                 counter = 0;
2316
2317         seq_printf(seq, "sockets: used %d\n", counter);
2318 }
2319 #endif                          /* CONFIG_PROC_FS */
2320
2321 #ifdef CONFIG_COMPAT
2322 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2323                               unsigned long arg)
2324 {
2325         struct socket *sock = file->private_data;
2326         int ret = -ENOIOCTLCMD;
2327         struct sock *sk;
2328         struct net *net;
2329
2330         sk = sock->sk;
2331         net = sock_net(sk);
2332
2333         if (sock->ops->compat_ioctl)
2334                 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2335
2336         if (ret == -ENOIOCTLCMD &&
2337             (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2338                 ret = compat_wext_handle_ioctl(net, cmd, arg);
2339
2340         return ret;
2341 }
2342 #endif
2343
2344 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2345 {
2346         return sock->ops->bind(sock, addr, addrlen);
2347 }
2348
2349 int kernel_listen(struct socket *sock, int backlog)
2350 {
2351         return sock->ops->listen(sock, backlog);
2352 }
2353
2354 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2355 {
2356         struct sock *sk = sock->sk;
2357         int err;
2358
2359         err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2360                                newsock);
2361         if (err < 0)
2362                 goto done;
2363
2364         err = sock->ops->accept(sock, *newsock, flags);
2365         if (err < 0) {
2366                 sock_release(*newsock);
2367                 *newsock = NULL;
2368                 goto done;
2369         }
2370
2371         (*newsock)->ops = sock->ops;
2372
2373 done:
2374         return err;
2375 }
2376
2377 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2378                    int flags)
2379 {
2380         return sock->ops->connect(sock, addr, addrlen, flags);
2381 }
2382
2383 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2384                          int *addrlen)
2385 {
2386         return sock->ops->getname(sock, addr, addrlen, 0);
2387 }
2388
2389 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2390                          int *addrlen)
2391 {
2392         return sock->ops->getname(sock, addr, addrlen, 1);
2393 }
2394
2395 int kernel_getsockopt(struct socket *sock, int level, int optname,
2396                         char *optval, int *optlen)
2397 {
2398         mm_segment_t oldfs = get_fs();
2399         int err;
2400
2401         set_fs(KERNEL_DS);
2402         if (level == SOL_SOCKET)
2403                 err = sock_getsockopt(sock, level, optname, optval, optlen);
2404         else
2405                 err = sock->ops->getsockopt(sock, level, optname, optval,
2406                                             optlen);
2407         set_fs(oldfs);
2408         return err;
2409 }
2410
2411 int kernel_setsockopt(struct socket *sock, int level, int optname,
2412                         char *optval, int optlen)
2413 {
2414         mm_segment_t oldfs = get_fs();
2415         int err;
2416
2417         set_fs(KERNEL_DS);
2418         if (level == SOL_SOCKET)
2419                 err = sock_setsockopt(sock, level, optname, optval, optlen);
2420         else
2421                 err = sock->ops->setsockopt(sock, level, optname, optval,
2422                                             optlen);
2423         set_fs(oldfs);
2424         return err;
2425 }
2426
2427 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2428                     size_t size, int flags)
2429 {
2430         if (sock->ops->sendpage)
2431                 return sock->ops->sendpage(sock, page, offset, size, flags);
2432
2433         return sock_no_sendpage(sock, page, offset, size, flags);
2434 }
2435
2436 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2437 {
2438         mm_segment_t oldfs = get_fs();
2439         int err;
2440
2441         set_fs(KERNEL_DS);
2442         err = sock->ops->ioctl(sock, cmd, arg);
2443         set_fs(oldfs);
2444
2445         return err;
2446 }
2447
2448 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2449 {
2450         return sock->ops->shutdown(sock, how);
2451 }
2452
2453 EXPORT_SYMBOL(sock_create);
2454 EXPORT_SYMBOL(sock_create_kern);
2455 EXPORT_SYMBOL(sock_create_lite);
2456 EXPORT_SYMBOL(sock_map_fd);
2457 EXPORT_SYMBOL(sock_recvmsg);
2458 EXPORT_SYMBOL(sock_register);
2459 EXPORT_SYMBOL(sock_release);
2460 EXPORT_SYMBOL(sock_sendmsg);
2461 EXPORT_SYMBOL(sock_unregister);
2462 EXPORT_SYMBOL(sock_wake_async);
2463 EXPORT_SYMBOL(sockfd_lookup);
2464 EXPORT_SYMBOL(kernel_sendmsg);
2465 EXPORT_SYMBOL(kernel_recvmsg);
2466 EXPORT_SYMBOL(kernel_bind);
2467 EXPORT_SYMBOL(kernel_listen);
2468 EXPORT_SYMBOL(kernel_accept);
2469 EXPORT_SYMBOL(kernel_connect);
2470 EXPORT_SYMBOL(kernel_getsockname);
2471 EXPORT_SYMBOL(kernel_getpeername);
2472 EXPORT_SYMBOL(kernel_getsockopt);
2473 EXPORT_SYMBOL(kernel_setsockopt);
2474 EXPORT_SYMBOL(kernel_sendpage);
2475 EXPORT_SYMBOL(kernel_sock_ioctl);
2476 EXPORT_SYMBOL(kernel_sock_shutdown);