]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/wireless/reg.c
Merge tag 'renesas-fixes4-for-v4.13' of https://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 /*
64  * Grace period we give before making sure all current interfaces reside on
65  * channels allowed by the current regulatory domain.
66  */
67 #define REG_ENFORCE_GRACE_MS 60000
68
69 /**
70  * enum reg_request_treatment - regulatory request treatment
71  *
72  * @REG_REQ_OK: continue processing the regulatory request
73  * @REG_REQ_IGNORE: ignore the regulatory request
74  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75  *      be intersected with the current one.
76  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77  *      regulatory settings, and no further processing is required.
78  */
79 enum reg_request_treatment {
80         REG_REQ_OK,
81         REG_REQ_IGNORE,
82         REG_REQ_INTERSECT,
83         REG_REQ_ALREADY_SET,
84 };
85
86 static struct regulatory_request core_request_world = {
87         .initiator = NL80211_REGDOM_SET_BY_CORE,
88         .alpha2[0] = '0',
89         .alpha2[1] = '0',
90         .intersect = false,
91         .processed = true,
92         .country_ie_env = ENVIRON_ANY,
93 };
94
95 /*
96  * Receipt of information from last regulatory request,
97  * protected by RTNL (and can be accessed with RCU protection)
98  */
99 static struct regulatory_request __rcu *last_request =
100         (void __force __rcu *)&core_request_world;
101
102 /* To trigger userspace events */
103 static struct platform_device *reg_pdev;
104
105 /*
106  * Central wireless core regulatory domains, we only need two,
107  * the current one and a world regulatory domain in case we have no
108  * information to give us an alpha2.
109  * (protected by RTNL, can be read under RCU)
110  */
111 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
112
113 /*
114  * Number of devices that registered to the core
115  * that support cellular base station regulatory hints
116  * (protected by RTNL)
117  */
118 static int reg_num_devs_support_basehint;
119
120 /*
121  * State variable indicating if the platform on which the devices
122  * are attached is operating in an indoor environment. The state variable
123  * is relevant for all registered devices.
124  */
125 static bool reg_is_indoor;
126 static spinlock_t reg_indoor_lock;
127
128 /* Used to track the userspace process controlling the indoor setting */
129 static u32 reg_is_indoor_portid;
130
131 static void restore_regulatory_settings(bool reset_user);
132
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135         return rtnl_dereference(cfg80211_regdomain);
136 }
137
138 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140         return rtnl_dereference(wiphy->regd);
141 }
142
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145         switch (dfs_region) {
146         case NL80211_DFS_UNSET:
147                 return "unset";
148         case NL80211_DFS_FCC:
149                 return "FCC";
150         case NL80211_DFS_ETSI:
151                 return "ETSI";
152         case NL80211_DFS_JP:
153                 return "JP";
154         }
155         return "Unknown";
156 }
157
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160         const struct ieee80211_regdomain *regd = NULL;
161         const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163         regd = get_cfg80211_regdom();
164         if (!wiphy)
165                 goto out;
166
167         wiphy_regd = get_wiphy_regdom(wiphy);
168         if (!wiphy_regd)
169                 goto out;
170
171         if (wiphy_regd->dfs_region == regd->dfs_region)
172                 goto out;
173
174         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175                  dev_name(&wiphy->dev),
176                  reg_dfs_region_str(wiphy_regd->dfs_region),
177                  reg_dfs_region_str(regd->dfs_region));
178
179 out:
180         return regd->dfs_region;
181 }
182
183 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
184 {
185         if (!r)
186                 return;
187         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
188 }
189
190 static struct regulatory_request *get_last_request(void)
191 {
192         return rcu_dereference_rtnl(last_request);
193 }
194
195 /* Used to queue up regulatory hints */
196 static LIST_HEAD(reg_requests_list);
197 static spinlock_t reg_requests_lock;
198
199 /* Used to queue up beacon hints for review */
200 static LIST_HEAD(reg_pending_beacons);
201 static spinlock_t reg_pending_beacons_lock;
202
203 /* Used to keep track of processed beacon hints */
204 static LIST_HEAD(reg_beacon_list);
205
206 struct reg_beacon {
207         struct list_head list;
208         struct ieee80211_channel chan;
209 };
210
211 static void reg_check_chans_work(struct work_struct *work);
212 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
213
214 static void reg_todo(struct work_struct *work);
215 static DECLARE_WORK(reg_work, reg_todo);
216
217 /* We keep a static world regulatory domain in case of the absence of CRDA */
218 static const struct ieee80211_regdomain world_regdom = {
219         .n_reg_rules = 8,
220         .alpha2 =  "00",
221         .reg_rules = {
222                 /* IEEE 802.11b/g, channels 1..11 */
223                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224                 /* IEEE 802.11b/g, channels 12..13. */
225                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
226                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
227                 /* IEEE 802.11 channel 14 - Only JP enables
228                  * this and for 802.11b only */
229                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR |
231                         NL80211_RRF_NO_OFDM),
232                 /* IEEE 802.11a, channel 36..48 */
233                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_AUTO_BW),
236
237                 /* IEEE 802.11a, channel 52..64 - DFS required */
238                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
239                         NL80211_RRF_NO_IR |
240                         NL80211_RRF_AUTO_BW |
241                         NL80211_RRF_DFS),
242
243                 /* IEEE 802.11a, channel 100..144 - DFS required */
244                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245                         NL80211_RRF_NO_IR |
246                         NL80211_RRF_DFS),
247
248                 /* IEEE 802.11a, channel 149..165 */
249                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250                         NL80211_RRF_NO_IR),
251
252                 /* IEEE 802.11ad (60GHz), channels 1..3 */
253                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254         }
255 };
256
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259         &world_regdom;
260
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266
267 static void reg_free_request(struct regulatory_request *request)
268 {
269         if (request == &core_request_world)
270                 return;
271
272         if (request != get_last_request())
273                 kfree(request);
274 }
275
276 static void reg_free_last_request(void)
277 {
278         struct regulatory_request *lr = get_last_request();
279
280         if (lr != &core_request_world && lr)
281                 kfree_rcu(lr, rcu_head);
282 }
283
284 static void reg_update_last_request(struct regulatory_request *request)
285 {
286         struct regulatory_request *lr;
287
288         lr = get_last_request();
289         if (lr == request)
290                 return;
291
292         reg_free_last_request();
293         rcu_assign_pointer(last_request, request);
294 }
295
296 static void reset_regdomains(bool full_reset,
297                              const struct ieee80211_regdomain *new_regdom)
298 {
299         const struct ieee80211_regdomain *r;
300
301         ASSERT_RTNL();
302
303         r = get_cfg80211_regdom();
304
305         /* avoid freeing static information or freeing something twice */
306         if (r == cfg80211_world_regdom)
307                 r = NULL;
308         if (cfg80211_world_regdom == &world_regdom)
309                 cfg80211_world_regdom = NULL;
310         if (r == &world_regdom)
311                 r = NULL;
312
313         rcu_free_regdom(r);
314         rcu_free_regdom(cfg80211_world_regdom);
315
316         cfg80211_world_regdom = &world_regdom;
317         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
318
319         if (!full_reset)
320                 return;
321
322         reg_update_last_request(&core_request_world);
323 }
324
325 /*
326  * Dynamic world regulatory domain requested by the wireless
327  * core upon initialization
328  */
329 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
330 {
331         struct regulatory_request *lr;
332
333         lr = get_last_request();
334
335         WARN_ON(!lr);
336
337         reset_regdomains(false, rd);
338
339         cfg80211_world_regdom = rd;
340 }
341
342 bool is_world_regdom(const char *alpha2)
343 {
344         if (!alpha2)
345                 return false;
346         return alpha2[0] == '0' && alpha2[1] == '0';
347 }
348
349 static bool is_alpha2_set(const char *alpha2)
350 {
351         if (!alpha2)
352                 return false;
353         return alpha2[0] && alpha2[1];
354 }
355
356 static bool is_unknown_alpha2(const char *alpha2)
357 {
358         if (!alpha2)
359                 return false;
360         /*
361          * Special case where regulatory domain was built by driver
362          * but a specific alpha2 cannot be determined
363          */
364         return alpha2[0] == '9' && alpha2[1] == '9';
365 }
366
367 static bool is_intersected_alpha2(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         /*
372          * Special case where regulatory domain is the
373          * result of an intersection between two regulatory domain
374          * structures
375          */
376         return alpha2[0] == '9' && alpha2[1] == '8';
377 }
378
379 static bool is_an_alpha2(const char *alpha2)
380 {
381         if (!alpha2)
382                 return false;
383         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
384 }
385
386 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
387 {
388         if (!alpha2_x || !alpha2_y)
389                 return false;
390         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
391 }
392
393 static bool regdom_changes(const char *alpha2)
394 {
395         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
396
397         if (!r)
398                 return true;
399         return !alpha2_equal(r->alpha2, alpha2);
400 }
401
402 /*
403  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
404  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
405  * has ever been issued.
406  */
407 static bool is_user_regdom_saved(void)
408 {
409         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
410                 return false;
411
412         /* This would indicate a mistake on the design */
413         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
414                  "Unexpected user alpha2: %c%c\n",
415                  user_alpha2[0], user_alpha2[1]))
416                 return false;
417
418         return true;
419 }
420
421 static const struct ieee80211_regdomain *
422 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
423 {
424         struct ieee80211_regdomain *regd;
425         int size_of_regd;
426         unsigned int i;
427
428         size_of_regd =
429                 sizeof(struct ieee80211_regdomain) +
430                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
431
432         regd = kzalloc(size_of_regd, GFP_KERNEL);
433         if (!regd)
434                 return ERR_PTR(-ENOMEM);
435
436         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
437
438         for (i = 0; i < src_regd->n_reg_rules; i++)
439                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
440                        sizeof(struct ieee80211_reg_rule));
441
442         return regd;
443 }
444
445 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
446 struct reg_regdb_apply_request {
447         struct list_head list;
448         const struct ieee80211_regdomain *regdom;
449 };
450
451 static LIST_HEAD(reg_regdb_apply_list);
452 static DEFINE_MUTEX(reg_regdb_apply_mutex);
453
454 static void reg_regdb_apply(struct work_struct *work)
455 {
456         struct reg_regdb_apply_request *request;
457
458         rtnl_lock();
459
460         mutex_lock(&reg_regdb_apply_mutex);
461         while (!list_empty(&reg_regdb_apply_list)) {
462                 request = list_first_entry(&reg_regdb_apply_list,
463                                            struct reg_regdb_apply_request,
464                                            list);
465                 list_del(&request->list);
466
467                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
468                 kfree(request);
469         }
470         mutex_unlock(&reg_regdb_apply_mutex);
471
472         rtnl_unlock();
473 }
474
475 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
476
477 static int reg_query_builtin(const char *alpha2)
478 {
479         const struct ieee80211_regdomain *regdom = NULL;
480         struct reg_regdb_apply_request *request;
481         unsigned int i;
482
483         for (i = 0; i < reg_regdb_size; i++) {
484                 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
485                         regdom = reg_regdb[i];
486                         break;
487                 }
488         }
489
490         if (!regdom)
491                 return -ENODATA;
492
493         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
494         if (!request)
495                 return -ENOMEM;
496
497         request->regdom = reg_copy_regd(regdom);
498         if (IS_ERR_OR_NULL(request->regdom)) {
499                 kfree(request);
500                 return -ENOMEM;
501         }
502
503         mutex_lock(&reg_regdb_apply_mutex);
504         list_add_tail(&request->list, &reg_regdb_apply_list);
505         mutex_unlock(&reg_regdb_apply_mutex);
506
507         schedule_work(&reg_regdb_work);
508
509         return 0;
510 }
511
512 /* Feel free to add any other sanity checks here */
513 static void reg_regdb_size_check(void)
514 {
515         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
516         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
517 }
518 #else
519 static inline void reg_regdb_size_check(void) {}
520 static inline int reg_query_builtin(const char *alpha2)
521 {
522         return -ENODATA;
523 }
524 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true);
541         rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 static bool reg_query_database(struct regulatory_request *request)
602 {
603         /* query internal regulatory database (if it exists) */
604         if (reg_query_builtin(request->alpha2) == 0)
605                 return true;
606
607         if (call_crda(request->alpha2) == 0)
608                 return true;
609
610         return false;
611 }
612
613 bool reg_is_valid_request(const char *alpha2)
614 {
615         struct regulatory_request *lr = get_last_request();
616
617         if (!lr || lr->processed)
618                 return false;
619
620         return alpha2_equal(lr->alpha2, alpha2);
621 }
622
623 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
624 {
625         struct regulatory_request *lr = get_last_request();
626
627         /*
628          * Follow the driver's regulatory domain, if present, unless a country
629          * IE has been processed or a user wants to help complaince further
630          */
631         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
632             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
633             wiphy->regd)
634                 return get_wiphy_regdom(wiphy);
635
636         return get_cfg80211_regdom();
637 }
638
639 static unsigned int
640 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
641                                  const struct ieee80211_reg_rule *rule)
642 {
643         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
644         const struct ieee80211_freq_range *freq_range_tmp;
645         const struct ieee80211_reg_rule *tmp;
646         u32 start_freq, end_freq, idx, no;
647
648         for (idx = 0; idx < rd->n_reg_rules; idx++)
649                 if (rule == &rd->reg_rules[idx])
650                         break;
651
652         if (idx == rd->n_reg_rules)
653                 return 0;
654
655         /* get start_freq */
656         no = idx;
657
658         while (no) {
659                 tmp = &rd->reg_rules[--no];
660                 freq_range_tmp = &tmp->freq_range;
661
662                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
663                         break;
664
665                 freq_range = freq_range_tmp;
666         }
667
668         start_freq = freq_range->start_freq_khz;
669
670         /* get end_freq */
671         freq_range = &rule->freq_range;
672         no = idx;
673
674         while (no < rd->n_reg_rules - 1) {
675                 tmp = &rd->reg_rules[++no];
676                 freq_range_tmp = &tmp->freq_range;
677
678                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
679                         break;
680
681                 freq_range = freq_range_tmp;
682         }
683
684         end_freq = freq_range->end_freq_khz;
685
686         return end_freq - start_freq;
687 }
688
689 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
690                                    const struct ieee80211_reg_rule *rule)
691 {
692         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
693
694         if (rule->flags & NL80211_RRF_NO_160MHZ)
695                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
696         if (rule->flags & NL80211_RRF_NO_80MHZ)
697                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
698
699         /*
700          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
701          * are not allowed.
702          */
703         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
704             rule->flags & NL80211_RRF_NO_HT40PLUS)
705                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
706
707         return bw;
708 }
709
710 /* Sanity check on a regulatory rule */
711 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
712 {
713         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
714         u32 freq_diff;
715
716         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
717                 return false;
718
719         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
720                 return false;
721
722         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
723
724         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
725             freq_range->max_bandwidth_khz > freq_diff)
726                 return false;
727
728         return true;
729 }
730
731 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
732 {
733         const struct ieee80211_reg_rule *reg_rule = NULL;
734         unsigned int i;
735
736         if (!rd->n_reg_rules)
737                 return false;
738
739         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
740                 return false;
741
742         for (i = 0; i < rd->n_reg_rules; i++) {
743                 reg_rule = &rd->reg_rules[i];
744                 if (!is_valid_reg_rule(reg_rule))
745                         return false;
746         }
747
748         return true;
749 }
750
751 /**
752  * freq_in_rule_band - tells us if a frequency is in a frequency band
753  * @freq_range: frequency rule we want to query
754  * @freq_khz: frequency we are inquiring about
755  *
756  * This lets us know if a specific frequency rule is or is not relevant to
757  * a specific frequency's band. Bands are device specific and artificial
758  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
759  * however it is safe for now to assume that a frequency rule should not be
760  * part of a frequency's band if the start freq or end freq are off by more
761  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
762  * 60 GHz band.
763  * This resolution can be lowered and should be considered as we add
764  * regulatory rule support for other "bands".
765  **/
766 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
767                               u32 freq_khz)
768 {
769 #define ONE_GHZ_IN_KHZ  1000000
770         /*
771          * From 802.11ad: directional multi-gigabit (DMG):
772          * Pertaining to operation in a frequency band containing a channel
773          * with the Channel starting frequency above 45 GHz.
774          */
775         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
776                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
777         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
778                 return true;
779         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
780                 return true;
781         return false;
782 #undef ONE_GHZ_IN_KHZ
783 }
784
785 /*
786  * Later on we can perhaps use the more restrictive DFS
787  * region but we don't have information for that yet so
788  * for now simply disallow conflicts.
789  */
790 static enum nl80211_dfs_regions
791 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
792                          const enum nl80211_dfs_regions dfs_region2)
793 {
794         if (dfs_region1 != dfs_region2)
795                 return NL80211_DFS_UNSET;
796         return dfs_region1;
797 }
798
799 /*
800  * Helper for regdom_intersect(), this does the real
801  * mathematical intersection fun
802  */
803 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
804                                const struct ieee80211_regdomain *rd2,
805                                const struct ieee80211_reg_rule *rule1,
806                                const struct ieee80211_reg_rule *rule2,
807                                struct ieee80211_reg_rule *intersected_rule)
808 {
809         const struct ieee80211_freq_range *freq_range1, *freq_range2;
810         struct ieee80211_freq_range *freq_range;
811         const struct ieee80211_power_rule *power_rule1, *power_rule2;
812         struct ieee80211_power_rule *power_rule;
813         u32 freq_diff, max_bandwidth1, max_bandwidth2;
814
815         freq_range1 = &rule1->freq_range;
816         freq_range2 = &rule2->freq_range;
817         freq_range = &intersected_rule->freq_range;
818
819         power_rule1 = &rule1->power_rule;
820         power_rule2 = &rule2->power_rule;
821         power_rule = &intersected_rule->power_rule;
822
823         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
824                                          freq_range2->start_freq_khz);
825         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
826                                        freq_range2->end_freq_khz);
827
828         max_bandwidth1 = freq_range1->max_bandwidth_khz;
829         max_bandwidth2 = freq_range2->max_bandwidth_khz;
830
831         if (rule1->flags & NL80211_RRF_AUTO_BW)
832                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
833         if (rule2->flags & NL80211_RRF_AUTO_BW)
834                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
835
836         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
837
838         intersected_rule->flags = rule1->flags | rule2->flags;
839
840         /*
841          * In case NL80211_RRF_AUTO_BW requested for both rules
842          * set AUTO_BW in intersected rule also. Next we will
843          * calculate BW correctly in handle_channel function.
844          * In other case remove AUTO_BW flag while we calculate
845          * maximum bandwidth correctly and auto calculation is
846          * not required.
847          */
848         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
849             (rule2->flags & NL80211_RRF_AUTO_BW))
850                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
851         else
852                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
853
854         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
855         if (freq_range->max_bandwidth_khz > freq_diff)
856                 freq_range->max_bandwidth_khz = freq_diff;
857
858         power_rule->max_eirp = min(power_rule1->max_eirp,
859                 power_rule2->max_eirp);
860         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
861                 power_rule2->max_antenna_gain);
862
863         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
864                                            rule2->dfs_cac_ms);
865
866         if (!is_valid_reg_rule(intersected_rule))
867                 return -EINVAL;
868
869         return 0;
870 }
871
872 /* check whether old rule contains new rule */
873 static bool rule_contains(struct ieee80211_reg_rule *r1,
874                           struct ieee80211_reg_rule *r2)
875 {
876         /* for simplicity, currently consider only same flags */
877         if (r1->flags != r2->flags)
878                 return false;
879
880         /* verify r1 is more restrictive */
881         if ((r1->power_rule.max_antenna_gain >
882              r2->power_rule.max_antenna_gain) ||
883             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
884                 return false;
885
886         /* make sure r2's range is contained within r1 */
887         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
888             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
889                 return false;
890
891         /* and finally verify that r1.max_bw >= r2.max_bw */
892         if (r1->freq_range.max_bandwidth_khz <
893             r2->freq_range.max_bandwidth_khz)
894                 return false;
895
896         return true;
897 }
898
899 /* add or extend current rules. do nothing if rule is already contained */
900 static void add_rule(struct ieee80211_reg_rule *rule,
901                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
902 {
903         struct ieee80211_reg_rule *tmp_rule;
904         int i;
905
906         for (i = 0; i < *n_rules; i++) {
907                 tmp_rule = &reg_rules[i];
908                 /* rule is already contained - do nothing */
909                 if (rule_contains(tmp_rule, rule))
910                         return;
911
912                 /* extend rule if possible */
913                 if (rule_contains(rule, tmp_rule)) {
914                         memcpy(tmp_rule, rule, sizeof(*rule));
915                         return;
916                 }
917         }
918
919         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
920         (*n_rules)++;
921 }
922
923 /**
924  * regdom_intersect - do the intersection between two regulatory domains
925  * @rd1: first regulatory domain
926  * @rd2: second regulatory domain
927  *
928  * Use this function to get the intersection between two regulatory domains.
929  * Once completed we will mark the alpha2 for the rd as intersected, "98",
930  * as no one single alpha2 can represent this regulatory domain.
931  *
932  * Returns a pointer to the regulatory domain structure which will hold the
933  * resulting intersection of rules between rd1 and rd2. We will
934  * kzalloc() this structure for you.
935  */
936 static struct ieee80211_regdomain *
937 regdom_intersect(const struct ieee80211_regdomain *rd1,
938                  const struct ieee80211_regdomain *rd2)
939 {
940         int r, size_of_regd;
941         unsigned int x, y;
942         unsigned int num_rules = 0;
943         const struct ieee80211_reg_rule *rule1, *rule2;
944         struct ieee80211_reg_rule intersected_rule;
945         struct ieee80211_regdomain *rd;
946
947         if (!rd1 || !rd2)
948                 return NULL;
949
950         /*
951          * First we get a count of the rules we'll need, then we actually
952          * build them. This is to so we can malloc() and free() a
953          * regdomain once. The reason we use reg_rules_intersect() here
954          * is it will return -EINVAL if the rule computed makes no sense.
955          * All rules that do check out OK are valid.
956          */
957
958         for (x = 0; x < rd1->n_reg_rules; x++) {
959                 rule1 = &rd1->reg_rules[x];
960                 for (y = 0; y < rd2->n_reg_rules; y++) {
961                         rule2 = &rd2->reg_rules[y];
962                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
963                                                  &intersected_rule))
964                                 num_rules++;
965                 }
966         }
967
968         if (!num_rules)
969                 return NULL;
970
971         size_of_regd = sizeof(struct ieee80211_regdomain) +
972                        num_rules * sizeof(struct ieee80211_reg_rule);
973
974         rd = kzalloc(size_of_regd, GFP_KERNEL);
975         if (!rd)
976                 return NULL;
977
978         for (x = 0; x < rd1->n_reg_rules; x++) {
979                 rule1 = &rd1->reg_rules[x];
980                 for (y = 0; y < rd2->n_reg_rules; y++) {
981                         rule2 = &rd2->reg_rules[y];
982                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
983                                                 &intersected_rule);
984                         /*
985                          * No need to memset here the intersected rule here as
986                          * we're not using the stack anymore
987                          */
988                         if (r)
989                                 continue;
990
991                         add_rule(&intersected_rule, rd->reg_rules,
992                                  &rd->n_reg_rules);
993                 }
994         }
995
996         rd->alpha2[0] = '9';
997         rd->alpha2[1] = '8';
998         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
999                                                   rd2->dfs_region);
1000
1001         return rd;
1002 }
1003
1004 /*
1005  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1006  * want to just have the channel structure use these
1007  */
1008 static u32 map_regdom_flags(u32 rd_flags)
1009 {
1010         u32 channel_flags = 0;
1011         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1012                 channel_flags |= IEEE80211_CHAN_NO_IR;
1013         if (rd_flags & NL80211_RRF_DFS)
1014                 channel_flags |= IEEE80211_CHAN_RADAR;
1015         if (rd_flags & NL80211_RRF_NO_OFDM)
1016                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1017         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1018                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1019         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1020                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1021         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1022                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1023         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1024                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1025         if (rd_flags & NL80211_RRF_NO_80MHZ)
1026                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1027         if (rd_flags & NL80211_RRF_NO_160MHZ)
1028                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1029         return channel_flags;
1030 }
1031
1032 static const struct ieee80211_reg_rule *
1033 freq_reg_info_regd(u32 center_freq,
1034                    const struct ieee80211_regdomain *regd, u32 bw)
1035 {
1036         int i;
1037         bool band_rule_found = false;
1038         bool bw_fits = false;
1039
1040         if (!regd)
1041                 return ERR_PTR(-EINVAL);
1042
1043         for (i = 0; i < regd->n_reg_rules; i++) {
1044                 const struct ieee80211_reg_rule *rr;
1045                 const struct ieee80211_freq_range *fr = NULL;
1046
1047                 rr = &regd->reg_rules[i];
1048                 fr = &rr->freq_range;
1049
1050                 /*
1051                  * We only need to know if one frequency rule was
1052                  * was in center_freq's band, that's enough, so lets
1053                  * not overwrite it once found
1054                  */
1055                 if (!band_rule_found)
1056                         band_rule_found = freq_in_rule_band(fr, center_freq);
1057
1058                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1059
1060                 if (band_rule_found && bw_fits)
1061                         return rr;
1062         }
1063
1064         if (!band_rule_found)
1065                 return ERR_PTR(-ERANGE);
1066
1067         return ERR_PTR(-EINVAL);
1068 }
1069
1070 static const struct ieee80211_reg_rule *
1071 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1072 {
1073         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1074         const struct ieee80211_reg_rule *reg_rule = NULL;
1075         u32 bw;
1076
1077         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1078                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1079                 if (!IS_ERR(reg_rule))
1080                         return reg_rule;
1081         }
1082
1083         return reg_rule;
1084 }
1085
1086 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1087                                                u32 center_freq)
1088 {
1089         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1090 }
1091 EXPORT_SYMBOL(freq_reg_info);
1092
1093 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1094 {
1095         switch (initiator) {
1096         case NL80211_REGDOM_SET_BY_CORE:
1097                 return "core";
1098         case NL80211_REGDOM_SET_BY_USER:
1099                 return "user";
1100         case NL80211_REGDOM_SET_BY_DRIVER:
1101                 return "driver";
1102         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1103                 return "country IE";
1104         default:
1105                 WARN_ON(1);
1106                 return "bug";
1107         }
1108 }
1109 EXPORT_SYMBOL(reg_initiator_name);
1110
1111 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1112                                           const struct ieee80211_reg_rule *reg_rule,
1113                                           const struct ieee80211_channel *chan)
1114 {
1115         const struct ieee80211_freq_range *freq_range = NULL;
1116         u32 max_bandwidth_khz, bw_flags = 0;
1117
1118         freq_range = &reg_rule->freq_range;
1119
1120         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1121         /* Check if auto calculation requested */
1122         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1123                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1124
1125         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1126         if (!cfg80211_does_bw_fit_range(freq_range,
1127                                         MHZ_TO_KHZ(chan->center_freq),
1128                                         MHZ_TO_KHZ(10)))
1129                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1130         if (!cfg80211_does_bw_fit_range(freq_range,
1131                                         MHZ_TO_KHZ(chan->center_freq),
1132                                         MHZ_TO_KHZ(20)))
1133                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1134
1135         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1136                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1137         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1138                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1139         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1140                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1141         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1142                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1143         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1144                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1145         return bw_flags;
1146 }
1147
1148 /*
1149  * Note that right now we assume the desired channel bandwidth
1150  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1151  * per channel, the primary and the extension channel).
1152  */
1153 static void handle_channel(struct wiphy *wiphy,
1154                            enum nl80211_reg_initiator initiator,
1155                            struct ieee80211_channel *chan)
1156 {
1157         u32 flags, bw_flags = 0;
1158         const struct ieee80211_reg_rule *reg_rule = NULL;
1159         const struct ieee80211_power_rule *power_rule = NULL;
1160         struct wiphy *request_wiphy = NULL;
1161         struct regulatory_request *lr = get_last_request();
1162         const struct ieee80211_regdomain *regd;
1163
1164         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1165
1166         flags = chan->orig_flags;
1167
1168         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1169         if (IS_ERR(reg_rule)) {
1170                 /*
1171                  * We will disable all channels that do not match our
1172                  * received regulatory rule unless the hint is coming
1173                  * from a Country IE and the Country IE had no information
1174                  * about a band. The IEEE 802.11 spec allows for an AP
1175                  * to send only a subset of the regulatory rules allowed,
1176                  * so an AP in the US that only supports 2.4 GHz may only send
1177                  * a country IE with information for the 2.4 GHz band
1178                  * while 5 GHz is still supported.
1179                  */
1180                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1181                     PTR_ERR(reg_rule) == -ERANGE)
1182                         return;
1183
1184                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1185                     request_wiphy && request_wiphy == wiphy &&
1186                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1187                         pr_debug("Disabling freq %d MHz for good\n",
1188                                  chan->center_freq);
1189                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1190                         chan->flags = chan->orig_flags;
1191                 } else {
1192                         pr_debug("Disabling freq %d MHz\n",
1193                                  chan->center_freq);
1194                         chan->flags |= IEEE80211_CHAN_DISABLED;
1195                 }
1196                 return;
1197         }
1198
1199         regd = reg_get_regdomain(wiphy);
1200
1201         power_rule = &reg_rule->power_rule;
1202         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1203
1204         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1205             request_wiphy && request_wiphy == wiphy &&
1206             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1207                 /*
1208                  * This guarantees the driver's requested regulatory domain
1209                  * will always be used as a base for further regulatory
1210                  * settings
1211                  */
1212                 chan->flags = chan->orig_flags =
1213                         map_regdom_flags(reg_rule->flags) | bw_flags;
1214                 chan->max_antenna_gain = chan->orig_mag =
1215                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1216                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1217                         (int) MBM_TO_DBM(power_rule->max_eirp);
1218
1219                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1220                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1221                         if (reg_rule->dfs_cac_ms)
1222                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1223                 }
1224
1225                 return;
1226         }
1227
1228         chan->dfs_state = NL80211_DFS_USABLE;
1229         chan->dfs_state_entered = jiffies;
1230
1231         chan->beacon_found = false;
1232         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1233         chan->max_antenna_gain =
1234                 min_t(int, chan->orig_mag,
1235                       MBI_TO_DBI(power_rule->max_antenna_gain));
1236         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1237
1238         if (chan->flags & IEEE80211_CHAN_RADAR) {
1239                 if (reg_rule->dfs_cac_ms)
1240                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1241                 else
1242                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1243         }
1244
1245         if (chan->orig_mpwr) {
1246                 /*
1247                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1248                  * will always follow the passed country IE power settings.
1249                  */
1250                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1251                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1252                         chan->max_power = chan->max_reg_power;
1253                 else
1254                         chan->max_power = min(chan->orig_mpwr,
1255                                               chan->max_reg_power);
1256         } else
1257                 chan->max_power = chan->max_reg_power;
1258 }
1259
1260 static void handle_band(struct wiphy *wiphy,
1261                         enum nl80211_reg_initiator initiator,
1262                         struct ieee80211_supported_band *sband)
1263 {
1264         unsigned int i;
1265
1266         if (!sband)
1267                 return;
1268
1269         for (i = 0; i < sband->n_channels; i++)
1270                 handle_channel(wiphy, initiator, &sband->channels[i]);
1271 }
1272
1273 static bool reg_request_cell_base(struct regulatory_request *request)
1274 {
1275         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1276                 return false;
1277         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1278 }
1279
1280 bool reg_last_request_cell_base(void)
1281 {
1282         return reg_request_cell_base(get_last_request());
1283 }
1284
1285 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1286 /* Core specific check */
1287 static enum reg_request_treatment
1288 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1289 {
1290         struct regulatory_request *lr = get_last_request();
1291
1292         if (!reg_num_devs_support_basehint)
1293                 return REG_REQ_IGNORE;
1294
1295         if (reg_request_cell_base(lr) &&
1296             !regdom_changes(pending_request->alpha2))
1297                 return REG_REQ_ALREADY_SET;
1298
1299         return REG_REQ_OK;
1300 }
1301
1302 /* Device specific check */
1303 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1304 {
1305         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1306 }
1307 #else
1308 static enum reg_request_treatment
1309 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1310 {
1311         return REG_REQ_IGNORE;
1312 }
1313
1314 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1315 {
1316         return true;
1317 }
1318 #endif
1319
1320 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1321 {
1322         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1323             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1324                 return true;
1325         return false;
1326 }
1327
1328 static bool ignore_reg_update(struct wiphy *wiphy,
1329                               enum nl80211_reg_initiator initiator)
1330 {
1331         struct regulatory_request *lr = get_last_request();
1332
1333         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1334                 return true;
1335
1336         if (!lr) {
1337                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1338                          reg_initiator_name(initiator));
1339                 return true;
1340         }
1341
1342         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1343             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1344                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1345                          reg_initiator_name(initiator));
1346                 return true;
1347         }
1348
1349         /*
1350          * wiphy->regd will be set once the device has its own
1351          * desired regulatory domain set
1352          */
1353         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1354             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1355             !is_world_regdom(lr->alpha2)) {
1356                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1357                          reg_initiator_name(initiator));
1358                 return true;
1359         }
1360
1361         if (reg_request_cell_base(lr))
1362                 return reg_dev_ignore_cell_hint(wiphy);
1363
1364         return false;
1365 }
1366
1367 static bool reg_is_world_roaming(struct wiphy *wiphy)
1368 {
1369         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1370         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1371         struct regulatory_request *lr = get_last_request();
1372
1373         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1374                 return true;
1375
1376         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1377             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1378                 return true;
1379
1380         return false;
1381 }
1382
1383 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1384                               struct reg_beacon *reg_beacon)
1385 {
1386         struct ieee80211_supported_band *sband;
1387         struct ieee80211_channel *chan;
1388         bool channel_changed = false;
1389         struct ieee80211_channel chan_before;
1390
1391         sband = wiphy->bands[reg_beacon->chan.band];
1392         chan = &sband->channels[chan_idx];
1393
1394         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1395                 return;
1396
1397         if (chan->beacon_found)
1398                 return;
1399
1400         chan->beacon_found = true;
1401
1402         if (!reg_is_world_roaming(wiphy))
1403                 return;
1404
1405         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1406                 return;
1407
1408         chan_before.center_freq = chan->center_freq;
1409         chan_before.flags = chan->flags;
1410
1411         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1412                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1413                 channel_changed = true;
1414         }
1415
1416         if (channel_changed)
1417                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1418 }
1419
1420 /*
1421  * Called when a scan on a wiphy finds a beacon on
1422  * new channel
1423  */
1424 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1425                                     struct reg_beacon *reg_beacon)
1426 {
1427         unsigned int i;
1428         struct ieee80211_supported_band *sband;
1429
1430         if (!wiphy->bands[reg_beacon->chan.band])
1431                 return;
1432
1433         sband = wiphy->bands[reg_beacon->chan.band];
1434
1435         for (i = 0; i < sband->n_channels; i++)
1436                 handle_reg_beacon(wiphy, i, reg_beacon);
1437 }
1438
1439 /*
1440  * Called upon reg changes or a new wiphy is added
1441  */
1442 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1443 {
1444         unsigned int i;
1445         struct ieee80211_supported_band *sband;
1446         struct reg_beacon *reg_beacon;
1447
1448         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1449                 if (!wiphy->bands[reg_beacon->chan.band])
1450                         continue;
1451                 sband = wiphy->bands[reg_beacon->chan.band];
1452                 for (i = 0; i < sband->n_channels; i++)
1453                         handle_reg_beacon(wiphy, i, reg_beacon);
1454         }
1455 }
1456
1457 /* Reap the advantages of previously found beacons */
1458 static void reg_process_beacons(struct wiphy *wiphy)
1459 {
1460         /*
1461          * Means we are just firing up cfg80211, so no beacons would
1462          * have been processed yet.
1463          */
1464         if (!last_request)
1465                 return;
1466         wiphy_update_beacon_reg(wiphy);
1467 }
1468
1469 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1470 {
1471         if (!chan)
1472                 return false;
1473         if (chan->flags & IEEE80211_CHAN_DISABLED)
1474                 return false;
1475         /* This would happen when regulatory rules disallow HT40 completely */
1476         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1477                 return false;
1478         return true;
1479 }
1480
1481 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1482                                          struct ieee80211_channel *channel)
1483 {
1484         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1485         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1486         unsigned int i;
1487
1488         if (!is_ht40_allowed(channel)) {
1489                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1490                 return;
1491         }
1492
1493         /*
1494          * We need to ensure the extension channels exist to
1495          * be able to use HT40- or HT40+, this finds them (or not)
1496          */
1497         for (i = 0; i < sband->n_channels; i++) {
1498                 struct ieee80211_channel *c = &sband->channels[i];
1499
1500                 if (c->center_freq == (channel->center_freq - 20))
1501                         channel_before = c;
1502                 if (c->center_freq == (channel->center_freq + 20))
1503                         channel_after = c;
1504         }
1505
1506         /*
1507          * Please note that this assumes target bandwidth is 20 MHz,
1508          * if that ever changes we also need to change the below logic
1509          * to include that as well.
1510          */
1511         if (!is_ht40_allowed(channel_before))
1512                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1513         else
1514                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1515
1516         if (!is_ht40_allowed(channel_after))
1517                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1518         else
1519                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1520 }
1521
1522 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1523                                       struct ieee80211_supported_band *sband)
1524 {
1525         unsigned int i;
1526
1527         if (!sband)
1528                 return;
1529
1530         for (i = 0; i < sband->n_channels; i++)
1531                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1532 }
1533
1534 static void reg_process_ht_flags(struct wiphy *wiphy)
1535 {
1536         enum nl80211_band band;
1537
1538         if (!wiphy)
1539                 return;
1540
1541         for (band = 0; band < NUM_NL80211_BANDS; band++)
1542                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1543 }
1544
1545 static void reg_call_notifier(struct wiphy *wiphy,
1546                               struct regulatory_request *request)
1547 {
1548         if (wiphy->reg_notifier)
1549                 wiphy->reg_notifier(wiphy, request);
1550 }
1551
1552 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1553 {
1554         struct cfg80211_chan_def chandef;
1555         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1556         enum nl80211_iftype iftype;
1557
1558         wdev_lock(wdev);
1559         iftype = wdev->iftype;
1560
1561         /* make sure the interface is active */
1562         if (!wdev->netdev || !netif_running(wdev->netdev))
1563                 goto wdev_inactive_unlock;
1564
1565         switch (iftype) {
1566         case NL80211_IFTYPE_AP:
1567         case NL80211_IFTYPE_P2P_GO:
1568                 if (!wdev->beacon_interval)
1569                         goto wdev_inactive_unlock;
1570                 chandef = wdev->chandef;
1571                 break;
1572         case NL80211_IFTYPE_ADHOC:
1573                 if (!wdev->ssid_len)
1574                         goto wdev_inactive_unlock;
1575                 chandef = wdev->chandef;
1576                 break;
1577         case NL80211_IFTYPE_STATION:
1578         case NL80211_IFTYPE_P2P_CLIENT:
1579                 if (!wdev->current_bss ||
1580                     !wdev->current_bss->pub.channel)
1581                         goto wdev_inactive_unlock;
1582
1583                 if (!rdev->ops->get_channel ||
1584                     rdev_get_channel(rdev, wdev, &chandef))
1585                         cfg80211_chandef_create(&chandef,
1586                                                 wdev->current_bss->pub.channel,
1587                                                 NL80211_CHAN_NO_HT);
1588                 break;
1589         case NL80211_IFTYPE_MONITOR:
1590         case NL80211_IFTYPE_AP_VLAN:
1591         case NL80211_IFTYPE_P2P_DEVICE:
1592                 /* no enforcement required */
1593                 break;
1594         default:
1595                 /* others not implemented for now */
1596                 WARN_ON(1);
1597                 break;
1598         }
1599
1600         wdev_unlock(wdev);
1601
1602         switch (iftype) {
1603         case NL80211_IFTYPE_AP:
1604         case NL80211_IFTYPE_P2P_GO:
1605         case NL80211_IFTYPE_ADHOC:
1606                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1607         case NL80211_IFTYPE_STATION:
1608         case NL80211_IFTYPE_P2P_CLIENT:
1609                 return cfg80211_chandef_usable(wiphy, &chandef,
1610                                                IEEE80211_CHAN_DISABLED);
1611         default:
1612                 break;
1613         }
1614
1615         return true;
1616
1617 wdev_inactive_unlock:
1618         wdev_unlock(wdev);
1619         return true;
1620 }
1621
1622 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1623 {
1624         struct wireless_dev *wdev;
1625         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1626
1627         ASSERT_RTNL();
1628
1629         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1630                 if (!reg_wdev_chan_valid(wiphy, wdev))
1631                         cfg80211_leave(rdev, wdev);
1632 }
1633
1634 static void reg_check_chans_work(struct work_struct *work)
1635 {
1636         struct cfg80211_registered_device *rdev;
1637
1638         pr_debug("Verifying active interfaces after reg change\n");
1639         rtnl_lock();
1640
1641         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1642                 if (!(rdev->wiphy.regulatory_flags &
1643                       REGULATORY_IGNORE_STALE_KICKOFF))
1644                         reg_leave_invalid_chans(&rdev->wiphy);
1645
1646         rtnl_unlock();
1647 }
1648
1649 static void reg_check_channels(void)
1650 {
1651         /*
1652          * Give usermode a chance to do something nicer (move to another
1653          * channel, orderly disconnection), before forcing a disconnection.
1654          */
1655         mod_delayed_work(system_power_efficient_wq,
1656                          &reg_check_chans,
1657                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1658 }
1659
1660 static void wiphy_update_regulatory(struct wiphy *wiphy,
1661                                     enum nl80211_reg_initiator initiator)
1662 {
1663         enum nl80211_band band;
1664         struct regulatory_request *lr = get_last_request();
1665
1666         if (ignore_reg_update(wiphy, initiator)) {
1667                 /*
1668                  * Regulatory updates set by CORE are ignored for custom
1669                  * regulatory cards. Let us notify the changes to the driver,
1670                  * as some drivers used this to restore its orig_* reg domain.
1671                  */
1672                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1673                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1674                         reg_call_notifier(wiphy, lr);
1675                 return;
1676         }
1677
1678         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1679
1680         for (band = 0; band < NUM_NL80211_BANDS; band++)
1681                 handle_band(wiphy, initiator, wiphy->bands[band]);
1682
1683         reg_process_beacons(wiphy);
1684         reg_process_ht_flags(wiphy);
1685         reg_call_notifier(wiphy, lr);
1686 }
1687
1688 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1689 {
1690         struct cfg80211_registered_device *rdev;
1691         struct wiphy *wiphy;
1692
1693         ASSERT_RTNL();
1694
1695         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1696                 wiphy = &rdev->wiphy;
1697                 wiphy_update_regulatory(wiphy, initiator);
1698         }
1699
1700         reg_check_channels();
1701 }
1702
1703 static void handle_channel_custom(struct wiphy *wiphy,
1704                                   struct ieee80211_channel *chan,
1705                                   const struct ieee80211_regdomain *regd)
1706 {
1707         u32 bw_flags = 0;
1708         const struct ieee80211_reg_rule *reg_rule = NULL;
1709         const struct ieee80211_power_rule *power_rule = NULL;
1710         u32 bw;
1711
1712         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1713                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1714                                               regd, bw);
1715                 if (!IS_ERR(reg_rule))
1716                         break;
1717         }
1718
1719         if (IS_ERR(reg_rule)) {
1720                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1721                          chan->center_freq);
1722                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1723                         chan->flags |= IEEE80211_CHAN_DISABLED;
1724                 } else {
1725                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1726                         chan->flags = chan->orig_flags;
1727                 }
1728                 return;
1729         }
1730
1731         power_rule = &reg_rule->power_rule;
1732         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1733
1734         chan->dfs_state_entered = jiffies;
1735         chan->dfs_state = NL80211_DFS_USABLE;
1736
1737         chan->beacon_found = false;
1738
1739         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1740                 chan->flags = chan->orig_flags | bw_flags |
1741                               map_regdom_flags(reg_rule->flags);
1742         else
1743                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1744
1745         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1746         chan->max_reg_power = chan->max_power =
1747                 (int) MBM_TO_DBM(power_rule->max_eirp);
1748
1749         if (chan->flags & IEEE80211_CHAN_RADAR) {
1750                 if (reg_rule->dfs_cac_ms)
1751                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1752                 else
1753                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1754         }
1755
1756         chan->max_power = chan->max_reg_power;
1757 }
1758
1759 static void handle_band_custom(struct wiphy *wiphy,
1760                                struct ieee80211_supported_band *sband,
1761                                const struct ieee80211_regdomain *regd)
1762 {
1763         unsigned int i;
1764
1765         if (!sband)
1766                 return;
1767
1768         for (i = 0; i < sband->n_channels; i++)
1769                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1770 }
1771
1772 /* Used by drivers prior to wiphy registration */
1773 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1774                                    const struct ieee80211_regdomain *regd)
1775 {
1776         enum nl80211_band band;
1777         unsigned int bands_set = 0;
1778
1779         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1780              "wiphy should have REGULATORY_CUSTOM_REG\n");
1781         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1782
1783         for (band = 0; band < NUM_NL80211_BANDS; band++) {
1784                 if (!wiphy->bands[band])
1785                         continue;
1786                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1787                 bands_set++;
1788         }
1789
1790         /*
1791          * no point in calling this if it won't have any effect
1792          * on your device's supported bands.
1793          */
1794         WARN_ON(!bands_set);
1795 }
1796 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1797
1798 static void reg_set_request_processed(void)
1799 {
1800         bool need_more_processing = false;
1801         struct regulatory_request *lr = get_last_request();
1802
1803         lr->processed = true;
1804
1805         spin_lock(&reg_requests_lock);
1806         if (!list_empty(&reg_requests_list))
1807                 need_more_processing = true;
1808         spin_unlock(&reg_requests_lock);
1809
1810         cancel_crda_timeout();
1811
1812         if (need_more_processing)
1813                 schedule_work(&reg_work);
1814 }
1815
1816 /**
1817  * reg_process_hint_core - process core regulatory requests
1818  * @pending_request: a pending core regulatory request
1819  *
1820  * The wireless subsystem can use this function to process
1821  * a regulatory request issued by the regulatory core.
1822  */
1823 static enum reg_request_treatment
1824 reg_process_hint_core(struct regulatory_request *core_request)
1825 {
1826         if (reg_query_database(core_request)) {
1827                 core_request->intersect = false;
1828                 core_request->processed = false;
1829                 reg_update_last_request(core_request);
1830                 return REG_REQ_OK;
1831         }
1832
1833         return REG_REQ_IGNORE;
1834 }
1835
1836 static enum reg_request_treatment
1837 __reg_process_hint_user(struct regulatory_request *user_request)
1838 {
1839         struct regulatory_request *lr = get_last_request();
1840
1841         if (reg_request_cell_base(user_request))
1842                 return reg_ignore_cell_hint(user_request);
1843
1844         if (reg_request_cell_base(lr))
1845                 return REG_REQ_IGNORE;
1846
1847         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1848                 return REG_REQ_INTERSECT;
1849         /*
1850          * If the user knows better the user should set the regdom
1851          * to their country before the IE is picked up
1852          */
1853         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1854             lr->intersect)
1855                 return REG_REQ_IGNORE;
1856         /*
1857          * Process user requests only after previous user/driver/core
1858          * requests have been processed
1859          */
1860         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1861              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1862              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1863             regdom_changes(lr->alpha2))
1864                 return REG_REQ_IGNORE;
1865
1866         if (!regdom_changes(user_request->alpha2))
1867                 return REG_REQ_ALREADY_SET;
1868
1869         return REG_REQ_OK;
1870 }
1871
1872 /**
1873  * reg_process_hint_user - process user regulatory requests
1874  * @user_request: a pending user regulatory request
1875  *
1876  * The wireless subsystem can use this function to process
1877  * a regulatory request initiated by userspace.
1878  */
1879 static enum reg_request_treatment
1880 reg_process_hint_user(struct regulatory_request *user_request)
1881 {
1882         enum reg_request_treatment treatment;
1883
1884         treatment = __reg_process_hint_user(user_request);
1885         if (treatment == REG_REQ_IGNORE ||
1886             treatment == REG_REQ_ALREADY_SET)
1887                 return REG_REQ_IGNORE;
1888
1889         user_request->intersect = treatment == REG_REQ_INTERSECT;
1890         user_request->processed = false;
1891
1892         if (reg_query_database(user_request)) {
1893                 reg_update_last_request(user_request);
1894                 user_alpha2[0] = user_request->alpha2[0];
1895                 user_alpha2[1] = user_request->alpha2[1];
1896                 return REG_REQ_OK;
1897         }
1898
1899         return REG_REQ_IGNORE;
1900 }
1901
1902 static enum reg_request_treatment
1903 __reg_process_hint_driver(struct regulatory_request *driver_request)
1904 {
1905         struct regulatory_request *lr = get_last_request();
1906
1907         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1908                 if (regdom_changes(driver_request->alpha2))
1909                         return REG_REQ_OK;
1910                 return REG_REQ_ALREADY_SET;
1911         }
1912
1913         /*
1914          * This would happen if you unplug and plug your card
1915          * back in or if you add a new device for which the previously
1916          * loaded card also agrees on the regulatory domain.
1917          */
1918         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1919             !regdom_changes(driver_request->alpha2))
1920                 return REG_REQ_ALREADY_SET;
1921
1922         return REG_REQ_INTERSECT;
1923 }
1924
1925 /**
1926  * reg_process_hint_driver - process driver regulatory requests
1927  * @driver_request: a pending driver regulatory request
1928  *
1929  * The wireless subsystem can use this function to process
1930  * a regulatory request issued by an 802.11 driver.
1931  *
1932  * Returns one of the different reg request treatment values.
1933  */
1934 static enum reg_request_treatment
1935 reg_process_hint_driver(struct wiphy *wiphy,
1936                         struct regulatory_request *driver_request)
1937 {
1938         const struct ieee80211_regdomain *regd, *tmp;
1939         enum reg_request_treatment treatment;
1940
1941         treatment = __reg_process_hint_driver(driver_request);
1942
1943         switch (treatment) {
1944         case REG_REQ_OK:
1945                 break;
1946         case REG_REQ_IGNORE:
1947                 return REG_REQ_IGNORE;
1948         case REG_REQ_INTERSECT:
1949         case REG_REQ_ALREADY_SET:
1950                 regd = reg_copy_regd(get_cfg80211_regdom());
1951                 if (IS_ERR(regd))
1952                         return REG_REQ_IGNORE;
1953
1954                 tmp = get_wiphy_regdom(wiphy);
1955                 rcu_assign_pointer(wiphy->regd, regd);
1956                 rcu_free_regdom(tmp);
1957         }
1958
1959
1960         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1961         driver_request->processed = false;
1962
1963         /*
1964          * Since CRDA will not be called in this case as we already
1965          * have applied the requested regulatory domain before we just
1966          * inform userspace we have processed the request
1967          */
1968         if (treatment == REG_REQ_ALREADY_SET) {
1969                 nl80211_send_reg_change_event(driver_request);
1970                 reg_update_last_request(driver_request);
1971                 reg_set_request_processed();
1972                 return REG_REQ_ALREADY_SET;
1973         }
1974
1975         if (reg_query_database(driver_request)) {
1976                 reg_update_last_request(driver_request);
1977                 return REG_REQ_OK;
1978         }
1979
1980         return REG_REQ_IGNORE;
1981 }
1982
1983 static enum reg_request_treatment
1984 __reg_process_hint_country_ie(struct wiphy *wiphy,
1985                               struct regulatory_request *country_ie_request)
1986 {
1987         struct wiphy *last_wiphy = NULL;
1988         struct regulatory_request *lr = get_last_request();
1989
1990         if (reg_request_cell_base(lr)) {
1991                 /* Trust a Cell base station over the AP's country IE */
1992                 if (regdom_changes(country_ie_request->alpha2))
1993                         return REG_REQ_IGNORE;
1994                 return REG_REQ_ALREADY_SET;
1995         } else {
1996                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1997                         return REG_REQ_IGNORE;
1998         }
1999
2000         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2001                 return -EINVAL;
2002
2003         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2004                 return REG_REQ_OK;
2005
2006         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2007
2008         if (last_wiphy != wiphy) {
2009                 /*
2010                  * Two cards with two APs claiming different
2011                  * Country IE alpha2s. We could
2012                  * intersect them, but that seems unlikely
2013                  * to be correct. Reject second one for now.
2014                  */
2015                 if (regdom_changes(country_ie_request->alpha2))
2016                         return REG_REQ_IGNORE;
2017                 return REG_REQ_ALREADY_SET;
2018         }
2019
2020         if (regdom_changes(country_ie_request->alpha2))
2021                 return REG_REQ_OK;
2022         return REG_REQ_ALREADY_SET;
2023 }
2024
2025 /**
2026  * reg_process_hint_country_ie - process regulatory requests from country IEs
2027  * @country_ie_request: a regulatory request from a country IE
2028  *
2029  * The wireless subsystem can use this function to process
2030  * a regulatory request issued by a country Information Element.
2031  *
2032  * Returns one of the different reg request treatment values.
2033  */
2034 static enum reg_request_treatment
2035 reg_process_hint_country_ie(struct wiphy *wiphy,
2036                             struct regulatory_request *country_ie_request)
2037 {
2038         enum reg_request_treatment treatment;
2039
2040         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2041
2042         switch (treatment) {
2043         case REG_REQ_OK:
2044                 break;
2045         case REG_REQ_IGNORE:
2046                 return REG_REQ_IGNORE;
2047         case REG_REQ_ALREADY_SET:
2048                 reg_free_request(country_ie_request);
2049                 return REG_REQ_ALREADY_SET;
2050         case REG_REQ_INTERSECT:
2051                 /*
2052                  * This doesn't happen yet, not sure we
2053                  * ever want to support it for this case.
2054                  */
2055                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2056                 return REG_REQ_IGNORE;
2057         }
2058
2059         country_ie_request->intersect = false;
2060         country_ie_request->processed = false;
2061
2062         if (reg_query_database(country_ie_request)) {
2063                 reg_update_last_request(country_ie_request);
2064                 return REG_REQ_OK;
2065         }
2066
2067         return REG_REQ_IGNORE;
2068 }
2069
2070 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2071 {
2072         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2073         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2074         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2075         bool dfs_domain_same;
2076
2077         rcu_read_lock();
2078
2079         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2080         wiphy1_regd = rcu_dereference(wiphy1->regd);
2081         if (!wiphy1_regd)
2082                 wiphy1_regd = cfg80211_regd;
2083
2084         wiphy2_regd = rcu_dereference(wiphy2->regd);
2085         if (!wiphy2_regd)
2086                 wiphy2_regd = cfg80211_regd;
2087
2088         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2089
2090         rcu_read_unlock();
2091
2092         return dfs_domain_same;
2093 }
2094
2095 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2096                                     struct ieee80211_channel *src_chan)
2097 {
2098         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2099             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2100                 return;
2101
2102         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2103             src_chan->flags & IEEE80211_CHAN_DISABLED)
2104                 return;
2105
2106         if (src_chan->center_freq == dst_chan->center_freq &&
2107             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2108                 dst_chan->dfs_state = src_chan->dfs_state;
2109                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2110         }
2111 }
2112
2113 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2114                                        struct wiphy *src_wiphy)
2115 {
2116         struct ieee80211_supported_band *src_sband, *dst_sband;
2117         struct ieee80211_channel *src_chan, *dst_chan;
2118         int i, j, band;
2119
2120         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2121                 return;
2122
2123         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2124                 dst_sband = dst_wiphy->bands[band];
2125                 src_sband = src_wiphy->bands[band];
2126                 if (!dst_sband || !src_sband)
2127                         continue;
2128
2129                 for (i = 0; i < dst_sband->n_channels; i++) {
2130                         dst_chan = &dst_sband->channels[i];
2131                         for (j = 0; j < src_sband->n_channels; j++) {
2132                                 src_chan = &src_sband->channels[j];
2133                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2134                         }
2135                 }
2136         }
2137 }
2138
2139 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2140 {
2141         struct cfg80211_registered_device *rdev;
2142
2143         ASSERT_RTNL();
2144
2145         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2146                 if (wiphy == &rdev->wiphy)
2147                         continue;
2148                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2149         }
2150 }
2151
2152 /* This processes *all* regulatory hints */
2153 static void reg_process_hint(struct regulatory_request *reg_request)
2154 {
2155         struct wiphy *wiphy = NULL;
2156         enum reg_request_treatment treatment;
2157
2158         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2159                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2160
2161         switch (reg_request->initiator) {
2162         case NL80211_REGDOM_SET_BY_CORE:
2163                 treatment = reg_process_hint_core(reg_request);
2164                 break;
2165         case NL80211_REGDOM_SET_BY_USER:
2166                 treatment = reg_process_hint_user(reg_request);
2167                 break;
2168         case NL80211_REGDOM_SET_BY_DRIVER:
2169                 if (!wiphy)
2170                         goto out_free;
2171                 treatment = reg_process_hint_driver(wiphy, reg_request);
2172                 break;
2173         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2174                 if (!wiphy)
2175                         goto out_free;
2176                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2177                 break;
2178         default:
2179                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2180                 goto out_free;
2181         }
2182
2183         if (treatment == REG_REQ_IGNORE)
2184                 goto out_free;
2185
2186         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2187              "unexpected treatment value %d\n", treatment);
2188
2189         /* This is required so that the orig_* parameters are saved.
2190          * NOTE: treatment must be set for any case that reaches here!
2191          */
2192         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2193             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2194                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2195                 wiphy_all_share_dfs_chan_state(wiphy);
2196                 reg_check_channels();
2197         }
2198
2199         return;
2200
2201 out_free:
2202         reg_free_request(reg_request);
2203 }
2204
2205 static bool reg_only_self_managed_wiphys(void)
2206 {
2207         struct cfg80211_registered_device *rdev;
2208         struct wiphy *wiphy;
2209         bool self_managed_found = false;
2210
2211         ASSERT_RTNL();
2212
2213         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2214                 wiphy = &rdev->wiphy;
2215                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2216                         self_managed_found = true;
2217                 else
2218                         return false;
2219         }
2220
2221         /* make sure at least one self-managed wiphy exists */
2222         return self_managed_found;
2223 }
2224
2225 /*
2226  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2227  * Regulatory hints come on a first come first serve basis and we
2228  * must process each one atomically.
2229  */
2230 static void reg_process_pending_hints(void)
2231 {
2232         struct regulatory_request *reg_request, *lr;
2233
2234         lr = get_last_request();
2235
2236         /* When last_request->processed becomes true this will be rescheduled */
2237         if (lr && !lr->processed) {
2238                 reg_process_hint(lr);
2239                 return;
2240         }
2241
2242         spin_lock(&reg_requests_lock);
2243
2244         if (list_empty(&reg_requests_list)) {
2245                 spin_unlock(&reg_requests_lock);
2246                 return;
2247         }
2248
2249         reg_request = list_first_entry(&reg_requests_list,
2250                                        struct regulatory_request,
2251                                        list);
2252         list_del_init(&reg_request->list);
2253
2254         spin_unlock(&reg_requests_lock);
2255
2256         if (reg_only_self_managed_wiphys()) {
2257                 reg_free_request(reg_request);
2258                 return;
2259         }
2260
2261         reg_process_hint(reg_request);
2262
2263         lr = get_last_request();
2264
2265         spin_lock(&reg_requests_lock);
2266         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2267                 schedule_work(&reg_work);
2268         spin_unlock(&reg_requests_lock);
2269 }
2270
2271 /* Processes beacon hints -- this has nothing to do with country IEs */
2272 static void reg_process_pending_beacon_hints(void)
2273 {
2274         struct cfg80211_registered_device *rdev;
2275         struct reg_beacon *pending_beacon, *tmp;
2276
2277         /* This goes through the _pending_ beacon list */
2278         spin_lock_bh(&reg_pending_beacons_lock);
2279
2280         list_for_each_entry_safe(pending_beacon, tmp,
2281                                  &reg_pending_beacons, list) {
2282                 list_del_init(&pending_beacon->list);
2283
2284                 /* Applies the beacon hint to current wiphys */
2285                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2286                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2287
2288                 /* Remembers the beacon hint for new wiphys or reg changes */
2289                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2290         }
2291
2292         spin_unlock_bh(&reg_pending_beacons_lock);
2293 }
2294
2295 static void reg_process_self_managed_hints(void)
2296 {
2297         struct cfg80211_registered_device *rdev;
2298         struct wiphy *wiphy;
2299         const struct ieee80211_regdomain *tmp;
2300         const struct ieee80211_regdomain *regd;
2301         enum nl80211_band band;
2302         struct regulatory_request request = {};
2303
2304         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2305                 wiphy = &rdev->wiphy;
2306
2307                 spin_lock(&reg_requests_lock);
2308                 regd = rdev->requested_regd;
2309                 rdev->requested_regd = NULL;
2310                 spin_unlock(&reg_requests_lock);
2311
2312                 if (regd == NULL)
2313                         continue;
2314
2315                 tmp = get_wiphy_regdom(wiphy);
2316                 rcu_assign_pointer(wiphy->regd, regd);
2317                 rcu_free_regdom(tmp);
2318
2319                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2320                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2321
2322                 reg_process_ht_flags(wiphy);
2323
2324                 request.wiphy_idx = get_wiphy_idx(wiphy);
2325                 request.alpha2[0] = regd->alpha2[0];
2326                 request.alpha2[1] = regd->alpha2[1];
2327                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2328
2329                 nl80211_send_wiphy_reg_change_event(&request);
2330         }
2331
2332         reg_check_channels();
2333 }
2334
2335 static void reg_todo(struct work_struct *work)
2336 {
2337         rtnl_lock();
2338         reg_process_pending_hints();
2339         reg_process_pending_beacon_hints();
2340         reg_process_self_managed_hints();
2341         rtnl_unlock();
2342 }
2343
2344 static void queue_regulatory_request(struct regulatory_request *request)
2345 {
2346         request->alpha2[0] = toupper(request->alpha2[0]);
2347         request->alpha2[1] = toupper(request->alpha2[1]);
2348
2349         spin_lock(&reg_requests_lock);
2350         list_add_tail(&request->list, &reg_requests_list);
2351         spin_unlock(&reg_requests_lock);
2352
2353         schedule_work(&reg_work);
2354 }
2355
2356 /*
2357  * Core regulatory hint -- happens during cfg80211_init()
2358  * and when we restore regulatory settings.
2359  */
2360 static int regulatory_hint_core(const char *alpha2)
2361 {
2362         struct regulatory_request *request;
2363
2364         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2365         if (!request)
2366                 return -ENOMEM;
2367
2368         request->alpha2[0] = alpha2[0];
2369         request->alpha2[1] = alpha2[1];
2370         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2371
2372         queue_regulatory_request(request);
2373
2374         return 0;
2375 }
2376
2377 /* User hints */
2378 int regulatory_hint_user(const char *alpha2,
2379                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2380 {
2381         struct regulatory_request *request;
2382
2383         if (WARN_ON(!alpha2))
2384                 return -EINVAL;
2385
2386         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2387         if (!request)
2388                 return -ENOMEM;
2389
2390         request->wiphy_idx = WIPHY_IDX_INVALID;
2391         request->alpha2[0] = alpha2[0];
2392         request->alpha2[1] = alpha2[1];
2393         request->initiator = NL80211_REGDOM_SET_BY_USER;
2394         request->user_reg_hint_type = user_reg_hint_type;
2395
2396         /* Allow calling CRDA again */
2397         reset_crda_timeouts();
2398
2399         queue_regulatory_request(request);
2400
2401         return 0;
2402 }
2403
2404 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2405 {
2406         spin_lock(&reg_indoor_lock);
2407
2408         /* It is possible that more than one user space process is trying to
2409          * configure the indoor setting. To handle such cases, clear the indoor
2410          * setting in case that some process does not think that the device
2411          * is operating in an indoor environment. In addition, if a user space
2412          * process indicates that it is controlling the indoor setting, save its
2413          * portid, i.e., make it the owner.
2414          */
2415         reg_is_indoor = is_indoor;
2416         if (reg_is_indoor) {
2417                 if (!reg_is_indoor_portid)
2418                         reg_is_indoor_portid = portid;
2419         } else {
2420                 reg_is_indoor_portid = 0;
2421         }
2422
2423         spin_unlock(&reg_indoor_lock);
2424
2425         if (!is_indoor)
2426                 reg_check_channels();
2427
2428         return 0;
2429 }
2430
2431 void regulatory_netlink_notify(u32 portid)
2432 {
2433         spin_lock(&reg_indoor_lock);
2434
2435         if (reg_is_indoor_portid != portid) {
2436                 spin_unlock(&reg_indoor_lock);
2437                 return;
2438         }
2439
2440         reg_is_indoor = false;
2441         reg_is_indoor_portid = 0;
2442
2443         spin_unlock(&reg_indoor_lock);
2444
2445         reg_check_channels();
2446 }
2447
2448 /* Driver hints */
2449 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2450 {
2451         struct regulatory_request *request;
2452
2453         if (WARN_ON(!alpha2 || !wiphy))
2454                 return -EINVAL;
2455
2456         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2457
2458         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2459         if (!request)
2460                 return -ENOMEM;
2461
2462         request->wiphy_idx = get_wiphy_idx(wiphy);
2463
2464         request->alpha2[0] = alpha2[0];
2465         request->alpha2[1] = alpha2[1];
2466         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2467
2468         /* Allow calling CRDA again */
2469         reset_crda_timeouts();
2470
2471         queue_regulatory_request(request);
2472
2473         return 0;
2474 }
2475 EXPORT_SYMBOL(regulatory_hint);
2476
2477 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2478                                 const u8 *country_ie, u8 country_ie_len)
2479 {
2480         char alpha2[2];
2481         enum environment_cap env = ENVIRON_ANY;
2482         struct regulatory_request *request = NULL, *lr;
2483
2484         /* IE len must be evenly divisible by 2 */
2485         if (country_ie_len & 0x01)
2486                 return;
2487
2488         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2489                 return;
2490
2491         request = kzalloc(sizeof(*request), GFP_KERNEL);
2492         if (!request)
2493                 return;
2494
2495         alpha2[0] = country_ie[0];
2496         alpha2[1] = country_ie[1];
2497
2498         if (country_ie[2] == 'I')
2499                 env = ENVIRON_INDOOR;
2500         else if (country_ie[2] == 'O')
2501                 env = ENVIRON_OUTDOOR;
2502
2503         rcu_read_lock();
2504         lr = get_last_request();
2505
2506         if (unlikely(!lr))
2507                 goto out;
2508
2509         /*
2510          * We will run this only upon a successful connection on cfg80211.
2511          * We leave conflict resolution to the workqueue, where can hold
2512          * the RTNL.
2513          */
2514         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2515             lr->wiphy_idx != WIPHY_IDX_INVALID)
2516                 goto out;
2517
2518         request->wiphy_idx = get_wiphy_idx(wiphy);
2519         request->alpha2[0] = alpha2[0];
2520         request->alpha2[1] = alpha2[1];
2521         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2522         request->country_ie_env = env;
2523
2524         /* Allow calling CRDA again */
2525         reset_crda_timeouts();
2526
2527         queue_regulatory_request(request);
2528         request = NULL;
2529 out:
2530         kfree(request);
2531         rcu_read_unlock();
2532 }
2533
2534 static void restore_alpha2(char *alpha2, bool reset_user)
2535 {
2536         /* indicates there is no alpha2 to consider for restoration */
2537         alpha2[0] = '9';
2538         alpha2[1] = '7';
2539
2540         /* The user setting has precedence over the module parameter */
2541         if (is_user_regdom_saved()) {
2542                 /* Unless we're asked to ignore it and reset it */
2543                 if (reset_user) {
2544                         pr_debug("Restoring regulatory settings including user preference\n");
2545                         user_alpha2[0] = '9';
2546                         user_alpha2[1] = '7';
2547
2548                         /*
2549                          * If we're ignoring user settings, we still need to
2550                          * check the module parameter to ensure we put things
2551                          * back as they were for a full restore.
2552                          */
2553                         if (!is_world_regdom(ieee80211_regdom)) {
2554                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2555                                          ieee80211_regdom[0], ieee80211_regdom[1]);
2556                                 alpha2[0] = ieee80211_regdom[0];
2557                                 alpha2[1] = ieee80211_regdom[1];
2558                         }
2559                 } else {
2560                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2561                                  user_alpha2[0], user_alpha2[1]);
2562                         alpha2[0] = user_alpha2[0];
2563                         alpha2[1] = user_alpha2[1];
2564                 }
2565         } else if (!is_world_regdom(ieee80211_regdom)) {
2566                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2567                          ieee80211_regdom[0], ieee80211_regdom[1]);
2568                 alpha2[0] = ieee80211_regdom[0];
2569                 alpha2[1] = ieee80211_regdom[1];
2570         } else
2571                 pr_debug("Restoring regulatory settings\n");
2572 }
2573
2574 static void restore_custom_reg_settings(struct wiphy *wiphy)
2575 {
2576         struct ieee80211_supported_band *sband;
2577         enum nl80211_band band;
2578         struct ieee80211_channel *chan;
2579         int i;
2580
2581         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2582                 sband = wiphy->bands[band];
2583                 if (!sband)
2584                         continue;
2585                 for (i = 0; i < sband->n_channels; i++) {
2586                         chan = &sband->channels[i];
2587                         chan->flags = chan->orig_flags;
2588                         chan->max_antenna_gain = chan->orig_mag;
2589                         chan->max_power = chan->orig_mpwr;
2590                         chan->beacon_found = false;
2591                 }
2592         }
2593 }
2594
2595 /*
2596  * Restoring regulatory settings involves ingoring any
2597  * possibly stale country IE information and user regulatory
2598  * settings if so desired, this includes any beacon hints
2599  * learned as we could have traveled outside to another country
2600  * after disconnection. To restore regulatory settings we do
2601  * exactly what we did at bootup:
2602  *
2603  *   - send a core regulatory hint
2604  *   - send a user regulatory hint if applicable
2605  *
2606  * Device drivers that send a regulatory hint for a specific country
2607  * keep their own regulatory domain on wiphy->regd so that does does
2608  * not need to be remembered.
2609  */
2610 static void restore_regulatory_settings(bool reset_user)
2611 {
2612         char alpha2[2];
2613         char world_alpha2[2];
2614         struct reg_beacon *reg_beacon, *btmp;
2615         LIST_HEAD(tmp_reg_req_list);
2616         struct cfg80211_registered_device *rdev;
2617
2618         ASSERT_RTNL();
2619
2620         /*
2621          * Clear the indoor setting in case that it is not controlled by user
2622          * space, as otherwise there is no guarantee that the device is still
2623          * operating in an indoor environment.
2624          */
2625         spin_lock(&reg_indoor_lock);
2626         if (reg_is_indoor && !reg_is_indoor_portid) {
2627                 reg_is_indoor = false;
2628                 reg_check_channels();
2629         }
2630         spin_unlock(&reg_indoor_lock);
2631
2632         reset_regdomains(true, &world_regdom);
2633         restore_alpha2(alpha2, reset_user);
2634
2635         /*
2636          * If there's any pending requests we simply
2637          * stash them to a temporary pending queue and
2638          * add then after we've restored regulatory
2639          * settings.
2640          */
2641         spin_lock(&reg_requests_lock);
2642         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2643         spin_unlock(&reg_requests_lock);
2644
2645         /* Clear beacon hints */
2646         spin_lock_bh(&reg_pending_beacons_lock);
2647         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2648                 list_del(&reg_beacon->list);
2649                 kfree(reg_beacon);
2650         }
2651         spin_unlock_bh(&reg_pending_beacons_lock);
2652
2653         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2654                 list_del(&reg_beacon->list);
2655                 kfree(reg_beacon);
2656         }
2657
2658         /* First restore to the basic regulatory settings */
2659         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2660         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2661
2662         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2663                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2664                         continue;
2665                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2666                         restore_custom_reg_settings(&rdev->wiphy);
2667         }
2668
2669         regulatory_hint_core(world_alpha2);
2670
2671         /*
2672          * This restores the ieee80211_regdom module parameter
2673          * preference or the last user requested regulatory
2674          * settings, user regulatory settings takes precedence.
2675          */
2676         if (is_an_alpha2(alpha2))
2677                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2678
2679         spin_lock(&reg_requests_lock);
2680         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2681         spin_unlock(&reg_requests_lock);
2682
2683         pr_debug("Kicking the queue\n");
2684
2685         schedule_work(&reg_work);
2686 }
2687
2688 void regulatory_hint_disconnect(void)
2689 {
2690         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2691         restore_regulatory_settings(false);
2692 }
2693
2694 static bool freq_is_chan_12_13_14(u16 freq)
2695 {
2696         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
2697             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
2698             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
2699                 return true;
2700         return false;
2701 }
2702
2703 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2704 {
2705         struct reg_beacon *pending_beacon;
2706
2707         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2708                 if (beacon_chan->center_freq ==
2709                     pending_beacon->chan.center_freq)
2710                         return true;
2711         return false;
2712 }
2713
2714 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2715                                  struct ieee80211_channel *beacon_chan,
2716                                  gfp_t gfp)
2717 {
2718         struct reg_beacon *reg_beacon;
2719         bool processing;
2720
2721         if (beacon_chan->beacon_found ||
2722             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2723             (beacon_chan->band == NL80211_BAND_2GHZ &&
2724              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2725                 return 0;
2726
2727         spin_lock_bh(&reg_pending_beacons_lock);
2728         processing = pending_reg_beacon(beacon_chan);
2729         spin_unlock_bh(&reg_pending_beacons_lock);
2730
2731         if (processing)
2732                 return 0;
2733
2734         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2735         if (!reg_beacon)
2736                 return -ENOMEM;
2737
2738         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2739                  beacon_chan->center_freq,
2740                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
2741                  wiphy_name(wiphy));
2742
2743         memcpy(&reg_beacon->chan, beacon_chan,
2744                sizeof(struct ieee80211_channel));
2745
2746         /*
2747          * Since we can be called from BH or and non-BH context
2748          * we must use spin_lock_bh()
2749          */
2750         spin_lock_bh(&reg_pending_beacons_lock);
2751         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2752         spin_unlock_bh(&reg_pending_beacons_lock);
2753
2754         schedule_work(&reg_work);
2755
2756         return 0;
2757 }
2758
2759 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2760 {
2761         unsigned int i;
2762         const struct ieee80211_reg_rule *reg_rule = NULL;
2763         const struct ieee80211_freq_range *freq_range = NULL;
2764         const struct ieee80211_power_rule *power_rule = NULL;
2765         char bw[32], cac_time[32];
2766
2767         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2768
2769         for (i = 0; i < rd->n_reg_rules; i++) {
2770                 reg_rule = &rd->reg_rules[i];
2771                 freq_range = &reg_rule->freq_range;
2772                 power_rule = &reg_rule->power_rule;
2773
2774                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2775                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2776                                  freq_range->max_bandwidth_khz,
2777                                  reg_get_max_bandwidth(rd, reg_rule));
2778                 else
2779                         snprintf(bw, sizeof(bw), "%d KHz",
2780                                  freq_range->max_bandwidth_khz);
2781
2782                 if (reg_rule->flags & NL80211_RRF_DFS)
2783                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2784                                   reg_rule->dfs_cac_ms/1000);
2785                 else
2786                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2787
2788
2789                 /*
2790                  * There may not be documentation for max antenna gain
2791                  * in certain regions
2792                  */
2793                 if (power_rule->max_antenna_gain)
2794                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2795                                 freq_range->start_freq_khz,
2796                                 freq_range->end_freq_khz,
2797                                 bw,
2798                                 power_rule->max_antenna_gain,
2799                                 power_rule->max_eirp,
2800                                 cac_time);
2801                 else
2802                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2803                                 freq_range->start_freq_khz,
2804                                 freq_range->end_freq_khz,
2805                                 bw,
2806                                 power_rule->max_eirp,
2807                                 cac_time);
2808         }
2809 }
2810
2811 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2812 {
2813         switch (dfs_region) {
2814         case NL80211_DFS_UNSET:
2815         case NL80211_DFS_FCC:
2816         case NL80211_DFS_ETSI:
2817         case NL80211_DFS_JP:
2818                 return true;
2819         default:
2820                 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2821                 return false;
2822         }
2823 }
2824
2825 static void print_regdomain(const struct ieee80211_regdomain *rd)
2826 {
2827         struct regulatory_request *lr = get_last_request();
2828
2829         if (is_intersected_alpha2(rd->alpha2)) {
2830                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2831                         struct cfg80211_registered_device *rdev;
2832                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2833                         if (rdev) {
2834                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2835                                         rdev->country_ie_alpha2[0],
2836                                         rdev->country_ie_alpha2[1]);
2837                         } else
2838                                 pr_debug("Current regulatory domain intersected:\n");
2839                 } else
2840                         pr_debug("Current regulatory domain intersected:\n");
2841         } else if (is_world_regdom(rd->alpha2)) {
2842                 pr_debug("World regulatory domain updated:\n");
2843         } else {
2844                 if (is_unknown_alpha2(rd->alpha2))
2845                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2846                 else {
2847                         if (reg_request_cell_base(lr))
2848                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2849                                         rd->alpha2[0], rd->alpha2[1]);
2850                         else
2851                                 pr_debug("Regulatory domain changed to country: %c%c\n",
2852                                         rd->alpha2[0], rd->alpha2[1]);
2853                 }
2854         }
2855
2856         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2857         print_rd_rules(rd);
2858 }
2859
2860 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2861 {
2862         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2863         print_rd_rules(rd);
2864 }
2865
2866 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2867 {
2868         if (!is_world_regdom(rd->alpha2))
2869                 return -EINVAL;
2870         update_world_regdomain(rd);
2871         return 0;
2872 }
2873
2874 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2875                            struct regulatory_request *user_request)
2876 {
2877         const struct ieee80211_regdomain *intersected_rd = NULL;
2878
2879         if (!regdom_changes(rd->alpha2))
2880                 return -EALREADY;
2881
2882         if (!is_valid_rd(rd)) {
2883                 pr_err("Invalid regulatory domain detected: %c%c\n",
2884                        rd->alpha2[0], rd->alpha2[1]);
2885                 print_regdomain_info(rd);
2886                 return -EINVAL;
2887         }
2888
2889         if (!user_request->intersect) {
2890                 reset_regdomains(false, rd);
2891                 return 0;
2892         }
2893
2894         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2895         if (!intersected_rd)
2896                 return -EINVAL;
2897
2898         kfree(rd);
2899         rd = NULL;
2900         reset_regdomains(false, intersected_rd);
2901
2902         return 0;
2903 }
2904
2905 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2906                              struct regulatory_request *driver_request)
2907 {
2908         const struct ieee80211_regdomain *regd;
2909         const struct ieee80211_regdomain *intersected_rd = NULL;
2910         const struct ieee80211_regdomain *tmp;
2911         struct wiphy *request_wiphy;
2912
2913         if (is_world_regdom(rd->alpha2))
2914                 return -EINVAL;
2915
2916         if (!regdom_changes(rd->alpha2))
2917                 return -EALREADY;
2918
2919         if (!is_valid_rd(rd)) {
2920                 pr_err("Invalid regulatory domain detected: %c%c\n",
2921                        rd->alpha2[0], rd->alpha2[1]);
2922                 print_regdomain_info(rd);
2923                 return -EINVAL;
2924         }
2925
2926         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2927         if (!request_wiphy)
2928                 return -ENODEV;
2929
2930         if (!driver_request->intersect) {
2931                 if (request_wiphy->regd)
2932                         return -EALREADY;
2933
2934                 regd = reg_copy_regd(rd);
2935                 if (IS_ERR(regd))
2936                         return PTR_ERR(regd);
2937
2938                 rcu_assign_pointer(request_wiphy->regd, regd);
2939                 reset_regdomains(false, rd);
2940                 return 0;
2941         }
2942
2943         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2944         if (!intersected_rd)
2945                 return -EINVAL;
2946
2947         /*
2948          * We can trash what CRDA provided now.
2949          * However if a driver requested this specific regulatory
2950          * domain we keep it for its private use
2951          */
2952         tmp = get_wiphy_regdom(request_wiphy);
2953         rcu_assign_pointer(request_wiphy->regd, rd);
2954         rcu_free_regdom(tmp);
2955
2956         rd = NULL;
2957
2958         reset_regdomains(false, intersected_rd);
2959
2960         return 0;
2961 }
2962
2963 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2964                                  struct regulatory_request *country_ie_request)
2965 {
2966         struct wiphy *request_wiphy;
2967
2968         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2969             !is_unknown_alpha2(rd->alpha2))
2970                 return -EINVAL;
2971
2972         /*
2973          * Lets only bother proceeding on the same alpha2 if the current
2974          * rd is non static (it means CRDA was present and was used last)
2975          * and the pending request came in from a country IE
2976          */
2977
2978         if (!is_valid_rd(rd)) {
2979                 pr_err("Invalid regulatory domain detected: %c%c\n",
2980                        rd->alpha2[0], rd->alpha2[1]);
2981                 print_regdomain_info(rd);
2982                 return -EINVAL;
2983         }
2984
2985         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2986         if (!request_wiphy)
2987                 return -ENODEV;
2988
2989         if (country_ie_request->intersect)
2990                 return -EINVAL;
2991
2992         reset_regdomains(false, rd);
2993         return 0;
2994 }
2995
2996 /*
2997  * Use this call to set the current regulatory domain. Conflicts with
2998  * multiple drivers can be ironed out later. Caller must've already
2999  * kmalloc'd the rd structure.
3000  */
3001 int set_regdom(const struct ieee80211_regdomain *rd,
3002                enum ieee80211_regd_source regd_src)
3003 {
3004         struct regulatory_request *lr;
3005         bool user_reset = false;
3006         int r;
3007
3008         if (!reg_is_valid_request(rd->alpha2)) {
3009                 kfree(rd);
3010                 return -EINVAL;
3011         }
3012
3013         if (regd_src == REGD_SOURCE_CRDA)
3014                 reset_crda_timeouts();
3015
3016         lr = get_last_request();
3017
3018         /* Note that this doesn't update the wiphys, this is done below */
3019         switch (lr->initiator) {
3020         case NL80211_REGDOM_SET_BY_CORE:
3021                 r = reg_set_rd_core(rd);
3022                 break;
3023         case NL80211_REGDOM_SET_BY_USER:
3024                 r = reg_set_rd_user(rd, lr);
3025                 user_reset = true;
3026                 break;
3027         case NL80211_REGDOM_SET_BY_DRIVER:
3028                 r = reg_set_rd_driver(rd, lr);
3029                 break;
3030         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3031                 r = reg_set_rd_country_ie(rd, lr);
3032                 break;
3033         default:
3034                 WARN(1, "invalid initiator %d\n", lr->initiator);
3035                 kfree(rd);
3036                 return -EINVAL;
3037         }
3038
3039         if (r) {
3040                 switch (r) {
3041                 case -EALREADY:
3042                         reg_set_request_processed();
3043                         break;
3044                 default:
3045                         /* Back to world regulatory in case of errors */
3046                         restore_regulatory_settings(user_reset);
3047                 }
3048
3049                 kfree(rd);
3050                 return r;
3051         }
3052
3053         /* This would make this whole thing pointless */
3054         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3055                 return -EINVAL;
3056
3057         /* update all wiphys now with the new established regulatory domain */
3058         update_all_wiphy_regulatory(lr->initiator);
3059
3060         print_regdomain(get_cfg80211_regdom());
3061
3062         nl80211_send_reg_change_event(lr);
3063
3064         reg_set_request_processed();
3065
3066         return 0;
3067 }
3068
3069 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3070                                        struct ieee80211_regdomain *rd)
3071 {
3072         const struct ieee80211_regdomain *regd;
3073         const struct ieee80211_regdomain *prev_regd;
3074         struct cfg80211_registered_device *rdev;
3075
3076         if (WARN_ON(!wiphy || !rd))
3077                 return -EINVAL;
3078
3079         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3080                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3081                 return -EPERM;
3082
3083         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3084                 print_regdomain_info(rd);
3085                 return -EINVAL;
3086         }
3087
3088         regd = reg_copy_regd(rd);
3089         if (IS_ERR(regd))
3090                 return PTR_ERR(regd);
3091
3092         rdev = wiphy_to_rdev(wiphy);
3093
3094         spin_lock(&reg_requests_lock);
3095         prev_regd = rdev->requested_regd;
3096         rdev->requested_regd = regd;
3097         spin_unlock(&reg_requests_lock);
3098
3099         kfree(prev_regd);
3100         return 0;
3101 }
3102
3103 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3104                               struct ieee80211_regdomain *rd)
3105 {
3106         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3107
3108         if (ret)
3109                 return ret;
3110
3111         schedule_work(&reg_work);
3112         return 0;
3113 }
3114 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3115
3116 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3117                                         struct ieee80211_regdomain *rd)
3118 {
3119         int ret;
3120
3121         ASSERT_RTNL();
3122
3123         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3124         if (ret)
3125                 return ret;
3126
3127         /* process the request immediately */
3128         reg_process_self_managed_hints();
3129         return 0;
3130 }
3131 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3132
3133 void wiphy_regulatory_register(struct wiphy *wiphy)
3134 {
3135         struct regulatory_request *lr;
3136
3137         /* self-managed devices ignore external hints */
3138         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3139                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3140                                            REGULATORY_COUNTRY_IE_IGNORE;
3141
3142         if (!reg_dev_ignore_cell_hint(wiphy))
3143                 reg_num_devs_support_basehint++;
3144
3145         lr = get_last_request();
3146         wiphy_update_regulatory(wiphy, lr->initiator);
3147         wiphy_all_share_dfs_chan_state(wiphy);
3148 }
3149
3150 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3151 {
3152         struct wiphy *request_wiphy = NULL;
3153         struct regulatory_request *lr;
3154
3155         lr = get_last_request();
3156
3157         if (!reg_dev_ignore_cell_hint(wiphy))
3158                 reg_num_devs_support_basehint--;
3159
3160         rcu_free_regdom(get_wiphy_regdom(wiphy));
3161         RCU_INIT_POINTER(wiphy->regd, NULL);
3162
3163         if (lr)
3164                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3165
3166         if (!request_wiphy || request_wiphy != wiphy)
3167                 return;
3168
3169         lr->wiphy_idx = WIPHY_IDX_INVALID;
3170         lr->country_ie_env = ENVIRON_ANY;
3171 }
3172
3173 /*
3174  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3175  * UNII band definitions
3176  */
3177 int cfg80211_get_unii(int freq)
3178 {
3179         /* UNII-1 */
3180         if (freq >= 5150 && freq <= 5250)
3181                 return 0;
3182
3183         /* UNII-2A */
3184         if (freq > 5250 && freq <= 5350)
3185                 return 1;
3186
3187         /* UNII-2B */
3188         if (freq > 5350 && freq <= 5470)
3189                 return 2;
3190
3191         /* UNII-2C */
3192         if (freq > 5470 && freq <= 5725)
3193                 return 3;
3194
3195         /* UNII-3 */
3196         if (freq > 5725 && freq <= 5825)
3197                 return 4;
3198
3199         return -EINVAL;
3200 }
3201
3202 bool regulatory_indoor_allowed(void)
3203 {
3204         return reg_is_indoor;
3205 }
3206
3207 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3208 {
3209         const struct ieee80211_regdomain *regd = NULL;
3210         const struct ieee80211_regdomain *wiphy_regd = NULL;
3211         bool pre_cac_allowed = false;
3212
3213         rcu_read_lock();
3214
3215         regd = rcu_dereference(cfg80211_regdomain);
3216         wiphy_regd = rcu_dereference(wiphy->regd);
3217         if (!wiphy_regd) {
3218                 if (regd->dfs_region == NL80211_DFS_ETSI)
3219                         pre_cac_allowed = true;
3220
3221                 rcu_read_unlock();
3222
3223                 return pre_cac_allowed;
3224         }
3225
3226         if (regd->dfs_region == wiphy_regd->dfs_region &&
3227             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3228                 pre_cac_allowed = true;
3229
3230         rcu_read_unlock();
3231
3232         return pre_cac_allowed;
3233 }
3234
3235 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3236                                     struct cfg80211_chan_def *chandef,
3237                                     enum nl80211_dfs_state dfs_state,
3238                                     enum nl80211_radar_event event)
3239 {
3240         struct cfg80211_registered_device *rdev;
3241
3242         ASSERT_RTNL();
3243
3244         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3245                 return;
3246
3247         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3248                 if (wiphy == &rdev->wiphy)
3249                         continue;
3250
3251                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3252                         continue;
3253
3254                 if (!ieee80211_get_channel(&rdev->wiphy,
3255                                            chandef->chan->center_freq))
3256                         continue;
3257
3258                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3259
3260                 if (event == NL80211_RADAR_DETECTED ||
3261                     event == NL80211_RADAR_CAC_FINISHED)
3262                         cfg80211_sched_dfs_chan_update(rdev);
3263
3264                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3265         }
3266 }
3267
3268 int __init regulatory_init(void)
3269 {
3270         int err = 0;
3271
3272         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3273         if (IS_ERR(reg_pdev))
3274                 return PTR_ERR(reg_pdev);
3275
3276         spin_lock_init(&reg_requests_lock);
3277         spin_lock_init(&reg_pending_beacons_lock);
3278         spin_lock_init(&reg_indoor_lock);
3279
3280         reg_regdb_size_check();
3281
3282         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3283
3284         user_alpha2[0] = '9';
3285         user_alpha2[1] = '7';
3286
3287         /* We always try to get an update for the static regdomain */
3288         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3289         if (err) {
3290                 if (err == -ENOMEM) {
3291                         platform_device_unregister(reg_pdev);
3292                         return err;
3293                 }
3294                 /*
3295                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3296                  * memory which is handled and propagated appropriately above
3297                  * but it can also fail during a netlink_broadcast() or during
3298                  * early boot for call_usermodehelper(). For now treat these
3299                  * errors as non-fatal.
3300                  */
3301                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3302         }
3303
3304         /*
3305          * Finally, if the user set the module parameter treat it
3306          * as a user hint.
3307          */
3308         if (!is_world_regdom(ieee80211_regdom))
3309                 regulatory_hint_user(ieee80211_regdom,
3310                                      NL80211_USER_REG_HINT_USER);
3311
3312         return 0;
3313 }
3314
3315 void regulatory_exit(void)
3316 {
3317         struct regulatory_request *reg_request, *tmp;
3318         struct reg_beacon *reg_beacon, *btmp;
3319
3320         cancel_work_sync(&reg_work);
3321         cancel_crda_timeout_sync();
3322         cancel_delayed_work_sync(&reg_check_chans);
3323
3324         /* Lock to suppress warnings */
3325         rtnl_lock();
3326         reset_regdomains(true, NULL);
3327         rtnl_unlock();
3328
3329         dev_set_uevent_suppress(&reg_pdev->dev, true);
3330
3331         platform_device_unregister(reg_pdev);
3332
3333         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3334                 list_del(&reg_beacon->list);
3335                 kfree(reg_beacon);
3336         }
3337
3338         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3339                 list_del(&reg_beacon->list);
3340                 kfree(reg_beacon);
3341         }
3342
3343         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3344                 list_del(&reg_request->list);
3345                 kfree(reg_request);
3346         }
3347 }