]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - net/wireless/reg.c
regulator: max8997: Convert max8997_safeout_ops to set_voltage_sel and list_voltage_table
[karo-tx-linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)                  \
64         printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70         .initiator = NL80211_REGDOM_SET_BY_CORE,
71         .alpha2[0] = '0',
72         .alpha2[1] = '0',
73         .intersect = false,
74         .processed = true,
75         .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85         .uevent = reg_device_uevent,
86 };
87
88 /*
89  * Central wireless core regulatory domains, we only need two,
90  * the current one and a world regulatory domain in case we have no
91  * information to give us an alpha2
92  */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96  * Protects static reg.c components:
97  *     - cfg80211_world_regdom
98  *     - cfg80211_regdom
99  *     - last_request
100  *     - reg_num_devs_support_basehint
101  */
102 static DEFINE_MUTEX(reg_mutex);
103
104 /*
105  * Number of devices that registered to the core
106  * that support cellular base station regulatory hints
107  */
108 static int reg_num_devs_support_basehint;
109
110 static inline void assert_reg_lock(void)
111 {
112         lockdep_assert_held(&reg_mutex);
113 }
114
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125
126 struct reg_beacon {
127         struct list_head list;
128         struct ieee80211_channel chan;
129 };
130
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139         .n_reg_rules = 6,
140         .alpha2 =  "00",
141         .reg_rules = {
142                 /* IEEE 802.11b/g, channels 1..11 */
143                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144                 /* IEEE 802.11b/g, channels 12..13. */
145                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
146                         NL80211_RRF_PASSIVE_SCAN |
147                         NL80211_RRF_NO_IBSS),
148                 /* IEEE 802.11 channel 14 - Only JP enables
149                  * this and for 802.11b only */
150                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
151                         NL80211_RRF_PASSIVE_SCAN |
152                         NL80211_RRF_NO_IBSS |
153                         NL80211_RRF_NO_OFDM),
154                 /* IEEE 802.11a, channel 36..48 */
155                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
156                         NL80211_RRF_PASSIVE_SCAN |
157                         NL80211_RRF_NO_IBSS),
158
159                 /* NB: 5260 MHz - 5700 MHz requies DFS */
160
161                 /* IEEE 802.11a, channel 149..165 */
162                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
163                         NL80211_RRF_PASSIVE_SCAN |
164                         NL80211_RRF_NO_IBSS),
165
166                 /* IEEE 802.11ad (60gHz), channels 1..3 */
167                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
168         }
169 };
170
171 static const struct ieee80211_regdomain *cfg80211_world_regdom =
172         &world_regdom;
173
174 static char *ieee80211_regdom = "00";
175 static char user_alpha2[2];
176
177 module_param(ieee80211_regdom, charp, 0444);
178 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
179
180 static void reset_regdomains(bool full_reset)
181 {
182         /* avoid freeing static information or freeing something twice */
183         if (cfg80211_regdomain == cfg80211_world_regdom)
184                 cfg80211_regdomain = NULL;
185         if (cfg80211_world_regdom == &world_regdom)
186                 cfg80211_world_regdom = NULL;
187         if (cfg80211_regdomain == &world_regdom)
188                 cfg80211_regdomain = NULL;
189
190         kfree(cfg80211_regdomain);
191         kfree(cfg80211_world_regdom);
192
193         cfg80211_world_regdom = &world_regdom;
194         cfg80211_regdomain = NULL;
195
196         if (!full_reset)
197                 return;
198
199         if (last_request != &core_request_world)
200                 kfree(last_request);
201         last_request = &core_request_world;
202 }
203
204 /*
205  * Dynamic world regulatory domain requested by the wireless
206  * core upon initialization
207  */
208 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
209 {
210         BUG_ON(!last_request);
211
212         reset_regdomains(false);
213
214         cfg80211_world_regdom = rd;
215         cfg80211_regdomain = rd;
216 }
217
218 bool is_world_regdom(const char *alpha2)
219 {
220         if (!alpha2)
221                 return false;
222         if (alpha2[0] == '0' && alpha2[1] == '0')
223                 return true;
224         return false;
225 }
226
227 static bool is_alpha2_set(const char *alpha2)
228 {
229         if (!alpha2)
230                 return false;
231         if (alpha2[0] != 0 && alpha2[1] != 0)
232                 return true;
233         return false;
234 }
235
236 static bool is_unknown_alpha2(const char *alpha2)
237 {
238         if (!alpha2)
239                 return false;
240         /*
241          * Special case where regulatory domain was built by driver
242          * but a specific alpha2 cannot be determined
243          */
244         if (alpha2[0] == '9' && alpha2[1] == '9')
245                 return true;
246         return false;
247 }
248
249 static bool is_intersected_alpha2(const char *alpha2)
250 {
251         if (!alpha2)
252                 return false;
253         /*
254          * Special case where regulatory domain is the
255          * result of an intersection between two regulatory domain
256          * structures
257          */
258         if (alpha2[0] == '9' && alpha2[1] == '8')
259                 return true;
260         return false;
261 }
262
263 static bool is_an_alpha2(const char *alpha2)
264 {
265         if (!alpha2)
266                 return false;
267         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
268                 return true;
269         return false;
270 }
271
272 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
273 {
274         if (!alpha2_x || !alpha2_y)
275                 return false;
276         if (alpha2_x[0] == alpha2_y[0] &&
277                 alpha2_x[1] == alpha2_y[1])
278                 return true;
279         return false;
280 }
281
282 static bool regdom_changes(const char *alpha2)
283 {
284         assert_cfg80211_lock();
285
286         if (!cfg80211_regdomain)
287                 return true;
288         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
289                 return false;
290         return true;
291 }
292
293 /*
294  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
295  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
296  * has ever been issued.
297  */
298 static bool is_user_regdom_saved(void)
299 {
300         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
301                 return false;
302
303         /* This would indicate a mistake on the design */
304         if (WARN((!is_world_regdom(user_alpha2) &&
305                   !is_an_alpha2(user_alpha2)),
306                  "Unexpected user alpha2: %c%c\n",
307                  user_alpha2[0],
308                  user_alpha2[1]))
309                 return false;
310
311         return true;
312 }
313
314 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
315                          const struct ieee80211_regdomain *src_regd)
316 {
317         struct ieee80211_regdomain *regd;
318         int size_of_regd = 0;
319         unsigned int i;
320
321         size_of_regd = sizeof(struct ieee80211_regdomain) +
322           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
323
324         regd = kzalloc(size_of_regd, GFP_KERNEL);
325         if (!regd)
326                 return -ENOMEM;
327
328         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
329
330         for (i = 0; i < src_regd->n_reg_rules; i++)
331                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
332                         sizeof(struct ieee80211_reg_rule));
333
334         *dst_regd = regd;
335         return 0;
336 }
337
338 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
339 struct reg_regdb_search_request {
340         char alpha2[2];
341         struct list_head list;
342 };
343
344 static LIST_HEAD(reg_regdb_search_list);
345 static DEFINE_MUTEX(reg_regdb_search_mutex);
346
347 static void reg_regdb_search(struct work_struct *work)
348 {
349         struct reg_regdb_search_request *request;
350         const struct ieee80211_regdomain *curdom, *regdom;
351         int i, r;
352         bool set_reg = false;
353
354         mutex_lock(&cfg80211_mutex);
355
356         mutex_lock(&reg_regdb_search_mutex);
357         while (!list_empty(&reg_regdb_search_list)) {
358                 request = list_first_entry(&reg_regdb_search_list,
359                                            struct reg_regdb_search_request,
360                                            list);
361                 list_del(&request->list);
362
363                 for (i=0; i<reg_regdb_size; i++) {
364                         curdom = reg_regdb[i];
365
366                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
367                                 r = reg_copy_regd(&regdom, curdom);
368                                 if (r)
369                                         break;
370                                 set_reg = true;
371                                 break;
372                         }
373                 }
374
375                 kfree(request);
376         }
377         mutex_unlock(&reg_regdb_search_mutex);
378
379         if (set_reg)
380                 set_regdom(regdom);
381
382         mutex_unlock(&cfg80211_mutex);
383 }
384
385 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
386
387 static void reg_regdb_query(const char *alpha2)
388 {
389         struct reg_regdb_search_request *request;
390
391         if (!alpha2)
392                 return;
393
394         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
395         if (!request)
396                 return;
397
398         memcpy(request->alpha2, alpha2, 2);
399
400         mutex_lock(&reg_regdb_search_mutex);
401         list_add_tail(&request->list, &reg_regdb_search_list);
402         mutex_unlock(&reg_regdb_search_mutex);
403
404         schedule_work(&reg_regdb_work);
405 }
406
407 /* Feel free to add any other sanity checks here */
408 static void reg_regdb_size_check(void)
409 {
410         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
411         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
412 }
413 #else
414 static inline void reg_regdb_size_check(void) {}
415 static inline void reg_regdb_query(const char *alpha2) {}
416 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
417
418 /*
419  * This lets us keep regulatory code which is updated on a regulatory
420  * basis in userspace. Country information is filled in by
421  * reg_device_uevent
422  */
423 static int call_crda(const char *alpha2)
424 {
425         if (!is_world_regdom((char *) alpha2))
426                 pr_info("Calling CRDA for country: %c%c\n",
427                         alpha2[0], alpha2[1]);
428         else
429                 pr_info("Calling CRDA to update world regulatory domain\n");
430
431         /* query internal regulatory database (if it exists) */
432         reg_regdb_query(alpha2);
433
434         return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
435 }
436
437 /* Used by nl80211 before kmalloc'ing our regulatory domain */
438 bool reg_is_valid_request(const char *alpha2)
439 {
440         assert_cfg80211_lock();
441
442         if (!last_request)
443                 return false;
444
445         return alpha2_equal(last_request->alpha2, alpha2);
446 }
447
448 /* Sanity check on a regulatory rule */
449 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
450 {
451         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
452         u32 freq_diff;
453
454         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
455                 return false;
456
457         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
458                 return false;
459
460         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
461
462         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
463                         freq_range->max_bandwidth_khz > freq_diff)
464                 return false;
465
466         return true;
467 }
468
469 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
470 {
471         const struct ieee80211_reg_rule *reg_rule = NULL;
472         unsigned int i;
473
474         if (!rd->n_reg_rules)
475                 return false;
476
477         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
478                 return false;
479
480         for (i = 0; i < rd->n_reg_rules; i++) {
481                 reg_rule = &rd->reg_rules[i];
482                 if (!is_valid_reg_rule(reg_rule))
483                         return false;
484         }
485
486         return true;
487 }
488
489 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
490                             u32 center_freq_khz,
491                             u32 bw_khz)
492 {
493         u32 start_freq_khz, end_freq_khz;
494
495         start_freq_khz = center_freq_khz - (bw_khz/2);
496         end_freq_khz = center_freq_khz + (bw_khz/2);
497
498         if (start_freq_khz >= freq_range->start_freq_khz &&
499             end_freq_khz <= freq_range->end_freq_khz)
500                 return true;
501
502         return false;
503 }
504
505 /**
506  * freq_in_rule_band - tells us if a frequency is in a frequency band
507  * @freq_range: frequency rule we want to query
508  * @freq_khz: frequency we are inquiring about
509  *
510  * This lets us know if a specific frequency rule is or is not relevant to
511  * a specific frequency's band. Bands are device specific and artificial
512  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
513  * however it is safe for now to assume that a frequency rule should not be
514  * part of a frequency's band if the start freq or end freq are off by more
515  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
516  * 60 GHz band.
517  * This resolution can be lowered and should be considered as we add
518  * regulatory rule support for other "bands".
519  **/
520 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
521         u32 freq_khz)
522 {
523 #define ONE_GHZ_IN_KHZ  1000000
524         /*
525          * From 802.11ad: directional multi-gigabit (DMG):
526          * Pertaining to operation in a frequency band containing a channel
527          * with the Channel starting frequency above 45 GHz.
528          */
529         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
530                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
531         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
532                 return true;
533         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
534                 return true;
535         return false;
536 #undef ONE_GHZ_IN_KHZ
537 }
538
539 /*
540  * Helper for regdom_intersect(), this does the real
541  * mathematical intersection fun
542  */
543 static int reg_rules_intersect(
544         const struct ieee80211_reg_rule *rule1,
545         const struct ieee80211_reg_rule *rule2,
546         struct ieee80211_reg_rule *intersected_rule)
547 {
548         const struct ieee80211_freq_range *freq_range1, *freq_range2;
549         struct ieee80211_freq_range *freq_range;
550         const struct ieee80211_power_rule *power_rule1, *power_rule2;
551         struct ieee80211_power_rule *power_rule;
552         u32 freq_diff;
553
554         freq_range1 = &rule1->freq_range;
555         freq_range2 = &rule2->freq_range;
556         freq_range = &intersected_rule->freq_range;
557
558         power_rule1 = &rule1->power_rule;
559         power_rule2 = &rule2->power_rule;
560         power_rule = &intersected_rule->power_rule;
561
562         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
563                 freq_range2->start_freq_khz);
564         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
565                 freq_range2->end_freq_khz);
566         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
567                 freq_range2->max_bandwidth_khz);
568
569         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
570         if (freq_range->max_bandwidth_khz > freq_diff)
571                 freq_range->max_bandwidth_khz = freq_diff;
572
573         power_rule->max_eirp = min(power_rule1->max_eirp,
574                 power_rule2->max_eirp);
575         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
576                 power_rule2->max_antenna_gain);
577
578         intersected_rule->flags = (rule1->flags | rule2->flags);
579
580         if (!is_valid_reg_rule(intersected_rule))
581                 return -EINVAL;
582
583         return 0;
584 }
585
586 /**
587  * regdom_intersect - do the intersection between two regulatory domains
588  * @rd1: first regulatory domain
589  * @rd2: second regulatory domain
590  *
591  * Use this function to get the intersection between two regulatory domains.
592  * Once completed we will mark the alpha2 for the rd as intersected, "98",
593  * as no one single alpha2 can represent this regulatory domain.
594  *
595  * Returns a pointer to the regulatory domain structure which will hold the
596  * resulting intersection of rules between rd1 and rd2. We will
597  * kzalloc() this structure for you.
598  */
599 static struct ieee80211_regdomain *regdom_intersect(
600         const struct ieee80211_regdomain *rd1,
601         const struct ieee80211_regdomain *rd2)
602 {
603         int r, size_of_regd;
604         unsigned int x, y;
605         unsigned int num_rules = 0, rule_idx = 0;
606         const struct ieee80211_reg_rule *rule1, *rule2;
607         struct ieee80211_reg_rule *intersected_rule;
608         struct ieee80211_regdomain *rd;
609         /* This is just a dummy holder to help us count */
610         struct ieee80211_reg_rule irule;
611
612         /* Uses the stack temporarily for counter arithmetic */
613         intersected_rule = &irule;
614
615         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
616
617         if (!rd1 || !rd2)
618                 return NULL;
619
620         /*
621          * First we get a count of the rules we'll need, then we actually
622          * build them. This is to so we can malloc() and free() a
623          * regdomain once. The reason we use reg_rules_intersect() here
624          * is it will return -EINVAL if the rule computed makes no sense.
625          * All rules that do check out OK are valid.
626          */
627
628         for (x = 0; x < rd1->n_reg_rules; x++) {
629                 rule1 = &rd1->reg_rules[x];
630                 for (y = 0; y < rd2->n_reg_rules; y++) {
631                         rule2 = &rd2->reg_rules[y];
632                         if (!reg_rules_intersect(rule1, rule2,
633                                         intersected_rule))
634                                 num_rules++;
635                         memset(intersected_rule, 0,
636                                         sizeof(struct ieee80211_reg_rule));
637                 }
638         }
639
640         if (!num_rules)
641                 return NULL;
642
643         size_of_regd = sizeof(struct ieee80211_regdomain) +
644                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
645
646         rd = kzalloc(size_of_regd, GFP_KERNEL);
647         if (!rd)
648                 return NULL;
649
650         for (x = 0; x < rd1->n_reg_rules; x++) {
651                 rule1 = &rd1->reg_rules[x];
652                 for (y = 0; y < rd2->n_reg_rules; y++) {
653                         rule2 = &rd2->reg_rules[y];
654                         /*
655                          * This time around instead of using the stack lets
656                          * write to the target rule directly saving ourselves
657                          * a memcpy()
658                          */
659                         intersected_rule = &rd->reg_rules[rule_idx];
660                         r = reg_rules_intersect(rule1, rule2,
661                                 intersected_rule);
662                         /*
663                          * No need to memset here the intersected rule here as
664                          * we're not using the stack anymore
665                          */
666                         if (r)
667                                 continue;
668                         rule_idx++;
669                 }
670         }
671
672         if (rule_idx != num_rules) {
673                 kfree(rd);
674                 return NULL;
675         }
676
677         rd->n_reg_rules = num_rules;
678         rd->alpha2[0] = '9';
679         rd->alpha2[1] = '8';
680
681         return rd;
682 }
683
684 /*
685  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
686  * want to just have the channel structure use these
687  */
688 static u32 map_regdom_flags(u32 rd_flags)
689 {
690         u32 channel_flags = 0;
691         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
692                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
693         if (rd_flags & NL80211_RRF_NO_IBSS)
694                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
695         if (rd_flags & NL80211_RRF_DFS)
696                 channel_flags |= IEEE80211_CHAN_RADAR;
697         if (rd_flags & NL80211_RRF_NO_OFDM)
698                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
699         return channel_flags;
700 }
701
702 static int freq_reg_info_regd(struct wiphy *wiphy,
703                               u32 center_freq,
704                               u32 desired_bw_khz,
705                               const struct ieee80211_reg_rule **reg_rule,
706                               const struct ieee80211_regdomain *custom_regd)
707 {
708         int i;
709         bool band_rule_found = false;
710         const struct ieee80211_regdomain *regd;
711         bool bw_fits = false;
712
713         if (!desired_bw_khz)
714                 desired_bw_khz = MHZ_TO_KHZ(20);
715
716         regd = custom_regd ? custom_regd : cfg80211_regdomain;
717
718         /*
719          * Follow the driver's regulatory domain, if present, unless a country
720          * IE has been processed or a user wants to help complaince further
721          */
722         if (!custom_regd &&
723             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
724             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
725             wiphy->regd)
726                 regd = wiphy->regd;
727
728         if (!regd)
729                 return -EINVAL;
730
731         for (i = 0; i < regd->n_reg_rules; i++) {
732                 const struct ieee80211_reg_rule *rr;
733                 const struct ieee80211_freq_range *fr = NULL;
734
735                 rr = &regd->reg_rules[i];
736                 fr = &rr->freq_range;
737
738                 /*
739                  * We only need to know if one frequency rule was
740                  * was in center_freq's band, that's enough, so lets
741                  * not overwrite it once found
742                  */
743                 if (!band_rule_found)
744                         band_rule_found = freq_in_rule_band(fr, center_freq);
745
746                 bw_fits = reg_does_bw_fit(fr,
747                                           center_freq,
748                                           desired_bw_khz);
749
750                 if (band_rule_found && bw_fits) {
751                         *reg_rule = rr;
752                         return 0;
753                 }
754         }
755
756         if (!band_rule_found)
757                 return -ERANGE;
758
759         return -EINVAL;
760 }
761
762 int freq_reg_info(struct wiphy *wiphy,
763                   u32 center_freq,
764                   u32 desired_bw_khz,
765                   const struct ieee80211_reg_rule **reg_rule)
766 {
767         assert_cfg80211_lock();
768         return freq_reg_info_regd(wiphy,
769                                   center_freq,
770                                   desired_bw_khz,
771                                   reg_rule,
772                                   NULL);
773 }
774 EXPORT_SYMBOL(freq_reg_info);
775
776 #ifdef CONFIG_CFG80211_REG_DEBUG
777 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
778 {
779         switch (initiator) {
780         case NL80211_REGDOM_SET_BY_CORE:
781                 return "Set by core";
782         case NL80211_REGDOM_SET_BY_USER:
783                 return "Set by user";
784         case NL80211_REGDOM_SET_BY_DRIVER:
785                 return "Set by driver";
786         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
787                 return "Set by country IE";
788         default:
789                 WARN_ON(1);
790                 return "Set by bug";
791         }
792 }
793
794 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
795                                     u32 desired_bw_khz,
796                                     const struct ieee80211_reg_rule *reg_rule)
797 {
798         const struct ieee80211_power_rule *power_rule;
799         const struct ieee80211_freq_range *freq_range;
800         char max_antenna_gain[32];
801
802         power_rule = &reg_rule->power_rule;
803         freq_range = &reg_rule->freq_range;
804
805         if (!power_rule->max_antenna_gain)
806                 snprintf(max_antenna_gain, 32, "N/A");
807         else
808                 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
809
810         REG_DBG_PRINT("Updating information on frequency %d MHz "
811                       "for a %d MHz width channel with regulatory rule:\n",
812                       chan->center_freq,
813                       KHZ_TO_MHZ(desired_bw_khz));
814
815         REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
816                       freq_range->start_freq_khz,
817                       freq_range->end_freq_khz,
818                       freq_range->max_bandwidth_khz,
819                       max_antenna_gain,
820                       power_rule->max_eirp);
821 }
822 #else
823 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
824                                     u32 desired_bw_khz,
825                                     const struct ieee80211_reg_rule *reg_rule)
826 {
827         return;
828 }
829 #endif
830
831 /*
832  * Note that right now we assume the desired channel bandwidth
833  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
834  * per channel, the primary and the extension channel). To support
835  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
836  * new ieee80211_channel.target_bw and re run the regulatory check
837  * on the wiphy with the target_bw specified. Then we can simply use
838  * that below for the desired_bw_khz below.
839  */
840 static void handle_channel(struct wiphy *wiphy,
841                            enum nl80211_reg_initiator initiator,
842                            enum ieee80211_band band,
843                            unsigned int chan_idx)
844 {
845         int r;
846         u32 flags, bw_flags = 0;
847         u32 desired_bw_khz = MHZ_TO_KHZ(20);
848         const struct ieee80211_reg_rule *reg_rule = NULL;
849         const struct ieee80211_power_rule *power_rule = NULL;
850         const struct ieee80211_freq_range *freq_range = NULL;
851         struct ieee80211_supported_band *sband;
852         struct ieee80211_channel *chan;
853         struct wiphy *request_wiphy = NULL;
854
855         assert_cfg80211_lock();
856
857         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
858
859         sband = wiphy->bands[band];
860         BUG_ON(chan_idx >= sband->n_channels);
861         chan = &sband->channels[chan_idx];
862
863         flags = chan->orig_flags;
864
865         r = freq_reg_info(wiphy,
866                           MHZ_TO_KHZ(chan->center_freq),
867                           desired_bw_khz,
868                           &reg_rule);
869
870         if (r) {
871                 /*
872                  * We will disable all channels that do not match our
873                  * received regulatory rule unless the hint is coming
874                  * from a Country IE and the Country IE had no information
875                  * about a band. The IEEE 802.11 spec allows for an AP
876                  * to send only a subset of the regulatory rules allowed,
877                  * so an AP in the US that only supports 2.4 GHz may only send
878                  * a country IE with information for the 2.4 GHz band
879                  * while 5 GHz is still supported.
880                  */
881                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
882                     r == -ERANGE)
883                         return;
884
885                 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
886                 chan->flags = IEEE80211_CHAN_DISABLED;
887                 return;
888         }
889
890         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
891
892         power_rule = &reg_rule->power_rule;
893         freq_range = &reg_rule->freq_range;
894
895         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
896                 bw_flags = IEEE80211_CHAN_NO_HT40;
897
898         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
899             request_wiphy && request_wiphy == wiphy &&
900             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
901                 /*
902                  * This guarantees the driver's requested regulatory domain
903                  * will always be used as a base for further regulatory
904                  * settings
905                  */
906                 chan->flags = chan->orig_flags =
907                         map_regdom_flags(reg_rule->flags) | bw_flags;
908                 chan->max_antenna_gain = chan->orig_mag =
909                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
910                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
911                         (int) MBM_TO_DBM(power_rule->max_eirp);
912                 return;
913         }
914
915         chan->beacon_found = false;
916         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
917         chan->max_antenna_gain = min(chan->orig_mag,
918                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
919         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
920         if (chan->orig_mpwr) {
921                 /*
922                  * Devices that have their own custom regulatory domain
923                  * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
924                  * passed country IE power settings.
925                  */
926                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
927                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
928                     wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
929                         chan->max_power = chan->max_reg_power;
930                 else
931                         chan->max_power = min(chan->orig_mpwr,
932                                               chan->max_reg_power);
933         } else
934                 chan->max_power = chan->max_reg_power;
935 }
936
937 static void handle_band(struct wiphy *wiphy,
938                         enum ieee80211_band band,
939                         enum nl80211_reg_initiator initiator)
940 {
941         unsigned int i;
942         struct ieee80211_supported_band *sband;
943
944         BUG_ON(!wiphy->bands[band]);
945         sband = wiphy->bands[band];
946
947         for (i = 0; i < sband->n_channels; i++)
948                 handle_channel(wiphy, initiator, band, i);
949 }
950
951 static bool reg_request_cell_base(struct regulatory_request *request)
952 {
953         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
954                 return false;
955         if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
956                 return false;
957         return true;
958 }
959
960 bool reg_last_request_cell_base(void)
961 {
962         bool val;
963         assert_cfg80211_lock();
964
965         mutex_lock(&reg_mutex);
966         val = reg_request_cell_base(last_request);
967         mutex_unlock(&reg_mutex);
968         return val;
969 }
970
971 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
972
973 /* Core specific check */
974 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
975 {
976         if (!reg_num_devs_support_basehint)
977                 return -EOPNOTSUPP;
978
979         if (reg_request_cell_base(last_request)) {
980                 if (!regdom_changes(pending_request->alpha2))
981                         return -EALREADY;
982                 return 0;
983         }
984         return 0;
985 }
986
987 /* Device specific check */
988 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
989 {
990         if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
991                 return true;
992         return false;
993 }
994 #else
995 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
996 {
997         return -EOPNOTSUPP;
998 }
999 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1000 {
1001         return true;
1002 }
1003 #endif
1004
1005
1006 static bool ignore_reg_update(struct wiphy *wiphy,
1007                               enum nl80211_reg_initiator initiator)
1008 {
1009         if (!last_request) {
1010                 REG_DBG_PRINT("Ignoring regulatory request %s since "
1011                               "last_request is not set\n",
1012                               reg_initiator_name(initiator));
1013                 return true;
1014         }
1015
1016         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1017             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1018                 REG_DBG_PRINT("Ignoring regulatory request %s "
1019                               "since the driver uses its own custom "
1020                               "regulatory domain\n",
1021                               reg_initiator_name(initiator));
1022                 return true;
1023         }
1024
1025         /*
1026          * wiphy->regd will be set once the device has its own
1027          * desired regulatory domain set
1028          */
1029         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1030             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1031             !is_world_regdom(last_request->alpha2)) {
1032                 REG_DBG_PRINT("Ignoring regulatory request %s "
1033                               "since the driver requires its own regulatory "
1034                               "domain to be set first\n",
1035                               reg_initiator_name(initiator));
1036                 return true;
1037         }
1038
1039         if (reg_request_cell_base(last_request))
1040                 return reg_dev_ignore_cell_hint(wiphy);
1041
1042         return false;
1043 }
1044
1045 static void handle_reg_beacon(struct wiphy *wiphy,
1046                               unsigned int chan_idx,
1047                               struct reg_beacon *reg_beacon)
1048 {
1049         struct ieee80211_supported_band *sband;
1050         struct ieee80211_channel *chan;
1051         bool channel_changed = false;
1052         struct ieee80211_channel chan_before;
1053
1054         assert_cfg80211_lock();
1055
1056         sband = wiphy->bands[reg_beacon->chan.band];
1057         chan = &sband->channels[chan_idx];
1058
1059         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1060                 return;
1061
1062         if (chan->beacon_found)
1063                 return;
1064
1065         chan->beacon_found = true;
1066
1067         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1068                 return;
1069
1070         chan_before.center_freq = chan->center_freq;
1071         chan_before.flags = chan->flags;
1072
1073         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1074                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1075                 channel_changed = true;
1076         }
1077
1078         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1079                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1080                 channel_changed = true;
1081         }
1082
1083         if (channel_changed)
1084                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1085 }
1086
1087 /*
1088  * Called when a scan on a wiphy finds a beacon on
1089  * new channel
1090  */
1091 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1092                                     struct reg_beacon *reg_beacon)
1093 {
1094         unsigned int i;
1095         struct ieee80211_supported_band *sband;
1096
1097         assert_cfg80211_lock();
1098
1099         if (!wiphy->bands[reg_beacon->chan.band])
1100                 return;
1101
1102         sband = wiphy->bands[reg_beacon->chan.band];
1103
1104         for (i = 0; i < sband->n_channels; i++)
1105                 handle_reg_beacon(wiphy, i, reg_beacon);
1106 }
1107
1108 /*
1109  * Called upon reg changes or a new wiphy is added
1110  */
1111 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1112 {
1113         unsigned int i;
1114         struct ieee80211_supported_band *sband;
1115         struct reg_beacon *reg_beacon;
1116
1117         assert_cfg80211_lock();
1118
1119         if (list_empty(&reg_beacon_list))
1120                 return;
1121
1122         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1123                 if (!wiphy->bands[reg_beacon->chan.band])
1124                         continue;
1125                 sband = wiphy->bands[reg_beacon->chan.band];
1126                 for (i = 0; i < sband->n_channels; i++)
1127                         handle_reg_beacon(wiphy, i, reg_beacon);
1128         }
1129 }
1130
1131 static bool reg_is_world_roaming(struct wiphy *wiphy)
1132 {
1133         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1134             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1135                 return true;
1136         if (last_request &&
1137             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1138             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1139                 return true;
1140         return false;
1141 }
1142
1143 /* Reap the advantages of previously found beacons */
1144 static void reg_process_beacons(struct wiphy *wiphy)
1145 {
1146         /*
1147          * Means we are just firing up cfg80211, so no beacons would
1148          * have been processed yet.
1149          */
1150         if (!last_request)
1151                 return;
1152         if (!reg_is_world_roaming(wiphy))
1153                 return;
1154         wiphy_update_beacon_reg(wiphy);
1155 }
1156
1157 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1158 {
1159         if (!chan)
1160                 return true;
1161         if (chan->flags & IEEE80211_CHAN_DISABLED)
1162                 return true;
1163         /* This would happen when regulatory rules disallow HT40 completely */
1164         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1165                 return true;
1166         return false;
1167 }
1168
1169 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1170                                          enum ieee80211_band band,
1171                                          unsigned int chan_idx)
1172 {
1173         struct ieee80211_supported_band *sband;
1174         struct ieee80211_channel *channel;
1175         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1176         unsigned int i;
1177
1178         assert_cfg80211_lock();
1179
1180         sband = wiphy->bands[band];
1181         BUG_ON(chan_idx >= sband->n_channels);
1182         channel = &sband->channels[chan_idx];
1183
1184         if (is_ht40_not_allowed(channel)) {
1185                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1186                 return;
1187         }
1188
1189         /*
1190          * We need to ensure the extension channels exist to
1191          * be able to use HT40- or HT40+, this finds them (or not)
1192          */
1193         for (i = 0; i < sband->n_channels; i++) {
1194                 struct ieee80211_channel *c = &sband->channels[i];
1195                 if (c->center_freq == (channel->center_freq - 20))
1196                         channel_before = c;
1197                 if (c->center_freq == (channel->center_freq + 20))
1198                         channel_after = c;
1199         }
1200
1201         /*
1202          * Please note that this assumes target bandwidth is 20 MHz,
1203          * if that ever changes we also need to change the below logic
1204          * to include that as well.
1205          */
1206         if (is_ht40_not_allowed(channel_before))
1207                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1208         else
1209                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1210
1211         if (is_ht40_not_allowed(channel_after))
1212                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1213         else
1214                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1215 }
1216
1217 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1218                                       enum ieee80211_band band)
1219 {
1220         unsigned int i;
1221         struct ieee80211_supported_band *sband;
1222
1223         BUG_ON(!wiphy->bands[band]);
1224         sband = wiphy->bands[band];
1225
1226         for (i = 0; i < sband->n_channels; i++)
1227                 reg_process_ht_flags_channel(wiphy, band, i);
1228 }
1229
1230 static void reg_process_ht_flags(struct wiphy *wiphy)
1231 {
1232         enum ieee80211_band band;
1233
1234         if (!wiphy)
1235                 return;
1236
1237         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1238                 if (wiphy->bands[band])
1239                         reg_process_ht_flags_band(wiphy, band);
1240         }
1241
1242 }
1243
1244 static void wiphy_update_regulatory(struct wiphy *wiphy,
1245                                     enum nl80211_reg_initiator initiator)
1246 {
1247         enum ieee80211_band band;
1248
1249         assert_reg_lock();
1250
1251         if (ignore_reg_update(wiphy, initiator))
1252                 return;
1253
1254         last_request->dfs_region = cfg80211_regdomain->dfs_region;
1255
1256         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1257                 if (wiphy->bands[band])
1258                         handle_band(wiphy, band, initiator);
1259         }
1260
1261         reg_process_beacons(wiphy);
1262         reg_process_ht_flags(wiphy);
1263         if (wiphy->reg_notifier)
1264                 wiphy->reg_notifier(wiphy, last_request);
1265 }
1266
1267 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1268 {
1269         struct cfg80211_registered_device *rdev;
1270         struct wiphy *wiphy;
1271
1272         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1273                 wiphy = &rdev->wiphy;
1274                 wiphy_update_regulatory(wiphy, initiator);
1275                 /*
1276                  * Regulatory updates set by CORE are ignored for custom
1277                  * regulatory cards. Let us notify the changes to the driver,
1278                  * as some drivers used this to restore its orig_* reg domain.
1279                  */
1280                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1281                     wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1282                     wiphy->reg_notifier)
1283                         wiphy->reg_notifier(wiphy, last_request);
1284         }
1285 }
1286
1287 static void handle_channel_custom(struct wiphy *wiphy,
1288                                   enum ieee80211_band band,
1289                                   unsigned int chan_idx,
1290                                   const struct ieee80211_regdomain *regd)
1291 {
1292         int r;
1293         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1294         u32 bw_flags = 0;
1295         const struct ieee80211_reg_rule *reg_rule = NULL;
1296         const struct ieee80211_power_rule *power_rule = NULL;
1297         const struct ieee80211_freq_range *freq_range = NULL;
1298         struct ieee80211_supported_band *sband;
1299         struct ieee80211_channel *chan;
1300
1301         assert_reg_lock();
1302
1303         sband = wiphy->bands[band];
1304         BUG_ON(chan_idx >= sband->n_channels);
1305         chan = &sband->channels[chan_idx];
1306
1307         r = freq_reg_info_regd(wiphy,
1308                                MHZ_TO_KHZ(chan->center_freq),
1309                                desired_bw_khz,
1310                                &reg_rule,
1311                                regd);
1312
1313         if (r) {
1314                 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1315                               "regd has no rule that fits a %d MHz "
1316                               "wide channel\n",
1317                               chan->center_freq,
1318                               KHZ_TO_MHZ(desired_bw_khz));
1319                 chan->flags = IEEE80211_CHAN_DISABLED;
1320                 return;
1321         }
1322
1323         chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1324
1325         power_rule = &reg_rule->power_rule;
1326         freq_range = &reg_rule->freq_range;
1327
1328         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1329                 bw_flags = IEEE80211_CHAN_NO_HT40;
1330
1331         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1332         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1333         chan->max_reg_power = chan->max_power =
1334                 (int) MBM_TO_DBM(power_rule->max_eirp);
1335 }
1336
1337 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1338                                const struct ieee80211_regdomain *regd)
1339 {
1340         unsigned int i;
1341         struct ieee80211_supported_band *sband;
1342
1343         BUG_ON(!wiphy->bands[band]);
1344         sband = wiphy->bands[band];
1345
1346         for (i = 0; i < sband->n_channels; i++)
1347                 handle_channel_custom(wiphy, band, i, regd);
1348 }
1349
1350 /* Used by drivers prior to wiphy registration */
1351 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1352                                    const struct ieee80211_regdomain *regd)
1353 {
1354         enum ieee80211_band band;
1355         unsigned int bands_set = 0;
1356
1357         mutex_lock(&reg_mutex);
1358         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1359                 if (!wiphy->bands[band])
1360                         continue;
1361                 handle_band_custom(wiphy, band, regd);
1362                 bands_set++;
1363         }
1364         mutex_unlock(&reg_mutex);
1365
1366         /*
1367          * no point in calling this if it won't have any effect
1368          * on your device's supportd bands.
1369          */
1370         WARN_ON(!bands_set);
1371 }
1372 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1373
1374 /*
1375  * Return value which can be used by ignore_request() to indicate
1376  * it has been determined we should intersect two regulatory domains
1377  */
1378 #define REG_INTERSECT   1
1379
1380 /* This has the logic which determines when a new request
1381  * should be ignored. */
1382 static int ignore_request(struct wiphy *wiphy,
1383                           struct regulatory_request *pending_request)
1384 {
1385         struct wiphy *last_wiphy = NULL;
1386
1387         assert_cfg80211_lock();
1388
1389         /* All initial requests are respected */
1390         if (!last_request)
1391                 return 0;
1392
1393         switch (pending_request->initiator) {
1394         case NL80211_REGDOM_SET_BY_CORE:
1395                 return 0;
1396         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1397
1398                 if (reg_request_cell_base(last_request)) {
1399                         /* Trust a Cell base station over the AP's country IE */
1400                         if (regdom_changes(pending_request->alpha2))
1401                                 return -EOPNOTSUPP;
1402                         return -EALREADY;
1403                 }
1404
1405                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1406
1407                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1408                         return -EINVAL;
1409                 if (last_request->initiator ==
1410                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1411                         if (last_wiphy != wiphy) {
1412                                 /*
1413                                  * Two cards with two APs claiming different
1414                                  * Country IE alpha2s. We could
1415                                  * intersect them, but that seems unlikely
1416                                  * to be correct. Reject second one for now.
1417                                  */
1418                                 if (regdom_changes(pending_request->alpha2))
1419                                         return -EOPNOTSUPP;
1420                                 return -EALREADY;
1421                         }
1422                         /*
1423                          * Two consecutive Country IE hints on the same wiphy.
1424                          * This should be picked up early by the driver/stack
1425                          */
1426                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1427                                 return 0;
1428                         return -EALREADY;
1429                 }
1430                 return 0;
1431         case NL80211_REGDOM_SET_BY_DRIVER:
1432                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1433                         if (regdom_changes(pending_request->alpha2))
1434                                 return 0;
1435                         return -EALREADY;
1436                 }
1437
1438                 /*
1439                  * This would happen if you unplug and plug your card
1440                  * back in or if you add a new device for which the previously
1441                  * loaded card also agrees on the regulatory domain.
1442                  */
1443                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1444                     !regdom_changes(pending_request->alpha2))
1445                         return -EALREADY;
1446
1447                 return REG_INTERSECT;
1448         case NL80211_REGDOM_SET_BY_USER:
1449                 if (reg_request_cell_base(pending_request))
1450                         return reg_ignore_cell_hint(pending_request);
1451
1452                 if (reg_request_cell_base(last_request))
1453                         return -EOPNOTSUPP;
1454
1455                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1456                         return REG_INTERSECT;
1457                 /*
1458                  * If the user knows better the user should set the regdom
1459                  * to their country before the IE is picked up
1460                  */
1461                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1462                           last_request->intersect)
1463                         return -EOPNOTSUPP;
1464                 /*
1465                  * Process user requests only after previous user/driver/core
1466                  * requests have been processed
1467                  */
1468                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1469                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1470                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1471                         if (regdom_changes(last_request->alpha2))
1472                                 return -EAGAIN;
1473                 }
1474
1475                 if (!regdom_changes(pending_request->alpha2))
1476                         return -EALREADY;
1477
1478                 return 0;
1479         }
1480
1481         return -EINVAL;
1482 }
1483
1484 static void reg_set_request_processed(void)
1485 {
1486         bool need_more_processing = false;
1487
1488         last_request->processed = true;
1489
1490         spin_lock(&reg_requests_lock);
1491         if (!list_empty(&reg_requests_list))
1492                 need_more_processing = true;
1493         spin_unlock(&reg_requests_lock);
1494
1495         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1496                 cancel_delayed_work(&reg_timeout);
1497
1498         if (need_more_processing)
1499                 schedule_work(&reg_work);
1500 }
1501
1502 /**
1503  * __regulatory_hint - hint to the wireless core a regulatory domain
1504  * @wiphy: if the hint comes from country information from an AP, this
1505  *      is required to be set to the wiphy that received the information
1506  * @pending_request: the regulatory request currently being processed
1507  *
1508  * The Wireless subsystem can use this function to hint to the wireless core
1509  * what it believes should be the current regulatory domain.
1510  *
1511  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1512  * already been set or other standard error codes.
1513  *
1514  * Caller must hold &cfg80211_mutex and &reg_mutex
1515  */
1516 static int __regulatory_hint(struct wiphy *wiphy,
1517                              struct regulatory_request *pending_request)
1518 {
1519         bool intersect = false;
1520         int r = 0;
1521
1522         assert_cfg80211_lock();
1523
1524         r = ignore_request(wiphy, pending_request);
1525
1526         if (r == REG_INTERSECT) {
1527                 if (pending_request->initiator ==
1528                     NL80211_REGDOM_SET_BY_DRIVER) {
1529                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1530                         if (r) {
1531                                 kfree(pending_request);
1532                                 return r;
1533                         }
1534                 }
1535                 intersect = true;
1536         } else if (r) {
1537                 /*
1538                  * If the regulatory domain being requested by the
1539                  * driver has already been set just copy it to the
1540                  * wiphy
1541                  */
1542                 if (r == -EALREADY &&
1543                     pending_request->initiator ==
1544                     NL80211_REGDOM_SET_BY_DRIVER) {
1545                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1546                         if (r) {
1547                                 kfree(pending_request);
1548                                 return r;
1549                         }
1550                         r = -EALREADY;
1551                         goto new_request;
1552                 }
1553                 kfree(pending_request);
1554                 return r;
1555         }
1556
1557 new_request:
1558         if (last_request != &core_request_world)
1559                 kfree(last_request);
1560
1561         last_request = pending_request;
1562         last_request->intersect = intersect;
1563
1564         pending_request = NULL;
1565
1566         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1567                 user_alpha2[0] = last_request->alpha2[0];
1568                 user_alpha2[1] = last_request->alpha2[1];
1569         }
1570
1571         /* When r == REG_INTERSECT we do need to call CRDA */
1572         if (r < 0) {
1573                 /*
1574                  * Since CRDA will not be called in this case as we already
1575                  * have applied the requested regulatory domain before we just
1576                  * inform userspace we have processed the request
1577                  */
1578                 if (r == -EALREADY) {
1579                         nl80211_send_reg_change_event(last_request);
1580                         reg_set_request_processed();
1581                 }
1582                 return r;
1583         }
1584
1585         return call_crda(last_request->alpha2);
1586 }
1587
1588 /* This processes *all* regulatory hints */
1589 static void reg_process_hint(struct regulatory_request *reg_request,
1590                              enum nl80211_reg_initiator reg_initiator)
1591 {
1592         int r = 0;
1593         struct wiphy *wiphy = NULL;
1594
1595         BUG_ON(!reg_request->alpha2);
1596
1597         if (wiphy_idx_valid(reg_request->wiphy_idx))
1598                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1599
1600         if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1601             !wiphy) {
1602                 kfree(reg_request);
1603                 return;
1604         }
1605
1606         r = __regulatory_hint(wiphy, reg_request);
1607         /* This is required so that the orig_* parameters are saved */
1608         if (r == -EALREADY && wiphy &&
1609             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1610                 wiphy_update_regulatory(wiphy, reg_initiator);
1611                 return;
1612         }
1613
1614         /*
1615          * We only time out user hints, given that they should be the only
1616          * source of bogus requests.
1617          */
1618         if (r != -EALREADY &&
1619             reg_initiator == NL80211_REGDOM_SET_BY_USER)
1620                 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1621 }
1622
1623 /*
1624  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1625  * Regulatory hints come on a first come first serve basis and we
1626  * must process each one atomically.
1627  */
1628 static void reg_process_pending_hints(void)
1629 {
1630         struct regulatory_request *reg_request;
1631
1632         mutex_lock(&cfg80211_mutex);
1633         mutex_lock(&reg_mutex);
1634
1635         /* When last_request->processed becomes true this will be rescheduled */
1636         if (last_request && !last_request->processed) {
1637                 REG_DBG_PRINT("Pending regulatory request, waiting "
1638                               "for it to be processed...\n");
1639                 goto out;
1640         }
1641
1642         spin_lock(&reg_requests_lock);
1643
1644         if (list_empty(&reg_requests_list)) {
1645                 spin_unlock(&reg_requests_lock);
1646                 goto out;
1647         }
1648
1649         reg_request = list_first_entry(&reg_requests_list,
1650                                        struct regulatory_request,
1651                                        list);
1652         list_del_init(&reg_request->list);
1653
1654         spin_unlock(&reg_requests_lock);
1655
1656         reg_process_hint(reg_request, reg_request->initiator);
1657
1658 out:
1659         mutex_unlock(&reg_mutex);
1660         mutex_unlock(&cfg80211_mutex);
1661 }
1662
1663 /* Processes beacon hints -- this has nothing to do with country IEs */
1664 static void reg_process_pending_beacon_hints(void)
1665 {
1666         struct cfg80211_registered_device *rdev;
1667         struct reg_beacon *pending_beacon, *tmp;
1668
1669         /*
1670          * No need to hold the reg_mutex here as we just touch wiphys
1671          * and do not read or access regulatory variables.
1672          */
1673         mutex_lock(&cfg80211_mutex);
1674
1675         /* This goes through the _pending_ beacon list */
1676         spin_lock_bh(&reg_pending_beacons_lock);
1677
1678         if (list_empty(&reg_pending_beacons)) {
1679                 spin_unlock_bh(&reg_pending_beacons_lock);
1680                 goto out;
1681         }
1682
1683         list_for_each_entry_safe(pending_beacon, tmp,
1684                                  &reg_pending_beacons, list) {
1685
1686                 list_del_init(&pending_beacon->list);
1687
1688                 /* Applies the beacon hint to current wiphys */
1689                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1690                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1691
1692                 /* Remembers the beacon hint for new wiphys or reg changes */
1693                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1694         }
1695
1696         spin_unlock_bh(&reg_pending_beacons_lock);
1697 out:
1698         mutex_unlock(&cfg80211_mutex);
1699 }
1700
1701 static void reg_todo(struct work_struct *work)
1702 {
1703         reg_process_pending_hints();
1704         reg_process_pending_beacon_hints();
1705 }
1706
1707 static void queue_regulatory_request(struct regulatory_request *request)
1708 {
1709         if (isalpha(request->alpha2[0]))
1710                 request->alpha2[0] = toupper(request->alpha2[0]);
1711         if (isalpha(request->alpha2[1]))
1712                 request->alpha2[1] = toupper(request->alpha2[1]);
1713
1714         spin_lock(&reg_requests_lock);
1715         list_add_tail(&request->list, &reg_requests_list);
1716         spin_unlock(&reg_requests_lock);
1717
1718         schedule_work(&reg_work);
1719 }
1720
1721 /*
1722  * Core regulatory hint -- happens during cfg80211_init()
1723  * and when we restore regulatory settings.
1724  */
1725 static int regulatory_hint_core(const char *alpha2)
1726 {
1727         struct regulatory_request *request;
1728
1729         request = kzalloc(sizeof(struct regulatory_request),
1730                           GFP_KERNEL);
1731         if (!request)
1732                 return -ENOMEM;
1733
1734         request->alpha2[0] = alpha2[0];
1735         request->alpha2[1] = alpha2[1];
1736         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1737
1738         queue_regulatory_request(request);
1739
1740         return 0;
1741 }
1742
1743 /* User hints */
1744 int regulatory_hint_user(const char *alpha2,
1745                          enum nl80211_user_reg_hint_type user_reg_hint_type)
1746 {
1747         struct regulatory_request *request;
1748
1749         BUG_ON(!alpha2);
1750
1751         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1752         if (!request)
1753                 return -ENOMEM;
1754
1755         request->wiphy_idx = WIPHY_IDX_STALE;
1756         request->alpha2[0] = alpha2[0];
1757         request->alpha2[1] = alpha2[1];
1758         request->initiator = NL80211_REGDOM_SET_BY_USER;
1759         request->user_reg_hint_type = user_reg_hint_type;
1760
1761         queue_regulatory_request(request);
1762
1763         return 0;
1764 }
1765
1766 /* Driver hints */
1767 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1768 {
1769         struct regulatory_request *request;
1770
1771         BUG_ON(!alpha2);
1772         BUG_ON(!wiphy);
1773
1774         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1775         if (!request)
1776                 return -ENOMEM;
1777
1778         request->wiphy_idx = get_wiphy_idx(wiphy);
1779
1780         /* Must have registered wiphy first */
1781         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1782
1783         request->alpha2[0] = alpha2[0];
1784         request->alpha2[1] = alpha2[1];
1785         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1786
1787         queue_regulatory_request(request);
1788
1789         return 0;
1790 }
1791 EXPORT_SYMBOL(regulatory_hint);
1792
1793 /*
1794  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1795  * therefore cannot iterate over the rdev list here.
1796  */
1797 void regulatory_hint_11d(struct wiphy *wiphy,
1798                          enum ieee80211_band band,
1799                          const u8 *country_ie,
1800                          u8 country_ie_len)
1801 {
1802         char alpha2[2];
1803         enum environment_cap env = ENVIRON_ANY;
1804         struct regulatory_request *request;
1805
1806         mutex_lock(&reg_mutex);
1807
1808         if (unlikely(!last_request))
1809                 goto out;
1810
1811         /* IE len must be evenly divisible by 2 */
1812         if (country_ie_len & 0x01)
1813                 goto out;
1814
1815         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1816                 goto out;
1817
1818         alpha2[0] = country_ie[0];
1819         alpha2[1] = country_ie[1];
1820
1821         if (country_ie[2] == 'I')
1822                 env = ENVIRON_INDOOR;
1823         else if (country_ie[2] == 'O')
1824                 env = ENVIRON_OUTDOOR;
1825
1826         /*
1827          * We will run this only upon a successful connection on cfg80211.
1828          * We leave conflict resolution to the workqueue, where can hold
1829          * cfg80211_mutex.
1830          */
1831         if (likely(last_request->initiator ==
1832             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1833             wiphy_idx_valid(last_request->wiphy_idx)))
1834                 goto out;
1835
1836         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1837         if (!request)
1838                 goto out;
1839
1840         request->wiphy_idx = get_wiphy_idx(wiphy);
1841         request->alpha2[0] = alpha2[0];
1842         request->alpha2[1] = alpha2[1];
1843         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1844         request->country_ie_env = env;
1845
1846         mutex_unlock(&reg_mutex);
1847
1848         queue_regulatory_request(request);
1849
1850         return;
1851
1852 out:
1853         mutex_unlock(&reg_mutex);
1854 }
1855
1856 static void restore_alpha2(char *alpha2, bool reset_user)
1857 {
1858         /* indicates there is no alpha2 to consider for restoration */
1859         alpha2[0] = '9';
1860         alpha2[1] = '7';
1861
1862         /* The user setting has precedence over the module parameter */
1863         if (is_user_regdom_saved()) {
1864                 /* Unless we're asked to ignore it and reset it */
1865                 if (reset_user) {
1866                         REG_DBG_PRINT("Restoring regulatory settings "
1867                                "including user preference\n");
1868                         user_alpha2[0] = '9';
1869                         user_alpha2[1] = '7';
1870
1871                         /*
1872                          * If we're ignoring user settings, we still need to
1873                          * check the module parameter to ensure we put things
1874                          * back as they were for a full restore.
1875                          */
1876                         if (!is_world_regdom(ieee80211_regdom)) {
1877                                 REG_DBG_PRINT("Keeping preference on "
1878                                        "module parameter ieee80211_regdom: %c%c\n",
1879                                        ieee80211_regdom[0],
1880                                        ieee80211_regdom[1]);
1881                                 alpha2[0] = ieee80211_regdom[0];
1882                                 alpha2[1] = ieee80211_regdom[1];
1883                         }
1884                 } else {
1885                         REG_DBG_PRINT("Restoring regulatory settings "
1886                                "while preserving user preference for: %c%c\n",
1887                                user_alpha2[0],
1888                                user_alpha2[1]);
1889                         alpha2[0] = user_alpha2[0];
1890                         alpha2[1] = user_alpha2[1];
1891                 }
1892         } else if (!is_world_regdom(ieee80211_regdom)) {
1893                 REG_DBG_PRINT("Keeping preference on "
1894                        "module parameter ieee80211_regdom: %c%c\n",
1895                        ieee80211_regdom[0],
1896                        ieee80211_regdom[1]);
1897                 alpha2[0] = ieee80211_regdom[0];
1898                 alpha2[1] = ieee80211_regdom[1];
1899         } else
1900                 REG_DBG_PRINT("Restoring regulatory settings\n");
1901 }
1902
1903 static void restore_custom_reg_settings(struct wiphy *wiphy)
1904 {
1905         struct ieee80211_supported_band *sband;
1906         enum ieee80211_band band;
1907         struct ieee80211_channel *chan;
1908         int i;
1909
1910         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1911                 sband = wiphy->bands[band];
1912                 if (!sband)
1913                         continue;
1914                 for (i = 0; i < sband->n_channels; i++) {
1915                         chan = &sband->channels[i];
1916                         chan->flags = chan->orig_flags;
1917                         chan->max_antenna_gain = chan->orig_mag;
1918                         chan->max_power = chan->orig_mpwr;
1919                         chan->beacon_found = false;
1920                 }
1921         }
1922 }
1923
1924 /*
1925  * Restoring regulatory settings involves ingoring any
1926  * possibly stale country IE information and user regulatory
1927  * settings if so desired, this includes any beacon hints
1928  * learned as we could have traveled outside to another country
1929  * after disconnection. To restore regulatory settings we do
1930  * exactly what we did at bootup:
1931  *
1932  *   - send a core regulatory hint
1933  *   - send a user regulatory hint if applicable
1934  *
1935  * Device drivers that send a regulatory hint for a specific country
1936  * keep their own regulatory domain on wiphy->regd so that does does
1937  * not need to be remembered.
1938  */
1939 static void restore_regulatory_settings(bool reset_user)
1940 {
1941         char alpha2[2];
1942         char world_alpha2[2];
1943         struct reg_beacon *reg_beacon, *btmp;
1944         struct regulatory_request *reg_request, *tmp;
1945         LIST_HEAD(tmp_reg_req_list);
1946         struct cfg80211_registered_device *rdev;
1947
1948         mutex_lock(&cfg80211_mutex);
1949         mutex_lock(&reg_mutex);
1950
1951         reset_regdomains(true);
1952         restore_alpha2(alpha2, reset_user);
1953
1954         /*
1955          * If there's any pending requests we simply
1956          * stash them to a temporary pending queue and
1957          * add then after we've restored regulatory
1958          * settings.
1959          */
1960         spin_lock(&reg_requests_lock);
1961         if (!list_empty(&reg_requests_list)) {
1962                 list_for_each_entry_safe(reg_request, tmp,
1963                                          &reg_requests_list, list) {
1964                         if (reg_request->initiator !=
1965                             NL80211_REGDOM_SET_BY_USER)
1966                                 continue;
1967                         list_move_tail(&reg_request->list, &tmp_reg_req_list);
1968                 }
1969         }
1970         spin_unlock(&reg_requests_lock);
1971
1972         /* Clear beacon hints */
1973         spin_lock_bh(&reg_pending_beacons_lock);
1974         if (!list_empty(&reg_pending_beacons)) {
1975                 list_for_each_entry_safe(reg_beacon, btmp,
1976                                          &reg_pending_beacons, list) {
1977                         list_del(&reg_beacon->list);
1978                         kfree(reg_beacon);
1979                 }
1980         }
1981         spin_unlock_bh(&reg_pending_beacons_lock);
1982
1983         if (!list_empty(&reg_beacon_list)) {
1984                 list_for_each_entry_safe(reg_beacon, btmp,
1985                                          &reg_beacon_list, list) {
1986                         list_del(&reg_beacon->list);
1987                         kfree(reg_beacon);
1988                 }
1989         }
1990
1991         /* First restore to the basic regulatory settings */
1992         cfg80211_regdomain = cfg80211_world_regdom;
1993         world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1994         world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1995
1996         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1997                 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1998                         restore_custom_reg_settings(&rdev->wiphy);
1999         }
2000
2001         mutex_unlock(&reg_mutex);
2002         mutex_unlock(&cfg80211_mutex);
2003
2004         regulatory_hint_core(world_alpha2);
2005
2006         /*
2007          * This restores the ieee80211_regdom module parameter
2008          * preference or the last user requested regulatory
2009          * settings, user regulatory settings takes precedence.
2010          */
2011         if (is_an_alpha2(alpha2))
2012                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2013
2014         if (list_empty(&tmp_reg_req_list))
2015                 return;
2016
2017         mutex_lock(&cfg80211_mutex);
2018         mutex_lock(&reg_mutex);
2019
2020         spin_lock(&reg_requests_lock);
2021         list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
2022                 REG_DBG_PRINT("Adding request for country %c%c back "
2023                               "into the queue\n",
2024                               reg_request->alpha2[0],
2025                               reg_request->alpha2[1]);
2026                 list_move_tail(&reg_request->list, &reg_requests_list);
2027         }
2028         spin_unlock(&reg_requests_lock);
2029
2030         mutex_unlock(&reg_mutex);
2031         mutex_unlock(&cfg80211_mutex);
2032
2033         REG_DBG_PRINT("Kicking the queue\n");
2034
2035         schedule_work(&reg_work);
2036 }
2037
2038 void regulatory_hint_disconnect(void)
2039 {
2040         REG_DBG_PRINT("All devices are disconnected, going to "
2041                       "restore regulatory settings\n");
2042         restore_regulatory_settings(false);
2043 }
2044
2045 static bool freq_is_chan_12_13_14(u16 freq)
2046 {
2047         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2048             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2049             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2050                 return true;
2051         return false;
2052 }
2053
2054 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2055                                  struct ieee80211_channel *beacon_chan,
2056                                  gfp_t gfp)
2057 {
2058         struct reg_beacon *reg_beacon;
2059
2060         if (likely((beacon_chan->beacon_found ||
2061             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2062             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2063              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2064                 return 0;
2065
2066         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2067         if (!reg_beacon)
2068                 return -ENOMEM;
2069
2070         REG_DBG_PRINT("Found new beacon on "
2071                       "frequency: %d MHz (Ch %d) on %s\n",
2072                       beacon_chan->center_freq,
2073                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2074                       wiphy_name(wiphy));
2075
2076         memcpy(&reg_beacon->chan, beacon_chan,
2077                 sizeof(struct ieee80211_channel));
2078
2079
2080         /*
2081          * Since we can be called from BH or and non-BH context
2082          * we must use spin_lock_bh()
2083          */
2084         spin_lock_bh(&reg_pending_beacons_lock);
2085         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2086         spin_unlock_bh(&reg_pending_beacons_lock);
2087
2088         schedule_work(&reg_work);
2089
2090         return 0;
2091 }
2092
2093 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2094 {
2095         unsigned int i;
2096         const struct ieee80211_reg_rule *reg_rule = NULL;
2097         const struct ieee80211_freq_range *freq_range = NULL;
2098         const struct ieee80211_power_rule *power_rule = NULL;
2099
2100         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2101
2102         for (i = 0; i < rd->n_reg_rules; i++) {
2103                 reg_rule = &rd->reg_rules[i];
2104                 freq_range = &reg_rule->freq_range;
2105                 power_rule = &reg_rule->power_rule;
2106
2107                 /*
2108                  * There may not be documentation for max antenna gain
2109                  * in certain regions
2110                  */
2111                 if (power_rule->max_antenna_gain)
2112                         pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2113                                 freq_range->start_freq_khz,
2114                                 freq_range->end_freq_khz,
2115                                 freq_range->max_bandwidth_khz,
2116                                 power_rule->max_antenna_gain,
2117                                 power_rule->max_eirp);
2118                 else
2119                         pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2120                                 freq_range->start_freq_khz,
2121                                 freq_range->end_freq_khz,
2122                                 freq_range->max_bandwidth_khz,
2123                                 power_rule->max_eirp);
2124         }
2125 }
2126
2127 bool reg_supported_dfs_region(u8 dfs_region)
2128 {
2129         switch (dfs_region) {
2130         case NL80211_DFS_UNSET:
2131         case NL80211_DFS_FCC:
2132         case NL80211_DFS_ETSI:
2133         case NL80211_DFS_JP:
2134                 return true;
2135         default:
2136                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2137                               dfs_region);
2138                 return false;
2139         }
2140 }
2141
2142 static void print_dfs_region(u8 dfs_region)
2143 {
2144         if (!dfs_region)
2145                 return;
2146
2147         switch (dfs_region) {
2148         case NL80211_DFS_FCC:
2149                 pr_info(" DFS Master region FCC");
2150                 break;
2151         case NL80211_DFS_ETSI:
2152                 pr_info(" DFS Master region ETSI");
2153                 break;
2154         case NL80211_DFS_JP:
2155                 pr_info(" DFS Master region JP");
2156                 break;
2157         default:
2158                 pr_info(" DFS Master region Uknown");
2159                 break;
2160         }
2161 }
2162
2163 static void print_regdomain(const struct ieee80211_regdomain *rd)
2164 {
2165
2166         if (is_intersected_alpha2(rd->alpha2)) {
2167
2168                 if (last_request->initiator ==
2169                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2170                         struct cfg80211_registered_device *rdev;
2171                         rdev = cfg80211_rdev_by_wiphy_idx(
2172                                 last_request->wiphy_idx);
2173                         if (rdev) {
2174                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2175                                         rdev->country_ie_alpha2[0],
2176                                         rdev->country_ie_alpha2[1]);
2177                         } else
2178                                 pr_info("Current regulatory domain intersected:\n");
2179                 } else
2180                         pr_info("Current regulatory domain intersected:\n");
2181         } else if (is_world_regdom(rd->alpha2))
2182                 pr_info("World regulatory domain updated:\n");
2183         else {
2184                 if (is_unknown_alpha2(rd->alpha2))
2185                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2186                 else {
2187                         if (reg_request_cell_base(last_request))
2188                                 pr_info("Regulatory domain changed "
2189                                         "to country: %c%c by Cell Station\n",
2190                                         rd->alpha2[0], rd->alpha2[1]);
2191                         else
2192                                 pr_info("Regulatory domain changed "
2193                                         "to country: %c%c\n",
2194                                         rd->alpha2[0], rd->alpha2[1]);
2195                 }
2196         }
2197         print_dfs_region(rd->dfs_region);
2198         print_rd_rules(rd);
2199 }
2200
2201 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2202 {
2203         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2204         print_rd_rules(rd);
2205 }
2206
2207 /* Takes ownership of rd only if it doesn't fail */
2208 static int __set_regdom(const struct ieee80211_regdomain *rd)
2209 {
2210         const struct ieee80211_regdomain *intersected_rd = NULL;
2211         struct wiphy *request_wiphy;
2212         /* Some basic sanity checks first */
2213
2214         if (is_world_regdom(rd->alpha2)) {
2215                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2216                         return -EINVAL;
2217                 update_world_regdomain(rd);
2218                 return 0;
2219         }
2220
2221         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2222                         !is_unknown_alpha2(rd->alpha2))
2223                 return -EINVAL;
2224
2225         if (!last_request)
2226                 return -EINVAL;
2227
2228         /*
2229          * Lets only bother proceeding on the same alpha2 if the current
2230          * rd is non static (it means CRDA was present and was used last)
2231          * and the pending request came in from a country IE
2232          */
2233         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2234                 /*
2235                  * If someone else asked us to change the rd lets only bother
2236                  * checking if the alpha2 changes if CRDA was already called
2237                  */
2238                 if (!regdom_changes(rd->alpha2))
2239                         return -EALREADY;
2240         }
2241
2242         /*
2243          * Now lets set the regulatory domain, update all driver channels
2244          * and finally inform them of what we have done, in case they want
2245          * to review or adjust their own settings based on their own
2246          * internal EEPROM data
2247          */
2248
2249         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2250                 return -EINVAL;
2251
2252         if (!is_valid_rd(rd)) {
2253                 pr_err("Invalid regulatory domain detected:\n");
2254                 print_regdomain_info(rd);
2255                 return -EINVAL;
2256         }
2257
2258         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2259         if (!request_wiphy &&
2260             (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2261              last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2262                 schedule_delayed_work(&reg_timeout, 0);
2263                 return -ENODEV;
2264         }
2265
2266         if (!last_request->intersect) {
2267                 int r;
2268
2269                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2270                         reset_regdomains(false);
2271                         cfg80211_regdomain = rd;
2272                         return 0;
2273                 }
2274
2275                 /*
2276                  * For a driver hint, lets copy the regulatory domain the
2277                  * driver wanted to the wiphy to deal with conflicts
2278                  */
2279
2280                 /*
2281                  * Userspace could have sent two replies with only
2282                  * one kernel request.
2283                  */
2284                 if (request_wiphy->regd)
2285                         return -EALREADY;
2286
2287                 r = reg_copy_regd(&request_wiphy->regd, rd);
2288                 if (r)
2289                         return r;
2290
2291                 reset_regdomains(false);
2292                 cfg80211_regdomain = rd;
2293                 return 0;
2294         }
2295
2296         /* Intersection requires a bit more work */
2297
2298         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2299
2300                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2301                 if (!intersected_rd)
2302                         return -EINVAL;
2303
2304                 /*
2305                  * We can trash what CRDA provided now.
2306                  * However if a driver requested this specific regulatory
2307                  * domain we keep it for its private use
2308                  */
2309                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2310                         request_wiphy->regd = rd;
2311                 else
2312                         kfree(rd);
2313
2314                 rd = NULL;
2315
2316                 reset_regdomains(false);
2317                 cfg80211_regdomain = intersected_rd;
2318
2319                 return 0;
2320         }
2321
2322         return -EINVAL;
2323 }
2324
2325
2326 /*
2327  * Use this call to set the current regulatory domain. Conflicts with
2328  * multiple drivers can be ironed out later. Caller must've already
2329  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2330  */
2331 int set_regdom(const struct ieee80211_regdomain *rd)
2332 {
2333         int r;
2334
2335         assert_cfg80211_lock();
2336
2337         mutex_lock(&reg_mutex);
2338
2339         /* Note that this doesn't update the wiphys, this is done below */
2340         r = __set_regdom(rd);
2341         if (r) {
2342                 if (r == -EALREADY)
2343                         reg_set_request_processed();
2344
2345                 kfree(rd);
2346                 mutex_unlock(&reg_mutex);
2347                 return r;
2348         }
2349
2350         /* This would make this whole thing pointless */
2351         if (!last_request->intersect)
2352                 BUG_ON(rd != cfg80211_regdomain);
2353
2354         /* update all wiphys now with the new established regulatory domain */
2355         update_all_wiphy_regulatory(last_request->initiator);
2356
2357         print_regdomain(cfg80211_regdomain);
2358
2359         nl80211_send_reg_change_event(last_request);
2360
2361         reg_set_request_processed();
2362
2363         mutex_unlock(&reg_mutex);
2364
2365         return r;
2366 }
2367
2368 #ifdef CONFIG_HOTPLUG
2369 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2370 {
2371         if (last_request && !last_request->processed) {
2372                 if (add_uevent_var(env, "COUNTRY=%c%c",
2373                                    last_request->alpha2[0],
2374                                    last_request->alpha2[1]))
2375                         return -ENOMEM;
2376         }
2377
2378         return 0;
2379 }
2380 #else
2381 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2382 {
2383         return -ENODEV;
2384 }
2385 #endif /* CONFIG_HOTPLUG */
2386
2387 void wiphy_regulatory_register(struct wiphy *wiphy)
2388 {
2389         assert_cfg80211_lock();
2390
2391         mutex_lock(&reg_mutex);
2392
2393         if (!reg_dev_ignore_cell_hint(wiphy))
2394                 reg_num_devs_support_basehint++;
2395
2396         wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2397
2398         mutex_unlock(&reg_mutex);
2399 }
2400
2401 /* Caller must hold cfg80211_mutex */
2402 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2403 {
2404         struct wiphy *request_wiphy = NULL;
2405
2406         assert_cfg80211_lock();
2407
2408         mutex_lock(&reg_mutex);
2409
2410         if (!reg_dev_ignore_cell_hint(wiphy))
2411                 reg_num_devs_support_basehint--;
2412
2413         kfree(wiphy->regd);
2414
2415         if (last_request)
2416                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2417
2418         if (!request_wiphy || request_wiphy != wiphy)
2419                 goto out;
2420
2421         last_request->wiphy_idx = WIPHY_IDX_STALE;
2422         last_request->country_ie_env = ENVIRON_ANY;
2423 out:
2424         mutex_unlock(&reg_mutex);
2425 }
2426
2427 static void reg_timeout_work(struct work_struct *work)
2428 {
2429         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2430                       "restoring regulatory settings\n");
2431         restore_regulatory_settings(true);
2432 }
2433
2434 int __init regulatory_init(void)
2435 {
2436         int err = 0;
2437
2438         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2439         if (IS_ERR(reg_pdev))
2440                 return PTR_ERR(reg_pdev);
2441
2442         reg_pdev->dev.type = &reg_device_type;
2443
2444         spin_lock_init(&reg_requests_lock);
2445         spin_lock_init(&reg_pending_beacons_lock);
2446
2447         reg_regdb_size_check();
2448
2449         cfg80211_regdomain = cfg80211_world_regdom;
2450
2451         user_alpha2[0] = '9';
2452         user_alpha2[1] = '7';
2453
2454         /* We always try to get an update for the static regdomain */
2455         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2456         if (err) {
2457                 if (err == -ENOMEM)
2458                         return err;
2459                 /*
2460                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2461                  * memory which is handled and propagated appropriately above
2462                  * but it can also fail during a netlink_broadcast() or during
2463                  * early boot for call_usermodehelper(). For now treat these
2464                  * errors as non-fatal.
2465                  */
2466                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2467 #ifdef CONFIG_CFG80211_REG_DEBUG
2468                 /* We want to find out exactly why when debugging */
2469                 WARN_ON(err);
2470 #endif
2471         }
2472
2473         /*
2474          * Finally, if the user set the module parameter treat it
2475          * as a user hint.
2476          */
2477         if (!is_world_regdom(ieee80211_regdom))
2478                 regulatory_hint_user(ieee80211_regdom,
2479                                      NL80211_USER_REG_HINT_USER);
2480
2481         return 0;
2482 }
2483
2484 void /* __init_or_exit */ regulatory_exit(void)
2485 {
2486         struct regulatory_request *reg_request, *tmp;
2487         struct reg_beacon *reg_beacon, *btmp;
2488
2489         cancel_work_sync(&reg_work);
2490         cancel_delayed_work_sync(&reg_timeout);
2491
2492         mutex_lock(&cfg80211_mutex);
2493         mutex_lock(&reg_mutex);
2494
2495         reset_regdomains(true);
2496
2497         dev_set_uevent_suppress(&reg_pdev->dev, true);
2498
2499         platform_device_unregister(reg_pdev);
2500
2501         spin_lock_bh(&reg_pending_beacons_lock);
2502         if (!list_empty(&reg_pending_beacons)) {
2503                 list_for_each_entry_safe(reg_beacon, btmp,
2504                                          &reg_pending_beacons, list) {
2505                         list_del(&reg_beacon->list);
2506                         kfree(reg_beacon);
2507                 }
2508         }
2509         spin_unlock_bh(&reg_pending_beacons_lock);
2510
2511         if (!list_empty(&reg_beacon_list)) {
2512                 list_for_each_entry_safe(reg_beacon, btmp,
2513                                          &reg_beacon_list, list) {
2514                         list_del(&reg_beacon->list);
2515                         kfree(reg_beacon);
2516                 }
2517         }
2518
2519         spin_lock(&reg_requests_lock);
2520         if (!list_empty(&reg_requests_list)) {
2521                 list_for_each_entry_safe(reg_request, tmp,
2522                                          &reg_requests_list, list) {
2523                         list_del(&reg_request->list);
2524                         kfree(reg_request);
2525                 }
2526         }
2527         spin_unlock(&reg_requests_lock);
2528
2529         mutex_unlock(&reg_mutex);
2530         mutex_unlock(&cfg80211_mutex);
2531 }