]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - security/selinux/hooks.c
selinux: reduce the number of calls to synchronize_net() when flushing caches
[karo-tx-linux.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>             /* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>    /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/quota.h>
70 #include <linux/un.h>           /* for Unix socket types */
71 #include <net/af_unix.h>        /* for Unix socket types */
72 #include <linux/parser.h>
73 #include <linux/nfs_mount.h>
74 #include <net/ipv6.h>
75 #include <linux/hugetlb.h>
76 #include <linux/personality.h>
77 #include <linux/audit.h>
78 #include <linux/string.h>
79 #include <linux/selinux.h>
80 #include <linux/mutex.h>
81 #include <linux/posix-timers.h>
82 #include <linux/syslog.h>
83 #include <linux/user_namespace.h>
84 #include <linux/export.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97
98 extern struct security_operations *security_ops;
99
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105
106 static int __init enforcing_setup(char *str)
107 {
108         unsigned long enforcing;
109         if (!kstrtoul(str, 0, &enforcing))
110                 selinux_enforcing = enforcing ? 1 : 0;
111         return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119 static int __init selinux_enabled_setup(char *str)
120 {
121         unsigned long enabled;
122         if (!kstrtoul(str, 0, &enabled))
123                 selinux_enabled = enabled ? 1 : 0;
124         return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130
131 static struct kmem_cache *sel_inode_cache;
132
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
141  * policy capability is enabled, SECMARK is always considered enabled.
142  *
143  */
144 static int selinux_secmark_enabled(void)
145 {
146         return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
147 }
148
149 /**
150  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
151  *
152  * Description:
153  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
154  * (1) if any are enabled or false (0) if neither are enabled.  If the
155  * always_check_network policy capability is enabled, peer labeling
156  * is always considered enabled.
157  *
158  */
159 static int selinux_peerlbl_enabled(void)
160 {
161         return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
162 }
163
164 static int selinux_netcache_avc_callback(u32 event)
165 {
166         if (event == AVC_CALLBACK_RESET) {
167                 sel_netif_flush();
168                 sel_netnode_flush();
169                 sel_netport_flush();
170                 synchronize_net();
171         }
172         return 0;
173 }
174
175 /*
176  * initialise the security for the init task
177  */
178 static void cred_init_security(void)
179 {
180         struct cred *cred = (struct cred *) current->real_cred;
181         struct task_security_struct *tsec;
182
183         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
184         if (!tsec)
185                 panic("SELinux:  Failed to initialize initial task.\n");
186
187         tsec->osid = tsec->sid = SECINITSID_KERNEL;
188         cred->security = tsec;
189 }
190
191 /*
192  * get the security ID of a set of credentials
193  */
194 static inline u32 cred_sid(const struct cred *cred)
195 {
196         const struct task_security_struct *tsec;
197
198         tsec = cred->security;
199         return tsec->sid;
200 }
201
202 /*
203  * get the objective security ID of a task
204  */
205 static inline u32 task_sid(const struct task_struct *task)
206 {
207         u32 sid;
208
209         rcu_read_lock();
210         sid = cred_sid(__task_cred(task));
211         rcu_read_unlock();
212         return sid;
213 }
214
215 /*
216  * get the subjective security ID of the current task
217  */
218 static inline u32 current_sid(void)
219 {
220         const struct task_security_struct *tsec = current_security();
221
222         return tsec->sid;
223 }
224
225 /* Allocate and free functions for each kind of security blob. */
226
227 static int inode_alloc_security(struct inode *inode)
228 {
229         struct inode_security_struct *isec;
230         u32 sid = current_sid();
231
232         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
233         if (!isec)
234                 return -ENOMEM;
235
236         mutex_init(&isec->lock);
237         INIT_LIST_HEAD(&isec->list);
238         isec->inode = inode;
239         isec->sid = SECINITSID_UNLABELED;
240         isec->sclass = SECCLASS_FILE;
241         isec->task_sid = sid;
242         inode->i_security = isec;
243
244         return 0;
245 }
246
247 static void inode_free_rcu(struct rcu_head *head)
248 {
249         struct inode_security_struct *isec;
250
251         isec = container_of(head, struct inode_security_struct, rcu);
252         kmem_cache_free(sel_inode_cache, isec);
253 }
254
255 static void inode_free_security(struct inode *inode)
256 {
257         struct inode_security_struct *isec = inode->i_security;
258         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
259
260         spin_lock(&sbsec->isec_lock);
261         if (!list_empty(&isec->list))
262                 list_del_init(&isec->list);
263         spin_unlock(&sbsec->isec_lock);
264
265         /*
266          * The inode may still be referenced in a path walk and
267          * a call to selinux_inode_permission() can be made
268          * after inode_free_security() is called. Ideally, the VFS
269          * wouldn't do this, but fixing that is a much harder
270          * job. For now, simply free the i_security via RCU, and
271          * leave the current inode->i_security pointer intact.
272          * The inode will be freed after the RCU grace period too.
273          */
274         call_rcu(&isec->rcu, inode_free_rcu);
275 }
276
277 static int file_alloc_security(struct file *file)
278 {
279         struct file_security_struct *fsec;
280         u32 sid = current_sid();
281
282         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
283         if (!fsec)
284                 return -ENOMEM;
285
286         fsec->sid = sid;
287         fsec->fown_sid = sid;
288         file->f_security = fsec;
289
290         return 0;
291 }
292
293 static void file_free_security(struct file *file)
294 {
295         struct file_security_struct *fsec = file->f_security;
296         file->f_security = NULL;
297         kfree(fsec);
298 }
299
300 static int superblock_alloc_security(struct super_block *sb)
301 {
302         struct superblock_security_struct *sbsec;
303
304         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
305         if (!sbsec)
306                 return -ENOMEM;
307
308         mutex_init(&sbsec->lock);
309         INIT_LIST_HEAD(&sbsec->isec_head);
310         spin_lock_init(&sbsec->isec_lock);
311         sbsec->sb = sb;
312         sbsec->sid = SECINITSID_UNLABELED;
313         sbsec->def_sid = SECINITSID_FILE;
314         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
315         sb->s_security = sbsec;
316
317         return 0;
318 }
319
320 static void superblock_free_security(struct super_block *sb)
321 {
322         struct superblock_security_struct *sbsec = sb->s_security;
323         sb->s_security = NULL;
324         kfree(sbsec);
325 }
326
327 /* The file system's label must be initialized prior to use. */
328
329 static const char *labeling_behaviors[7] = {
330         "uses xattr",
331         "uses transition SIDs",
332         "uses task SIDs",
333         "uses genfs_contexts",
334         "not configured for labeling",
335         "uses mountpoint labeling",
336         "uses native labeling",
337 };
338
339 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
340
341 static inline int inode_doinit(struct inode *inode)
342 {
343         return inode_doinit_with_dentry(inode, NULL);
344 }
345
346 enum {
347         Opt_error = -1,
348         Opt_context = 1,
349         Opt_fscontext = 2,
350         Opt_defcontext = 3,
351         Opt_rootcontext = 4,
352         Opt_labelsupport = 5,
353         Opt_nextmntopt = 6,
354 };
355
356 #define NUM_SEL_MNT_OPTS        (Opt_nextmntopt - 1)
357
358 static const match_table_t tokens = {
359         {Opt_context, CONTEXT_STR "%s"},
360         {Opt_fscontext, FSCONTEXT_STR "%s"},
361         {Opt_defcontext, DEFCONTEXT_STR "%s"},
362         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363         {Opt_labelsupport, LABELSUPP_STR},
364         {Opt_error, NULL},
365 };
366
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368
369 static int may_context_mount_sb_relabel(u32 sid,
370                         struct superblock_security_struct *sbsec,
371                         const struct cred *cred)
372 {
373         const struct task_security_struct *tsec = cred->security;
374         int rc;
375
376         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377                           FILESYSTEM__RELABELFROM, NULL);
378         if (rc)
379                 return rc;
380
381         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382                           FILESYSTEM__RELABELTO, NULL);
383         return rc;
384 }
385
386 static int may_context_mount_inode_relabel(u32 sid,
387                         struct superblock_security_struct *sbsec,
388                         const struct cred *cred)
389 {
390         const struct task_security_struct *tsec = cred->security;
391         int rc;
392         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393                           FILESYSTEM__RELABELFROM, NULL);
394         if (rc)
395                 return rc;
396
397         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398                           FILESYSTEM__ASSOCIATE, NULL);
399         return rc;
400 }
401
402 static int selinux_is_sblabel_mnt(struct super_block *sb)
403 {
404         struct superblock_security_struct *sbsec = sb->s_security;
405
406         if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
407             sbsec->behavior == SECURITY_FS_USE_TRANS ||
408             sbsec->behavior == SECURITY_FS_USE_TASK)
409                 return 1;
410
411         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
412         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
413                 return 1;
414
415         /*
416          * Special handling for rootfs. Is genfs but supports
417          * setting SELinux context on in-core inodes.
418          */
419         if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
420                 return 1;
421
422         return 0;
423 }
424
425 static int sb_finish_set_opts(struct super_block *sb)
426 {
427         struct superblock_security_struct *sbsec = sb->s_security;
428         struct dentry *root = sb->s_root;
429         struct inode *root_inode = root->d_inode;
430         int rc = 0;
431
432         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
433                 /* Make sure that the xattr handler exists and that no
434                    error other than -ENODATA is returned by getxattr on
435                    the root directory.  -ENODATA is ok, as this may be
436                    the first boot of the SELinux kernel before we have
437                    assigned xattr values to the filesystem. */
438                 if (!root_inode->i_op->getxattr) {
439                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
440                                "xattr support\n", sb->s_id, sb->s_type->name);
441                         rc = -EOPNOTSUPP;
442                         goto out;
443                 }
444                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
445                 if (rc < 0 && rc != -ENODATA) {
446                         if (rc == -EOPNOTSUPP)
447                                 printk(KERN_WARNING "SELinux: (dev %s, type "
448                                        "%s) has no security xattr handler\n",
449                                        sb->s_id, sb->s_type->name);
450                         else
451                                 printk(KERN_WARNING "SELinux: (dev %s, type "
452                                        "%s) getxattr errno %d\n", sb->s_id,
453                                        sb->s_type->name, -rc);
454                         goto out;
455                 }
456         }
457
458         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
459                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
460                        sb->s_id, sb->s_type->name);
461         else
462                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
463                        sb->s_id, sb->s_type->name,
464                        labeling_behaviors[sbsec->behavior-1]);
465
466         sbsec->flags |= SE_SBINITIALIZED;
467         if (selinux_is_sblabel_mnt(sb))
468                 sbsec->flags |= SBLABEL_MNT;
469
470         /* Initialize the root inode. */
471         rc = inode_doinit_with_dentry(root_inode, root);
472
473         /* Initialize any other inodes associated with the superblock, e.g.
474            inodes created prior to initial policy load or inodes created
475            during get_sb by a pseudo filesystem that directly
476            populates itself. */
477         spin_lock(&sbsec->isec_lock);
478 next_inode:
479         if (!list_empty(&sbsec->isec_head)) {
480                 struct inode_security_struct *isec =
481                                 list_entry(sbsec->isec_head.next,
482                                            struct inode_security_struct, list);
483                 struct inode *inode = isec->inode;
484                 spin_unlock(&sbsec->isec_lock);
485                 inode = igrab(inode);
486                 if (inode) {
487                         if (!IS_PRIVATE(inode))
488                                 inode_doinit(inode);
489                         iput(inode);
490                 }
491                 spin_lock(&sbsec->isec_lock);
492                 list_del_init(&isec->list);
493                 goto next_inode;
494         }
495         spin_unlock(&sbsec->isec_lock);
496 out:
497         return rc;
498 }
499
500 /*
501  * This function should allow an FS to ask what it's mount security
502  * options were so it can use those later for submounts, displaying
503  * mount options, or whatever.
504  */
505 static int selinux_get_mnt_opts(const struct super_block *sb,
506                                 struct security_mnt_opts *opts)
507 {
508         int rc = 0, i;
509         struct superblock_security_struct *sbsec = sb->s_security;
510         char *context = NULL;
511         u32 len;
512         char tmp;
513
514         security_init_mnt_opts(opts);
515
516         if (!(sbsec->flags & SE_SBINITIALIZED))
517                 return -EINVAL;
518
519         if (!ss_initialized)
520                 return -EINVAL;
521
522         /* make sure we always check enough bits to cover the mask */
523         BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
524
525         tmp = sbsec->flags & SE_MNTMASK;
526         /* count the number of mount options for this sb */
527         for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
528                 if (tmp & 0x01)
529                         opts->num_mnt_opts++;
530                 tmp >>= 1;
531         }
532         /* Check if the Label support flag is set */
533         if (sbsec->flags & SBLABEL_MNT)
534                 opts->num_mnt_opts++;
535
536         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
537         if (!opts->mnt_opts) {
538                 rc = -ENOMEM;
539                 goto out_free;
540         }
541
542         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
543         if (!opts->mnt_opts_flags) {
544                 rc = -ENOMEM;
545                 goto out_free;
546         }
547
548         i = 0;
549         if (sbsec->flags & FSCONTEXT_MNT) {
550                 rc = security_sid_to_context(sbsec->sid, &context, &len);
551                 if (rc)
552                         goto out_free;
553                 opts->mnt_opts[i] = context;
554                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
555         }
556         if (sbsec->flags & CONTEXT_MNT) {
557                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
558                 if (rc)
559                         goto out_free;
560                 opts->mnt_opts[i] = context;
561                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
562         }
563         if (sbsec->flags & DEFCONTEXT_MNT) {
564                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
565                 if (rc)
566                         goto out_free;
567                 opts->mnt_opts[i] = context;
568                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
569         }
570         if (sbsec->flags & ROOTCONTEXT_MNT) {
571                 struct inode *root = sbsec->sb->s_root->d_inode;
572                 struct inode_security_struct *isec = root->i_security;
573
574                 rc = security_sid_to_context(isec->sid, &context, &len);
575                 if (rc)
576                         goto out_free;
577                 opts->mnt_opts[i] = context;
578                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
579         }
580         if (sbsec->flags & SBLABEL_MNT) {
581                 opts->mnt_opts[i] = NULL;
582                 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
583         }
584
585         BUG_ON(i != opts->num_mnt_opts);
586
587         return 0;
588
589 out_free:
590         security_free_mnt_opts(opts);
591         return rc;
592 }
593
594 static int bad_option(struct superblock_security_struct *sbsec, char flag,
595                       u32 old_sid, u32 new_sid)
596 {
597         char mnt_flags = sbsec->flags & SE_MNTMASK;
598
599         /* check if the old mount command had the same options */
600         if (sbsec->flags & SE_SBINITIALIZED)
601                 if (!(sbsec->flags & flag) ||
602                     (old_sid != new_sid))
603                         return 1;
604
605         /* check if we were passed the same options twice,
606          * aka someone passed context=a,context=b
607          */
608         if (!(sbsec->flags & SE_SBINITIALIZED))
609                 if (mnt_flags & flag)
610                         return 1;
611         return 0;
612 }
613
614 /*
615  * Allow filesystems with binary mount data to explicitly set mount point
616  * labeling information.
617  */
618 static int selinux_set_mnt_opts(struct super_block *sb,
619                                 struct security_mnt_opts *opts,
620                                 unsigned long kern_flags,
621                                 unsigned long *set_kern_flags)
622 {
623         const struct cred *cred = current_cred();
624         int rc = 0, i;
625         struct superblock_security_struct *sbsec = sb->s_security;
626         const char *name = sb->s_type->name;
627         struct inode *inode = sbsec->sb->s_root->d_inode;
628         struct inode_security_struct *root_isec = inode->i_security;
629         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
630         u32 defcontext_sid = 0;
631         char **mount_options = opts->mnt_opts;
632         int *flags = opts->mnt_opts_flags;
633         int num_opts = opts->num_mnt_opts;
634
635         mutex_lock(&sbsec->lock);
636
637         if (!ss_initialized) {
638                 if (!num_opts) {
639                         /* Defer initialization until selinux_complete_init,
640                            after the initial policy is loaded and the security
641                            server is ready to handle calls. */
642                         goto out;
643                 }
644                 rc = -EINVAL;
645                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
646                         "before the security server is initialized\n");
647                 goto out;
648         }
649         if (kern_flags && !set_kern_flags) {
650                 /* Specifying internal flags without providing a place to
651                  * place the results is not allowed */
652                 rc = -EINVAL;
653                 goto out;
654         }
655
656         /*
657          * Binary mount data FS will come through this function twice.  Once
658          * from an explicit call and once from the generic calls from the vfs.
659          * Since the generic VFS calls will not contain any security mount data
660          * we need to skip the double mount verification.
661          *
662          * This does open a hole in which we will not notice if the first
663          * mount using this sb set explict options and a second mount using
664          * this sb does not set any security options.  (The first options
665          * will be used for both mounts)
666          */
667         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
668             && (num_opts == 0))
669                 goto out;
670
671         /*
672          * parse the mount options, check if they are valid sids.
673          * also check if someone is trying to mount the same sb more
674          * than once with different security options.
675          */
676         for (i = 0; i < num_opts; i++) {
677                 u32 sid;
678
679                 if (flags[i] == SBLABEL_MNT)
680                         continue;
681                 rc = security_context_to_sid(mount_options[i],
682                                              strlen(mount_options[i]), &sid, GFP_KERNEL);
683                 if (rc) {
684                         printk(KERN_WARNING "SELinux: security_context_to_sid"
685                                "(%s) failed for (dev %s, type %s) errno=%d\n",
686                                mount_options[i], sb->s_id, name, rc);
687                         goto out;
688                 }
689                 switch (flags[i]) {
690                 case FSCONTEXT_MNT:
691                         fscontext_sid = sid;
692
693                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
694                                         fscontext_sid))
695                                 goto out_double_mount;
696
697                         sbsec->flags |= FSCONTEXT_MNT;
698                         break;
699                 case CONTEXT_MNT:
700                         context_sid = sid;
701
702                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
703                                         context_sid))
704                                 goto out_double_mount;
705
706                         sbsec->flags |= CONTEXT_MNT;
707                         break;
708                 case ROOTCONTEXT_MNT:
709                         rootcontext_sid = sid;
710
711                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
712                                         rootcontext_sid))
713                                 goto out_double_mount;
714
715                         sbsec->flags |= ROOTCONTEXT_MNT;
716
717                         break;
718                 case DEFCONTEXT_MNT:
719                         defcontext_sid = sid;
720
721                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
722                                         defcontext_sid))
723                                 goto out_double_mount;
724
725                         sbsec->flags |= DEFCONTEXT_MNT;
726
727                         break;
728                 default:
729                         rc = -EINVAL;
730                         goto out;
731                 }
732         }
733
734         if (sbsec->flags & SE_SBINITIALIZED) {
735                 /* previously mounted with options, but not on this attempt? */
736                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
737                         goto out_double_mount;
738                 rc = 0;
739                 goto out;
740         }
741
742         if (strcmp(sb->s_type->name, "proc") == 0)
743                 sbsec->flags |= SE_SBPROC;
744
745         if (!sbsec->behavior) {
746                 /*
747                  * Determine the labeling behavior to use for this
748                  * filesystem type.
749                  */
750                 rc = security_fs_use(sb);
751                 if (rc) {
752                         printk(KERN_WARNING
753                                 "%s: security_fs_use(%s) returned %d\n",
754                                         __func__, sb->s_type->name, rc);
755                         goto out;
756                 }
757         }
758         /* sets the context of the superblock for the fs being mounted. */
759         if (fscontext_sid) {
760                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
761                 if (rc)
762                         goto out;
763
764                 sbsec->sid = fscontext_sid;
765         }
766
767         /*
768          * Switch to using mount point labeling behavior.
769          * sets the label used on all file below the mountpoint, and will set
770          * the superblock context if not already set.
771          */
772         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
773                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
774                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
775         }
776
777         if (context_sid) {
778                 if (!fscontext_sid) {
779                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
780                                                           cred);
781                         if (rc)
782                                 goto out;
783                         sbsec->sid = context_sid;
784                 } else {
785                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
786                                                              cred);
787                         if (rc)
788                                 goto out;
789                 }
790                 if (!rootcontext_sid)
791                         rootcontext_sid = context_sid;
792
793                 sbsec->mntpoint_sid = context_sid;
794                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
795         }
796
797         if (rootcontext_sid) {
798                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
799                                                      cred);
800                 if (rc)
801                         goto out;
802
803                 root_isec->sid = rootcontext_sid;
804                 root_isec->initialized = 1;
805         }
806
807         if (defcontext_sid) {
808                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
809                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
810                         rc = -EINVAL;
811                         printk(KERN_WARNING "SELinux: defcontext option is "
812                                "invalid for this filesystem type\n");
813                         goto out;
814                 }
815
816                 if (defcontext_sid != sbsec->def_sid) {
817                         rc = may_context_mount_inode_relabel(defcontext_sid,
818                                                              sbsec, cred);
819                         if (rc)
820                                 goto out;
821                 }
822
823                 sbsec->def_sid = defcontext_sid;
824         }
825
826         rc = sb_finish_set_opts(sb);
827 out:
828         mutex_unlock(&sbsec->lock);
829         return rc;
830 out_double_mount:
831         rc = -EINVAL;
832         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
833                "security settings for (dev %s, type %s)\n", sb->s_id, name);
834         goto out;
835 }
836
837 static int selinux_cmp_sb_context(const struct super_block *oldsb,
838                                     const struct super_block *newsb)
839 {
840         struct superblock_security_struct *old = oldsb->s_security;
841         struct superblock_security_struct *new = newsb->s_security;
842         char oldflags = old->flags & SE_MNTMASK;
843         char newflags = new->flags & SE_MNTMASK;
844
845         if (oldflags != newflags)
846                 goto mismatch;
847         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
848                 goto mismatch;
849         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
850                 goto mismatch;
851         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
852                 goto mismatch;
853         if (oldflags & ROOTCONTEXT_MNT) {
854                 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
855                 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
856                 if (oldroot->sid != newroot->sid)
857                         goto mismatch;
858         }
859         return 0;
860 mismatch:
861         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
862                             "different security settings for (dev %s, "
863                             "type %s)\n", newsb->s_id, newsb->s_type->name);
864         return -EBUSY;
865 }
866
867 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
868                                         struct super_block *newsb)
869 {
870         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
871         struct superblock_security_struct *newsbsec = newsb->s_security;
872
873         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
874         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
875         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
876
877         /*
878          * if the parent was able to be mounted it clearly had no special lsm
879          * mount options.  thus we can safely deal with this superblock later
880          */
881         if (!ss_initialized)
882                 return 0;
883
884         /* how can we clone if the old one wasn't set up?? */
885         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
886
887         /* if fs is reusing a sb, make sure that the contexts match */
888         if (newsbsec->flags & SE_SBINITIALIZED)
889                 return selinux_cmp_sb_context(oldsb, newsb);
890
891         mutex_lock(&newsbsec->lock);
892
893         newsbsec->flags = oldsbsec->flags;
894
895         newsbsec->sid = oldsbsec->sid;
896         newsbsec->def_sid = oldsbsec->def_sid;
897         newsbsec->behavior = oldsbsec->behavior;
898
899         if (set_context) {
900                 u32 sid = oldsbsec->mntpoint_sid;
901
902                 if (!set_fscontext)
903                         newsbsec->sid = sid;
904                 if (!set_rootcontext) {
905                         struct inode *newinode = newsb->s_root->d_inode;
906                         struct inode_security_struct *newisec = newinode->i_security;
907                         newisec->sid = sid;
908                 }
909                 newsbsec->mntpoint_sid = sid;
910         }
911         if (set_rootcontext) {
912                 const struct inode *oldinode = oldsb->s_root->d_inode;
913                 const struct inode_security_struct *oldisec = oldinode->i_security;
914                 struct inode *newinode = newsb->s_root->d_inode;
915                 struct inode_security_struct *newisec = newinode->i_security;
916
917                 newisec->sid = oldisec->sid;
918         }
919
920         sb_finish_set_opts(newsb);
921         mutex_unlock(&newsbsec->lock);
922         return 0;
923 }
924
925 static int selinux_parse_opts_str(char *options,
926                                   struct security_mnt_opts *opts)
927 {
928         char *p;
929         char *context = NULL, *defcontext = NULL;
930         char *fscontext = NULL, *rootcontext = NULL;
931         int rc, num_mnt_opts = 0;
932
933         opts->num_mnt_opts = 0;
934
935         /* Standard string-based options. */
936         while ((p = strsep(&options, "|")) != NULL) {
937                 int token;
938                 substring_t args[MAX_OPT_ARGS];
939
940                 if (!*p)
941                         continue;
942
943                 token = match_token(p, tokens, args);
944
945                 switch (token) {
946                 case Opt_context:
947                         if (context || defcontext) {
948                                 rc = -EINVAL;
949                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
950                                 goto out_err;
951                         }
952                         context = match_strdup(&args[0]);
953                         if (!context) {
954                                 rc = -ENOMEM;
955                                 goto out_err;
956                         }
957                         break;
958
959                 case Opt_fscontext:
960                         if (fscontext) {
961                                 rc = -EINVAL;
962                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
963                                 goto out_err;
964                         }
965                         fscontext = match_strdup(&args[0]);
966                         if (!fscontext) {
967                                 rc = -ENOMEM;
968                                 goto out_err;
969                         }
970                         break;
971
972                 case Opt_rootcontext:
973                         if (rootcontext) {
974                                 rc = -EINVAL;
975                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
976                                 goto out_err;
977                         }
978                         rootcontext = match_strdup(&args[0]);
979                         if (!rootcontext) {
980                                 rc = -ENOMEM;
981                                 goto out_err;
982                         }
983                         break;
984
985                 case Opt_defcontext:
986                         if (context || defcontext) {
987                                 rc = -EINVAL;
988                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
989                                 goto out_err;
990                         }
991                         defcontext = match_strdup(&args[0]);
992                         if (!defcontext) {
993                                 rc = -ENOMEM;
994                                 goto out_err;
995                         }
996                         break;
997                 case Opt_labelsupport:
998                         break;
999                 default:
1000                         rc = -EINVAL;
1001                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
1002                         goto out_err;
1003
1004                 }
1005         }
1006
1007         rc = -ENOMEM;
1008         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1009         if (!opts->mnt_opts)
1010                 goto out_err;
1011
1012         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1013         if (!opts->mnt_opts_flags) {
1014                 kfree(opts->mnt_opts);
1015                 goto out_err;
1016         }
1017
1018         if (fscontext) {
1019                 opts->mnt_opts[num_mnt_opts] = fscontext;
1020                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1021         }
1022         if (context) {
1023                 opts->mnt_opts[num_mnt_opts] = context;
1024                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1025         }
1026         if (rootcontext) {
1027                 opts->mnt_opts[num_mnt_opts] = rootcontext;
1028                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1029         }
1030         if (defcontext) {
1031                 opts->mnt_opts[num_mnt_opts] = defcontext;
1032                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1033         }
1034
1035         opts->num_mnt_opts = num_mnt_opts;
1036         return 0;
1037
1038 out_err:
1039         kfree(context);
1040         kfree(defcontext);
1041         kfree(fscontext);
1042         kfree(rootcontext);
1043         return rc;
1044 }
1045 /*
1046  * string mount options parsing and call set the sbsec
1047  */
1048 static int superblock_doinit(struct super_block *sb, void *data)
1049 {
1050         int rc = 0;
1051         char *options = data;
1052         struct security_mnt_opts opts;
1053
1054         security_init_mnt_opts(&opts);
1055
1056         if (!data)
1057                 goto out;
1058
1059         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1060
1061         rc = selinux_parse_opts_str(options, &opts);
1062         if (rc)
1063                 goto out_err;
1064
1065 out:
1066         rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1067
1068 out_err:
1069         security_free_mnt_opts(&opts);
1070         return rc;
1071 }
1072
1073 static void selinux_write_opts(struct seq_file *m,
1074                                struct security_mnt_opts *opts)
1075 {
1076         int i;
1077         char *prefix;
1078
1079         for (i = 0; i < opts->num_mnt_opts; i++) {
1080                 char *has_comma;
1081
1082                 if (opts->mnt_opts[i])
1083                         has_comma = strchr(opts->mnt_opts[i], ',');
1084                 else
1085                         has_comma = NULL;
1086
1087                 switch (opts->mnt_opts_flags[i]) {
1088                 case CONTEXT_MNT:
1089                         prefix = CONTEXT_STR;
1090                         break;
1091                 case FSCONTEXT_MNT:
1092                         prefix = FSCONTEXT_STR;
1093                         break;
1094                 case ROOTCONTEXT_MNT:
1095                         prefix = ROOTCONTEXT_STR;
1096                         break;
1097                 case DEFCONTEXT_MNT:
1098                         prefix = DEFCONTEXT_STR;
1099                         break;
1100                 case SBLABEL_MNT:
1101                         seq_putc(m, ',');
1102                         seq_puts(m, LABELSUPP_STR);
1103                         continue;
1104                 default:
1105                         BUG();
1106                         return;
1107                 };
1108                 /* we need a comma before each option */
1109                 seq_putc(m, ',');
1110                 seq_puts(m, prefix);
1111                 if (has_comma)
1112                         seq_putc(m, '\"');
1113                 seq_puts(m, opts->mnt_opts[i]);
1114                 if (has_comma)
1115                         seq_putc(m, '\"');
1116         }
1117 }
1118
1119 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1120 {
1121         struct security_mnt_opts opts;
1122         int rc;
1123
1124         rc = selinux_get_mnt_opts(sb, &opts);
1125         if (rc) {
1126                 /* before policy load we may get EINVAL, don't show anything */
1127                 if (rc == -EINVAL)
1128                         rc = 0;
1129                 return rc;
1130         }
1131
1132         selinux_write_opts(m, &opts);
1133
1134         security_free_mnt_opts(&opts);
1135
1136         return rc;
1137 }
1138
1139 static inline u16 inode_mode_to_security_class(umode_t mode)
1140 {
1141         switch (mode & S_IFMT) {
1142         case S_IFSOCK:
1143                 return SECCLASS_SOCK_FILE;
1144         case S_IFLNK:
1145                 return SECCLASS_LNK_FILE;
1146         case S_IFREG:
1147                 return SECCLASS_FILE;
1148         case S_IFBLK:
1149                 return SECCLASS_BLK_FILE;
1150         case S_IFDIR:
1151                 return SECCLASS_DIR;
1152         case S_IFCHR:
1153                 return SECCLASS_CHR_FILE;
1154         case S_IFIFO:
1155                 return SECCLASS_FIFO_FILE;
1156
1157         }
1158
1159         return SECCLASS_FILE;
1160 }
1161
1162 static inline int default_protocol_stream(int protocol)
1163 {
1164         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1165 }
1166
1167 static inline int default_protocol_dgram(int protocol)
1168 {
1169         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1170 }
1171
1172 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1173 {
1174         switch (family) {
1175         case PF_UNIX:
1176                 switch (type) {
1177                 case SOCK_STREAM:
1178                 case SOCK_SEQPACKET:
1179                         return SECCLASS_UNIX_STREAM_SOCKET;
1180                 case SOCK_DGRAM:
1181                         return SECCLASS_UNIX_DGRAM_SOCKET;
1182                 }
1183                 break;
1184         case PF_INET:
1185         case PF_INET6:
1186                 switch (type) {
1187                 case SOCK_STREAM:
1188                         if (default_protocol_stream(protocol))
1189                                 return SECCLASS_TCP_SOCKET;
1190                         else
1191                                 return SECCLASS_RAWIP_SOCKET;
1192                 case SOCK_DGRAM:
1193                         if (default_protocol_dgram(protocol))
1194                                 return SECCLASS_UDP_SOCKET;
1195                         else
1196                                 return SECCLASS_RAWIP_SOCKET;
1197                 case SOCK_DCCP:
1198                         return SECCLASS_DCCP_SOCKET;
1199                 default:
1200                         return SECCLASS_RAWIP_SOCKET;
1201                 }
1202                 break;
1203         case PF_NETLINK:
1204                 switch (protocol) {
1205                 case NETLINK_ROUTE:
1206                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1207                 case NETLINK_FIREWALL:
1208                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1209                 case NETLINK_SOCK_DIAG:
1210                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1211                 case NETLINK_NFLOG:
1212                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1213                 case NETLINK_XFRM:
1214                         return SECCLASS_NETLINK_XFRM_SOCKET;
1215                 case NETLINK_SELINUX:
1216                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1217                 case NETLINK_AUDIT:
1218                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1219                 case NETLINK_IP6_FW:
1220                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1221                 case NETLINK_DNRTMSG:
1222                         return SECCLASS_NETLINK_DNRT_SOCKET;
1223                 case NETLINK_KOBJECT_UEVENT:
1224                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1225                 default:
1226                         return SECCLASS_NETLINK_SOCKET;
1227                 }
1228         case PF_PACKET:
1229                 return SECCLASS_PACKET_SOCKET;
1230         case PF_KEY:
1231                 return SECCLASS_KEY_SOCKET;
1232         case PF_APPLETALK:
1233                 return SECCLASS_APPLETALK_SOCKET;
1234         }
1235
1236         return SECCLASS_SOCKET;
1237 }
1238
1239 #ifdef CONFIG_PROC_FS
1240 static int selinux_proc_get_sid(struct dentry *dentry,
1241                                 u16 tclass,
1242                                 u32 *sid)
1243 {
1244         int rc;
1245         char *buffer, *path;
1246
1247         buffer = (char *)__get_free_page(GFP_KERNEL);
1248         if (!buffer)
1249                 return -ENOMEM;
1250
1251         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1252         if (IS_ERR(path))
1253                 rc = PTR_ERR(path);
1254         else {
1255                 /* each process gets a /proc/PID/ entry. Strip off the
1256                  * PID part to get a valid selinux labeling.
1257                  * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1258                 while (path[1] >= '0' && path[1] <= '9') {
1259                         path[1] = '/';
1260                         path++;
1261                 }
1262                 rc = security_genfs_sid("proc", path, tclass, sid);
1263         }
1264         free_page((unsigned long)buffer);
1265         return rc;
1266 }
1267 #else
1268 static int selinux_proc_get_sid(struct dentry *dentry,
1269                                 u16 tclass,
1270                                 u32 *sid)
1271 {
1272         return -EINVAL;
1273 }
1274 #endif
1275
1276 /* The inode's security attributes must be initialized before first use. */
1277 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1278 {
1279         struct superblock_security_struct *sbsec = NULL;
1280         struct inode_security_struct *isec = inode->i_security;
1281         u32 sid;
1282         struct dentry *dentry;
1283 #define INITCONTEXTLEN 255
1284         char *context = NULL;
1285         unsigned len = 0;
1286         int rc = 0;
1287
1288         if (isec->initialized)
1289                 goto out;
1290
1291         mutex_lock(&isec->lock);
1292         if (isec->initialized)
1293                 goto out_unlock;
1294
1295         sbsec = inode->i_sb->s_security;
1296         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1297                 /* Defer initialization until selinux_complete_init,
1298                    after the initial policy is loaded and the security
1299                    server is ready to handle calls. */
1300                 spin_lock(&sbsec->isec_lock);
1301                 if (list_empty(&isec->list))
1302                         list_add(&isec->list, &sbsec->isec_head);
1303                 spin_unlock(&sbsec->isec_lock);
1304                 goto out_unlock;
1305         }
1306
1307         switch (sbsec->behavior) {
1308         case SECURITY_FS_USE_NATIVE:
1309                 break;
1310         case SECURITY_FS_USE_XATTR:
1311                 if (!inode->i_op->getxattr) {
1312                         isec->sid = sbsec->def_sid;
1313                         break;
1314                 }
1315
1316                 /* Need a dentry, since the xattr API requires one.
1317                    Life would be simpler if we could just pass the inode. */
1318                 if (opt_dentry) {
1319                         /* Called from d_instantiate or d_splice_alias. */
1320                         dentry = dget(opt_dentry);
1321                 } else {
1322                         /* Called from selinux_complete_init, try to find a dentry. */
1323                         dentry = d_find_alias(inode);
1324                 }
1325                 if (!dentry) {
1326                         /*
1327                          * this is can be hit on boot when a file is accessed
1328                          * before the policy is loaded.  When we load policy we
1329                          * may find inodes that have no dentry on the
1330                          * sbsec->isec_head list.  No reason to complain as these
1331                          * will get fixed up the next time we go through
1332                          * inode_doinit with a dentry, before these inodes could
1333                          * be used again by userspace.
1334                          */
1335                         goto out_unlock;
1336                 }
1337
1338                 len = INITCONTEXTLEN;
1339                 context = kmalloc(len+1, GFP_NOFS);
1340                 if (!context) {
1341                         rc = -ENOMEM;
1342                         dput(dentry);
1343                         goto out_unlock;
1344                 }
1345                 context[len] = '\0';
1346                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1347                                            context, len);
1348                 if (rc == -ERANGE) {
1349                         kfree(context);
1350
1351                         /* Need a larger buffer.  Query for the right size. */
1352                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1353                                                    NULL, 0);
1354                         if (rc < 0) {
1355                                 dput(dentry);
1356                                 goto out_unlock;
1357                         }
1358                         len = rc;
1359                         context = kmalloc(len+1, GFP_NOFS);
1360                         if (!context) {
1361                                 rc = -ENOMEM;
1362                                 dput(dentry);
1363                                 goto out_unlock;
1364                         }
1365                         context[len] = '\0';
1366                         rc = inode->i_op->getxattr(dentry,
1367                                                    XATTR_NAME_SELINUX,
1368                                                    context, len);
1369                 }
1370                 dput(dentry);
1371                 if (rc < 0) {
1372                         if (rc != -ENODATA) {
1373                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1374                                        "%d for dev=%s ino=%ld\n", __func__,
1375                                        -rc, inode->i_sb->s_id, inode->i_ino);
1376                                 kfree(context);
1377                                 goto out_unlock;
1378                         }
1379                         /* Map ENODATA to the default file SID */
1380                         sid = sbsec->def_sid;
1381                         rc = 0;
1382                 } else {
1383                         rc = security_context_to_sid_default(context, rc, &sid,
1384                                                              sbsec->def_sid,
1385                                                              GFP_NOFS);
1386                         if (rc) {
1387                                 char *dev = inode->i_sb->s_id;
1388                                 unsigned long ino = inode->i_ino;
1389
1390                                 if (rc == -EINVAL) {
1391                                         if (printk_ratelimit())
1392                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1393                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1394                                                         "filesystem in question.\n", ino, dev, context);
1395                                 } else {
1396                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1397                                                "returned %d for dev=%s ino=%ld\n",
1398                                                __func__, context, -rc, dev, ino);
1399                                 }
1400                                 kfree(context);
1401                                 /* Leave with the unlabeled SID */
1402                                 rc = 0;
1403                                 break;
1404                         }
1405                 }
1406                 kfree(context);
1407                 isec->sid = sid;
1408                 break;
1409         case SECURITY_FS_USE_TASK:
1410                 isec->sid = isec->task_sid;
1411                 break;
1412         case SECURITY_FS_USE_TRANS:
1413                 /* Default to the fs SID. */
1414                 isec->sid = sbsec->sid;
1415
1416                 /* Try to obtain a transition SID. */
1417                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1418                 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1419                                              isec->sclass, NULL, &sid);
1420                 if (rc)
1421                         goto out_unlock;
1422                 isec->sid = sid;
1423                 break;
1424         case SECURITY_FS_USE_MNTPOINT:
1425                 isec->sid = sbsec->mntpoint_sid;
1426                 break;
1427         default:
1428                 /* Default to the fs superblock SID. */
1429                 isec->sid = sbsec->sid;
1430
1431                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1432                         /* We must have a dentry to determine the label on
1433                          * procfs inodes */
1434                         if (opt_dentry)
1435                                 /* Called from d_instantiate or
1436                                  * d_splice_alias. */
1437                                 dentry = dget(opt_dentry);
1438                         else
1439                                 /* Called from selinux_complete_init, try to
1440                                  * find a dentry. */
1441                                 dentry = d_find_alias(inode);
1442                         /*
1443                          * This can be hit on boot when a file is accessed
1444                          * before the policy is loaded.  When we load policy we
1445                          * may find inodes that have no dentry on the
1446                          * sbsec->isec_head list.  No reason to complain as
1447                          * these will get fixed up the next time we go through
1448                          * inode_doinit() with a dentry, before these inodes
1449                          * could be used again by userspace.
1450                          */
1451                         if (!dentry)
1452                                 goto out_unlock;
1453                         isec->sclass = inode_mode_to_security_class(inode->i_mode);
1454                         rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1455                         dput(dentry);
1456                         if (rc)
1457                                 goto out_unlock;
1458                         isec->sid = sid;
1459                 }
1460                 break;
1461         }
1462
1463         isec->initialized = 1;
1464
1465 out_unlock:
1466         mutex_unlock(&isec->lock);
1467 out:
1468         if (isec->sclass == SECCLASS_FILE)
1469                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1470         return rc;
1471 }
1472
1473 /* Convert a Linux signal to an access vector. */
1474 static inline u32 signal_to_av(int sig)
1475 {
1476         u32 perm = 0;
1477
1478         switch (sig) {
1479         case SIGCHLD:
1480                 /* Commonly granted from child to parent. */
1481                 perm = PROCESS__SIGCHLD;
1482                 break;
1483         case SIGKILL:
1484                 /* Cannot be caught or ignored */
1485                 perm = PROCESS__SIGKILL;
1486                 break;
1487         case SIGSTOP:
1488                 /* Cannot be caught or ignored */
1489                 perm = PROCESS__SIGSTOP;
1490                 break;
1491         default:
1492                 /* All other signals. */
1493                 perm = PROCESS__SIGNAL;
1494                 break;
1495         }
1496
1497         return perm;
1498 }
1499
1500 /*
1501  * Check permission between a pair of credentials
1502  * fork check, ptrace check, etc.
1503  */
1504 static int cred_has_perm(const struct cred *actor,
1505                          const struct cred *target,
1506                          u32 perms)
1507 {
1508         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1509
1510         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1511 }
1512
1513 /*
1514  * Check permission between a pair of tasks, e.g. signal checks,
1515  * fork check, ptrace check, etc.
1516  * tsk1 is the actor and tsk2 is the target
1517  * - this uses the default subjective creds of tsk1
1518  */
1519 static int task_has_perm(const struct task_struct *tsk1,
1520                          const struct task_struct *tsk2,
1521                          u32 perms)
1522 {
1523         const struct task_security_struct *__tsec1, *__tsec2;
1524         u32 sid1, sid2;
1525
1526         rcu_read_lock();
1527         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1528         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1529         rcu_read_unlock();
1530         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1531 }
1532
1533 /*
1534  * Check permission between current and another task, e.g. signal checks,
1535  * fork check, ptrace check, etc.
1536  * current is the actor and tsk2 is the target
1537  * - this uses current's subjective creds
1538  */
1539 static int current_has_perm(const struct task_struct *tsk,
1540                             u32 perms)
1541 {
1542         u32 sid, tsid;
1543
1544         sid = current_sid();
1545         tsid = task_sid(tsk);
1546         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1547 }
1548
1549 #if CAP_LAST_CAP > 63
1550 #error Fix SELinux to handle capabilities > 63.
1551 #endif
1552
1553 /* Check whether a task is allowed to use a capability. */
1554 static int cred_has_capability(const struct cred *cred,
1555                                int cap, int audit)
1556 {
1557         struct common_audit_data ad;
1558         struct av_decision avd;
1559         u16 sclass;
1560         u32 sid = cred_sid(cred);
1561         u32 av = CAP_TO_MASK(cap);
1562         int rc;
1563
1564         ad.type = LSM_AUDIT_DATA_CAP;
1565         ad.u.cap = cap;
1566
1567         switch (CAP_TO_INDEX(cap)) {
1568         case 0:
1569                 sclass = SECCLASS_CAPABILITY;
1570                 break;
1571         case 1:
1572                 sclass = SECCLASS_CAPABILITY2;
1573                 break;
1574         default:
1575                 printk(KERN_ERR
1576                        "SELinux:  out of range capability %d\n", cap);
1577                 BUG();
1578                 return -EINVAL;
1579         }
1580
1581         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1582         if (audit == SECURITY_CAP_AUDIT) {
1583                 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1584                 if (rc2)
1585                         return rc2;
1586         }
1587         return rc;
1588 }
1589
1590 /* Check whether a task is allowed to use a system operation. */
1591 static int task_has_system(struct task_struct *tsk,
1592                            u32 perms)
1593 {
1594         u32 sid = task_sid(tsk);
1595
1596         return avc_has_perm(sid, SECINITSID_KERNEL,
1597                             SECCLASS_SYSTEM, perms, NULL);
1598 }
1599
1600 /* Check whether a task has a particular permission to an inode.
1601    The 'adp' parameter is optional and allows other audit
1602    data to be passed (e.g. the dentry). */
1603 static int inode_has_perm(const struct cred *cred,
1604                           struct inode *inode,
1605                           u32 perms,
1606                           struct common_audit_data *adp)
1607 {
1608         struct inode_security_struct *isec;
1609         u32 sid;
1610
1611         validate_creds(cred);
1612
1613         if (unlikely(IS_PRIVATE(inode)))
1614                 return 0;
1615
1616         sid = cred_sid(cred);
1617         isec = inode->i_security;
1618
1619         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1620 }
1621
1622 /* Same as inode_has_perm, but pass explicit audit data containing
1623    the dentry to help the auditing code to more easily generate the
1624    pathname if needed. */
1625 static inline int dentry_has_perm(const struct cred *cred,
1626                                   struct dentry *dentry,
1627                                   u32 av)
1628 {
1629         struct inode *inode = dentry->d_inode;
1630         struct common_audit_data ad;
1631
1632         ad.type = LSM_AUDIT_DATA_DENTRY;
1633         ad.u.dentry = dentry;
1634         return inode_has_perm(cred, inode, av, &ad);
1635 }
1636
1637 /* Same as inode_has_perm, but pass explicit audit data containing
1638    the path to help the auditing code to more easily generate the
1639    pathname if needed. */
1640 static inline int path_has_perm(const struct cred *cred,
1641                                 struct path *path,
1642                                 u32 av)
1643 {
1644         struct inode *inode = path->dentry->d_inode;
1645         struct common_audit_data ad;
1646
1647         ad.type = LSM_AUDIT_DATA_PATH;
1648         ad.u.path = *path;
1649         return inode_has_perm(cred, inode, av, &ad);
1650 }
1651
1652 /* Same as path_has_perm, but uses the inode from the file struct. */
1653 static inline int file_path_has_perm(const struct cred *cred,
1654                                      struct file *file,
1655                                      u32 av)
1656 {
1657         struct common_audit_data ad;
1658
1659         ad.type = LSM_AUDIT_DATA_PATH;
1660         ad.u.path = file->f_path;
1661         return inode_has_perm(cred, file_inode(file), av, &ad);
1662 }
1663
1664 /* Check whether a task can use an open file descriptor to
1665    access an inode in a given way.  Check access to the
1666    descriptor itself, and then use dentry_has_perm to
1667    check a particular permission to the file.
1668    Access to the descriptor is implicitly granted if it
1669    has the same SID as the process.  If av is zero, then
1670    access to the file is not checked, e.g. for cases
1671    where only the descriptor is affected like seek. */
1672 static int file_has_perm(const struct cred *cred,
1673                          struct file *file,
1674                          u32 av)
1675 {
1676         struct file_security_struct *fsec = file->f_security;
1677         struct inode *inode = file_inode(file);
1678         struct common_audit_data ad;
1679         u32 sid = cred_sid(cred);
1680         int rc;
1681
1682         ad.type = LSM_AUDIT_DATA_PATH;
1683         ad.u.path = file->f_path;
1684
1685         if (sid != fsec->sid) {
1686                 rc = avc_has_perm(sid, fsec->sid,
1687                                   SECCLASS_FD,
1688                                   FD__USE,
1689                                   &ad);
1690                 if (rc)
1691                         goto out;
1692         }
1693
1694         /* av is zero if only checking access to the descriptor. */
1695         rc = 0;
1696         if (av)
1697                 rc = inode_has_perm(cred, inode, av, &ad);
1698
1699 out:
1700         return rc;
1701 }
1702
1703 /* Check whether a task can create a file. */
1704 static int may_create(struct inode *dir,
1705                       struct dentry *dentry,
1706                       u16 tclass)
1707 {
1708         const struct task_security_struct *tsec = current_security();
1709         struct inode_security_struct *dsec;
1710         struct superblock_security_struct *sbsec;
1711         u32 sid, newsid;
1712         struct common_audit_data ad;
1713         int rc;
1714
1715         dsec = dir->i_security;
1716         sbsec = dir->i_sb->s_security;
1717
1718         sid = tsec->sid;
1719         newsid = tsec->create_sid;
1720
1721         ad.type = LSM_AUDIT_DATA_DENTRY;
1722         ad.u.dentry = dentry;
1723
1724         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1725                           DIR__ADD_NAME | DIR__SEARCH,
1726                           &ad);
1727         if (rc)
1728                 return rc;
1729
1730         if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1731                 rc = security_transition_sid(sid, dsec->sid, tclass,
1732                                              &dentry->d_name, &newsid);
1733                 if (rc)
1734                         return rc;
1735         }
1736
1737         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1738         if (rc)
1739                 return rc;
1740
1741         return avc_has_perm(newsid, sbsec->sid,
1742                             SECCLASS_FILESYSTEM,
1743                             FILESYSTEM__ASSOCIATE, &ad);
1744 }
1745
1746 /* Check whether a task can create a key. */
1747 static int may_create_key(u32 ksid,
1748                           struct task_struct *ctx)
1749 {
1750         u32 sid = task_sid(ctx);
1751
1752         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1753 }
1754
1755 #define MAY_LINK        0
1756 #define MAY_UNLINK      1
1757 #define MAY_RMDIR       2
1758
1759 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1760 static int may_link(struct inode *dir,
1761                     struct dentry *dentry,
1762                     int kind)
1763
1764 {
1765         struct inode_security_struct *dsec, *isec;
1766         struct common_audit_data ad;
1767         u32 sid = current_sid();
1768         u32 av;
1769         int rc;
1770
1771         dsec = dir->i_security;
1772         isec = dentry->d_inode->i_security;
1773
1774         ad.type = LSM_AUDIT_DATA_DENTRY;
1775         ad.u.dentry = dentry;
1776
1777         av = DIR__SEARCH;
1778         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1779         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1780         if (rc)
1781                 return rc;
1782
1783         switch (kind) {
1784         case MAY_LINK:
1785                 av = FILE__LINK;
1786                 break;
1787         case MAY_UNLINK:
1788                 av = FILE__UNLINK;
1789                 break;
1790         case MAY_RMDIR:
1791                 av = DIR__RMDIR;
1792                 break;
1793         default:
1794                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1795                         __func__, kind);
1796                 return 0;
1797         }
1798
1799         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1800         return rc;
1801 }
1802
1803 static inline int may_rename(struct inode *old_dir,
1804                              struct dentry *old_dentry,
1805                              struct inode *new_dir,
1806                              struct dentry *new_dentry)
1807 {
1808         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1809         struct common_audit_data ad;
1810         u32 sid = current_sid();
1811         u32 av;
1812         int old_is_dir, new_is_dir;
1813         int rc;
1814
1815         old_dsec = old_dir->i_security;
1816         old_isec = old_dentry->d_inode->i_security;
1817         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1818         new_dsec = new_dir->i_security;
1819
1820         ad.type = LSM_AUDIT_DATA_DENTRY;
1821
1822         ad.u.dentry = old_dentry;
1823         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1824                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1825         if (rc)
1826                 return rc;
1827         rc = avc_has_perm(sid, old_isec->sid,
1828                           old_isec->sclass, FILE__RENAME, &ad);
1829         if (rc)
1830                 return rc;
1831         if (old_is_dir && new_dir != old_dir) {
1832                 rc = avc_has_perm(sid, old_isec->sid,
1833                                   old_isec->sclass, DIR__REPARENT, &ad);
1834                 if (rc)
1835                         return rc;
1836         }
1837
1838         ad.u.dentry = new_dentry;
1839         av = DIR__ADD_NAME | DIR__SEARCH;
1840         if (new_dentry->d_inode)
1841                 av |= DIR__REMOVE_NAME;
1842         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1843         if (rc)
1844                 return rc;
1845         if (new_dentry->d_inode) {
1846                 new_isec = new_dentry->d_inode->i_security;
1847                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1848                 rc = avc_has_perm(sid, new_isec->sid,
1849                                   new_isec->sclass,
1850                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1851                 if (rc)
1852                         return rc;
1853         }
1854
1855         return 0;
1856 }
1857
1858 /* Check whether a task can perform a filesystem operation. */
1859 static int superblock_has_perm(const struct cred *cred,
1860                                struct super_block *sb,
1861                                u32 perms,
1862                                struct common_audit_data *ad)
1863 {
1864         struct superblock_security_struct *sbsec;
1865         u32 sid = cred_sid(cred);
1866
1867         sbsec = sb->s_security;
1868         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1869 }
1870
1871 /* Convert a Linux mode and permission mask to an access vector. */
1872 static inline u32 file_mask_to_av(int mode, int mask)
1873 {
1874         u32 av = 0;
1875
1876         if (!S_ISDIR(mode)) {
1877                 if (mask & MAY_EXEC)
1878                         av |= FILE__EXECUTE;
1879                 if (mask & MAY_READ)
1880                         av |= FILE__READ;
1881
1882                 if (mask & MAY_APPEND)
1883                         av |= FILE__APPEND;
1884                 else if (mask & MAY_WRITE)
1885                         av |= FILE__WRITE;
1886
1887         } else {
1888                 if (mask & MAY_EXEC)
1889                         av |= DIR__SEARCH;
1890                 if (mask & MAY_WRITE)
1891                         av |= DIR__WRITE;
1892                 if (mask & MAY_READ)
1893                         av |= DIR__READ;
1894         }
1895
1896         return av;
1897 }
1898
1899 /* Convert a Linux file to an access vector. */
1900 static inline u32 file_to_av(struct file *file)
1901 {
1902         u32 av = 0;
1903
1904         if (file->f_mode & FMODE_READ)
1905                 av |= FILE__READ;
1906         if (file->f_mode & FMODE_WRITE) {
1907                 if (file->f_flags & O_APPEND)
1908                         av |= FILE__APPEND;
1909                 else
1910                         av |= FILE__WRITE;
1911         }
1912         if (!av) {
1913                 /*
1914                  * Special file opened with flags 3 for ioctl-only use.
1915                  */
1916                 av = FILE__IOCTL;
1917         }
1918
1919         return av;
1920 }
1921
1922 /*
1923  * Convert a file to an access vector and include the correct open
1924  * open permission.
1925  */
1926 static inline u32 open_file_to_av(struct file *file)
1927 {
1928         u32 av = file_to_av(file);
1929
1930         if (selinux_policycap_openperm)
1931                 av |= FILE__OPEN;
1932
1933         return av;
1934 }
1935
1936 /* Hook functions begin here. */
1937
1938 static int selinux_ptrace_access_check(struct task_struct *child,
1939                                      unsigned int mode)
1940 {
1941         int rc;
1942
1943         rc = cap_ptrace_access_check(child, mode);
1944         if (rc)
1945                 return rc;
1946
1947         if (mode & PTRACE_MODE_READ) {
1948                 u32 sid = current_sid();
1949                 u32 csid = task_sid(child);
1950                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1951         }
1952
1953         return current_has_perm(child, PROCESS__PTRACE);
1954 }
1955
1956 static int selinux_ptrace_traceme(struct task_struct *parent)
1957 {
1958         int rc;
1959
1960         rc = cap_ptrace_traceme(parent);
1961         if (rc)
1962                 return rc;
1963
1964         return task_has_perm(parent, current, PROCESS__PTRACE);
1965 }
1966
1967 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1968                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1969 {
1970         int error;
1971
1972         error = current_has_perm(target, PROCESS__GETCAP);
1973         if (error)
1974                 return error;
1975
1976         return cap_capget(target, effective, inheritable, permitted);
1977 }
1978
1979 static int selinux_capset(struct cred *new, const struct cred *old,
1980                           const kernel_cap_t *effective,
1981                           const kernel_cap_t *inheritable,
1982                           const kernel_cap_t *permitted)
1983 {
1984         int error;
1985
1986         error = cap_capset(new, old,
1987                                       effective, inheritable, permitted);
1988         if (error)
1989                 return error;
1990
1991         return cred_has_perm(old, new, PROCESS__SETCAP);
1992 }
1993
1994 /*
1995  * (This comment used to live with the selinux_task_setuid hook,
1996  * which was removed).
1997  *
1998  * Since setuid only affects the current process, and since the SELinux
1999  * controls are not based on the Linux identity attributes, SELinux does not
2000  * need to control this operation.  However, SELinux does control the use of
2001  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2002  */
2003
2004 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2005                            int cap, int audit)
2006 {
2007         int rc;
2008
2009         rc = cap_capable(cred, ns, cap, audit);
2010         if (rc)
2011                 return rc;
2012
2013         return cred_has_capability(cred, cap, audit);
2014 }
2015
2016 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2017 {
2018         const struct cred *cred = current_cred();
2019         int rc = 0;
2020
2021         if (!sb)
2022                 return 0;
2023
2024         switch (cmds) {
2025         case Q_SYNC:
2026         case Q_QUOTAON:
2027         case Q_QUOTAOFF:
2028         case Q_SETINFO:
2029         case Q_SETQUOTA:
2030                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2031                 break;
2032         case Q_GETFMT:
2033         case Q_GETINFO:
2034         case Q_GETQUOTA:
2035                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2036                 break;
2037         default:
2038                 rc = 0;  /* let the kernel handle invalid cmds */
2039                 break;
2040         }
2041         return rc;
2042 }
2043
2044 static int selinux_quota_on(struct dentry *dentry)
2045 {
2046         const struct cred *cred = current_cred();
2047
2048         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2049 }
2050
2051 static int selinux_syslog(int type)
2052 {
2053         int rc;
2054
2055         switch (type) {
2056         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2057         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2058                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2059                 break;
2060         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2061         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2062         /* Set level of messages printed to console */
2063         case SYSLOG_ACTION_CONSOLE_LEVEL:
2064                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2065                 break;
2066         case SYSLOG_ACTION_CLOSE:       /* Close log */
2067         case SYSLOG_ACTION_OPEN:        /* Open log */
2068         case SYSLOG_ACTION_READ:        /* Read from log */
2069         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2070         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2071         default:
2072                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2073                 break;
2074         }
2075         return rc;
2076 }
2077
2078 /*
2079  * Check that a process has enough memory to allocate a new virtual
2080  * mapping. 0 means there is enough memory for the allocation to
2081  * succeed and -ENOMEM implies there is not.
2082  *
2083  * Do not audit the selinux permission check, as this is applied to all
2084  * processes that allocate mappings.
2085  */
2086 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2087 {
2088         int rc, cap_sys_admin = 0;
2089
2090         rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2091                              SECURITY_CAP_NOAUDIT);
2092         if (rc == 0)
2093                 cap_sys_admin = 1;
2094
2095         return __vm_enough_memory(mm, pages, cap_sys_admin);
2096 }
2097
2098 /* binprm security operations */
2099
2100 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2101 {
2102         const struct task_security_struct *old_tsec;
2103         struct task_security_struct *new_tsec;
2104         struct inode_security_struct *isec;
2105         struct common_audit_data ad;
2106         struct inode *inode = file_inode(bprm->file);
2107         int rc;
2108
2109         rc = cap_bprm_set_creds(bprm);
2110         if (rc)
2111                 return rc;
2112
2113         /* SELinux context only depends on initial program or script and not
2114          * the script interpreter */
2115         if (bprm->cred_prepared)
2116                 return 0;
2117
2118         old_tsec = current_security();
2119         new_tsec = bprm->cred->security;
2120         isec = inode->i_security;
2121
2122         /* Default to the current task SID. */
2123         new_tsec->sid = old_tsec->sid;
2124         new_tsec->osid = old_tsec->sid;
2125
2126         /* Reset fs, key, and sock SIDs on execve. */
2127         new_tsec->create_sid = 0;
2128         new_tsec->keycreate_sid = 0;
2129         new_tsec->sockcreate_sid = 0;
2130
2131         if (old_tsec->exec_sid) {
2132                 new_tsec->sid = old_tsec->exec_sid;
2133                 /* Reset exec SID on execve. */
2134                 new_tsec->exec_sid = 0;
2135
2136                 /*
2137                  * Minimize confusion: if no_new_privs or nosuid and a
2138                  * transition is explicitly requested, then fail the exec.
2139                  */
2140                 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2141                         return -EPERM;
2142                 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2143                         return -EACCES;
2144         } else {
2145                 /* Check for a default transition on this program. */
2146                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2147                                              SECCLASS_PROCESS, NULL,
2148                                              &new_tsec->sid);
2149                 if (rc)
2150                         return rc;
2151         }
2152
2153         ad.type = LSM_AUDIT_DATA_PATH;
2154         ad.u.path = bprm->file->f_path;
2155
2156         if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2157             (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2158                 new_tsec->sid = old_tsec->sid;
2159
2160         if (new_tsec->sid == old_tsec->sid) {
2161                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2162                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2163                 if (rc)
2164                         return rc;
2165         } else {
2166                 /* Check permissions for the transition. */
2167                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2168                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2169                 if (rc)
2170                         return rc;
2171
2172                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2173                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2174                 if (rc)
2175                         return rc;
2176
2177                 /* Check for shared state */
2178                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2179                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2180                                           SECCLASS_PROCESS, PROCESS__SHARE,
2181                                           NULL);
2182                         if (rc)
2183                                 return -EPERM;
2184                 }
2185
2186                 /* Make sure that anyone attempting to ptrace over a task that
2187                  * changes its SID has the appropriate permit */
2188                 if (bprm->unsafe &
2189                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2190                         struct task_struct *tracer;
2191                         struct task_security_struct *sec;
2192                         u32 ptsid = 0;
2193
2194                         rcu_read_lock();
2195                         tracer = ptrace_parent(current);
2196                         if (likely(tracer != NULL)) {
2197                                 sec = __task_cred(tracer)->security;
2198                                 ptsid = sec->sid;
2199                         }
2200                         rcu_read_unlock();
2201
2202                         if (ptsid != 0) {
2203                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2204                                                   SECCLASS_PROCESS,
2205                                                   PROCESS__PTRACE, NULL);
2206                                 if (rc)
2207                                         return -EPERM;
2208                         }
2209                 }
2210
2211                 /* Clear any possibly unsafe personality bits on exec: */
2212                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2213         }
2214
2215         return 0;
2216 }
2217
2218 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2219 {
2220         const struct task_security_struct *tsec = current_security();
2221         u32 sid, osid;
2222         int atsecure = 0;
2223
2224         sid = tsec->sid;
2225         osid = tsec->osid;
2226
2227         if (osid != sid) {
2228                 /* Enable secure mode for SIDs transitions unless
2229                    the noatsecure permission is granted between
2230                    the two SIDs, i.e. ahp returns 0. */
2231                 atsecure = avc_has_perm(osid, sid,
2232                                         SECCLASS_PROCESS,
2233                                         PROCESS__NOATSECURE, NULL);
2234         }
2235
2236         return (atsecure || cap_bprm_secureexec(bprm));
2237 }
2238
2239 static int match_file(const void *p, struct file *file, unsigned fd)
2240 {
2241         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2242 }
2243
2244 /* Derived from fs/exec.c:flush_old_files. */
2245 static inline void flush_unauthorized_files(const struct cred *cred,
2246                                             struct files_struct *files)
2247 {
2248         struct file *file, *devnull = NULL;
2249         struct tty_struct *tty;
2250         int drop_tty = 0;
2251         unsigned n;
2252
2253         tty = get_current_tty();
2254         if (tty) {
2255                 spin_lock(&tty_files_lock);
2256                 if (!list_empty(&tty->tty_files)) {
2257                         struct tty_file_private *file_priv;
2258
2259                         /* Revalidate access to controlling tty.
2260                            Use file_path_has_perm on the tty path directly
2261                            rather than using file_has_perm, as this particular
2262                            open file may belong to another process and we are
2263                            only interested in the inode-based check here. */
2264                         file_priv = list_first_entry(&tty->tty_files,
2265                                                 struct tty_file_private, list);
2266                         file = file_priv->file;
2267                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2268                                 drop_tty = 1;
2269                 }
2270                 spin_unlock(&tty_files_lock);
2271                 tty_kref_put(tty);
2272         }
2273         /* Reset controlling tty. */
2274         if (drop_tty)
2275                 no_tty();
2276
2277         /* Revalidate access to inherited open files. */
2278         n = iterate_fd(files, 0, match_file, cred);
2279         if (!n) /* none found? */
2280                 return;
2281
2282         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2283         if (IS_ERR(devnull))
2284                 devnull = NULL;
2285         /* replace all the matching ones with this */
2286         do {
2287                 replace_fd(n - 1, devnull, 0);
2288         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2289         if (devnull)
2290                 fput(devnull);
2291 }
2292
2293 /*
2294  * Prepare a process for imminent new credential changes due to exec
2295  */
2296 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2297 {
2298         struct task_security_struct *new_tsec;
2299         struct rlimit *rlim, *initrlim;
2300         int rc, i;
2301
2302         new_tsec = bprm->cred->security;
2303         if (new_tsec->sid == new_tsec->osid)
2304                 return;
2305
2306         /* Close files for which the new task SID is not authorized. */
2307         flush_unauthorized_files(bprm->cred, current->files);
2308
2309         /* Always clear parent death signal on SID transitions. */
2310         current->pdeath_signal = 0;
2311
2312         /* Check whether the new SID can inherit resource limits from the old
2313          * SID.  If not, reset all soft limits to the lower of the current
2314          * task's hard limit and the init task's soft limit.
2315          *
2316          * Note that the setting of hard limits (even to lower them) can be
2317          * controlled by the setrlimit check.  The inclusion of the init task's
2318          * soft limit into the computation is to avoid resetting soft limits
2319          * higher than the default soft limit for cases where the default is
2320          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2321          */
2322         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2323                           PROCESS__RLIMITINH, NULL);
2324         if (rc) {
2325                 /* protect against do_prlimit() */
2326                 task_lock(current);
2327                 for (i = 0; i < RLIM_NLIMITS; i++) {
2328                         rlim = current->signal->rlim + i;
2329                         initrlim = init_task.signal->rlim + i;
2330                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2331                 }
2332                 task_unlock(current);
2333                 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2334         }
2335 }
2336
2337 /*
2338  * Clean up the process immediately after the installation of new credentials
2339  * due to exec
2340  */
2341 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2342 {
2343         const struct task_security_struct *tsec = current_security();
2344         struct itimerval itimer;
2345         u32 osid, sid;
2346         int rc, i;
2347
2348         osid = tsec->osid;
2349         sid = tsec->sid;
2350
2351         if (sid == osid)
2352                 return;
2353
2354         /* Check whether the new SID can inherit signal state from the old SID.
2355          * If not, clear itimers to avoid subsequent signal generation and
2356          * flush and unblock signals.
2357          *
2358          * This must occur _after_ the task SID has been updated so that any
2359          * kill done after the flush will be checked against the new SID.
2360          */
2361         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2362         if (rc) {
2363                 memset(&itimer, 0, sizeof itimer);
2364                 for (i = 0; i < 3; i++)
2365                         do_setitimer(i, &itimer, NULL);
2366                 spin_lock_irq(&current->sighand->siglock);
2367                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2368                         __flush_signals(current);
2369                         flush_signal_handlers(current, 1);
2370                         sigemptyset(&current->blocked);
2371                 }
2372                 spin_unlock_irq(&current->sighand->siglock);
2373         }
2374
2375         /* Wake up the parent if it is waiting so that it can recheck
2376          * wait permission to the new task SID. */
2377         read_lock(&tasklist_lock);
2378         __wake_up_parent(current, current->real_parent);
2379         read_unlock(&tasklist_lock);
2380 }
2381
2382 /* superblock security operations */
2383
2384 static int selinux_sb_alloc_security(struct super_block *sb)
2385 {
2386         return superblock_alloc_security(sb);
2387 }
2388
2389 static void selinux_sb_free_security(struct super_block *sb)
2390 {
2391         superblock_free_security(sb);
2392 }
2393
2394 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2395 {
2396         if (plen > olen)
2397                 return 0;
2398
2399         return !memcmp(prefix, option, plen);
2400 }
2401
2402 static inline int selinux_option(char *option, int len)
2403 {
2404         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2405                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2406                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2407                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2408                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2409 }
2410
2411 static inline void take_option(char **to, char *from, int *first, int len)
2412 {
2413         if (!*first) {
2414                 **to = ',';
2415                 *to += 1;
2416         } else
2417                 *first = 0;
2418         memcpy(*to, from, len);
2419         *to += len;
2420 }
2421
2422 static inline void take_selinux_option(char **to, char *from, int *first,
2423                                        int len)
2424 {
2425         int current_size = 0;
2426
2427         if (!*first) {
2428                 **to = '|';
2429                 *to += 1;
2430         } else
2431                 *first = 0;
2432
2433         while (current_size < len) {
2434                 if (*from != '"') {
2435                         **to = *from;
2436                         *to += 1;
2437                 }
2438                 from += 1;
2439                 current_size += 1;
2440         }
2441 }
2442
2443 static int selinux_sb_copy_data(char *orig, char *copy)
2444 {
2445         int fnosec, fsec, rc = 0;
2446         char *in_save, *in_curr, *in_end;
2447         char *sec_curr, *nosec_save, *nosec;
2448         int open_quote = 0;
2449
2450         in_curr = orig;
2451         sec_curr = copy;
2452
2453         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2454         if (!nosec) {
2455                 rc = -ENOMEM;
2456                 goto out;
2457         }
2458
2459         nosec_save = nosec;
2460         fnosec = fsec = 1;
2461         in_save = in_end = orig;
2462
2463         do {
2464                 if (*in_end == '"')
2465                         open_quote = !open_quote;
2466                 if ((*in_end == ',' && open_quote == 0) ||
2467                                 *in_end == '\0') {
2468                         int len = in_end - in_curr;
2469
2470                         if (selinux_option(in_curr, len))
2471                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2472                         else
2473                                 take_option(&nosec, in_curr, &fnosec, len);
2474
2475                         in_curr = in_end + 1;
2476                 }
2477         } while (*in_end++);
2478
2479         strcpy(in_save, nosec_save);
2480         free_page((unsigned long)nosec_save);
2481 out:
2482         return rc;
2483 }
2484
2485 static int selinux_sb_remount(struct super_block *sb, void *data)
2486 {
2487         int rc, i, *flags;
2488         struct security_mnt_opts opts;
2489         char *secdata, **mount_options;
2490         struct superblock_security_struct *sbsec = sb->s_security;
2491
2492         if (!(sbsec->flags & SE_SBINITIALIZED))
2493                 return 0;
2494
2495         if (!data)
2496                 return 0;
2497
2498         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2499                 return 0;
2500
2501         security_init_mnt_opts(&opts);
2502         secdata = alloc_secdata();
2503         if (!secdata)
2504                 return -ENOMEM;
2505         rc = selinux_sb_copy_data(data, secdata);
2506         if (rc)
2507                 goto out_free_secdata;
2508
2509         rc = selinux_parse_opts_str(secdata, &opts);
2510         if (rc)
2511                 goto out_free_secdata;
2512
2513         mount_options = opts.mnt_opts;
2514         flags = opts.mnt_opts_flags;
2515
2516         for (i = 0; i < opts.num_mnt_opts; i++) {
2517                 u32 sid;
2518                 size_t len;
2519
2520                 if (flags[i] == SBLABEL_MNT)
2521                         continue;
2522                 len = strlen(mount_options[i]);
2523                 rc = security_context_to_sid(mount_options[i], len, &sid,
2524                                              GFP_KERNEL);
2525                 if (rc) {
2526                         printk(KERN_WARNING "SELinux: security_context_to_sid"
2527                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2528                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2529                         goto out_free_opts;
2530                 }
2531                 rc = -EINVAL;
2532                 switch (flags[i]) {
2533                 case FSCONTEXT_MNT:
2534                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2535                                 goto out_bad_option;
2536                         break;
2537                 case CONTEXT_MNT:
2538                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2539                                 goto out_bad_option;
2540                         break;
2541                 case ROOTCONTEXT_MNT: {
2542                         struct inode_security_struct *root_isec;
2543                         root_isec = sb->s_root->d_inode->i_security;
2544
2545                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2546                                 goto out_bad_option;
2547                         break;
2548                 }
2549                 case DEFCONTEXT_MNT:
2550                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2551                                 goto out_bad_option;
2552                         break;
2553                 default:
2554                         goto out_free_opts;
2555                 }
2556         }
2557
2558         rc = 0;
2559 out_free_opts:
2560         security_free_mnt_opts(&opts);
2561 out_free_secdata:
2562         free_secdata(secdata);
2563         return rc;
2564 out_bad_option:
2565         printk(KERN_WARNING "SELinux: unable to change security options "
2566                "during remount (dev %s, type=%s)\n", sb->s_id,
2567                sb->s_type->name);
2568         goto out_free_opts;
2569 }
2570
2571 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2572 {
2573         const struct cred *cred = current_cred();
2574         struct common_audit_data ad;
2575         int rc;
2576
2577         rc = superblock_doinit(sb, data);
2578         if (rc)
2579                 return rc;
2580
2581         /* Allow all mounts performed by the kernel */
2582         if (flags & MS_KERNMOUNT)
2583                 return 0;
2584
2585         ad.type = LSM_AUDIT_DATA_DENTRY;
2586         ad.u.dentry = sb->s_root;
2587         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2588 }
2589
2590 static int selinux_sb_statfs(struct dentry *dentry)
2591 {
2592         const struct cred *cred = current_cred();
2593         struct common_audit_data ad;
2594
2595         ad.type = LSM_AUDIT_DATA_DENTRY;
2596         ad.u.dentry = dentry->d_sb->s_root;
2597         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2598 }
2599
2600 static int selinux_mount(const char *dev_name,
2601                          struct path *path,
2602                          const char *type,
2603                          unsigned long flags,
2604                          void *data)
2605 {
2606         const struct cred *cred = current_cred();
2607
2608         if (flags & MS_REMOUNT)
2609                 return superblock_has_perm(cred, path->dentry->d_sb,
2610                                            FILESYSTEM__REMOUNT, NULL);
2611         else
2612                 return path_has_perm(cred, path, FILE__MOUNTON);
2613 }
2614
2615 static int selinux_umount(struct vfsmount *mnt, int flags)
2616 {
2617         const struct cred *cred = current_cred();
2618
2619         return superblock_has_perm(cred, mnt->mnt_sb,
2620                                    FILESYSTEM__UNMOUNT, NULL);
2621 }
2622
2623 /* inode security operations */
2624
2625 static int selinux_inode_alloc_security(struct inode *inode)
2626 {
2627         return inode_alloc_security(inode);
2628 }
2629
2630 static void selinux_inode_free_security(struct inode *inode)
2631 {
2632         inode_free_security(inode);
2633 }
2634
2635 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2636                                         struct qstr *name, void **ctx,
2637                                         u32 *ctxlen)
2638 {
2639         const struct cred *cred = current_cred();
2640         struct task_security_struct *tsec;
2641         struct inode_security_struct *dsec;
2642         struct superblock_security_struct *sbsec;
2643         struct inode *dir = dentry->d_parent->d_inode;
2644         u32 newsid;
2645         int rc;
2646
2647         tsec = cred->security;
2648         dsec = dir->i_security;
2649         sbsec = dir->i_sb->s_security;
2650
2651         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2652                 newsid = tsec->create_sid;
2653         } else {
2654                 rc = security_transition_sid(tsec->sid, dsec->sid,
2655                                              inode_mode_to_security_class(mode),
2656                                              name,
2657                                              &newsid);
2658                 if (rc) {
2659                         printk(KERN_WARNING
2660                                 "%s: security_transition_sid failed, rc=%d\n",
2661                                __func__, -rc);
2662                         return rc;
2663                 }
2664         }
2665
2666         return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2667 }
2668
2669 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2670                                        const struct qstr *qstr,
2671                                        const char **name,
2672                                        void **value, size_t *len)
2673 {
2674         const struct task_security_struct *tsec = current_security();
2675         struct inode_security_struct *dsec;
2676         struct superblock_security_struct *sbsec;
2677         u32 sid, newsid, clen;
2678         int rc;
2679         char *context;
2680
2681         dsec = dir->i_security;
2682         sbsec = dir->i_sb->s_security;
2683
2684         sid = tsec->sid;
2685         newsid = tsec->create_sid;
2686
2687         if ((sbsec->flags & SE_SBINITIALIZED) &&
2688             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2689                 newsid = sbsec->mntpoint_sid;
2690         else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2691                 rc = security_transition_sid(sid, dsec->sid,
2692                                              inode_mode_to_security_class(inode->i_mode),
2693                                              qstr, &newsid);
2694                 if (rc) {
2695                         printk(KERN_WARNING "%s:  "
2696                                "security_transition_sid failed, rc=%d (dev=%s "
2697                                "ino=%ld)\n",
2698                                __func__,
2699                                -rc, inode->i_sb->s_id, inode->i_ino);
2700                         return rc;
2701                 }
2702         }
2703
2704         /* Possibly defer initialization to selinux_complete_init. */
2705         if (sbsec->flags & SE_SBINITIALIZED) {
2706                 struct inode_security_struct *isec = inode->i_security;
2707                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2708                 isec->sid = newsid;
2709                 isec->initialized = 1;
2710         }
2711
2712         if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2713                 return -EOPNOTSUPP;
2714
2715         if (name)
2716                 *name = XATTR_SELINUX_SUFFIX;
2717
2718         if (value && len) {
2719                 rc = security_sid_to_context_force(newsid, &context, &clen);
2720                 if (rc)
2721                         return rc;
2722                 *value = context;
2723                 *len = clen;
2724         }
2725
2726         return 0;
2727 }
2728
2729 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2730 {
2731         return may_create(dir, dentry, SECCLASS_FILE);
2732 }
2733
2734 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2735 {
2736         return may_link(dir, old_dentry, MAY_LINK);
2737 }
2738
2739 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2740 {
2741         return may_link(dir, dentry, MAY_UNLINK);
2742 }
2743
2744 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2745 {
2746         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2747 }
2748
2749 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2750 {
2751         return may_create(dir, dentry, SECCLASS_DIR);
2752 }
2753
2754 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2755 {
2756         return may_link(dir, dentry, MAY_RMDIR);
2757 }
2758
2759 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2760 {
2761         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2762 }
2763
2764 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2765                                 struct inode *new_inode, struct dentry *new_dentry)
2766 {
2767         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2768 }
2769
2770 static int selinux_inode_readlink(struct dentry *dentry)
2771 {
2772         const struct cred *cred = current_cred();
2773
2774         return dentry_has_perm(cred, dentry, FILE__READ);
2775 }
2776
2777 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2778 {
2779         const struct cred *cred = current_cred();
2780
2781         return dentry_has_perm(cred, dentry, FILE__READ);
2782 }
2783
2784 static noinline int audit_inode_permission(struct inode *inode,
2785                                            u32 perms, u32 audited, u32 denied,
2786                                            int result,
2787                                            unsigned flags)
2788 {
2789         struct common_audit_data ad;
2790         struct inode_security_struct *isec = inode->i_security;
2791         int rc;
2792
2793         ad.type = LSM_AUDIT_DATA_INODE;
2794         ad.u.inode = inode;
2795
2796         rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2797                             audited, denied, result, &ad, flags);
2798         if (rc)
2799                 return rc;
2800         return 0;
2801 }
2802
2803 static int selinux_inode_permission(struct inode *inode, int mask)
2804 {
2805         const struct cred *cred = current_cred();
2806         u32 perms;
2807         bool from_access;
2808         unsigned flags = mask & MAY_NOT_BLOCK;
2809         struct inode_security_struct *isec;
2810         u32 sid;
2811         struct av_decision avd;
2812         int rc, rc2;
2813         u32 audited, denied;
2814
2815         from_access = mask & MAY_ACCESS;
2816         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2817
2818         /* No permission to check.  Existence test. */
2819         if (!mask)
2820                 return 0;
2821
2822         validate_creds(cred);
2823
2824         if (unlikely(IS_PRIVATE(inode)))
2825                 return 0;
2826
2827         perms = file_mask_to_av(inode->i_mode, mask);
2828
2829         sid = cred_sid(cred);
2830         isec = inode->i_security;
2831
2832         rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2833         audited = avc_audit_required(perms, &avd, rc,
2834                                      from_access ? FILE__AUDIT_ACCESS : 0,
2835                                      &denied);
2836         if (likely(!audited))
2837                 return rc;
2838
2839         rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2840         if (rc2)
2841                 return rc2;
2842         return rc;
2843 }
2844
2845 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2846 {
2847         const struct cred *cred = current_cred();
2848         unsigned int ia_valid = iattr->ia_valid;
2849         __u32 av = FILE__WRITE;
2850
2851         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2852         if (ia_valid & ATTR_FORCE) {
2853                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2854                               ATTR_FORCE);
2855                 if (!ia_valid)
2856                         return 0;
2857         }
2858
2859         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2860                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2861                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2862
2863         if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2864                 av |= FILE__OPEN;
2865
2866         return dentry_has_perm(cred, dentry, av);
2867 }
2868
2869 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2870 {
2871         const struct cred *cred = current_cred();
2872         struct path path;
2873
2874         path.dentry = dentry;
2875         path.mnt = mnt;
2876
2877         return path_has_perm(cred, &path, FILE__GETATTR);
2878 }
2879
2880 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2881 {
2882         const struct cred *cred = current_cred();
2883
2884         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2885                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2886                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2887                         if (!capable(CAP_SETFCAP))
2888                                 return -EPERM;
2889                 } else if (!capable(CAP_SYS_ADMIN)) {
2890                         /* A different attribute in the security namespace.
2891                            Restrict to administrator. */
2892                         return -EPERM;
2893                 }
2894         }
2895
2896         /* Not an attribute we recognize, so just check the
2897            ordinary setattr permission. */
2898         return dentry_has_perm(cred, dentry, FILE__SETATTR);
2899 }
2900
2901 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2902                                   const void *value, size_t size, int flags)
2903 {
2904         struct inode *inode = dentry->d_inode;
2905         struct inode_security_struct *isec = inode->i_security;
2906         struct superblock_security_struct *sbsec;
2907         struct common_audit_data ad;
2908         u32 newsid, sid = current_sid();
2909         int rc = 0;
2910
2911         if (strcmp(name, XATTR_NAME_SELINUX))
2912                 return selinux_inode_setotherxattr(dentry, name);
2913
2914         sbsec = inode->i_sb->s_security;
2915         if (!(sbsec->flags & SBLABEL_MNT))
2916                 return -EOPNOTSUPP;
2917
2918         if (!inode_owner_or_capable(inode))
2919                 return -EPERM;
2920
2921         ad.type = LSM_AUDIT_DATA_DENTRY;
2922         ad.u.dentry = dentry;
2923
2924         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2925                           FILE__RELABELFROM, &ad);
2926         if (rc)
2927                 return rc;
2928
2929         rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
2930         if (rc == -EINVAL) {
2931                 if (!capable(CAP_MAC_ADMIN)) {
2932                         struct audit_buffer *ab;
2933                         size_t audit_size;
2934                         const char *str;
2935
2936                         /* We strip a nul only if it is at the end, otherwise the
2937                          * context contains a nul and we should audit that */
2938                         if (value) {
2939                                 str = value;
2940                                 if (str[size - 1] == '\0')
2941                                         audit_size = size - 1;
2942                                 else
2943                                         audit_size = size;
2944                         } else {
2945                                 str = "";
2946                                 audit_size = 0;
2947                         }
2948                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2949                         audit_log_format(ab, "op=setxattr invalid_context=");
2950                         audit_log_n_untrustedstring(ab, value, audit_size);
2951                         audit_log_end(ab);
2952
2953                         return rc;
2954                 }
2955                 rc = security_context_to_sid_force(value, size, &newsid);
2956         }
2957         if (rc)
2958                 return rc;
2959
2960         rc = avc_has_perm(sid, newsid, isec->sclass,
2961                           FILE__RELABELTO, &ad);
2962         if (rc)
2963                 return rc;
2964
2965         rc = security_validate_transition(isec->sid, newsid, sid,
2966                                           isec->sclass);
2967         if (rc)
2968                 return rc;
2969
2970         return avc_has_perm(newsid,
2971                             sbsec->sid,
2972                             SECCLASS_FILESYSTEM,
2973                             FILESYSTEM__ASSOCIATE,
2974                             &ad);
2975 }
2976
2977 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2978                                         const void *value, size_t size,
2979                                         int flags)
2980 {
2981         struct inode *inode = dentry->d_inode;
2982         struct inode_security_struct *isec = inode->i_security;
2983         u32 newsid;
2984         int rc;
2985
2986         if (strcmp(name, XATTR_NAME_SELINUX)) {
2987                 /* Not an attribute we recognize, so nothing to do. */
2988                 return;
2989         }
2990
2991         rc = security_context_to_sid_force(value, size, &newsid);
2992         if (rc) {
2993                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2994                        "for (%s, %lu), rc=%d\n",
2995                        inode->i_sb->s_id, inode->i_ino, -rc);
2996                 return;
2997         }
2998
2999         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3000         isec->sid = newsid;
3001         isec->initialized = 1;
3002
3003         return;
3004 }
3005
3006 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3007 {
3008         const struct cred *cred = current_cred();
3009
3010         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3011 }
3012
3013 static int selinux_inode_listxattr(struct dentry *dentry)
3014 {
3015         const struct cred *cred = current_cred();
3016
3017         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3018 }
3019
3020 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3021 {
3022         if (strcmp(name, XATTR_NAME_SELINUX))
3023                 return selinux_inode_setotherxattr(dentry, name);
3024
3025         /* No one is allowed to remove a SELinux security label.
3026            You can change the label, but all data must be labeled. */
3027         return -EACCES;
3028 }
3029
3030 /*
3031  * Copy the inode security context value to the user.
3032  *
3033  * Permission check is handled by selinux_inode_getxattr hook.
3034  */
3035 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3036 {
3037         u32 size;
3038         int error;
3039         char *context = NULL;
3040         struct inode_security_struct *isec = inode->i_security;
3041
3042         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3043                 return -EOPNOTSUPP;
3044
3045         /*
3046          * If the caller has CAP_MAC_ADMIN, then get the raw context
3047          * value even if it is not defined by current policy; otherwise,
3048          * use the in-core value under current policy.
3049          * Use the non-auditing forms of the permission checks since
3050          * getxattr may be called by unprivileged processes commonly
3051          * and lack of permission just means that we fall back to the
3052          * in-core context value, not a denial.
3053          */
3054         error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3055                                 SECURITY_CAP_NOAUDIT);
3056         if (!error)
3057                 error = security_sid_to_context_force(isec->sid, &context,
3058                                                       &size);
3059         else
3060                 error = security_sid_to_context(isec->sid, &context, &size);
3061         if (error)
3062                 return error;
3063         error = size;
3064         if (alloc) {
3065                 *buffer = context;
3066                 goto out_nofree;
3067         }
3068         kfree(context);
3069 out_nofree:
3070         return error;
3071 }
3072
3073 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3074                                      const void *value, size_t size, int flags)
3075 {
3076         struct inode_security_struct *isec = inode->i_security;
3077         u32 newsid;
3078         int rc;
3079
3080         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3081                 return -EOPNOTSUPP;
3082
3083         if (!value || !size)
3084                 return -EACCES;
3085
3086         rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3087         if (rc)
3088                 return rc;
3089
3090         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3091         isec->sid = newsid;
3092         isec->initialized = 1;
3093         return 0;
3094 }
3095
3096 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3097 {
3098         const int len = sizeof(XATTR_NAME_SELINUX);
3099         if (buffer && len <= buffer_size)
3100                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3101         return len;
3102 }
3103
3104 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3105 {
3106         struct inode_security_struct *isec = inode->i_security;
3107         *secid = isec->sid;
3108 }
3109
3110 /* file security operations */
3111
3112 static int selinux_revalidate_file_permission(struct file *file, int mask)
3113 {
3114         const struct cred *cred = current_cred();
3115         struct inode *inode = file_inode(file);
3116
3117         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3118         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3119                 mask |= MAY_APPEND;
3120
3121         return file_has_perm(cred, file,
3122                              file_mask_to_av(inode->i_mode, mask));
3123 }
3124
3125 static int selinux_file_permission(struct file *file, int mask)
3126 {
3127         struct inode *inode = file_inode(file);
3128         struct file_security_struct *fsec = file->f_security;
3129         struct inode_security_struct *isec = inode->i_security;
3130         u32 sid = current_sid();
3131
3132         if (!mask)
3133                 /* No permission to check.  Existence test. */
3134                 return 0;
3135
3136         if (sid == fsec->sid && fsec->isid == isec->sid &&
3137             fsec->pseqno == avc_policy_seqno())
3138                 /* No change since file_open check. */
3139                 return 0;
3140
3141         return selinux_revalidate_file_permission(file, mask);
3142 }
3143
3144 static int selinux_file_alloc_security(struct file *file)
3145 {
3146         return file_alloc_security(file);
3147 }
3148
3149 static void selinux_file_free_security(struct file *file)
3150 {
3151         file_free_security(file);
3152 }
3153
3154 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3155                               unsigned long arg)
3156 {
3157         const struct cred *cred = current_cred();
3158         int error = 0;
3159
3160         switch (cmd) {
3161         case FIONREAD:
3162         /* fall through */
3163         case FIBMAP:
3164         /* fall through */
3165         case FIGETBSZ:
3166         /* fall through */
3167         case FS_IOC_GETFLAGS:
3168         /* fall through */
3169         case FS_IOC_GETVERSION:
3170                 error = file_has_perm(cred, file, FILE__GETATTR);
3171                 break;
3172
3173         case FS_IOC_SETFLAGS:
3174         /* fall through */
3175         case FS_IOC_SETVERSION:
3176                 error = file_has_perm(cred, file, FILE__SETATTR);
3177                 break;
3178
3179         /* sys_ioctl() checks */
3180         case FIONBIO:
3181         /* fall through */
3182         case FIOASYNC:
3183                 error = file_has_perm(cred, file, 0);
3184                 break;
3185
3186         case KDSKBENT:
3187         case KDSKBSENT:
3188                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3189                                             SECURITY_CAP_AUDIT);
3190                 break;
3191
3192         /* default case assumes that the command will go
3193          * to the file's ioctl() function.
3194          */
3195         default:
3196                 error = file_has_perm(cred, file, FILE__IOCTL);
3197         }
3198         return error;
3199 }
3200
3201 static int default_noexec;
3202
3203 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3204 {
3205         const struct cred *cred = current_cred();
3206         int rc = 0;
3207
3208         if (default_noexec &&
3209             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3210                 /*
3211                  * We are making executable an anonymous mapping or a
3212                  * private file mapping that will also be writable.
3213                  * This has an additional check.
3214                  */
3215                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3216                 if (rc)
3217                         goto error;
3218         }
3219
3220         if (file) {
3221                 /* read access is always possible with a mapping */
3222                 u32 av = FILE__READ;
3223
3224                 /* write access only matters if the mapping is shared */
3225                 if (shared && (prot & PROT_WRITE))
3226                         av |= FILE__WRITE;
3227
3228                 if (prot & PROT_EXEC)
3229                         av |= FILE__EXECUTE;
3230
3231                 return file_has_perm(cred, file, av);
3232         }
3233
3234 error:
3235         return rc;
3236 }
3237
3238 static int selinux_mmap_addr(unsigned long addr)
3239 {
3240         int rc;
3241
3242         /* do DAC check on address space usage */
3243         rc = cap_mmap_addr(addr);
3244         if (rc)
3245                 return rc;
3246
3247         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3248                 u32 sid = current_sid();
3249                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3250                                   MEMPROTECT__MMAP_ZERO, NULL);
3251         }
3252
3253         return rc;
3254 }
3255
3256 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3257                              unsigned long prot, unsigned long flags)
3258 {
3259         if (selinux_checkreqprot)
3260                 prot = reqprot;
3261
3262         return file_map_prot_check(file, prot,
3263                                    (flags & MAP_TYPE) == MAP_SHARED);
3264 }
3265
3266 static int selinux_file_mprotect(struct vm_area_struct *vma,
3267                                  unsigned long reqprot,
3268                                  unsigned long prot)
3269 {
3270         const struct cred *cred = current_cred();
3271
3272         if (selinux_checkreqprot)
3273                 prot = reqprot;
3274
3275         if (default_noexec &&
3276             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3277                 int rc = 0;
3278                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3279                     vma->vm_end <= vma->vm_mm->brk) {
3280                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3281                 } else if (!vma->vm_file &&
3282                            vma->vm_start <= vma->vm_mm->start_stack &&
3283                            vma->vm_end >= vma->vm_mm->start_stack) {
3284                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3285                 } else if (vma->vm_file && vma->anon_vma) {
3286                         /*
3287                          * We are making executable a file mapping that has
3288                          * had some COW done. Since pages might have been
3289                          * written, check ability to execute the possibly
3290                          * modified content.  This typically should only
3291                          * occur for text relocations.
3292                          */
3293                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3294                 }
3295                 if (rc)
3296                         return rc;
3297         }
3298
3299         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3300 }
3301
3302 static int selinux_file_lock(struct file *file, unsigned int cmd)
3303 {
3304         const struct cred *cred = current_cred();
3305
3306         return file_has_perm(cred, file, FILE__LOCK);
3307 }
3308
3309 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3310                               unsigned long arg)
3311 {
3312         const struct cred *cred = current_cred();
3313         int err = 0;
3314
3315         switch (cmd) {
3316         case F_SETFL:
3317                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3318                         err = file_has_perm(cred, file, FILE__WRITE);
3319                         break;
3320                 }
3321                 /* fall through */
3322         case F_SETOWN:
3323         case F_SETSIG:
3324         case F_GETFL:
3325         case F_GETOWN:
3326         case F_GETSIG:
3327         case F_GETOWNER_UIDS:
3328                 /* Just check FD__USE permission */
3329                 err = file_has_perm(cred, file, 0);
3330                 break;
3331         case F_GETLK:
3332         case F_SETLK:
3333         case F_SETLKW:
3334         case F_OFD_GETLK:
3335         case F_OFD_SETLK:
3336         case F_OFD_SETLKW:
3337 #if BITS_PER_LONG == 32
3338         case F_GETLK64:
3339         case F_SETLK64:
3340         case F_SETLKW64:
3341 #endif
3342                 err = file_has_perm(cred, file, FILE__LOCK);
3343                 break;
3344         }
3345
3346         return err;
3347 }
3348
3349 static int selinux_file_set_fowner(struct file *file)
3350 {
3351         struct file_security_struct *fsec;
3352
3353         fsec = file->f_security;
3354         fsec->fown_sid = current_sid();
3355
3356         return 0;
3357 }
3358
3359 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3360                                        struct fown_struct *fown, int signum)
3361 {
3362         struct file *file;
3363         u32 sid = task_sid(tsk);
3364         u32 perm;
3365         struct file_security_struct *fsec;
3366
3367         /* struct fown_struct is never outside the context of a struct file */
3368         file = container_of(fown, struct file, f_owner);
3369
3370         fsec = file->f_security;
3371
3372         if (!signum)
3373                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3374         else
3375                 perm = signal_to_av(signum);
3376
3377         return avc_has_perm(fsec->fown_sid, sid,
3378                             SECCLASS_PROCESS, perm, NULL);
3379 }
3380
3381 static int selinux_file_receive(struct file *file)
3382 {
3383         const struct cred *cred = current_cred();
3384
3385         return file_has_perm(cred, file, file_to_av(file));
3386 }
3387
3388 static int selinux_file_open(struct file *file, const struct cred *cred)
3389 {
3390         struct file_security_struct *fsec;
3391         struct inode_security_struct *isec;
3392
3393         fsec = file->f_security;
3394         isec = file_inode(file)->i_security;
3395         /*
3396          * Save inode label and policy sequence number
3397          * at open-time so that selinux_file_permission
3398          * can determine whether revalidation is necessary.
3399          * Task label is already saved in the file security
3400          * struct as its SID.
3401          */
3402         fsec->isid = isec->sid;
3403         fsec->pseqno = avc_policy_seqno();
3404         /*
3405          * Since the inode label or policy seqno may have changed
3406          * between the selinux_inode_permission check and the saving
3407          * of state above, recheck that access is still permitted.
3408          * Otherwise, access might never be revalidated against the
3409          * new inode label or new policy.
3410          * This check is not redundant - do not remove.
3411          */
3412         return file_path_has_perm(cred, file, open_file_to_av(file));
3413 }
3414
3415 /* task security operations */
3416
3417 static int selinux_task_create(unsigned long clone_flags)
3418 {
3419         return current_has_perm(current, PROCESS__FORK);
3420 }
3421
3422 /*
3423  * allocate the SELinux part of blank credentials
3424  */
3425 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3426 {
3427         struct task_security_struct *tsec;
3428
3429         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3430         if (!tsec)
3431                 return -ENOMEM;
3432
3433         cred->security = tsec;
3434         return 0;
3435 }
3436
3437 /*
3438  * detach and free the LSM part of a set of credentials
3439  */
3440 static void selinux_cred_free(struct cred *cred)
3441 {
3442         struct task_security_struct *tsec = cred->security;
3443
3444         /*
3445          * cred->security == NULL if security_cred_alloc_blank() or
3446          * security_prepare_creds() returned an error.
3447          */
3448         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3449         cred->security = (void *) 0x7UL;
3450         kfree(tsec);
3451 }
3452
3453 /*
3454  * prepare a new set of credentials for modification
3455  */
3456 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3457                                 gfp_t gfp)
3458 {
3459         const struct task_security_struct *old_tsec;
3460         struct task_security_struct *tsec;
3461
3462         old_tsec = old->security;
3463
3464         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3465         if (!tsec)
3466                 return -ENOMEM;
3467
3468         new->security = tsec;
3469         return 0;
3470 }
3471
3472 /*
3473  * transfer the SELinux data to a blank set of creds
3474  */
3475 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3476 {
3477         const struct task_security_struct *old_tsec = old->security;
3478         struct task_security_struct *tsec = new->security;
3479
3480         *tsec = *old_tsec;
3481 }
3482
3483 /*
3484  * set the security data for a kernel service
3485  * - all the creation contexts are set to unlabelled
3486  */
3487 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3488 {
3489         struct task_security_struct *tsec = new->security;
3490         u32 sid = current_sid();
3491         int ret;
3492
3493         ret = avc_has_perm(sid, secid,
3494                            SECCLASS_KERNEL_SERVICE,
3495                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3496                            NULL);
3497         if (ret == 0) {
3498                 tsec->sid = secid;
3499                 tsec->create_sid = 0;
3500                 tsec->keycreate_sid = 0;
3501                 tsec->sockcreate_sid = 0;
3502         }
3503         return ret;
3504 }
3505
3506 /*
3507  * set the file creation context in a security record to the same as the
3508  * objective context of the specified inode
3509  */
3510 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3511 {
3512         struct inode_security_struct *isec = inode->i_security;
3513         struct task_security_struct *tsec = new->security;
3514         u32 sid = current_sid();
3515         int ret;
3516
3517         ret = avc_has_perm(sid, isec->sid,
3518                            SECCLASS_KERNEL_SERVICE,
3519                            KERNEL_SERVICE__CREATE_FILES_AS,
3520                            NULL);
3521
3522         if (ret == 0)
3523                 tsec->create_sid = isec->sid;
3524         return ret;
3525 }
3526
3527 static int selinux_kernel_module_request(char *kmod_name)
3528 {
3529         u32 sid;
3530         struct common_audit_data ad;
3531
3532         sid = task_sid(current);
3533
3534         ad.type = LSM_AUDIT_DATA_KMOD;
3535         ad.u.kmod_name = kmod_name;
3536
3537         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3538                             SYSTEM__MODULE_REQUEST, &ad);
3539 }
3540
3541 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3542 {
3543         return current_has_perm(p, PROCESS__SETPGID);
3544 }
3545
3546 static int selinux_task_getpgid(struct task_struct *p)
3547 {
3548         return current_has_perm(p, PROCESS__GETPGID);
3549 }
3550
3551 static int selinux_task_getsid(struct task_struct *p)
3552 {
3553         return current_has_perm(p, PROCESS__GETSESSION);
3554 }
3555
3556 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3557 {
3558         *secid = task_sid(p);
3559 }
3560
3561 static int selinux_task_setnice(struct task_struct *p, int nice)
3562 {
3563         int rc;
3564
3565         rc = cap_task_setnice(p, nice);
3566         if (rc)
3567                 return rc;
3568
3569         return current_has_perm(p, PROCESS__SETSCHED);
3570 }
3571
3572 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3573 {
3574         int rc;
3575
3576         rc = cap_task_setioprio(p, ioprio);
3577         if (rc)
3578                 return rc;
3579
3580         return current_has_perm(p, PROCESS__SETSCHED);
3581 }
3582
3583 static int selinux_task_getioprio(struct task_struct *p)
3584 {
3585         return current_has_perm(p, PROCESS__GETSCHED);
3586 }
3587
3588 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3589                 struct rlimit *new_rlim)
3590 {
3591         struct rlimit *old_rlim = p->signal->rlim + resource;
3592
3593         /* Control the ability to change the hard limit (whether
3594            lowering or raising it), so that the hard limit can
3595            later be used as a safe reset point for the soft limit
3596            upon context transitions.  See selinux_bprm_committing_creds. */
3597         if (old_rlim->rlim_max != new_rlim->rlim_max)
3598                 return current_has_perm(p, PROCESS__SETRLIMIT);
3599
3600         return 0;
3601 }
3602
3603 static int selinux_task_setscheduler(struct task_struct *p)
3604 {
3605         int rc;
3606
3607         rc = cap_task_setscheduler(p);
3608         if (rc)
3609                 return rc;
3610
3611         return current_has_perm(p, PROCESS__SETSCHED);
3612 }
3613
3614 static int selinux_task_getscheduler(struct task_struct *p)
3615 {
3616         return current_has_perm(p, PROCESS__GETSCHED);
3617 }
3618
3619 static int selinux_task_movememory(struct task_struct *p)
3620 {
3621         return current_has_perm(p, PROCESS__SETSCHED);
3622 }
3623
3624 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3625                                 int sig, u32 secid)
3626 {
3627         u32 perm;
3628         int rc;
3629
3630         if (!sig)
3631                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3632         else
3633                 perm = signal_to_av(sig);
3634         if (secid)
3635                 rc = avc_has_perm(secid, task_sid(p),
3636                                   SECCLASS_PROCESS, perm, NULL);
3637         else
3638                 rc = current_has_perm(p, perm);
3639         return rc;
3640 }
3641
3642 static int selinux_task_wait(struct task_struct *p)
3643 {
3644         return task_has_perm(p, current, PROCESS__SIGCHLD);
3645 }
3646
3647 static void selinux_task_to_inode(struct task_struct *p,
3648                                   struct inode *inode)
3649 {
3650         struct inode_security_struct *isec = inode->i_security;
3651         u32 sid = task_sid(p);
3652
3653         isec->sid = sid;
3654         isec->initialized = 1;
3655 }
3656
3657 /* Returns error only if unable to parse addresses */
3658 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3659                         struct common_audit_data *ad, u8 *proto)
3660 {
3661         int offset, ihlen, ret = -EINVAL;
3662         struct iphdr _iph, *ih;
3663
3664         offset = skb_network_offset(skb);
3665         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3666         if (ih == NULL)
3667                 goto out;
3668
3669         ihlen = ih->ihl * 4;
3670         if (ihlen < sizeof(_iph))
3671                 goto out;
3672
3673         ad->u.net->v4info.saddr = ih->saddr;
3674         ad->u.net->v4info.daddr = ih->daddr;
3675         ret = 0;
3676
3677         if (proto)
3678                 *proto = ih->protocol;
3679
3680         switch (ih->protocol) {
3681         case IPPROTO_TCP: {
3682                 struct tcphdr _tcph, *th;
3683
3684                 if (ntohs(ih->frag_off) & IP_OFFSET)
3685                         break;
3686
3687                 offset += ihlen;
3688                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3689                 if (th == NULL)
3690                         break;
3691
3692                 ad->u.net->sport = th->source;
3693                 ad->u.net->dport = th->dest;
3694                 break;
3695         }
3696
3697         case IPPROTO_UDP: {
3698                 struct udphdr _udph, *uh;
3699
3700                 if (ntohs(ih->frag_off) & IP_OFFSET)
3701                         break;
3702
3703                 offset += ihlen;
3704                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3705                 if (uh == NULL)
3706                         break;
3707
3708                 ad->u.net->sport = uh->source;
3709                 ad->u.net->dport = uh->dest;
3710                 break;
3711         }
3712
3713         case IPPROTO_DCCP: {
3714                 struct dccp_hdr _dccph, *dh;
3715
3716                 if (ntohs(ih->frag_off) & IP_OFFSET)
3717                         break;
3718
3719                 offset += ihlen;
3720                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3721                 if (dh == NULL)
3722                         break;
3723
3724                 ad->u.net->sport = dh->dccph_sport;
3725                 ad->u.net->dport = dh->dccph_dport;
3726                 break;
3727         }
3728
3729         default:
3730                 break;
3731         }
3732 out:
3733         return ret;
3734 }
3735
3736 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3737
3738 /* Returns error only if unable to parse addresses */
3739 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3740                         struct common_audit_data *ad, u8 *proto)
3741 {
3742         u8 nexthdr;
3743         int ret = -EINVAL, offset;
3744         struct ipv6hdr _ipv6h, *ip6;
3745         __be16 frag_off;
3746
3747         offset = skb_network_offset(skb);
3748         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3749         if (ip6 == NULL)
3750                 goto out;
3751
3752         ad->u.net->v6info.saddr = ip6->saddr;
3753         ad->u.net->v6info.daddr = ip6->daddr;
3754         ret = 0;
3755
3756         nexthdr = ip6->nexthdr;
3757         offset += sizeof(_ipv6h);
3758         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3759         if (offset < 0)
3760                 goto out;
3761
3762         if (proto)
3763                 *proto = nexthdr;
3764
3765         switch (nexthdr) {
3766         case IPPROTO_TCP: {
3767                 struct tcphdr _tcph, *th;
3768
3769                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3770                 if (th == NULL)
3771                         break;
3772
3773                 ad->u.net->sport = th->source;
3774                 ad->u.net->dport = th->dest;
3775                 break;
3776         }
3777
3778         case IPPROTO_UDP: {
3779                 struct udphdr _udph, *uh;
3780
3781                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3782                 if (uh == NULL)
3783                         break;
3784
3785                 ad->u.net->sport = uh->source;
3786                 ad->u.net->dport = uh->dest;
3787                 break;
3788         }
3789
3790         case IPPROTO_DCCP: {
3791                 struct dccp_hdr _dccph, *dh;
3792
3793                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3794                 if (dh == NULL)
3795                         break;
3796
3797                 ad->u.net->sport = dh->dccph_sport;
3798                 ad->u.net->dport = dh->dccph_dport;
3799                 break;
3800         }
3801
3802         /* includes fragments */
3803         default:
3804                 break;
3805         }
3806 out:
3807         return ret;
3808 }
3809
3810 #endif /* IPV6 */
3811
3812 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3813                              char **_addrp, int src, u8 *proto)
3814 {
3815         char *addrp;
3816         int ret;
3817
3818         switch (ad->u.net->family) {
3819         case PF_INET:
3820                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3821                 if (ret)
3822                         goto parse_error;
3823                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3824                                        &ad->u.net->v4info.daddr);
3825                 goto okay;
3826
3827 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3828         case PF_INET6:
3829                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3830                 if (ret)
3831                         goto parse_error;
3832                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3833                                        &ad->u.net->v6info.daddr);
3834                 goto okay;
3835 #endif  /* IPV6 */
3836         default:
3837                 addrp = NULL;
3838                 goto okay;
3839         }
3840
3841 parse_error:
3842         printk(KERN_WARNING
3843                "SELinux: failure in selinux_parse_skb(),"
3844                " unable to parse packet\n");
3845         return ret;
3846
3847 okay:
3848         if (_addrp)
3849                 *_addrp = addrp;
3850         return 0;
3851 }
3852
3853 /**
3854  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3855  * @skb: the packet
3856  * @family: protocol family
3857  * @sid: the packet's peer label SID
3858  *
3859  * Description:
3860  * Check the various different forms of network peer labeling and determine
3861  * the peer label/SID for the packet; most of the magic actually occurs in
3862  * the security server function security_net_peersid_cmp().  The function
3863  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3864  * or -EACCES if @sid is invalid due to inconsistencies with the different
3865  * peer labels.
3866  *
3867  */
3868 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3869 {
3870         int err;
3871         u32 xfrm_sid;
3872         u32 nlbl_sid;
3873         u32 nlbl_type;
3874
3875         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3876         if (unlikely(err))
3877                 return -EACCES;
3878         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3879         if (unlikely(err))
3880                 return -EACCES;
3881
3882         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3883         if (unlikely(err)) {
3884                 printk(KERN_WARNING
3885                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3886                        " unable to determine packet's peer label\n");
3887                 return -EACCES;
3888         }
3889
3890         return 0;
3891 }
3892
3893 /**
3894  * selinux_conn_sid - Determine the child socket label for a connection
3895  * @sk_sid: the parent socket's SID
3896  * @skb_sid: the packet's SID
3897  * @conn_sid: the resulting connection SID
3898  *
3899  * If @skb_sid is valid then the user:role:type information from @sk_sid is
3900  * combined with the MLS information from @skb_sid in order to create
3901  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
3902  * of @sk_sid.  Returns zero on success, negative values on failure.
3903  *
3904  */
3905 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3906 {
3907         int err = 0;
3908
3909         if (skb_sid != SECSID_NULL)
3910                 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3911         else
3912                 *conn_sid = sk_sid;
3913
3914         return err;
3915 }
3916
3917 /* socket security operations */
3918
3919 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3920                                  u16 secclass, u32 *socksid)
3921 {
3922         if (tsec->sockcreate_sid > SECSID_NULL) {
3923                 *socksid = tsec->sockcreate_sid;
3924                 return 0;
3925         }
3926
3927         return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3928                                        socksid);
3929 }
3930
3931 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3932 {
3933         struct sk_security_struct *sksec = sk->sk_security;
3934         struct common_audit_data ad;
3935         struct lsm_network_audit net = {0,};
3936         u32 tsid = task_sid(task);
3937
3938         if (sksec->sid == SECINITSID_KERNEL)
3939                 return 0;
3940
3941         ad.type = LSM_AUDIT_DATA_NET;
3942         ad.u.net = &net;
3943         ad.u.net->sk = sk;
3944
3945         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3946 }
3947
3948 static int selinux_socket_create(int family, int type,
3949                                  int protocol, int kern)
3950 {
3951         const struct task_security_struct *tsec = current_security();
3952         u32 newsid;
3953         u16 secclass;
3954         int rc;
3955
3956         if (kern)
3957                 return 0;
3958
3959         secclass = socket_type_to_security_class(family, type, protocol);
3960         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3961         if (rc)
3962                 return rc;
3963
3964         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3965 }
3966
3967 static int selinux_socket_post_create(struct socket *sock, int family,
3968                                       int type, int protocol, int kern)
3969 {
3970         const struct task_security_struct *tsec = current_security();
3971         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3972         struct sk_security_struct *sksec;
3973         int err = 0;
3974
3975         isec->sclass = socket_type_to_security_class(family, type, protocol);
3976
3977         if (kern)
3978                 isec->sid = SECINITSID_KERNEL;
3979         else {
3980                 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3981                 if (err)
3982                         return err;
3983         }
3984
3985         isec->initialized = 1;
3986
3987         if (sock->sk) {
3988                 sksec = sock->sk->sk_security;
3989                 sksec->sid = isec->sid;
3990                 sksec->sclass = isec->sclass;
3991                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3992         }
3993
3994         return err;
3995 }
3996
3997 /* Range of port numbers used to automatically bind.
3998    Need to determine whether we should perform a name_bind
3999    permission check between the socket and the port number. */
4000
4001 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4002 {
4003         struct sock *sk = sock->sk;
4004         u16 family;
4005         int err;
4006
4007         err = sock_has_perm(current, sk, SOCKET__BIND);
4008         if (err)
4009                 goto out;
4010
4011         /*
4012          * If PF_INET or PF_INET6, check name_bind permission for the port.
4013          * Multiple address binding for SCTP is not supported yet: we just
4014          * check the first address now.
4015          */
4016         family = sk->sk_family;
4017         if (family == PF_INET || family == PF_INET6) {
4018                 char *addrp;
4019                 struct sk_security_struct *sksec = sk->sk_security;
4020                 struct common_audit_data ad;
4021                 struct lsm_network_audit net = {0,};
4022                 struct sockaddr_in *addr4 = NULL;
4023                 struct sockaddr_in6 *addr6 = NULL;
4024                 unsigned short snum;
4025                 u32 sid, node_perm;
4026
4027                 if (family == PF_INET) {
4028                         addr4 = (struct sockaddr_in *)address;
4029                         snum = ntohs(addr4->sin_port);
4030                         addrp = (char *)&addr4->sin_addr.s_addr;
4031                 } else {
4032                         addr6 = (struct sockaddr_in6 *)address;
4033                         snum = ntohs(addr6->sin6_port);
4034                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4035                 }
4036
4037                 if (snum) {
4038                         int low, high;
4039
4040                         inet_get_local_port_range(sock_net(sk), &low, &high);
4041
4042                         if (snum < max(PROT_SOCK, low) || snum > high) {
4043                                 err = sel_netport_sid(sk->sk_protocol,
4044                                                       snum, &sid);
4045                                 if (err)
4046                                         goto out;
4047                                 ad.type = LSM_AUDIT_DATA_NET;
4048                                 ad.u.net = &net;
4049                                 ad.u.net->sport = htons(snum);
4050                                 ad.u.net->family = family;
4051                                 err = avc_has_perm(sksec->sid, sid,
4052                                                    sksec->sclass,
4053                                                    SOCKET__NAME_BIND, &ad);
4054                                 if (err)
4055                                         goto out;
4056                         }
4057                 }
4058
4059                 switch (sksec->sclass) {
4060                 case SECCLASS_TCP_SOCKET:
4061                         node_perm = TCP_SOCKET__NODE_BIND;
4062                         break;
4063
4064                 case SECCLASS_UDP_SOCKET:
4065                         node_perm = UDP_SOCKET__NODE_BIND;
4066                         break;
4067
4068                 case SECCLASS_DCCP_SOCKET:
4069                         node_perm = DCCP_SOCKET__NODE_BIND;
4070                         break;
4071
4072                 default:
4073                         node_perm = RAWIP_SOCKET__NODE_BIND;
4074                         break;
4075                 }
4076
4077                 err = sel_netnode_sid(addrp, family, &sid);
4078                 if (err)
4079                         goto out;
4080
4081                 ad.type = LSM_AUDIT_DATA_NET;
4082                 ad.u.net = &net;
4083                 ad.u.net->sport = htons(snum);
4084                 ad.u.net->family = family;
4085
4086                 if (family == PF_INET)
4087                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4088                 else
4089                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4090
4091                 err = avc_has_perm(sksec->sid, sid,
4092                                    sksec->sclass, node_perm, &ad);
4093                 if (err)
4094                         goto out;
4095         }
4096 out:
4097         return err;
4098 }
4099
4100 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4101 {
4102         struct sock *sk = sock->sk;
4103         struct sk_security_struct *sksec = sk->sk_security;
4104         int err;
4105
4106         err = sock_has_perm(current, sk, SOCKET__CONNECT);
4107         if (err)
4108                 return err;
4109
4110         /*
4111          * If a TCP or DCCP socket, check name_connect permission for the port.
4112          */
4113         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4114             sksec->sclass == SECCLASS_DCCP_SOCKET) {
4115                 struct common_audit_data ad;
4116                 struct lsm_network_audit net = {0,};
4117                 struct sockaddr_in *addr4 = NULL;
4118                 struct sockaddr_in6 *addr6 = NULL;
4119                 unsigned short snum;
4120                 u32 sid, perm;
4121
4122                 if (sk->sk_family == PF_INET) {
4123                         addr4 = (struct sockaddr_in *)address;
4124                         if (addrlen < sizeof(struct sockaddr_in))
4125                                 return -EINVAL;
4126                         snum = ntohs(addr4->sin_port);
4127                 } else {
4128                         addr6 = (struct sockaddr_in6 *)address;
4129                         if (addrlen < SIN6_LEN_RFC2133)
4130                                 return -EINVAL;
4131                         snum = ntohs(addr6->sin6_port);
4132                 }
4133
4134                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4135                 if (err)
4136                         goto out;
4137
4138                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4139                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4140
4141                 ad.type = LSM_AUDIT_DATA_NET;
4142                 ad.u.net = &net;
4143                 ad.u.net->dport = htons(snum);
4144                 ad.u.net->family = sk->sk_family;
4145                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4146                 if (err)
4147                         goto out;
4148         }
4149
4150         err = selinux_netlbl_socket_connect(sk, address);
4151
4152 out:
4153         return err;
4154 }
4155
4156 static int selinux_socket_listen(struct socket *sock, int backlog)
4157 {
4158         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4159 }
4160
4161 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4162 {
4163         int err;
4164         struct inode_security_struct *isec;
4165         struct inode_security_struct *newisec;
4166
4167         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4168         if (err)
4169                 return err;
4170
4171         newisec = SOCK_INODE(newsock)->i_security;
4172
4173         isec = SOCK_INODE(sock)->i_security;
4174         newisec->sclass = isec->sclass;
4175         newisec->sid = isec->sid;
4176         newisec->initialized = 1;
4177
4178         return 0;
4179 }
4180
4181 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4182                                   int size)
4183 {
4184         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4185 }
4186
4187 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4188                                   int size, int flags)
4189 {
4190         return sock_has_perm(current, sock->sk, SOCKET__READ);
4191 }
4192
4193 static int selinux_socket_getsockname(struct socket *sock)
4194 {
4195         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4196 }
4197
4198 static int selinux_socket_getpeername(struct socket *sock)
4199 {
4200         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4201 }
4202
4203 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4204 {
4205         int err;
4206
4207         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4208         if (err)
4209                 return err;
4210
4211         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4212 }
4213
4214 static int selinux_socket_getsockopt(struct socket *sock, int level,
4215                                      int optname)
4216 {
4217         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4218 }
4219
4220 static int selinux_socket_shutdown(struct socket *sock, int how)
4221 {
4222         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4223 }
4224
4225 static int selinux_socket_unix_stream_connect(struct sock *sock,
4226                                               struct sock *other,
4227                                               struct sock *newsk)
4228 {
4229         struct sk_security_struct *sksec_sock = sock->sk_security;
4230         struct sk_security_struct *sksec_other = other->sk_security;
4231         struct sk_security_struct *sksec_new = newsk->sk_security;
4232         struct common_audit_data ad;
4233         struct lsm_network_audit net = {0,};
4234         int err;
4235
4236         ad.type = LSM_AUDIT_DATA_NET;
4237         ad.u.net = &net;
4238         ad.u.net->sk = other;
4239
4240         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4241                            sksec_other->sclass,
4242                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4243         if (err)
4244                 return err;
4245
4246         /* server child socket */
4247         sksec_new->peer_sid = sksec_sock->sid;
4248         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4249                                     &sksec_new->sid);
4250         if (err)
4251                 return err;
4252
4253         /* connecting socket */
4254         sksec_sock->peer_sid = sksec_new->sid;
4255
4256         return 0;
4257 }
4258
4259 static int selinux_socket_unix_may_send(struct socket *sock,
4260                                         struct socket *other)
4261 {
4262         struct sk_security_struct *ssec = sock->sk->sk_security;
4263         struct sk_security_struct *osec = other->sk->sk_security;
4264         struct common_audit_data ad;
4265         struct lsm_network_audit net = {0,};
4266
4267         ad.type = LSM_AUDIT_DATA_NET;
4268         ad.u.net = &net;
4269         ad.u.net->sk = other->sk;
4270
4271         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4272                             &ad);
4273 }
4274
4275 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4276                                     u32 peer_sid,
4277                                     struct common_audit_data *ad)
4278 {
4279         int err;
4280         u32 if_sid;
4281         u32 node_sid;
4282
4283         err = sel_netif_sid(ifindex, &if_sid);
4284         if (err)
4285                 return err;
4286         err = avc_has_perm(peer_sid, if_sid,
4287                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4288         if (err)
4289                 return err;
4290
4291         err = sel_netnode_sid(addrp, family, &node_sid);
4292         if (err)
4293                 return err;
4294         return avc_has_perm(peer_sid, node_sid,
4295                             SECCLASS_NODE, NODE__RECVFROM, ad);
4296 }
4297
4298 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4299                                        u16 family)
4300 {
4301         int err = 0;
4302         struct sk_security_struct *sksec = sk->sk_security;
4303         u32 sk_sid = sksec->sid;
4304         struct common_audit_data ad;
4305         struct lsm_network_audit net = {0,};
4306         char *addrp;
4307
4308         ad.type = LSM_AUDIT_DATA_NET;
4309         ad.u.net = &net;
4310         ad.u.net->netif = skb->skb_iif;
4311         ad.u.net->family = family;
4312         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4313         if (err)
4314                 return err;
4315
4316         if (selinux_secmark_enabled()) {
4317                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4318                                    PACKET__RECV, &ad);
4319                 if (err)
4320                         return err;
4321         }
4322
4323         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4324         if (err)
4325                 return err;
4326         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4327
4328         return err;
4329 }
4330
4331 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4332 {
4333         int err;
4334         struct sk_security_struct *sksec = sk->sk_security;
4335         u16 family = sk->sk_family;
4336         u32 sk_sid = sksec->sid;
4337         struct common_audit_data ad;
4338         struct lsm_network_audit net = {0,};
4339         char *addrp;
4340         u8 secmark_active;
4341         u8 peerlbl_active;
4342
4343         if (family != PF_INET && family != PF_INET6)
4344                 return 0;
4345
4346         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4347         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4348                 family = PF_INET;
4349
4350         /* If any sort of compatibility mode is enabled then handoff processing
4351          * to the selinux_sock_rcv_skb_compat() function to deal with the
4352          * special handling.  We do this in an attempt to keep this function
4353          * as fast and as clean as possible. */
4354         if (!selinux_policycap_netpeer)
4355                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4356
4357         secmark_active = selinux_secmark_enabled();
4358         peerlbl_active = selinux_peerlbl_enabled();
4359         if (!secmark_active && !peerlbl_active)
4360                 return 0;
4361
4362         ad.type = LSM_AUDIT_DATA_NET;
4363         ad.u.net = &net;
4364         ad.u.net->netif = skb->skb_iif;
4365         ad.u.net->family = family;
4366         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4367         if (err)
4368                 return err;
4369
4370         if (peerlbl_active) {
4371                 u32 peer_sid;
4372
4373                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4374                 if (err)
4375                         return err;
4376                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4377                                                peer_sid, &ad);
4378                 if (err) {
4379                         selinux_netlbl_err(skb, err, 0);
4380                         return err;
4381                 }
4382                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4383                                    PEER__RECV, &ad);
4384                 if (err) {
4385                         selinux_netlbl_err(skb, err, 0);
4386                         return err;
4387                 }
4388         }
4389
4390         if (secmark_active) {
4391                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4392                                    PACKET__RECV, &ad);
4393                 if (err)
4394                         return err;
4395         }
4396
4397         return err;
4398 }
4399
4400 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4401                                             int __user *optlen, unsigned len)
4402 {
4403         int err = 0;
4404         char *scontext;
4405         u32 scontext_len;
4406         struct sk_security_struct *sksec = sock->sk->sk_security;
4407         u32 peer_sid = SECSID_NULL;
4408
4409         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4410             sksec->sclass == SECCLASS_TCP_SOCKET)
4411                 peer_sid = sksec->peer_sid;
4412         if (peer_sid == SECSID_NULL)
4413                 return -ENOPROTOOPT;
4414
4415         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4416         if (err)
4417                 return err;
4418
4419         if (scontext_len > len) {
4420                 err = -ERANGE;
4421                 goto out_len;
4422         }
4423
4424         if (copy_to_user(optval, scontext, scontext_len))
4425                 err = -EFAULT;
4426
4427 out_len:
4428         if (put_user(scontext_len, optlen))
4429                 err = -EFAULT;
4430         kfree(scontext);
4431         return err;
4432 }
4433
4434 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4435 {
4436         u32 peer_secid = SECSID_NULL;
4437         u16 family;
4438
4439         if (skb && skb->protocol == htons(ETH_P_IP))
4440                 family = PF_INET;
4441         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4442                 family = PF_INET6;
4443         else if (sock)
4444                 family = sock->sk->sk_family;
4445         else
4446                 goto out;
4447
4448         if (sock && family == PF_UNIX)
4449                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4450         else if (skb)
4451                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4452
4453 out:
4454         *secid = peer_secid;
4455         if (peer_secid == SECSID_NULL)
4456                 return -EINVAL;
4457         return 0;
4458 }
4459
4460 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4461 {
4462         struct sk_security_struct *sksec;
4463
4464         sksec = kzalloc(sizeof(*sksec), priority);
4465         if (!sksec)
4466                 return -ENOMEM;
4467
4468         sksec->peer_sid = SECINITSID_UNLABELED;
4469         sksec->sid = SECINITSID_UNLABELED;
4470         selinux_netlbl_sk_security_reset(sksec);
4471         sk->sk_security = sksec;
4472
4473         return 0;
4474 }
4475
4476 static void selinux_sk_free_security(struct sock *sk)
4477 {
4478         struct sk_security_struct *sksec = sk->sk_security;
4479
4480         sk->sk_security = NULL;
4481         selinux_netlbl_sk_security_free(sksec);
4482         kfree(sksec);
4483 }
4484
4485 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4486 {
4487         struct sk_security_struct *sksec = sk->sk_security;
4488         struct sk_security_struct *newsksec = newsk->sk_security;
4489
4490         newsksec->sid = sksec->sid;
4491         newsksec->peer_sid = sksec->peer_sid;
4492         newsksec->sclass = sksec->sclass;
4493
4494         selinux_netlbl_sk_security_reset(newsksec);
4495 }
4496
4497 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4498 {
4499         if (!sk)
4500                 *secid = SECINITSID_ANY_SOCKET;
4501         else {
4502                 struct sk_security_struct *sksec = sk->sk_security;
4503
4504                 *secid = sksec->sid;
4505         }
4506 }
4507
4508 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4509 {
4510         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4511         struct sk_security_struct *sksec = sk->sk_security;
4512
4513         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4514             sk->sk_family == PF_UNIX)
4515                 isec->sid = sksec->sid;
4516         sksec->sclass = isec->sclass;
4517 }
4518
4519 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4520                                      struct request_sock *req)
4521 {
4522         struct sk_security_struct *sksec = sk->sk_security;
4523         int err;
4524         u16 family = req->rsk_ops->family;
4525         u32 connsid;
4526         u32 peersid;
4527
4528         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4529         if (err)
4530                 return err;
4531         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4532         if (err)
4533                 return err;
4534         req->secid = connsid;
4535         req->peer_secid = peersid;
4536
4537         return selinux_netlbl_inet_conn_request(req, family);
4538 }
4539
4540 static void selinux_inet_csk_clone(struct sock *newsk,
4541                                    const struct request_sock *req)
4542 {
4543         struct sk_security_struct *newsksec = newsk->sk_security;
4544
4545         newsksec->sid = req->secid;
4546         newsksec->peer_sid = req->peer_secid;
4547         /* NOTE: Ideally, we should also get the isec->sid for the
4548            new socket in sync, but we don't have the isec available yet.
4549            So we will wait until sock_graft to do it, by which
4550            time it will have been created and available. */
4551
4552         /* We don't need to take any sort of lock here as we are the only
4553          * thread with access to newsksec */
4554         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4555 }
4556
4557 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4558 {
4559         u16 family = sk->sk_family;
4560         struct sk_security_struct *sksec = sk->sk_security;
4561
4562         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4563         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4564                 family = PF_INET;
4565
4566         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4567 }
4568
4569 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4570 {
4571         skb_set_owner_w(skb, sk);
4572 }
4573
4574 static int selinux_secmark_relabel_packet(u32 sid)
4575 {
4576         const struct task_security_struct *__tsec;
4577         u32 tsid;
4578
4579         __tsec = current_security();
4580         tsid = __tsec->sid;
4581
4582         return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4583 }
4584
4585 static void selinux_secmark_refcount_inc(void)
4586 {
4587         atomic_inc(&selinux_secmark_refcount);
4588 }
4589
4590 static void selinux_secmark_refcount_dec(void)
4591 {
4592         atomic_dec(&selinux_secmark_refcount);
4593 }
4594
4595 static void selinux_req_classify_flow(const struct request_sock *req,
4596                                       struct flowi *fl)
4597 {
4598         fl->flowi_secid = req->secid;
4599 }
4600
4601 static int selinux_tun_dev_alloc_security(void **security)
4602 {
4603         struct tun_security_struct *tunsec;
4604
4605         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4606         if (!tunsec)
4607                 return -ENOMEM;
4608         tunsec->sid = current_sid();
4609
4610         *security = tunsec;
4611         return 0;
4612 }
4613
4614 static void selinux_tun_dev_free_security(void *security)
4615 {
4616         kfree(security);
4617 }
4618
4619 static int selinux_tun_dev_create(void)
4620 {
4621         u32 sid = current_sid();
4622
4623         /* we aren't taking into account the "sockcreate" SID since the socket
4624          * that is being created here is not a socket in the traditional sense,
4625          * instead it is a private sock, accessible only to the kernel, and
4626          * representing a wide range of network traffic spanning multiple
4627          * connections unlike traditional sockets - check the TUN driver to
4628          * get a better understanding of why this socket is special */
4629
4630         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4631                             NULL);
4632 }
4633
4634 static int selinux_tun_dev_attach_queue(void *security)
4635 {
4636         struct tun_security_struct *tunsec = security;
4637
4638         return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4639                             TUN_SOCKET__ATTACH_QUEUE, NULL);
4640 }
4641
4642 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4643 {
4644         struct tun_security_struct *tunsec = security;
4645         struct sk_security_struct *sksec = sk->sk_security;
4646
4647         /* we don't currently perform any NetLabel based labeling here and it
4648          * isn't clear that we would want to do so anyway; while we could apply
4649          * labeling without the support of the TUN user the resulting labeled
4650          * traffic from the other end of the connection would almost certainly
4651          * cause confusion to the TUN user that had no idea network labeling
4652          * protocols were being used */
4653
4654         sksec->sid = tunsec->sid;
4655         sksec->sclass = SECCLASS_TUN_SOCKET;
4656
4657         return 0;
4658 }
4659
4660 static int selinux_tun_dev_open(void *security)
4661 {
4662         struct tun_security_struct *tunsec = security;
4663         u32 sid = current_sid();
4664         int err;
4665
4666         err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4667                            TUN_SOCKET__RELABELFROM, NULL);
4668         if (err)
4669                 return err;
4670         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4671                            TUN_SOCKET__RELABELTO, NULL);
4672         if (err)
4673                 return err;
4674         tunsec->sid = sid;
4675
4676         return 0;
4677 }
4678
4679 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4680 {
4681         int err = 0;
4682         u32 perm;
4683         struct nlmsghdr *nlh;
4684         struct sk_security_struct *sksec = sk->sk_security;
4685
4686         if (skb->len < NLMSG_HDRLEN) {
4687                 err = -EINVAL;
4688                 goto out;
4689         }
4690         nlh = nlmsg_hdr(skb);
4691
4692         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4693         if (err) {
4694                 if (err == -EINVAL) {
4695                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4696                                   "SELinux:  unrecognized netlink message"
4697                                   " type=%hu for sclass=%hu\n",
4698                                   nlh->nlmsg_type, sksec->sclass);
4699                         if (!selinux_enforcing || security_get_allow_unknown())
4700                                 err = 0;
4701                 }
4702
4703                 /* Ignore */
4704                 if (err == -ENOENT)
4705                         err = 0;
4706                 goto out;
4707         }
4708
4709         err = sock_has_perm(current, sk, perm);
4710 out:
4711         return err;
4712 }
4713
4714 #ifdef CONFIG_NETFILTER
4715
4716 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4717                                        u16 family)
4718 {
4719         int err;
4720         char *addrp;
4721         u32 peer_sid;
4722         struct common_audit_data ad;
4723         struct lsm_network_audit net = {0,};
4724         u8 secmark_active;
4725         u8 netlbl_active;
4726         u8 peerlbl_active;
4727
4728         if (!selinux_policycap_netpeer)
4729                 return NF_ACCEPT;
4730
4731         secmark_active = selinux_secmark_enabled();
4732         netlbl_active = netlbl_enabled();
4733         peerlbl_active = selinux_peerlbl_enabled();
4734         if (!secmark_active && !peerlbl_active)
4735                 return NF_ACCEPT;
4736
4737         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4738                 return NF_DROP;
4739
4740         ad.type = LSM_AUDIT_DATA_NET;
4741         ad.u.net = &net;
4742         ad.u.net->netif = ifindex;
4743         ad.u.net->family = family;
4744         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4745                 return NF_DROP;
4746
4747         if (peerlbl_active) {
4748                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4749                                                peer_sid, &ad);
4750                 if (err) {
4751                         selinux_netlbl_err(skb, err, 1);
4752                         return NF_DROP;
4753                 }
4754         }
4755
4756         if (secmark_active)
4757                 if (avc_has_perm(peer_sid, skb->secmark,
4758                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4759                         return NF_DROP;
4760
4761         if (netlbl_active)
4762                 /* we do this in the FORWARD path and not the POST_ROUTING
4763                  * path because we want to make sure we apply the necessary
4764                  * labeling before IPsec is applied so we can leverage AH
4765                  * protection */
4766                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4767                         return NF_DROP;
4768
4769         return NF_ACCEPT;
4770 }
4771
4772 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4773                                          struct sk_buff *skb,
4774                                          const struct net_device *in,
4775                                          const struct net_device *out,
4776                                          int (*okfn)(struct sk_buff *))
4777 {
4778         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4779 }
4780
4781 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4782 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4783                                          struct sk_buff *skb,
4784                                          const struct net_device *in,
4785                                          const struct net_device *out,
4786                                          int (*okfn)(struct sk_buff *))
4787 {
4788         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4789 }
4790 #endif  /* IPV6 */
4791
4792 static unsigned int selinux_ip_output(struct sk_buff *skb,
4793                                       u16 family)
4794 {
4795         struct sock *sk;
4796         u32 sid;
4797
4798         if (!netlbl_enabled())
4799                 return NF_ACCEPT;
4800
4801         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4802          * because we want to make sure we apply the necessary labeling
4803          * before IPsec is applied so we can leverage AH protection */
4804         sk = skb->sk;
4805         if (sk) {
4806                 struct sk_security_struct *sksec;
4807
4808                 if (sk->sk_state == TCP_LISTEN)
4809                         /* if the socket is the listening state then this
4810                          * packet is a SYN-ACK packet which means it needs to
4811                          * be labeled based on the connection/request_sock and
4812                          * not the parent socket.  unfortunately, we can't
4813                          * lookup the request_sock yet as it isn't queued on
4814                          * the parent socket until after the SYN-ACK is sent.
4815                          * the "solution" is to simply pass the packet as-is
4816                          * as any IP option based labeling should be copied
4817                          * from the initial connection request (in the IP
4818                          * layer).  it is far from ideal, but until we get a
4819                          * security label in the packet itself this is the
4820                          * best we can do. */
4821                         return NF_ACCEPT;
4822
4823                 /* standard practice, label using the parent socket */
4824                 sksec = sk->sk_security;
4825                 sid = sksec->sid;
4826         } else
4827                 sid = SECINITSID_KERNEL;
4828         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4829                 return NF_DROP;
4830
4831         return NF_ACCEPT;
4832 }
4833
4834 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4835                                         struct sk_buff *skb,
4836                                         const struct net_device *in,
4837                                         const struct net_device *out,
4838                                         int (*okfn)(struct sk_buff *))
4839 {
4840         return selinux_ip_output(skb, PF_INET);
4841 }
4842
4843 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4844                                                 int ifindex,
4845                                                 u16 family)
4846 {
4847         struct sock *sk = skb->sk;
4848         struct sk_security_struct *sksec;
4849         struct common_audit_data ad;
4850         struct lsm_network_audit net = {0,};
4851         char *addrp;
4852         u8 proto;
4853
4854         if (sk == NULL)
4855                 return NF_ACCEPT;
4856         sksec = sk->sk_security;
4857
4858         ad.type = LSM_AUDIT_DATA_NET;
4859         ad.u.net = &net;
4860         ad.u.net->netif = ifindex;
4861         ad.u.net->family = family;
4862         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4863                 return NF_DROP;
4864
4865         if (selinux_secmark_enabled())
4866                 if (avc_has_perm(sksec->sid, skb->secmark,
4867                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4868                         return NF_DROP_ERR(-ECONNREFUSED);
4869
4870         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4871                 return NF_DROP_ERR(-ECONNREFUSED);
4872
4873         return NF_ACCEPT;
4874 }
4875
4876 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4877                                          u16 family)
4878 {
4879         u32 secmark_perm;
4880         u32 peer_sid;
4881         struct sock *sk;
4882         struct common_audit_data ad;
4883         struct lsm_network_audit net = {0,};
4884         char *addrp;
4885         u8 secmark_active;
4886         u8 peerlbl_active;
4887
4888         /* If any sort of compatibility mode is enabled then handoff processing
4889          * to the selinux_ip_postroute_compat() function to deal with the
4890          * special handling.  We do this in an attempt to keep this function
4891          * as fast and as clean as possible. */
4892         if (!selinux_policycap_netpeer)
4893                 return selinux_ip_postroute_compat(skb, ifindex, family);
4894
4895         secmark_active = selinux_secmark_enabled();
4896         peerlbl_active = selinux_peerlbl_enabled();
4897         if (!secmark_active && !peerlbl_active)
4898                 return NF_ACCEPT;
4899
4900         sk = skb->sk;
4901
4902 #ifdef CONFIG_XFRM
4903         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4904          * packet transformation so allow the packet to pass without any checks
4905          * since we'll have another chance to perform access control checks
4906          * when the packet is on it's final way out.
4907          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4908          *       is NULL, in this case go ahead and apply access control.
4909          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4910          *       TCP listening state we cannot wait until the XFRM processing
4911          *       is done as we will miss out on the SA label if we do;
4912          *       unfortunately, this means more work, but it is only once per
4913          *       connection. */
4914         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4915             !(sk != NULL && sk->sk_state == TCP_LISTEN))
4916                 return NF_ACCEPT;
4917 #endif
4918
4919         if (sk == NULL) {
4920                 /* Without an associated socket the packet is either coming
4921                  * from the kernel or it is being forwarded; check the packet
4922                  * to determine which and if the packet is being forwarded
4923                  * query the packet directly to determine the security label. */
4924                 if (skb->skb_iif) {
4925                         secmark_perm = PACKET__FORWARD_OUT;
4926                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4927                                 return NF_DROP;
4928                 } else {
4929                         secmark_perm = PACKET__SEND;
4930                         peer_sid = SECINITSID_KERNEL;
4931                 }
4932         } else if (sk->sk_state == TCP_LISTEN) {
4933                 /* Locally generated packet but the associated socket is in the
4934                  * listening state which means this is a SYN-ACK packet.  In
4935                  * this particular case the correct security label is assigned
4936                  * to the connection/request_sock but unfortunately we can't
4937                  * query the request_sock as it isn't queued on the parent
4938                  * socket until after the SYN-ACK packet is sent; the only
4939                  * viable choice is to regenerate the label like we do in
4940                  * selinux_inet_conn_request().  See also selinux_ip_output()
4941                  * for similar problems. */
4942                 u32 skb_sid;
4943                 struct sk_security_struct *sksec = sk->sk_security;
4944                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4945                         return NF_DROP;
4946                 /* At this point, if the returned skb peerlbl is SECSID_NULL
4947                  * and the packet has been through at least one XFRM
4948                  * transformation then we must be dealing with the "final"
4949                  * form of labeled IPsec packet; since we've already applied
4950                  * all of our access controls on this packet we can safely
4951                  * pass the packet. */
4952                 if (skb_sid == SECSID_NULL) {
4953                         switch (family) {
4954                         case PF_INET:
4955                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4956                                         return NF_ACCEPT;
4957                                 break;
4958                         case PF_INET6:
4959                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4960                                         return NF_ACCEPT;
4961                         default:
4962                                 return NF_DROP_ERR(-ECONNREFUSED);
4963                         }
4964                 }
4965                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4966                         return NF_DROP;
4967                 secmark_perm = PACKET__SEND;
4968         } else {
4969                 /* Locally generated packet, fetch the security label from the
4970                  * associated socket. */
4971                 struct sk_security_struct *sksec = sk->sk_security;
4972                 peer_sid = sksec->sid;
4973                 secmark_perm = PACKET__SEND;
4974         }
4975
4976         ad.type = LSM_AUDIT_DATA_NET;
4977         ad.u.net = &net;
4978         ad.u.net->netif = ifindex;
4979         ad.u.net->family = family;
4980         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4981                 return NF_DROP;
4982
4983         if (secmark_active)
4984                 if (avc_has_perm(peer_sid, skb->secmark,
4985                                  SECCLASS_PACKET, secmark_perm, &ad))
4986                         return NF_DROP_ERR(-ECONNREFUSED);
4987
4988         if (peerlbl_active) {
4989                 u32 if_sid;
4990                 u32 node_sid;
4991
4992                 if (sel_netif_sid(ifindex, &if_sid))
4993                         return NF_DROP;
4994                 if (avc_has_perm(peer_sid, if_sid,
4995                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4996                         return NF_DROP_ERR(-ECONNREFUSED);
4997
4998                 if (sel_netnode_sid(addrp, family, &node_sid))
4999                         return NF_DROP;
5000                 if (avc_has_perm(peer_sid, node_sid,
5001                                  SECCLASS_NODE, NODE__SENDTO, &ad))
5002                         return NF_DROP_ERR(-ECONNREFUSED);
5003         }
5004
5005         return NF_ACCEPT;
5006 }
5007
5008 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
5009                                            struct sk_buff *skb,
5010                                            const struct net_device *in,
5011                                            const struct net_device *out,
5012                                            int (*okfn)(struct sk_buff *))
5013 {
5014         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
5015 }
5016
5017 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5018 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5019                                            struct sk_buff *skb,
5020                                            const struct net_device *in,
5021                                            const struct net_device *out,
5022                                            int (*okfn)(struct sk_buff *))
5023 {
5024         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5025 }
5026 #endif  /* IPV6 */
5027
5028 #endif  /* CONFIG_NETFILTER */
5029
5030 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5031 {
5032         int err;
5033
5034         err = cap_netlink_send(sk, skb);
5035         if (err)
5036                 return err;
5037
5038         return selinux_nlmsg_perm(sk, skb);
5039 }
5040
5041 static int ipc_alloc_security(struct task_struct *task,
5042                               struct kern_ipc_perm *perm,
5043                               u16 sclass)
5044 {
5045         struct ipc_security_struct *isec;
5046         u32 sid;
5047
5048         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5049         if (!isec)
5050                 return -ENOMEM;
5051
5052         sid = task_sid(task);
5053         isec->sclass = sclass;
5054         isec->sid = sid;
5055         perm->security = isec;
5056
5057         return 0;
5058 }
5059
5060 static void ipc_free_security(struct kern_ipc_perm *perm)
5061 {
5062         struct ipc_security_struct *isec = perm->security;
5063         perm->security = NULL;
5064         kfree(isec);
5065 }
5066
5067 static int msg_msg_alloc_security(struct msg_msg *msg)
5068 {
5069         struct msg_security_struct *msec;
5070
5071         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5072         if (!msec)
5073                 return -ENOMEM;
5074
5075         msec->sid = SECINITSID_UNLABELED;
5076         msg->security = msec;
5077
5078         return 0;
5079 }
5080
5081 static void msg_msg_free_security(struct msg_msg *msg)
5082 {
5083         struct msg_security_struct *msec = msg->security;
5084
5085         msg->security = NULL;
5086         kfree(msec);
5087 }
5088
5089 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5090                         u32 perms)
5091 {
5092         struct ipc_security_struct *isec;
5093         struct common_audit_data ad;
5094         u32 sid = current_sid();
5095
5096         isec = ipc_perms->security;
5097
5098         ad.type = LSM_AUDIT_DATA_IPC;
5099         ad.u.ipc_id = ipc_perms->key;
5100
5101         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5102 }
5103
5104 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5105 {
5106         return msg_msg_alloc_security(msg);
5107 }
5108
5109 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5110 {
5111         msg_msg_free_security(msg);
5112 }
5113
5114 /* message queue security operations */
5115 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5116 {
5117         struct ipc_security_struct *isec;
5118         struct common_audit_data ad;
5119         u32 sid = current_sid();
5120         int rc;
5121
5122         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5123         if (rc)
5124                 return rc;
5125
5126         isec = msq->q_perm.security;
5127
5128         ad.type = LSM_AUDIT_DATA_IPC;
5129         ad.u.ipc_id = msq->q_perm.key;
5130
5131         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5132                           MSGQ__CREATE, &ad);
5133         if (rc) {
5134                 ipc_free_security(&msq->q_perm);
5135                 return rc;
5136         }
5137         return 0;
5138 }
5139
5140 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5141 {
5142         ipc_free_security(&msq->q_perm);
5143 }
5144
5145 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5146 {
5147         struct ipc_security_struct *isec;
5148         struct common_audit_data ad;
5149         u32 sid = current_sid();
5150
5151         isec = msq->q_perm.security;
5152
5153         ad.type = LSM_AUDIT_DATA_IPC;
5154         ad.u.ipc_id = msq->q_perm.key;
5155
5156         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5157                             MSGQ__ASSOCIATE, &ad);
5158 }
5159
5160 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5161 {
5162         int err;
5163         int perms;
5164
5165         switch (cmd) {
5166         case IPC_INFO:
5167         case MSG_INFO:
5168                 /* No specific object, just general system-wide information. */
5169                 return task_has_system(current, SYSTEM__IPC_INFO);
5170         case IPC_STAT:
5171         case MSG_STAT:
5172                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5173                 break;
5174         case IPC_SET:
5175                 perms = MSGQ__SETATTR;
5176                 break;
5177         case IPC_RMID:
5178                 perms = MSGQ__DESTROY;
5179                 break;
5180         default:
5181                 return 0;
5182         }
5183
5184         err = ipc_has_perm(&msq->q_perm, perms);
5185         return err;
5186 }
5187
5188 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5189 {
5190         struct ipc_security_struct *isec;
5191         struct msg_security_struct *msec;
5192         struct common_audit_data ad;
5193         u32 sid = current_sid();
5194         int rc;
5195
5196         isec = msq->q_perm.security;
5197         msec = msg->security;
5198
5199         /*
5200          * First time through, need to assign label to the message
5201          */
5202         if (msec->sid == SECINITSID_UNLABELED) {
5203                 /*
5204                  * Compute new sid based on current process and
5205                  * message queue this message will be stored in
5206                  */
5207                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5208                                              NULL, &msec->sid);
5209                 if (rc)
5210                         return rc;
5211         }
5212
5213         ad.type = LSM_AUDIT_DATA_IPC;
5214         ad.u.ipc_id = msq->q_perm.key;
5215
5216         /* Can this process write to the queue? */
5217         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5218                           MSGQ__WRITE, &ad);
5219         if (!rc)
5220                 /* Can this process send the message */
5221                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5222                                   MSG__SEND, &ad);
5223         if (!rc)
5224                 /* Can the message be put in the queue? */
5225                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5226                                   MSGQ__ENQUEUE, &ad);
5227
5228         return rc;
5229 }
5230
5231 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5232                                     struct task_struct *target,
5233                                     long type, int mode)
5234 {
5235         struct ipc_security_struct *isec;
5236         struct msg_security_struct *msec;
5237         struct common_audit_data ad;
5238         u32 sid = task_sid(target);
5239         int rc;
5240
5241         isec = msq->q_perm.security;
5242         msec = msg->security;
5243
5244         ad.type = LSM_AUDIT_DATA_IPC;
5245         ad.u.ipc_id = msq->q_perm.key;
5246
5247         rc = avc_has_perm(sid, isec->sid,
5248                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5249         if (!rc)
5250                 rc = avc_has_perm(sid, msec->sid,
5251                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5252         return rc;
5253 }
5254
5255 /* Shared Memory security operations */
5256 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5257 {
5258         struct ipc_security_struct *isec;
5259         struct common_audit_data ad;
5260         u32 sid = current_sid();
5261         int rc;
5262
5263         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5264         if (rc)
5265                 return rc;
5266
5267         isec = shp->shm_perm.security;
5268
5269         ad.type = LSM_AUDIT_DATA_IPC;
5270         ad.u.ipc_id = shp->shm_perm.key;
5271
5272         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5273                           SHM__CREATE, &ad);
5274         if (rc) {
5275                 ipc_free_security(&shp->shm_perm);
5276                 return rc;
5277         }
5278         return 0;
5279 }
5280
5281 static void selinux_shm_free_security(struct shmid_kernel *shp)
5282 {
5283         ipc_free_security(&shp->shm_perm);
5284 }
5285
5286 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5287 {
5288         struct ipc_security_struct *isec;
5289         struct common_audit_data ad;
5290         u32 sid = current_sid();
5291
5292         isec = shp->shm_perm.security;
5293
5294         ad.type = LSM_AUDIT_DATA_IPC;
5295         ad.u.ipc_id = shp->shm_perm.key;
5296
5297         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5298                             SHM__ASSOCIATE, &ad);
5299 }
5300
5301 /* Note, at this point, shp is locked down */
5302 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5303 {
5304         int perms;
5305         int err;
5306
5307         switch (cmd) {
5308         case IPC_INFO:
5309         case SHM_INFO:
5310                 /* No specific object, just general system-wide information. */
5311                 return task_has_system(current, SYSTEM__IPC_INFO);
5312         case IPC_STAT:
5313         case SHM_STAT:
5314                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5315                 break;
5316         case IPC_SET:
5317                 perms = SHM__SETATTR;
5318                 break;
5319         case SHM_LOCK:
5320         case SHM_UNLOCK:
5321                 perms = SHM__LOCK;
5322                 break;
5323         case IPC_RMID:
5324                 perms = SHM__DESTROY;
5325                 break;
5326         default:
5327                 return 0;
5328         }
5329
5330         err = ipc_has_perm(&shp->shm_perm, perms);
5331         return err;
5332 }
5333
5334 static int selinux_shm_shmat(struct shmid_kernel *shp,
5335                              char __user *shmaddr, int shmflg)
5336 {
5337         u32 perms;
5338
5339         if (shmflg & SHM_RDONLY)
5340                 perms = SHM__READ;
5341         else
5342                 perms = SHM__READ | SHM__WRITE;
5343
5344         return ipc_has_perm(&shp->shm_perm, perms);
5345 }
5346
5347 /* Semaphore security operations */
5348 static int selinux_sem_alloc_security(struct sem_array *sma)
5349 {
5350         struct ipc_security_struct *isec;
5351         struct common_audit_data ad;
5352         u32 sid = current_sid();
5353         int rc;
5354
5355         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5356         if (rc)
5357                 return rc;
5358
5359         isec = sma->sem_perm.security;
5360
5361         ad.type = LSM_AUDIT_DATA_IPC;
5362         ad.u.ipc_id = sma->sem_perm.key;
5363
5364         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5365                           SEM__CREATE, &ad);
5366         if (rc) {
5367                 ipc_free_security(&sma->sem_perm);
5368                 return rc;
5369         }
5370         return 0;
5371 }
5372
5373 static void selinux_sem_free_security(struct sem_array *sma)
5374 {
5375         ipc_free_security(&sma->sem_perm);
5376 }
5377
5378 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5379 {
5380         struct ipc_security_struct *isec;
5381         struct common_audit_data ad;
5382         u32 sid = current_sid();
5383
5384         isec = sma->sem_perm.security;
5385
5386         ad.type = LSM_AUDIT_DATA_IPC;
5387         ad.u.ipc_id = sma->sem_perm.key;
5388
5389         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5390                             SEM__ASSOCIATE, &ad);
5391 }
5392
5393 /* Note, at this point, sma is locked down */
5394 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5395 {
5396         int err;
5397         u32 perms;
5398
5399         switch (cmd) {
5400         case IPC_INFO:
5401         case SEM_INFO:
5402                 /* No specific object, just general system-wide information. */
5403                 return task_has_system(current, SYSTEM__IPC_INFO);
5404         case GETPID:
5405         case GETNCNT:
5406         case GETZCNT:
5407                 perms = SEM__GETATTR;
5408                 break;
5409         case GETVAL:
5410         case GETALL:
5411                 perms = SEM__READ;
5412                 break;
5413         case SETVAL:
5414         case SETALL:
5415                 perms = SEM__WRITE;
5416                 break;
5417         case IPC_RMID:
5418                 perms = SEM__DESTROY;
5419                 break;
5420         case IPC_SET:
5421                 perms = SEM__SETATTR;
5422                 break;
5423         case IPC_STAT:
5424         case SEM_STAT:
5425                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5426                 break;
5427         default:
5428                 return 0;
5429         }
5430
5431         err = ipc_has_perm(&sma->sem_perm, perms);
5432         return err;
5433 }
5434
5435 static int selinux_sem_semop(struct sem_array *sma,
5436                              struct sembuf *sops, unsigned nsops, int alter)
5437 {
5438         u32 perms;
5439
5440         if (alter)
5441                 perms = SEM__READ | SEM__WRITE;
5442         else
5443                 perms = SEM__READ;
5444
5445         return ipc_has_perm(&sma->sem_perm, perms);
5446 }
5447
5448 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5449 {
5450         u32 av = 0;
5451
5452         av = 0;
5453         if (flag & S_IRUGO)
5454                 av |= IPC__UNIX_READ;
5455         if (flag & S_IWUGO)
5456                 av |= IPC__UNIX_WRITE;
5457
5458         if (av == 0)
5459                 return 0;
5460
5461         return ipc_has_perm(ipcp, av);
5462 }
5463
5464 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5465 {
5466         struct ipc_security_struct *isec = ipcp->security;
5467         *secid = isec->sid;
5468 }
5469
5470 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5471 {
5472         if (inode)
5473                 inode_doinit_with_dentry(inode, dentry);
5474 }
5475
5476 static int selinux_getprocattr(struct task_struct *p,
5477                                char *name, char **value)
5478 {
5479         const struct task_security_struct *__tsec;
5480         u32 sid;
5481         int error;
5482         unsigned len;
5483
5484         if (current != p) {
5485                 error = current_has_perm(p, PROCESS__GETATTR);
5486                 if (error)
5487                         return error;
5488         }
5489
5490         rcu_read_lock();
5491         __tsec = __task_cred(p)->security;
5492
5493         if (!strcmp(name, "current"))
5494                 sid = __tsec->sid;
5495         else if (!strcmp(name, "prev"))
5496                 sid = __tsec->osid;
5497         else if (!strcmp(name, "exec"))
5498                 sid = __tsec->exec_sid;
5499         else if (!strcmp(name, "fscreate"))
5500                 sid = __tsec->create_sid;
5501         else if (!strcmp(name, "keycreate"))
5502                 sid = __tsec->keycreate_sid;
5503         else if (!strcmp(name, "sockcreate"))
5504                 sid = __tsec->sockcreate_sid;
5505         else
5506                 goto invalid;
5507         rcu_read_unlock();
5508
5509         if (!sid)
5510                 return 0;
5511
5512         error = security_sid_to_context(sid, value, &len);
5513         if (error)
5514                 return error;
5515         return len;
5516
5517 invalid:
5518         rcu_read_unlock();
5519         return -EINVAL;
5520 }
5521
5522 static int selinux_setprocattr(struct task_struct *p,
5523                                char *name, void *value, size_t size)
5524 {
5525         struct task_security_struct *tsec;
5526         struct task_struct *tracer;
5527         struct cred *new;
5528         u32 sid = 0, ptsid;
5529         int error;
5530         char *str = value;
5531
5532         if (current != p) {
5533                 /* SELinux only allows a process to change its own
5534                    security attributes. */
5535                 return -EACCES;
5536         }
5537
5538         /*
5539          * Basic control over ability to set these attributes at all.
5540          * current == p, but we'll pass them separately in case the
5541          * above restriction is ever removed.
5542          */
5543         if (!strcmp(name, "exec"))
5544                 error = current_has_perm(p, PROCESS__SETEXEC);
5545         else if (!strcmp(name, "fscreate"))
5546                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5547         else if (!strcmp(name, "keycreate"))
5548                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5549         else if (!strcmp(name, "sockcreate"))
5550                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5551         else if (!strcmp(name, "current"))
5552                 error = current_has_perm(p, PROCESS__SETCURRENT);
5553         else
5554                 error = -EINVAL;
5555         if (error)
5556                 return error;
5557
5558         /* Obtain a SID for the context, if one was specified. */
5559         if (size && str[1] && str[1] != '\n') {
5560                 if (str[size-1] == '\n') {
5561                         str[size-1] = 0;
5562                         size--;
5563                 }
5564                 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5565                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5566                         if (!capable(CAP_MAC_ADMIN)) {
5567                                 struct audit_buffer *ab;
5568                                 size_t audit_size;
5569
5570                                 /* We strip a nul only if it is at the end, otherwise the
5571                                  * context contains a nul and we should audit that */
5572                                 if (str[size - 1] == '\0')
5573                                         audit_size = size - 1;
5574                                 else
5575                                         audit_size = size;
5576                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5577                                 audit_log_format(ab, "op=fscreate invalid_context=");
5578                                 audit_log_n_untrustedstring(ab, value, audit_size);
5579                                 audit_log_end(ab);
5580
5581                                 return error;
5582                         }
5583                         error = security_context_to_sid_force(value, size,
5584                                                               &sid);
5585                 }
5586                 if (error)
5587                         return error;
5588         }
5589
5590         new = prepare_creds();
5591         if (!new)
5592                 return -ENOMEM;
5593
5594         /* Permission checking based on the specified context is
5595            performed during the actual operation (execve,
5596            open/mkdir/...), when we know the full context of the
5597            operation.  See selinux_bprm_set_creds for the execve
5598            checks and may_create for the file creation checks. The
5599            operation will then fail if the context is not permitted. */
5600         tsec = new->security;
5601         if (!strcmp(name, "exec")) {
5602                 tsec->exec_sid = sid;
5603         } else if (!strcmp(name, "fscreate")) {
5604                 tsec->create_sid = sid;
5605         } else if (!strcmp(name, "keycreate")) {
5606                 error = may_create_key(sid, p);
5607                 if (error)
5608                         goto abort_change;
5609                 tsec->keycreate_sid = sid;
5610         } else if (!strcmp(name, "sockcreate")) {
5611                 tsec->sockcreate_sid = sid;
5612         } else if (!strcmp(name, "current")) {
5613                 error = -EINVAL;
5614                 if (sid == 0)
5615                         goto abort_change;
5616
5617                 /* Only allow single threaded processes to change context */
5618                 error = -EPERM;
5619                 if (!current_is_single_threaded()) {
5620                         error = security_bounded_transition(tsec->sid, sid);
5621                         if (error)
5622                                 goto abort_change;
5623                 }
5624
5625                 /* Check permissions for the transition. */
5626                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5627                                      PROCESS__DYNTRANSITION, NULL);
5628                 if (error)
5629                         goto abort_change;
5630
5631                 /* Check for ptracing, and update the task SID if ok.
5632                    Otherwise, leave SID unchanged and fail. */
5633                 ptsid = 0;
5634                 rcu_read_lock();
5635                 tracer = ptrace_parent(p);
5636                 if (tracer)
5637                         ptsid = task_sid(tracer);
5638                 rcu_read_unlock();
5639
5640                 if (tracer) {
5641                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5642                                              PROCESS__PTRACE, NULL);
5643                         if (error)
5644                                 goto abort_change;
5645                 }
5646
5647                 tsec->sid = sid;
5648         } else {
5649                 error = -EINVAL;
5650                 goto abort_change;
5651         }
5652
5653         commit_creds(new);
5654         return size;
5655
5656 abort_change:
5657         abort_creds(new);
5658         return error;
5659 }
5660
5661 static int selinux_ismaclabel(const char *name)
5662 {
5663         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5664 }
5665
5666 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5667 {
5668         return security_sid_to_context(secid, secdata, seclen);
5669 }
5670
5671 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5672 {
5673         return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5674 }
5675
5676 static void selinux_release_secctx(char *secdata, u32 seclen)
5677 {
5678         kfree(secdata);
5679 }
5680
5681 /*
5682  *      called with inode->i_mutex locked
5683  */
5684 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5685 {
5686         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5687 }
5688
5689 /*
5690  *      called with inode->i_mutex locked
5691  */
5692 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5693 {
5694         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5695 }
5696
5697 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5698 {
5699         int len = 0;
5700         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5701                                                 ctx, true);
5702         if (len < 0)
5703                 return len;
5704         *ctxlen = len;
5705         return 0;
5706 }
5707 #ifdef CONFIG_KEYS
5708
5709 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5710                              unsigned long flags)
5711 {
5712         const struct task_security_struct *tsec;
5713         struct key_security_struct *ksec;
5714
5715         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5716         if (!ksec)
5717                 return -ENOMEM;
5718
5719         tsec = cred->security;
5720         if (tsec->keycreate_sid)
5721                 ksec->sid = tsec->keycreate_sid;
5722         else
5723                 ksec->sid = tsec->sid;
5724
5725         k->security = ksec;
5726         return 0;
5727 }
5728
5729 static void selinux_key_free(struct key *k)
5730 {
5731         struct key_security_struct *ksec = k->security;
5732
5733         k->security = NULL;
5734         kfree(ksec);
5735 }
5736
5737 static int selinux_key_permission(key_ref_t key_ref,
5738                                   const struct cred *cred,
5739                                   key_perm_t perm)
5740 {
5741         struct key *key;
5742         struct key_security_struct *ksec;
5743         u32 sid;
5744
5745         /* if no specific permissions are requested, we skip the
5746            permission check. No serious, additional covert channels
5747            appear to be created. */
5748         if (perm == 0)
5749                 return 0;
5750
5751         sid = cred_sid(cred);
5752
5753         key = key_ref_to_ptr(key_ref);
5754         ksec = key->security;
5755
5756         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5757 }
5758
5759 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5760 {
5761         struct key_security_struct *ksec = key->security;
5762         char *context = NULL;
5763         unsigned len;
5764         int rc;
5765
5766         rc = security_sid_to_context(ksec->sid, &context, &len);
5767         if (!rc)
5768                 rc = len;
5769         *_buffer = context;
5770         return rc;
5771 }
5772
5773 #endif
5774
5775 static struct security_operations selinux_ops = {
5776         .name =                         "selinux",
5777
5778         .ptrace_access_check =          selinux_ptrace_access_check,
5779         .ptrace_traceme =               selinux_ptrace_traceme,
5780         .capget =                       selinux_capget,
5781         .capset =                       selinux_capset,
5782         .capable =                      selinux_capable,
5783         .quotactl =                     selinux_quotactl,
5784         .quota_on =                     selinux_quota_on,
5785         .syslog =                       selinux_syslog,
5786         .vm_enough_memory =             selinux_vm_enough_memory,
5787
5788         .netlink_send =                 selinux_netlink_send,
5789
5790         .bprm_set_creds =               selinux_bprm_set_creds,
5791         .bprm_committing_creds =        selinux_bprm_committing_creds,
5792         .bprm_committed_creds =         selinux_bprm_committed_creds,
5793         .bprm_secureexec =              selinux_bprm_secureexec,
5794
5795         .sb_alloc_security =            selinux_sb_alloc_security,
5796         .sb_free_security =             selinux_sb_free_security,
5797         .sb_copy_data =                 selinux_sb_copy_data,
5798         .sb_remount =                   selinux_sb_remount,
5799         .sb_kern_mount =                selinux_sb_kern_mount,
5800         .sb_show_options =              selinux_sb_show_options,
5801         .sb_statfs =                    selinux_sb_statfs,
5802         .sb_mount =                     selinux_mount,
5803         .sb_umount =                    selinux_umount,
5804         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5805         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5806         .sb_parse_opts_str =            selinux_parse_opts_str,
5807
5808         .dentry_init_security =         selinux_dentry_init_security,
5809
5810         .inode_alloc_security =         selinux_inode_alloc_security,
5811         .inode_free_security =          selinux_inode_free_security,
5812         .inode_init_security =          selinux_inode_init_security,
5813         .inode_create =                 selinux_inode_create,
5814         .inode_link =                   selinux_inode_link,
5815         .inode_unlink =                 selinux_inode_unlink,
5816         .inode_symlink =                selinux_inode_symlink,
5817         .inode_mkdir =                  selinux_inode_mkdir,
5818         .inode_rmdir =                  selinux_inode_rmdir,
5819         .inode_mknod =                  selinux_inode_mknod,
5820         .inode_rename =                 selinux_inode_rename,
5821         .inode_readlink =               selinux_inode_readlink,
5822         .inode_follow_link =            selinux_inode_follow_link,
5823         .inode_permission =             selinux_inode_permission,
5824         .inode_setattr =                selinux_inode_setattr,
5825         .inode_getattr =                selinux_inode_getattr,
5826         .inode_setxattr =               selinux_inode_setxattr,
5827         .inode_post_setxattr =          selinux_inode_post_setxattr,
5828         .inode_getxattr =               selinux_inode_getxattr,
5829         .inode_listxattr =              selinux_inode_listxattr,
5830         .inode_removexattr =            selinux_inode_removexattr,
5831         .inode_getsecurity =            selinux_inode_getsecurity,
5832         .inode_setsecurity =            selinux_inode_setsecurity,
5833         .inode_listsecurity =           selinux_inode_listsecurity,
5834         .inode_getsecid =               selinux_inode_getsecid,
5835
5836         .file_permission =              selinux_file_permission,
5837         .file_alloc_security =          selinux_file_alloc_security,
5838         .file_free_security =           selinux_file_free_security,
5839         .file_ioctl =                   selinux_file_ioctl,
5840         .mmap_file =                    selinux_mmap_file,
5841         .mmap_addr =                    selinux_mmap_addr,
5842         .file_mprotect =                selinux_file_mprotect,
5843         .file_lock =                    selinux_file_lock,
5844         .file_fcntl =                   selinux_file_fcntl,
5845         .file_set_fowner =              selinux_file_set_fowner,
5846         .file_send_sigiotask =          selinux_file_send_sigiotask,
5847         .file_receive =                 selinux_file_receive,
5848
5849         .file_open =                    selinux_file_open,
5850
5851         .task_create =                  selinux_task_create,
5852         .cred_alloc_blank =             selinux_cred_alloc_blank,
5853         .cred_free =                    selinux_cred_free,
5854         .cred_prepare =                 selinux_cred_prepare,
5855         .cred_transfer =                selinux_cred_transfer,
5856         .kernel_act_as =                selinux_kernel_act_as,
5857         .kernel_create_files_as =       selinux_kernel_create_files_as,
5858         .kernel_module_request =        selinux_kernel_module_request,
5859         .task_setpgid =                 selinux_task_setpgid,
5860         .task_getpgid =                 selinux_task_getpgid,
5861         .task_getsid =                  selinux_task_getsid,
5862         .task_getsecid =                selinux_task_getsecid,
5863         .task_setnice =                 selinux_task_setnice,
5864         .task_setioprio =               selinux_task_setioprio,
5865         .task_getioprio =               selinux_task_getioprio,
5866         .task_setrlimit =               selinux_task_setrlimit,
5867         .task_setscheduler =            selinux_task_setscheduler,
5868         .task_getscheduler =            selinux_task_getscheduler,
5869         .task_movememory =              selinux_task_movememory,
5870         .task_kill =                    selinux_task_kill,
5871         .task_wait =                    selinux_task_wait,
5872         .task_to_inode =                selinux_task_to_inode,
5873
5874         .ipc_permission =               selinux_ipc_permission,
5875         .ipc_getsecid =                 selinux_ipc_getsecid,
5876
5877         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5878         .msg_msg_free_security =        selinux_msg_msg_free_security,
5879
5880         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5881         .msg_queue_free_security =      selinux_msg_queue_free_security,
5882         .msg_queue_associate =          selinux_msg_queue_associate,
5883         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5884         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5885         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5886
5887         .shm_alloc_security =           selinux_shm_alloc_security,
5888         .shm_free_security =            selinux_shm_free_security,
5889         .shm_associate =                selinux_shm_associate,
5890         .shm_shmctl =                   selinux_shm_shmctl,
5891         .shm_shmat =                    selinux_shm_shmat,
5892
5893         .sem_alloc_security =           selinux_sem_alloc_security,
5894         .sem_free_security =            selinux_sem_free_security,
5895         .sem_associate =                selinux_sem_associate,
5896         .sem_semctl =                   selinux_sem_semctl,
5897         .sem_semop =                    selinux_sem_semop,
5898
5899         .d_instantiate =                selinux_d_instantiate,
5900
5901         .getprocattr =                  selinux_getprocattr,
5902         .setprocattr =                  selinux_setprocattr,
5903
5904         .ismaclabel =                   selinux_ismaclabel,
5905         .secid_to_secctx =              selinux_secid_to_secctx,
5906         .secctx_to_secid =              selinux_secctx_to_secid,
5907         .release_secctx =               selinux_release_secctx,
5908         .inode_notifysecctx =           selinux_inode_notifysecctx,
5909         .inode_setsecctx =              selinux_inode_setsecctx,
5910         .inode_getsecctx =              selinux_inode_getsecctx,
5911
5912         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5913         .unix_may_send =                selinux_socket_unix_may_send,
5914
5915         .socket_create =                selinux_socket_create,
5916         .socket_post_create =           selinux_socket_post_create,
5917         .socket_bind =                  selinux_socket_bind,
5918         .socket_connect =               selinux_socket_connect,
5919         .socket_listen =                selinux_socket_listen,
5920         .socket_accept =                selinux_socket_accept,
5921         .socket_sendmsg =               selinux_socket_sendmsg,
5922         .socket_recvmsg =               selinux_socket_recvmsg,
5923         .socket_getsockname =           selinux_socket_getsockname,
5924         .socket_getpeername =           selinux_socket_getpeername,
5925         .socket_getsockopt =            selinux_socket_getsockopt,
5926         .socket_setsockopt =            selinux_socket_setsockopt,
5927         .socket_shutdown =              selinux_socket_shutdown,
5928         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5929         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5930         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5931         .sk_alloc_security =            selinux_sk_alloc_security,
5932         .sk_free_security =             selinux_sk_free_security,
5933         .sk_clone_security =            selinux_sk_clone_security,
5934         .sk_getsecid =                  selinux_sk_getsecid,
5935         .sock_graft =                   selinux_sock_graft,
5936         .inet_conn_request =            selinux_inet_conn_request,
5937         .inet_csk_clone =               selinux_inet_csk_clone,
5938         .inet_conn_established =        selinux_inet_conn_established,
5939         .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5940         .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5941         .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5942         .req_classify_flow =            selinux_req_classify_flow,
5943         .tun_dev_alloc_security =       selinux_tun_dev_alloc_security,
5944         .tun_dev_free_security =        selinux_tun_dev_free_security,
5945         .tun_dev_create =               selinux_tun_dev_create,
5946         .tun_dev_attach_queue =         selinux_tun_dev_attach_queue,
5947         .tun_dev_attach =               selinux_tun_dev_attach,
5948         .tun_dev_open =                 selinux_tun_dev_open,
5949         .skb_owned_by =                 selinux_skb_owned_by,
5950
5951 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5952         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5953         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5954         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5955         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5956         .xfrm_state_alloc =             selinux_xfrm_state_alloc,
5957         .xfrm_state_alloc_acquire =     selinux_xfrm_state_alloc_acquire,
5958         .xfrm_state_free_security =     selinux_xfrm_state_free,
5959         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5960         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5961         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5962         .xfrm_decode_session =          selinux_xfrm_decode_session,
5963 #endif
5964
5965 #ifdef CONFIG_KEYS
5966         .key_alloc =                    selinux_key_alloc,
5967         .key_free =                     selinux_key_free,
5968         .key_permission =               selinux_key_permission,
5969         .key_getsecurity =              selinux_key_getsecurity,
5970 #endif
5971
5972 #ifdef CONFIG_AUDIT
5973         .audit_rule_init =              selinux_audit_rule_init,
5974         .audit_rule_known =             selinux_audit_rule_known,
5975         .audit_rule_match =             selinux_audit_rule_match,
5976         .audit_rule_free =              selinux_audit_rule_free,
5977 #endif
5978 };
5979
5980 static __init int selinux_init(void)
5981 {
5982         if (!security_module_enable(&selinux_ops)) {
5983                 selinux_enabled = 0;
5984                 return 0;
5985         }
5986
5987         if (!selinux_enabled) {
5988                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5989                 return 0;
5990         }
5991
5992         printk(KERN_INFO "SELinux:  Initializing.\n");
5993
5994         /* Set the security state for the initial task. */
5995         cred_init_security();
5996
5997         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5998
5999         sel_inode_cache = kmem_cache_create("selinux_inode_security",
6000                                             sizeof(struct inode_security_struct),
6001                                             0, SLAB_PANIC, NULL);
6002         avc_init();
6003
6004         if (register_security(&selinux_ops))
6005                 panic("SELinux: Unable to register with kernel.\n");
6006
6007         if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6008                 panic("SELinux: Unable to register AVC netcache callback\n");
6009
6010         if (selinux_enforcing)
6011                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6012         else
6013                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6014
6015         return 0;
6016 }
6017
6018 static void delayed_superblock_init(struct super_block *sb, void *unused)
6019 {
6020         superblock_doinit(sb, NULL);
6021 }
6022
6023 void selinux_complete_init(void)
6024 {
6025         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6026
6027         /* Set up any superblocks initialized prior to the policy load. */
6028         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6029         iterate_supers(delayed_superblock_init, NULL);
6030 }
6031
6032 /* SELinux requires early initialization in order to label
6033    all processes and objects when they are created. */
6034 security_initcall(selinux_init);
6035
6036 #if defined(CONFIG_NETFILTER)
6037
6038 static struct nf_hook_ops selinux_ipv4_ops[] = {
6039         {
6040                 .hook =         selinux_ipv4_postroute,
6041                 .owner =        THIS_MODULE,
6042                 .pf =           NFPROTO_IPV4,
6043                 .hooknum =      NF_INET_POST_ROUTING,
6044                 .priority =     NF_IP_PRI_SELINUX_LAST,
6045         },
6046         {
6047                 .hook =         selinux_ipv4_forward,
6048                 .owner =        THIS_MODULE,
6049                 .pf =           NFPROTO_IPV4,
6050                 .hooknum =      NF_INET_FORWARD,
6051                 .priority =     NF_IP_PRI_SELINUX_FIRST,
6052         },
6053         {
6054                 .hook =         selinux_ipv4_output,
6055                 .owner =        THIS_MODULE,
6056                 .pf =           NFPROTO_IPV4,
6057                 .hooknum =      NF_INET_LOCAL_OUT,
6058                 .priority =     NF_IP_PRI_SELINUX_FIRST,
6059         }
6060 };
6061
6062 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6063
6064 static struct nf_hook_ops selinux_ipv6_ops[] = {
6065         {
6066                 .hook =         selinux_ipv6_postroute,
6067                 .owner =        THIS_MODULE,
6068                 .pf =           NFPROTO_IPV6,
6069                 .hooknum =      NF_INET_POST_ROUTING,
6070                 .priority =     NF_IP6_PRI_SELINUX_LAST,
6071         },
6072         {
6073                 .hook =         selinux_ipv6_forward,
6074                 .owner =        THIS_MODULE,
6075                 .pf =           NFPROTO_IPV6,
6076                 .hooknum =      NF_INET_FORWARD,
6077                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
6078         }
6079 };
6080
6081 #endif  /* IPV6 */
6082
6083 static int __init selinux_nf_ip_init(void)
6084 {
6085         int err = 0;
6086
6087         if (!selinux_enabled)
6088                 goto out;
6089
6090         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6091
6092         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6093         if (err)
6094                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6095
6096 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6097         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6098         if (err)
6099                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6100 #endif  /* IPV6 */
6101
6102 out:
6103         return err;
6104 }
6105
6106 __initcall(selinux_nf_ip_init);
6107
6108 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6109 static void selinux_nf_ip_exit(void)
6110 {
6111         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6112
6113         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6114 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6115         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6116 #endif  /* IPV6 */
6117 }
6118 #endif
6119
6120 #else /* CONFIG_NETFILTER */
6121
6122 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6123 #define selinux_nf_ip_exit()
6124 #endif
6125
6126 #endif /* CONFIG_NETFILTER */
6127
6128 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6129 static int selinux_disabled;
6130
6131 int selinux_disable(void)
6132 {
6133         if (ss_initialized) {
6134                 /* Not permitted after initial policy load. */
6135                 return -EINVAL;
6136         }
6137
6138         if (selinux_disabled) {
6139                 /* Only do this once. */
6140                 return -EINVAL;
6141         }
6142
6143         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6144
6145         selinux_disabled = 1;
6146         selinux_enabled = 0;
6147
6148         reset_security_ops();
6149
6150         /* Try to destroy the avc node cache */
6151         avc_disable();
6152
6153         /* Unregister netfilter hooks. */
6154         selinux_nf_ip_exit();
6155
6156         /* Unregister selinuxfs. */
6157         exit_sel_fs();
6158
6159         return 0;
6160 }
6161 #endif