]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - virt/kvm/arm/vgic/vgic-its.c
KVM: arm64: vgic-its: Interpret MAPD Size field and check related errors
[karo-tx-linux.git] / virt / kvm / arm / vgic / vgic-its.c
1 /*
2  * GICv3 ITS emulation
3  *
4  * Copyright (C) 2015,2016 ARM Ltd.
5  * Author: Andre Przywara <andre.przywara@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26
27 #include <linux/irqchip/arm-gic-v3.h>
28
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_arm.h>
31 #include <asm/kvm_mmu.h>
32
33 #include "vgic.h"
34 #include "vgic-mmio.h"
35
36 static int vgic_its_save_tables_v0(struct vgic_its *its);
37 static int vgic_its_restore_tables_v0(struct vgic_its *its);
38 static int vgic_its_commit_v0(struct vgic_its *its);
39
40 /*
41  * Creates a new (reference to a) struct vgic_irq for a given LPI.
42  * If this LPI is already mapped on another ITS, we increase its refcount
43  * and return a pointer to the existing structure.
44  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
45  * This function returns a pointer to the _unlocked_ structure.
46  */
47 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
48 {
49         struct vgic_dist *dist = &kvm->arch.vgic;
50         struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
51
52         /* In this case there is no put, since we keep the reference. */
53         if (irq)
54                 return irq;
55
56         irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
57         if (!irq)
58                 return ERR_PTR(-ENOMEM);
59
60         INIT_LIST_HEAD(&irq->lpi_list);
61         INIT_LIST_HEAD(&irq->ap_list);
62         spin_lock_init(&irq->irq_lock);
63
64         irq->config = VGIC_CONFIG_EDGE;
65         kref_init(&irq->refcount);
66         irq->intid = intid;
67
68         spin_lock(&dist->lpi_list_lock);
69
70         /*
71          * There could be a race with another vgic_add_lpi(), so we need to
72          * check that we don't add a second list entry with the same LPI.
73          */
74         list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
75                 if (oldirq->intid != intid)
76                         continue;
77
78                 /* Someone was faster with adding this LPI, lets use that. */
79                 kfree(irq);
80                 irq = oldirq;
81
82                 /*
83                  * This increases the refcount, the caller is expected to
84                  * call vgic_put_irq() on the returned pointer once it's
85                  * finished with the IRQ.
86                  */
87                 vgic_get_irq_kref(irq);
88
89                 goto out_unlock;
90         }
91
92         list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
93         dist->lpi_list_count++;
94
95 out_unlock:
96         spin_unlock(&dist->lpi_list_lock);
97
98         return irq;
99 }
100
101 struct its_device {
102         struct list_head dev_list;
103
104         /* the head for the list of ITTEs */
105         struct list_head itt_head;
106         u32 num_eventid_bits;
107         u32 device_id;
108 };
109
110 #define COLLECTION_NOT_MAPPED ((u32)~0)
111
112 struct its_collection {
113         struct list_head coll_list;
114
115         u32 collection_id;
116         u32 target_addr;
117 };
118
119 #define its_is_collection_mapped(coll) ((coll) && \
120                                 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
121
122 struct its_ite {
123         struct list_head ite_list;
124
125         struct vgic_irq *irq;
126         struct its_collection *collection;
127         u32 lpi;
128         u32 event_id;
129 };
130
131 /**
132  * struct vgic_its_abi - ITS abi ops and settings
133  * @cte_esz: collection table entry size
134  * @dte_esz: device table entry size
135  * @ite_esz: interrupt translation table entry size
136  * @save tables: save the ITS tables into guest RAM
137  * @restore_tables: restore the ITS internal structs from tables
138  *  stored in guest RAM
139  * @commit: initialize the registers which expose the ABI settings,
140  *  especially the entry sizes
141  */
142 struct vgic_its_abi {
143         int cte_esz;
144         int dte_esz;
145         int ite_esz;
146         int (*save_tables)(struct vgic_its *its);
147         int (*restore_tables)(struct vgic_its *its);
148         int (*commit)(struct vgic_its *its);
149 };
150
151 static const struct vgic_its_abi its_table_abi_versions[] = {
152         [0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
153          .save_tables = vgic_its_save_tables_v0,
154          .restore_tables = vgic_its_restore_tables_v0,
155          .commit = vgic_its_commit_v0,
156         },
157 };
158
159 #define NR_ITS_ABIS     ARRAY_SIZE(its_table_abi_versions)
160
161 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
162 {
163         return &its_table_abi_versions[its->abi_rev];
164 }
165
166 int vgic_its_set_abi(struct vgic_its *its, int rev)
167 {
168         const struct vgic_its_abi *abi;
169
170         its->abi_rev = rev;
171         abi = vgic_its_get_abi(its);
172         return abi->commit(its);
173 }
174
175 /*
176  * Find and returns a device in the device table for an ITS.
177  * Must be called with the its_lock mutex held.
178  */
179 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
180 {
181         struct its_device *device;
182
183         list_for_each_entry(device, &its->device_list, dev_list)
184                 if (device_id == device->device_id)
185                         return device;
186
187         return NULL;
188 }
189
190 /*
191  * Find and returns an interrupt translation table entry (ITTE) for a given
192  * Device ID/Event ID pair on an ITS.
193  * Must be called with the its_lock mutex held.
194  */
195 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
196                                   u32 event_id)
197 {
198         struct its_device *device;
199         struct its_ite *ite;
200
201         device = find_its_device(its, device_id);
202         if (device == NULL)
203                 return NULL;
204
205         list_for_each_entry(ite, &device->itt_head, ite_list)
206                 if (ite->event_id == event_id)
207                         return ite;
208
209         return NULL;
210 }
211
212 /* To be used as an iterator this macro misses the enclosing parentheses */
213 #define for_each_lpi_its(dev, ite, its) \
214         list_for_each_entry(dev, &(its)->device_list, dev_list) \
215                 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
216
217 /*
218  * We only implement 48 bits of PA at the moment, although the ITS
219  * supports more. Let's be restrictive here.
220  */
221 #define BASER_ADDRESS(x)        ((x) & GENMASK_ULL(47, 16))
222 #define CBASER_ADDRESS(x)       ((x) & GENMASK_ULL(47, 12))
223 #define PENDBASER_ADDRESS(x)    ((x) & GENMASK_ULL(47, 16))
224 #define PROPBASER_ADDRESS(x)    ((x) & GENMASK_ULL(47, 12))
225
226 #define GIC_LPI_OFFSET 8192
227
228 #define VITS_TYPER_IDBITS 16
229
230 /*
231  * Finds and returns a collection in the ITS collection table.
232  * Must be called with the its_lock mutex held.
233  */
234 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
235 {
236         struct its_collection *collection;
237
238         list_for_each_entry(collection, &its->collection_list, coll_list) {
239                 if (coll_id == collection->collection_id)
240                         return collection;
241         }
242
243         return NULL;
244 }
245
246 #define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
247 #define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
248
249 /*
250  * Reads the configuration data for a given LPI from guest memory and
251  * updates the fields in struct vgic_irq.
252  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
253  * VCPU. Unconditionally applies if filter_vcpu is NULL.
254  */
255 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
256                              struct kvm_vcpu *filter_vcpu)
257 {
258         u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
259         u8 prop;
260         int ret;
261
262         ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
263                              &prop, 1);
264
265         if (ret)
266                 return ret;
267
268         spin_lock(&irq->irq_lock);
269
270         if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
271                 irq->priority = LPI_PROP_PRIORITY(prop);
272                 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
273
274                 vgic_queue_irq_unlock(kvm, irq);
275         } else {
276                 spin_unlock(&irq->irq_lock);
277         }
278
279         return 0;
280 }
281
282 /*
283  * Create a snapshot of the current LPI list, so that we can enumerate all
284  * LPIs without holding any lock.
285  * Returns the array length and puts the kmalloc'ed array into intid_ptr.
286  */
287 static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
288 {
289         struct vgic_dist *dist = &kvm->arch.vgic;
290         struct vgic_irq *irq;
291         u32 *intids;
292         int irq_count = dist->lpi_list_count, i = 0;
293
294         /*
295          * We use the current value of the list length, which may change
296          * after the kmalloc. We don't care, because the guest shouldn't
297          * change anything while the command handling is still running,
298          * and in the worst case we would miss a new IRQ, which one wouldn't
299          * expect to be covered by this command anyway.
300          */
301         intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
302         if (!intids)
303                 return -ENOMEM;
304
305         spin_lock(&dist->lpi_list_lock);
306         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
307                 /* We don't need to "get" the IRQ, as we hold the list lock. */
308                 intids[i] = irq->intid;
309                 if (++i == irq_count)
310                         break;
311         }
312         spin_unlock(&dist->lpi_list_lock);
313
314         *intid_ptr = intids;
315         return irq_count;
316 }
317
318 /*
319  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
320  * is targeting) to the VGIC's view, which deals with target VCPUs.
321  * Needs to be called whenever either the collection for a LPIs has
322  * changed or the collection itself got retargeted.
323  */
324 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
325 {
326         struct kvm_vcpu *vcpu;
327
328         if (!its_is_collection_mapped(ite->collection))
329                 return;
330
331         vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
332
333         spin_lock(&ite->irq->irq_lock);
334         ite->irq->target_vcpu = vcpu;
335         spin_unlock(&ite->irq->irq_lock);
336 }
337
338 /*
339  * Updates the target VCPU for every LPI targeting this collection.
340  * Must be called with the its_lock mutex held.
341  */
342 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
343                                        struct its_collection *coll)
344 {
345         struct its_device *device;
346         struct its_ite *ite;
347
348         for_each_lpi_its(device, ite, its) {
349                 if (!ite->collection || coll != ite->collection)
350                         continue;
351
352                 update_affinity_ite(kvm, ite);
353         }
354 }
355
356 static u32 max_lpis_propbaser(u64 propbaser)
357 {
358         int nr_idbits = (propbaser & 0x1f) + 1;
359
360         return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
361 }
362
363 /*
364  * Scan the whole LPI pending table and sync the pending bit in there
365  * with our own data structures. This relies on the LPI being
366  * mapped before.
367  */
368 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
369 {
370         gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
371         struct vgic_irq *irq;
372         int last_byte_offset = -1;
373         int ret = 0;
374         u32 *intids;
375         int nr_irqs, i;
376
377         nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
378         if (nr_irqs < 0)
379                 return nr_irqs;
380
381         for (i = 0; i < nr_irqs; i++) {
382                 int byte_offset, bit_nr;
383                 u8 pendmask;
384
385                 byte_offset = intids[i] / BITS_PER_BYTE;
386                 bit_nr = intids[i] % BITS_PER_BYTE;
387
388                 /*
389                  * For contiguously allocated LPIs chances are we just read
390                  * this very same byte in the last iteration. Reuse that.
391                  */
392                 if (byte_offset != last_byte_offset) {
393                         ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
394                                              &pendmask, 1);
395                         if (ret) {
396                                 kfree(intids);
397                                 return ret;
398                         }
399                         last_byte_offset = byte_offset;
400                 }
401
402                 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
403                 spin_lock(&irq->irq_lock);
404                 irq->pending_latch = pendmask & (1U << bit_nr);
405                 vgic_queue_irq_unlock(vcpu->kvm, irq);
406                 vgic_put_irq(vcpu->kvm, irq);
407         }
408
409         kfree(intids);
410
411         return ret;
412 }
413
414 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
415                                               struct vgic_its *its,
416                                               gpa_t addr, unsigned int len)
417 {
418         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
419         u64 reg = GITS_TYPER_PLPIS;
420
421         /*
422          * We use linear CPU numbers for redistributor addressing,
423          * so GITS_TYPER.PTA is 0.
424          * Also we force all PROPBASER registers to be the same, so
425          * CommonLPIAff is 0 as well.
426          * To avoid memory waste in the guest, we keep the number of IDBits and
427          * DevBits low - as least for the time being.
428          */
429         reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
430         reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
431         reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
432
433         return extract_bytes(reg, addr & 7, len);
434 }
435
436 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
437                                              struct vgic_its *its,
438                                              gpa_t addr, unsigned int len)
439 {
440         u32 val;
441
442         val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
443         val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
444         return val;
445 }
446
447 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
448                                             struct vgic_its *its,
449                                             gpa_t addr, unsigned int len,
450                                             unsigned long val)
451 {
452         u32 rev = GITS_IIDR_REV(val);
453
454         if (rev >= NR_ITS_ABIS)
455                 return -EINVAL;
456         return vgic_its_set_abi(its, rev);
457 }
458
459 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
460                                                struct vgic_its *its,
461                                                gpa_t addr, unsigned int len)
462 {
463         switch (addr & 0xffff) {
464         case GITS_PIDR0:
465                 return 0x92;    /* part number, bits[7:0] */
466         case GITS_PIDR1:
467                 return 0xb4;    /* part number, bits[11:8] */
468         case GITS_PIDR2:
469                 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
470         case GITS_PIDR4:
471                 return 0x40;    /* This is a 64K software visible page */
472         /* The following are the ID registers for (any) GIC. */
473         case GITS_CIDR0:
474                 return 0x0d;
475         case GITS_CIDR1:
476                 return 0xf0;
477         case GITS_CIDR2:
478                 return 0x05;
479         case GITS_CIDR3:
480                 return 0xb1;
481         }
482
483         return 0;
484 }
485
486 /*
487  * Find the target VCPU and the LPI number for a given devid/eventid pair
488  * and make this IRQ pending, possibly injecting it.
489  * Must be called with the its_lock mutex held.
490  * Returns 0 on success, a positive error value for any ITS mapping
491  * related errors and negative error values for generic errors.
492  */
493 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
494                                 u32 devid, u32 eventid)
495 {
496         struct kvm_vcpu *vcpu;
497         struct its_ite *ite;
498
499         if (!its->enabled)
500                 return -EBUSY;
501
502         ite = find_ite(its, devid, eventid);
503         if (!ite || !its_is_collection_mapped(ite->collection))
504                 return E_ITS_INT_UNMAPPED_INTERRUPT;
505
506         vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
507         if (!vcpu)
508                 return E_ITS_INT_UNMAPPED_INTERRUPT;
509
510         if (!vcpu->arch.vgic_cpu.lpis_enabled)
511                 return -EBUSY;
512
513         spin_lock(&ite->irq->irq_lock);
514         ite->irq->pending_latch = true;
515         vgic_queue_irq_unlock(kvm, ite->irq);
516
517         return 0;
518 }
519
520 static struct vgic_io_device *vgic_get_its_iodev(struct kvm_io_device *dev)
521 {
522         struct vgic_io_device *iodev;
523
524         if (dev->ops != &kvm_io_gic_ops)
525                 return NULL;
526
527         iodev = container_of(dev, struct vgic_io_device, dev);
528
529         if (iodev->iodev_type != IODEV_ITS)
530                 return NULL;
531
532         return iodev;
533 }
534
535 /*
536  * Queries the KVM IO bus framework to get the ITS pointer from the given
537  * doorbell address.
538  * We then call vgic_its_trigger_msi() with the decoded data.
539  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
540  */
541 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
542 {
543         u64 address;
544         struct kvm_io_device *kvm_io_dev;
545         struct vgic_io_device *iodev;
546         int ret;
547
548         if (!vgic_has_its(kvm))
549                 return -ENODEV;
550
551         if (!(msi->flags & KVM_MSI_VALID_DEVID))
552                 return -EINVAL;
553
554         address = (u64)msi->address_hi << 32 | msi->address_lo;
555
556         kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
557         if (!kvm_io_dev)
558                 return -EINVAL;
559
560         iodev = vgic_get_its_iodev(kvm_io_dev);
561         if (!iodev)
562                 return -EINVAL;
563
564         mutex_lock(&iodev->its->its_lock);
565         ret = vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
566         mutex_unlock(&iodev->its->its_lock);
567
568         if (ret < 0)
569                 return ret;
570
571         /*
572          * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
573          * if the guest has blocked the MSI. So we map any LPI mapping
574          * related error to that.
575          */
576         if (ret)
577                 return 0;
578         else
579                 return 1;
580 }
581
582 /* Requires the its_lock to be held. */
583 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
584 {
585         list_del(&ite->ite_list);
586
587         /* This put matches the get in vgic_add_lpi. */
588         if (ite->irq)
589                 vgic_put_irq(kvm, ite->irq);
590
591         kfree(ite);
592 }
593
594 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
595 {
596         return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
597 }
598
599 #define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
600 #define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
601 #define its_cmd_get_size(cmd)           (its_cmd_mask_field(cmd, 1,  0,  5) + 1)
602 #define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
603 #define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
604 #define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
605 #define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
606 #define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
607
608 /*
609  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
610  * Must be called with the its_lock mutex held.
611  */
612 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
613                                        u64 *its_cmd)
614 {
615         u32 device_id = its_cmd_get_deviceid(its_cmd);
616         u32 event_id = its_cmd_get_id(its_cmd);
617         struct its_ite *ite;
618
619
620         ite = find_ite(its, device_id, event_id);
621         if (ite && ite->collection) {
622                 /*
623                  * Though the spec talks about removing the pending state, we
624                  * don't bother here since we clear the ITTE anyway and the
625                  * pending state is a property of the ITTE struct.
626                  */
627                 its_free_ite(kvm, ite);
628                 return 0;
629         }
630
631         return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
632 }
633
634 /*
635  * The MOVI command moves an ITTE to a different collection.
636  * Must be called with the its_lock mutex held.
637  */
638 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
639                                     u64 *its_cmd)
640 {
641         u32 device_id = its_cmd_get_deviceid(its_cmd);
642         u32 event_id = its_cmd_get_id(its_cmd);
643         u32 coll_id = its_cmd_get_collection(its_cmd);
644         struct kvm_vcpu *vcpu;
645         struct its_ite *ite;
646         struct its_collection *collection;
647
648         ite = find_ite(its, device_id, event_id);
649         if (!ite)
650                 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
651
652         if (!its_is_collection_mapped(ite->collection))
653                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
654
655         collection = find_collection(its, coll_id);
656         if (!its_is_collection_mapped(collection))
657                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
658
659         ite->collection = collection;
660         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
661
662         spin_lock(&ite->irq->irq_lock);
663         ite->irq->target_vcpu = vcpu;
664         spin_unlock(&ite->irq->irq_lock);
665
666         return 0;
667 }
668
669 /*
670  * Check whether an ID can be stored into the corresponding guest table.
671  * For a direct table this is pretty easy, but gets a bit nasty for
672  * indirect tables. We check whether the resulting guest physical address
673  * is actually valid (covered by a memslot and guest accessbible).
674  * For this we have to read the respective first level entry.
675  */
676 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
677 {
678         int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
679         int index;
680         u64 indirect_ptr;
681         gfn_t gfn;
682         int esz = GITS_BASER_ENTRY_SIZE(baser);
683
684         if (!(baser & GITS_BASER_INDIRECT)) {
685                 phys_addr_t addr;
686
687                 if (id >= (l1_tbl_size / esz))
688                         return false;
689
690                 addr = BASER_ADDRESS(baser) + id * esz;
691                 gfn = addr >> PAGE_SHIFT;
692
693                 return kvm_is_visible_gfn(its->dev->kvm, gfn);
694         }
695
696         /* calculate and check the index into the 1st level */
697         index = id / (SZ_64K / esz);
698         if (index >= (l1_tbl_size / sizeof(u64)))
699                 return false;
700
701         /* Each 1st level entry is represented by a 64-bit value. */
702         if (kvm_read_guest(its->dev->kvm,
703                            BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
704                            &indirect_ptr, sizeof(indirect_ptr)))
705                 return false;
706
707         indirect_ptr = le64_to_cpu(indirect_ptr);
708
709         /* check the valid bit of the first level entry */
710         if (!(indirect_ptr & BIT_ULL(63)))
711                 return false;
712
713         /*
714          * Mask the guest physical address and calculate the frame number.
715          * Any address beyond our supported 48 bits of PA will be caught
716          * by the actual check in the final step.
717          */
718         indirect_ptr &= GENMASK_ULL(51, 16);
719
720         /* Find the address of the actual entry */
721         index = id % (SZ_64K / esz);
722         indirect_ptr += index * esz;
723         gfn = indirect_ptr >> PAGE_SHIFT;
724
725         return kvm_is_visible_gfn(its->dev->kvm, gfn);
726 }
727
728 static int vgic_its_alloc_collection(struct vgic_its *its,
729                                      struct its_collection **colp,
730                                      u32 coll_id)
731 {
732         struct its_collection *collection;
733
734         if (!vgic_its_check_id(its, its->baser_coll_table, coll_id))
735                 return E_ITS_MAPC_COLLECTION_OOR;
736
737         collection = kzalloc(sizeof(*collection), GFP_KERNEL);
738
739         collection->collection_id = coll_id;
740         collection->target_addr = COLLECTION_NOT_MAPPED;
741
742         list_add_tail(&collection->coll_list, &its->collection_list);
743         *colp = collection;
744
745         return 0;
746 }
747
748 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
749 {
750         struct its_collection *collection;
751         struct its_device *device;
752         struct its_ite *ite;
753
754         /*
755          * Clearing the mapping for that collection ID removes the
756          * entry from the list. If there wasn't any before, we can
757          * go home early.
758          */
759         collection = find_collection(its, coll_id);
760         if (!collection)
761                 return;
762
763         for_each_lpi_its(device, ite, its)
764                 if (ite->collection &&
765                     ite->collection->collection_id == coll_id)
766                         ite->collection = NULL;
767
768         list_del(&collection->coll_list);
769         kfree(collection);
770 }
771
772 /*
773  * The MAPTI and MAPI commands map LPIs to ITTEs.
774  * Must be called with its_lock mutex held.
775  */
776 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
777                                     u64 *its_cmd)
778 {
779         u32 device_id = its_cmd_get_deviceid(its_cmd);
780         u32 event_id = its_cmd_get_id(its_cmd);
781         u32 coll_id = its_cmd_get_collection(its_cmd);
782         struct its_ite *ite;
783         struct its_device *device;
784         struct its_collection *collection, *new_coll = NULL;
785         int lpi_nr;
786         struct vgic_irq *irq;
787
788         device = find_its_device(its, device_id);
789         if (!device)
790                 return E_ITS_MAPTI_UNMAPPED_DEVICE;
791
792         if (event_id >= BIT_ULL(device->num_eventid_bits))
793                 return E_ITS_MAPTI_ID_OOR;
794
795         if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
796                 lpi_nr = its_cmd_get_physical_id(its_cmd);
797         else
798                 lpi_nr = event_id;
799         if (lpi_nr < GIC_LPI_OFFSET ||
800             lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
801                 return E_ITS_MAPTI_PHYSICALID_OOR;
802
803         /* If there is an existing mapping, behavior is UNPREDICTABLE. */
804         if (find_ite(its, device_id, event_id))
805                 return 0;
806
807         collection = find_collection(its, coll_id);
808         if (!collection) {
809                 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
810                 if (ret)
811                         return ret;
812                 new_coll = collection;
813         }
814
815         ite = kzalloc(sizeof(struct its_ite), GFP_KERNEL);
816         if (!ite) {
817                 if (new_coll)
818                         vgic_its_free_collection(its, coll_id);
819                 return -ENOMEM;
820         }
821
822         ite->event_id   = event_id;
823         list_add_tail(&ite->ite_list, &device->itt_head);
824
825         ite->collection = collection;
826         ite->lpi = lpi_nr;
827
828         irq = vgic_add_lpi(kvm, lpi_nr);
829         if (IS_ERR(irq)) {
830                 if (new_coll)
831                         vgic_its_free_collection(its, coll_id);
832                 its_free_ite(kvm, ite);
833                 return PTR_ERR(irq);
834         }
835         ite->irq = irq;
836
837         update_affinity_ite(kvm, ite);
838
839         /*
840          * We "cache" the configuration table entries in out struct vgic_irq's.
841          * However we only have those structs for mapped IRQs, so we read in
842          * the respective config data from memory here upon mapping the LPI.
843          */
844         update_lpi_config(kvm, ite->irq, NULL);
845
846         return 0;
847 }
848
849 /* Requires the its_lock to be held. */
850 static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
851 {
852         struct its_ite *ite, *temp;
853
854         /*
855          * The spec says that unmapping a device with still valid
856          * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
857          * since we cannot leave the memory unreferenced.
858          */
859         list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
860                 its_free_ite(kvm, ite);
861
862         list_del(&device->dev_list);
863         kfree(device);
864 }
865
866 /*
867  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
868  * Must be called with the its_lock mutex held.
869  */
870 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
871                                     u64 *its_cmd)
872 {
873         u32 device_id = its_cmd_get_deviceid(its_cmd);
874         bool valid = its_cmd_get_validbit(its_cmd);
875         u8 num_eventid_bits = its_cmd_get_size(its_cmd);
876         struct its_device *device;
877
878         if (!vgic_its_check_id(its, its->baser_device_table, device_id))
879                 return E_ITS_MAPD_DEVICE_OOR;
880
881         if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
882                 return E_ITS_MAPD_ITTSIZE_OOR;
883
884         device = find_its_device(its, device_id);
885
886         /*
887          * The spec says that calling MAPD on an already mapped device
888          * invalidates all cached data for this device. We implement this
889          * by removing the mapping and re-establishing it.
890          */
891         if (device)
892                 vgic_its_unmap_device(kvm, device);
893
894         /*
895          * The spec does not say whether unmapping a not-mapped device
896          * is an error, so we are done in any case.
897          */
898         if (!valid)
899                 return 0;
900
901         device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
902         if (!device)
903                 return -ENOMEM;
904
905         device->device_id = device_id;
906         device->num_eventid_bits = num_eventid_bits;
907
908         INIT_LIST_HEAD(&device->itt_head);
909
910         list_add_tail(&device->dev_list, &its->device_list);
911
912         return 0;
913 }
914
915 /*
916  * The MAPC command maps collection IDs to redistributors.
917  * Must be called with the its_lock mutex held.
918  */
919 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
920                                     u64 *its_cmd)
921 {
922         u16 coll_id;
923         u32 target_addr;
924         struct its_collection *collection;
925         bool valid;
926
927         valid = its_cmd_get_validbit(its_cmd);
928         coll_id = its_cmd_get_collection(its_cmd);
929         target_addr = its_cmd_get_target_addr(its_cmd);
930
931         if (target_addr >= atomic_read(&kvm->online_vcpus))
932                 return E_ITS_MAPC_PROCNUM_OOR;
933
934         if (!valid) {
935                 vgic_its_free_collection(its, coll_id);
936         } else {
937                 collection = find_collection(its, coll_id);
938
939                 if (!collection) {
940                         int ret;
941
942                         ret = vgic_its_alloc_collection(its, &collection,
943                                                         coll_id);
944                         if (ret)
945                                 return ret;
946                         collection->target_addr = target_addr;
947                 } else {
948                         collection->target_addr = target_addr;
949                         update_affinity_collection(kvm, its, collection);
950                 }
951         }
952
953         return 0;
954 }
955
956 /*
957  * The CLEAR command removes the pending state for a particular LPI.
958  * Must be called with the its_lock mutex held.
959  */
960 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
961                                      u64 *its_cmd)
962 {
963         u32 device_id = its_cmd_get_deviceid(its_cmd);
964         u32 event_id = its_cmd_get_id(its_cmd);
965         struct its_ite *ite;
966
967
968         ite = find_ite(its, device_id, event_id);
969         if (!ite)
970                 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
971
972         ite->irq->pending_latch = false;
973
974         return 0;
975 }
976
977 /*
978  * The INV command syncs the configuration bits from the memory table.
979  * Must be called with the its_lock mutex held.
980  */
981 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
982                                    u64 *its_cmd)
983 {
984         u32 device_id = its_cmd_get_deviceid(its_cmd);
985         u32 event_id = its_cmd_get_id(its_cmd);
986         struct its_ite *ite;
987
988
989         ite = find_ite(its, device_id, event_id);
990         if (!ite)
991                 return E_ITS_INV_UNMAPPED_INTERRUPT;
992
993         return update_lpi_config(kvm, ite->irq, NULL);
994 }
995
996 /*
997  * The INVALL command requests flushing of all IRQ data in this collection.
998  * Find the VCPU mapped to that collection, then iterate over the VM's list
999  * of mapped LPIs and update the configuration for each IRQ which targets
1000  * the specified vcpu. The configuration will be read from the in-memory
1001  * configuration table.
1002  * Must be called with the its_lock mutex held.
1003  */
1004 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1005                                       u64 *its_cmd)
1006 {
1007         u32 coll_id = its_cmd_get_collection(its_cmd);
1008         struct its_collection *collection;
1009         struct kvm_vcpu *vcpu;
1010         struct vgic_irq *irq;
1011         u32 *intids;
1012         int irq_count, i;
1013
1014         collection = find_collection(its, coll_id);
1015         if (!its_is_collection_mapped(collection))
1016                 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1017
1018         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1019
1020         irq_count = vgic_copy_lpi_list(kvm, &intids);
1021         if (irq_count < 0)
1022                 return irq_count;
1023
1024         for (i = 0; i < irq_count; i++) {
1025                 irq = vgic_get_irq(kvm, NULL, intids[i]);
1026                 if (!irq)
1027                         continue;
1028                 update_lpi_config(kvm, irq, vcpu);
1029                 vgic_put_irq(kvm, irq);
1030         }
1031
1032         kfree(intids);
1033
1034         return 0;
1035 }
1036
1037 /*
1038  * The MOVALL command moves the pending state of all IRQs targeting one
1039  * redistributor to another. We don't hold the pending state in the VCPUs,
1040  * but in the IRQs instead, so there is really not much to do for us here.
1041  * However the spec says that no IRQ must target the old redistributor
1042  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1043  * This command affects all LPIs in the system that target that redistributor.
1044  */
1045 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1046                                       u64 *its_cmd)
1047 {
1048         struct vgic_dist *dist = &kvm->arch.vgic;
1049         u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1050         u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1051         struct kvm_vcpu *vcpu1, *vcpu2;
1052         struct vgic_irq *irq;
1053
1054         if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1055             target2_addr >= atomic_read(&kvm->online_vcpus))
1056                 return E_ITS_MOVALL_PROCNUM_OOR;
1057
1058         if (target1_addr == target2_addr)
1059                 return 0;
1060
1061         vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1062         vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1063
1064         spin_lock(&dist->lpi_list_lock);
1065
1066         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
1067                 spin_lock(&irq->irq_lock);
1068
1069                 if (irq->target_vcpu == vcpu1)
1070                         irq->target_vcpu = vcpu2;
1071
1072                 spin_unlock(&irq->irq_lock);
1073         }
1074
1075         spin_unlock(&dist->lpi_list_lock);
1076
1077         return 0;
1078 }
1079
1080 /*
1081  * The INT command injects the LPI associated with that DevID/EvID pair.
1082  * Must be called with the its_lock mutex held.
1083  */
1084 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1085                                    u64 *its_cmd)
1086 {
1087         u32 msi_data = its_cmd_get_id(its_cmd);
1088         u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1089
1090         return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1091 }
1092
1093 /*
1094  * This function is called with the its_cmd lock held, but the ITS data
1095  * structure lock dropped.
1096  */
1097 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1098                                    u64 *its_cmd)
1099 {
1100         int ret = -ENODEV;
1101
1102         mutex_lock(&its->its_lock);
1103         switch (its_cmd_get_command(its_cmd)) {
1104         case GITS_CMD_MAPD:
1105                 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1106                 break;
1107         case GITS_CMD_MAPC:
1108                 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1109                 break;
1110         case GITS_CMD_MAPI:
1111                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1112                 break;
1113         case GITS_CMD_MAPTI:
1114                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1115                 break;
1116         case GITS_CMD_MOVI:
1117                 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1118                 break;
1119         case GITS_CMD_DISCARD:
1120                 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1121                 break;
1122         case GITS_CMD_CLEAR:
1123                 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1124                 break;
1125         case GITS_CMD_MOVALL:
1126                 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1127                 break;
1128         case GITS_CMD_INT:
1129                 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1130                 break;
1131         case GITS_CMD_INV:
1132                 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1133                 break;
1134         case GITS_CMD_INVALL:
1135                 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1136                 break;
1137         case GITS_CMD_SYNC:
1138                 /* we ignore this command: we are in sync all of the time */
1139                 ret = 0;
1140                 break;
1141         }
1142         mutex_unlock(&its->its_lock);
1143
1144         return ret;
1145 }
1146
1147 static u64 vgic_sanitise_its_baser(u64 reg)
1148 {
1149         reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1150                                   GITS_BASER_SHAREABILITY_SHIFT,
1151                                   vgic_sanitise_shareability);
1152         reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1153                                   GITS_BASER_INNER_CACHEABILITY_SHIFT,
1154                                   vgic_sanitise_inner_cacheability);
1155         reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1156                                   GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1157                                   vgic_sanitise_outer_cacheability);
1158
1159         /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1160         reg &= ~GENMASK_ULL(15, 12);
1161
1162         /* We support only one (ITS) page size: 64K */
1163         reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1164
1165         return reg;
1166 }
1167
1168 static u64 vgic_sanitise_its_cbaser(u64 reg)
1169 {
1170         reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1171                                   GITS_CBASER_SHAREABILITY_SHIFT,
1172                                   vgic_sanitise_shareability);
1173         reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1174                                   GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1175                                   vgic_sanitise_inner_cacheability);
1176         reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1177                                   GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1178                                   vgic_sanitise_outer_cacheability);
1179
1180         /*
1181          * Sanitise the physical address to be 64k aligned.
1182          * Also limit the physical addresses to 48 bits.
1183          */
1184         reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1185
1186         return reg;
1187 }
1188
1189 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1190                                                struct vgic_its *its,
1191                                                gpa_t addr, unsigned int len)
1192 {
1193         return extract_bytes(its->cbaser, addr & 7, len);
1194 }
1195
1196 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1197                                        gpa_t addr, unsigned int len,
1198                                        unsigned long val)
1199 {
1200         /* When GITS_CTLR.Enable is 1, this register is RO. */
1201         if (its->enabled)
1202                 return;
1203
1204         mutex_lock(&its->cmd_lock);
1205         its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1206         its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1207         its->creadr = 0;
1208         /*
1209          * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1210          * it to CREADR to make sure we start with an empty command buffer.
1211          */
1212         its->cwriter = its->creadr;
1213         mutex_unlock(&its->cmd_lock);
1214 }
1215
1216 #define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1217 #define ITS_CMD_SIZE                    32
1218 #define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1219
1220 /* Must be called with the cmd_lock held. */
1221 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1222 {
1223         gpa_t cbaser;
1224         u64 cmd_buf[4];
1225
1226         /* Commands are only processed when the ITS is enabled. */
1227         if (!its->enabled)
1228                 return;
1229
1230         cbaser = CBASER_ADDRESS(its->cbaser);
1231
1232         while (its->cwriter != its->creadr) {
1233                 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1234                                          cmd_buf, ITS_CMD_SIZE);
1235                 /*
1236                  * If kvm_read_guest() fails, this could be due to the guest
1237                  * programming a bogus value in CBASER or something else going
1238                  * wrong from which we cannot easily recover.
1239                  * According to section 6.3.2 in the GICv3 spec we can just
1240                  * ignore that command then.
1241                  */
1242                 if (!ret)
1243                         vgic_its_handle_command(kvm, its, cmd_buf);
1244
1245                 its->creadr += ITS_CMD_SIZE;
1246                 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1247                         its->creadr = 0;
1248         }
1249 }
1250
1251 /*
1252  * By writing to CWRITER the guest announces new commands to be processed.
1253  * To avoid any races in the first place, we take the its_cmd lock, which
1254  * protects our ring buffer variables, so that there is only one user
1255  * per ITS handling commands at a given time.
1256  */
1257 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1258                                         gpa_t addr, unsigned int len,
1259                                         unsigned long val)
1260 {
1261         u64 reg;
1262
1263         if (!its)
1264                 return;
1265
1266         mutex_lock(&its->cmd_lock);
1267
1268         reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1269         reg = ITS_CMD_OFFSET(reg);
1270         if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1271                 mutex_unlock(&its->cmd_lock);
1272                 return;
1273         }
1274         its->cwriter = reg;
1275
1276         vgic_its_process_commands(kvm, its);
1277
1278         mutex_unlock(&its->cmd_lock);
1279 }
1280
1281 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1282                                                 struct vgic_its *its,
1283                                                 gpa_t addr, unsigned int len)
1284 {
1285         return extract_bytes(its->cwriter, addr & 0x7, len);
1286 }
1287
1288 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1289                                                struct vgic_its *its,
1290                                                gpa_t addr, unsigned int len)
1291 {
1292         return extract_bytes(its->creadr, addr & 0x7, len);
1293 }
1294
1295 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1296                                               struct vgic_its *its,
1297                                               gpa_t addr, unsigned int len,
1298                                               unsigned long val)
1299 {
1300         u32 cmd_offset;
1301         int ret = 0;
1302
1303         mutex_lock(&its->cmd_lock);
1304
1305         if (its->enabled) {
1306                 ret = -EBUSY;
1307                 goto out;
1308         }
1309
1310         cmd_offset = ITS_CMD_OFFSET(val);
1311         if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1312                 ret = -EINVAL;
1313                 goto out;
1314         }
1315
1316         its->creadr = cmd_offset;
1317 out:
1318         mutex_unlock(&its->cmd_lock);
1319         return ret;
1320 }
1321
1322 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1323 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1324                                               struct vgic_its *its,
1325                                               gpa_t addr, unsigned int len)
1326 {
1327         u64 reg;
1328
1329         switch (BASER_INDEX(addr)) {
1330         case 0:
1331                 reg = its->baser_device_table;
1332                 break;
1333         case 1:
1334                 reg = its->baser_coll_table;
1335                 break;
1336         default:
1337                 reg = 0;
1338                 break;
1339         }
1340
1341         return extract_bytes(reg, addr & 7, len);
1342 }
1343
1344 #define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1345 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1346                                       struct vgic_its *its,
1347                                       gpa_t addr, unsigned int len,
1348                                       unsigned long val)
1349 {
1350         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1351         u64 entry_size, device_type;
1352         u64 reg, *regptr, clearbits = 0;
1353
1354         /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1355         if (its->enabled)
1356                 return;
1357
1358         switch (BASER_INDEX(addr)) {
1359         case 0:
1360                 regptr = &its->baser_device_table;
1361                 entry_size = abi->dte_esz;
1362                 device_type = GITS_BASER_TYPE_DEVICE;
1363                 break;
1364         case 1:
1365                 regptr = &its->baser_coll_table;
1366                 entry_size = abi->cte_esz;
1367                 device_type = GITS_BASER_TYPE_COLLECTION;
1368                 clearbits = GITS_BASER_INDIRECT;
1369                 break;
1370         default:
1371                 return;
1372         }
1373
1374         reg = update_64bit_reg(*regptr, addr & 7, len, val);
1375         reg &= ~GITS_BASER_RO_MASK;
1376         reg &= ~clearbits;
1377
1378         reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1379         reg |= device_type << GITS_BASER_TYPE_SHIFT;
1380         reg = vgic_sanitise_its_baser(reg);
1381
1382         *regptr = reg;
1383 }
1384
1385 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1386                                              struct vgic_its *its,
1387                                              gpa_t addr, unsigned int len)
1388 {
1389         u32 reg = 0;
1390
1391         mutex_lock(&its->cmd_lock);
1392         if (its->creadr == its->cwriter)
1393                 reg |= GITS_CTLR_QUIESCENT;
1394         if (its->enabled)
1395                 reg |= GITS_CTLR_ENABLE;
1396         mutex_unlock(&its->cmd_lock);
1397
1398         return reg;
1399 }
1400
1401 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1402                                      gpa_t addr, unsigned int len,
1403                                      unsigned long val)
1404 {
1405         mutex_lock(&its->cmd_lock);
1406
1407         its->enabled = !!(val & GITS_CTLR_ENABLE);
1408
1409         /*
1410          * Try to process any pending commands. This function bails out early
1411          * if the ITS is disabled or no commands have been queued.
1412          */
1413         vgic_its_process_commands(kvm, its);
1414
1415         mutex_unlock(&its->cmd_lock);
1416 }
1417
1418 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1419 {                                                               \
1420         .reg_offset = off,                                      \
1421         .len = length,                                          \
1422         .access_flags = acc,                                    \
1423         .its_read = rd,                                         \
1424         .its_write = wr,                                        \
1425 }
1426
1427 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1428 {                                                               \
1429         .reg_offset = off,                                      \
1430         .len = length,                                          \
1431         .access_flags = acc,                                    \
1432         .its_read = rd,                                         \
1433         .its_write = wr,                                        \
1434         .uaccess_its_write = uwr,                               \
1435 }
1436
1437 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1438                               gpa_t addr, unsigned int len, unsigned long val)
1439 {
1440         /* Ignore */
1441 }
1442
1443 static struct vgic_register_region its_registers[] = {
1444         REGISTER_ITS_DESC(GITS_CTLR,
1445                 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1446                 VGIC_ACCESS_32bit),
1447         REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1448                 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1449                 vgic_mmio_uaccess_write_its_iidr, 4,
1450                 VGIC_ACCESS_32bit),
1451         REGISTER_ITS_DESC(GITS_TYPER,
1452                 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1453                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1454         REGISTER_ITS_DESC(GITS_CBASER,
1455                 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1456                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1457         REGISTER_ITS_DESC(GITS_CWRITER,
1458                 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1459                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1460         REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1461                 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1462                 vgic_mmio_uaccess_write_its_creadr, 8,
1463                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1464         REGISTER_ITS_DESC(GITS_BASER,
1465                 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1466                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1467         REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1468                 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1469                 VGIC_ACCESS_32bit),
1470 };
1471
1472 /* This is called on setting the LPI enable bit in the redistributor. */
1473 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1474 {
1475         if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1476                 its_sync_lpi_pending_table(vcpu);
1477 }
1478
1479 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its)
1480 {
1481         struct vgic_io_device *iodev = &its->iodev;
1482         int ret;
1483
1484         if (!its->initialized)
1485                 return -EBUSY;
1486
1487         if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
1488                 return -ENXIO;
1489
1490         iodev->regions = its_registers;
1491         iodev->nr_regions = ARRAY_SIZE(its_registers);
1492         kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1493
1494         iodev->base_addr = its->vgic_its_base;
1495         iodev->iodev_type = IODEV_ITS;
1496         iodev->its = its;
1497         mutex_lock(&kvm->slots_lock);
1498         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1499                                       KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1500         mutex_unlock(&kvm->slots_lock);
1501
1502         return ret;
1503 }
1504
1505 #define INITIAL_BASER_VALUE                                               \
1506         (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1507          GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1508          GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1509          GITS_BASER_PAGE_SIZE_64K)
1510
1511 #define INITIAL_PROPBASER_VALUE                                           \
1512         (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1513          GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1514          GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1515
1516 static int vgic_its_create(struct kvm_device *dev, u32 type)
1517 {
1518         struct vgic_its *its;
1519
1520         if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1521                 return -ENODEV;
1522
1523         its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1524         if (!its)
1525                 return -ENOMEM;
1526
1527         mutex_init(&its->its_lock);
1528         mutex_init(&its->cmd_lock);
1529
1530         its->vgic_its_base = VGIC_ADDR_UNDEF;
1531
1532         INIT_LIST_HEAD(&its->device_list);
1533         INIT_LIST_HEAD(&its->collection_list);
1534
1535         dev->kvm->arch.vgic.has_its = true;
1536         its->initialized = false;
1537         its->enabled = false;
1538         its->dev = dev;
1539
1540         its->baser_device_table = INITIAL_BASER_VALUE                   |
1541                 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1542         its->baser_coll_table = INITIAL_BASER_VALUE |
1543                 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1544         dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1545
1546         dev->private = its;
1547
1548         return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1549 }
1550
1551 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1552 {
1553         struct kvm *kvm = kvm_dev->kvm;
1554         struct vgic_its *its = kvm_dev->private;
1555         struct its_device *dev;
1556         struct its_ite *ite;
1557         struct list_head *dev_cur, *dev_temp;
1558         struct list_head *cur, *temp;
1559
1560         /*
1561          * We may end up here without the lists ever having been initialized.
1562          * Check this and bail out early to avoid dereferencing a NULL pointer.
1563          */
1564         if (!its->device_list.next)
1565                 return;
1566
1567         mutex_lock(&its->its_lock);
1568         list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
1569                 dev = container_of(dev_cur, struct its_device, dev_list);
1570                 list_for_each_safe(cur, temp, &dev->itt_head) {
1571                         ite = (container_of(cur, struct its_ite, ite_list));
1572                         its_free_ite(kvm, ite);
1573                 }
1574                 list_del(dev_cur);
1575                 kfree(dev);
1576         }
1577
1578         list_for_each_safe(cur, temp, &its->collection_list) {
1579                 list_del(cur);
1580                 kfree(container_of(cur, struct its_collection, coll_list));
1581         }
1582         mutex_unlock(&its->its_lock);
1583
1584         kfree(its);
1585 }
1586
1587 int vgic_its_has_attr_regs(struct kvm_device *dev,
1588                            struct kvm_device_attr *attr)
1589 {
1590         const struct vgic_register_region *region;
1591         gpa_t offset = attr->attr;
1592         int align;
1593
1594         align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1595
1596         if (offset & align)
1597                 return -EINVAL;
1598
1599         region = vgic_find_mmio_region(its_registers,
1600                                        ARRAY_SIZE(its_registers),
1601                                        offset);
1602         if (!region)
1603                 return -ENXIO;
1604
1605         return 0;
1606 }
1607
1608 int vgic_its_attr_regs_access(struct kvm_device *dev,
1609                               struct kvm_device_attr *attr,
1610                               u64 *reg, bool is_write)
1611 {
1612         const struct vgic_register_region *region;
1613         struct vgic_its *its;
1614         gpa_t addr, offset;
1615         unsigned int len;
1616         int align, ret = 0;
1617
1618         its = dev->private;
1619         offset = attr->attr;
1620
1621         /*
1622          * Although the spec supports upper/lower 32-bit accesses to
1623          * 64-bit ITS registers, the userspace ABI requires 64-bit
1624          * accesses to all 64-bit wide registers. We therefore only
1625          * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1626          * registers
1627          */
1628         if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1629                 align = 0x3;
1630         else
1631                 align = 0x7;
1632
1633         if (offset & align)
1634                 return -EINVAL;
1635
1636         mutex_lock(&dev->kvm->lock);
1637
1638         if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1639                 ret = -ENXIO;
1640                 goto out;
1641         }
1642
1643         region = vgic_find_mmio_region(its_registers,
1644                                        ARRAY_SIZE(its_registers),
1645                                        offset);
1646         if (!region) {
1647                 ret = -ENXIO;
1648                 goto out;
1649         }
1650
1651         if (!lock_all_vcpus(dev->kvm)) {
1652                 ret = -EBUSY;
1653                 goto out;
1654         }
1655
1656         addr = its->vgic_its_base + offset;
1657
1658         len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1659
1660         if (is_write) {
1661                 if (region->uaccess_its_write)
1662                         ret = region->uaccess_its_write(dev->kvm, its, addr,
1663                                                         len, *reg);
1664                 else
1665                         region->its_write(dev->kvm, its, addr, len, *reg);
1666         } else {
1667                 *reg = region->its_read(dev->kvm, its, addr, len);
1668         }
1669         unlock_all_vcpus(dev->kvm);
1670 out:
1671         mutex_unlock(&dev->kvm->lock);
1672         return ret;
1673 }
1674
1675 /**
1676  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
1677  * according to v0 ABI
1678  */
1679 static int vgic_its_save_tables_v0(struct vgic_its *its)
1680 {
1681         return -ENXIO;
1682 }
1683
1684 /**
1685  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
1686  * to internal data structs according to V0 ABI
1687  *
1688  */
1689 static int vgic_its_restore_tables_v0(struct vgic_its *its)
1690 {
1691         return -ENXIO;
1692 }
1693
1694 static int vgic_its_commit_v0(struct vgic_its *its)
1695 {
1696         const struct vgic_its_abi *abi;
1697
1698         abi = vgic_its_get_abi(its);
1699         its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
1700         its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
1701
1702         its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
1703                                         << GITS_BASER_ENTRY_SIZE_SHIFT);
1704
1705         its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
1706                                         << GITS_BASER_ENTRY_SIZE_SHIFT);
1707         return 0;
1708 }
1709
1710 static int vgic_its_has_attr(struct kvm_device *dev,
1711                              struct kvm_device_attr *attr)
1712 {
1713         switch (attr->group) {
1714         case KVM_DEV_ARM_VGIC_GRP_ADDR:
1715                 switch (attr->attr) {
1716                 case KVM_VGIC_ITS_ADDR_TYPE:
1717                         return 0;
1718                 }
1719                 break;
1720         case KVM_DEV_ARM_VGIC_GRP_CTRL:
1721                 switch (attr->attr) {
1722                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1723                         return 0;
1724                 }
1725                 break;
1726         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
1727                 return vgic_its_has_attr_regs(dev, attr);
1728         }
1729         return -ENXIO;
1730 }
1731
1732 static int vgic_its_set_attr(struct kvm_device *dev,
1733                              struct kvm_device_attr *attr)
1734 {
1735         struct vgic_its *its = dev->private;
1736         int ret;
1737
1738         switch (attr->group) {
1739         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1740                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1741                 unsigned long type = (unsigned long)attr->attr;
1742                 u64 addr;
1743
1744                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1745                         return -ENODEV;
1746
1747                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1748                         return -EFAULT;
1749
1750                 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
1751                                         addr, SZ_64K);
1752                 if (ret)
1753                         return ret;
1754
1755                 its->vgic_its_base = addr;
1756
1757                 return 0;
1758         }
1759         case KVM_DEV_ARM_VGIC_GRP_CTRL:
1760                 switch (attr->attr) {
1761                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1762                         its->initialized = true;
1763
1764                         return 0;
1765                 }
1766                 break;
1767         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
1768                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1769                 u64 reg;
1770
1771                 if (get_user(reg, uaddr))
1772                         return -EFAULT;
1773
1774                 return vgic_its_attr_regs_access(dev, attr, &reg, true);
1775         }
1776         }
1777         return -ENXIO;
1778 }
1779
1780 static int vgic_its_get_attr(struct kvm_device *dev,
1781                              struct kvm_device_attr *attr)
1782 {
1783         switch (attr->group) {
1784         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1785                 struct vgic_its *its = dev->private;
1786                 u64 addr = its->vgic_its_base;
1787                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1788                 unsigned long type = (unsigned long)attr->attr;
1789
1790                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1791                         return -ENODEV;
1792
1793                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1794                         return -EFAULT;
1795                 break;
1796         }
1797         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
1798                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1799                 u64 reg;
1800                 int ret;
1801
1802                 ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
1803                 if (ret)
1804                         return ret;
1805                 return put_user(reg, uaddr);
1806         }
1807         default:
1808                 return -ENXIO;
1809         }
1810
1811         return 0;
1812 }
1813
1814 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
1815         .name = "kvm-arm-vgic-its",
1816         .create = vgic_its_create,
1817         .destroy = vgic_its_destroy,
1818         .set_attr = vgic_its_set_attr,
1819         .get_attr = vgic_its_get_attr,
1820         .has_attr = vgic_its_has_attr,
1821 };
1822
1823 int kvm_vgic_register_its_device(void)
1824 {
1825         return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
1826                                        KVM_DEV_TYPE_ARM_VGIC_ITS);
1827 }
1828
1829 /*
1830  * Registers all ITSes with the kvm_io_bus framework.
1831  * To follow the existing VGIC initialization sequence, this has to be
1832  * done as late as possible, just before the first VCPU runs.
1833  */
1834 int vgic_register_its_iodevs(struct kvm *kvm)
1835 {
1836         struct kvm_device *dev;
1837         int ret = 0;
1838
1839         list_for_each_entry(dev, &kvm->devices, vm_node) {
1840                 if (dev->ops != &kvm_arm_vgic_its_ops)
1841                         continue;
1842
1843                 ret = vgic_register_its_iodev(kvm, dev->private);
1844                 if (ret)
1845                         return ret;
1846                 /*
1847                  * We don't need to care about tearing down previously
1848                  * registered ITSes, as the kvm_io_bus framework removes
1849                  * them for us if the VM gets destroyed.
1850                  */
1851         }
1852
1853         return ret;
1854 }