]> git.kernelconcepts.de Git - karo-tx-linux.git/commitdiff
x86/mm: Rework lazy TLB to track the actual loaded mm
authorAndy Lutomirski <luto@kernel.org>
Sun, 28 May 2017 17:00:15 +0000 (10:00 -0700)
committerIngo Molnar <mingo@kernel.org>
Mon, 5 Jun 2017 07:59:44 +0000 (09:59 +0200)
Lazy TLB state is currently managed in a rather baroque manner.
AFAICT, there are three possible states:

 - Non-lazy.  This means that we're running a user thread or a
   kernel thread that has called use_mm().  current->mm ==
   current->active_mm == cpu_tlbstate.active_mm and
   cpu_tlbstate.state == TLBSTATE_OK.

 - Lazy with user mm.  We're running a kernel thread without an mm
   and we're borrowing an mm_struct.  We have current->mm == NULL,
   current->active_mm == cpu_tlbstate.active_mm, cpu_tlbstate.state
   != TLBSTATE_OK (i.e. TLBSTATE_LAZY or 0).  The current cpu is set
   in mm_cpumask(current->active_mm).  CR3 points to
   current->active_mm->pgd.  The TLB is up to date.

 - Lazy with init_mm.  This happens when we call leave_mm().  We
   have current->mm == NULL, current->active_mm ==
   cpu_tlbstate.active_mm, but that mm is only relelvant insofar as
   the scheduler is tracking it for refcounting.  cpu_tlbstate.state
   != TLBSTATE_OK.  The current cpu is clear in
   mm_cpumask(current->active_mm).  CR3 points to swapper_pg_dir,
   i.e. init_mm->pgd.

This patch simplifies the situation.  Other than perf, x86 stops
caring about current->active_mm at all.  We have
cpu_tlbstate.loaded_mm pointing to the mm that CR3 references.  The
TLB is always up to date for that mm.  leave_mm() just switches us
to init_mm.  There are no longer any special cases for mm_cpumask,
and switch_mm() switches mms without worrying about laziness.

After this patch, cpu_tlbstate.state serves only to tell the TLB
flush code whether it may switch to init_mm instead of doing a
normal flush.

This makes fairly extensive changes to xen_exit_mmap(), which used
to look a bit like black magic.

Perf is unchanged.  With or without this change, perf may behave a bit
erratically if it tries to read user memory in kernel thread context.
We should build on this patch to teach perf to never look at user
memory when cpu_tlbstate.loaded_mm != current->mm.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
arch/x86/events/core.c
arch/x86/include/asm/tlbflush.h
arch/x86/kernel/ldt.c
arch/x86/mm/init.c
arch/x86/mm/tlb.c
arch/x86/xen/mmu_pv.c

index 580b60f5ac83cea46a75a11185c8ef0a8c2da516..77a33096728de9608593c202fe1d37db561d472f 100644 (file)
@@ -2101,8 +2101,7 @@ static int x86_pmu_event_init(struct perf_event *event)
 
 static void refresh_pce(void *ignored)
 {
-       if (current->active_mm)
-               load_mm_cr4(current->active_mm);
+       load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
 }
 
 static void x86_pmu_event_mapped(struct perf_event *event)
index dbb5a9f0fed82d64530bb658907b5558c0dc665c..388c2463fde6d97c89e6373b0b36dca50bdbcc98 100644 (file)
@@ -66,7 +66,13 @@ static inline void invpcid_flush_all_nonglobals(void)
 #endif
 
 struct tlb_state {
-       struct mm_struct *active_mm;
+       /*
+        * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
+        * are on.  This means that it may not match current->active_mm,
+        * which will contain the previous user mm when we're in lazy TLB
+        * mode even if we've already switched back to swapper_pg_dir.
+        */
+       struct mm_struct *loaded_mm;
        int state;
 
        /*
@@ -256,7 +262,9 @@ void native_flush_tlb_others(const struct cpumask *cpumask,
 static inline void reset_lazy_tlbstate(void)
 {
        this_cpu_write(cpu_tlbstate.state, 0);
-       this_cpu_write(cpu_tlbstate.active_mm, &init_mm);
+       this_cpu_write(cpu_tlbstate.loaded_mm, &init_mm);
+
+       WARN_ON(read_cr3() != __pa_symbol(swapper_pg_dir));
 }
 
 static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
index d4a15831ac5882e44570377aeee9b3458d1c6a2c..de503e7a64adc61af1a5e1d9680fe4bb1ea7dca2 100644 (file)
 #include <asm/syscalls.h>
 
 /* context.lock is held for us, so we don't need any locking. */
-static void flush_ldt(void *current_mm)
+static void flush_ldt(void *__mm)
 {
+       struct mm_struct *mm = __mm;
        mm_context_t *pc;
 
-       if (current->active_mm != current_mm)
+       if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
                return;
 
-       pc = &current->active_mm->context;
+       pc = &mm->context;
        set_ldt(pc->ldt->entries, pc->ldt->size);
 }
 
index c61183b5742721f7c861bfaa95015205d755e533..88ee942cb47d208b6595671e23675453b5431fee 100644 (file)
@@ -811,7 +811,7 @@ void __init zone_sizes_init(void)
 }
 
 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
-       .active_mm = &init_mm,
+       .loaded_mm = &init_mm,
        .state = 0,
        .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
 };
index da1416c77bfb4d60b5f17cd1444ae7ea115c4731..44db82013f1cd8cc6cdfdb27016edb1376cbc2ff 100644 (file)
  *     Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  */
 
-/*
- * We cannot call mmdrop() because we are in interrupt context,
- * instead update mm->cpu_vm_mask.
- */
 void leave_mm(int cpu)
 {
-       struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
+       struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+
+       /*
+        * It's plausible that we're in lazy TLB mode while our mm is init_mm.
+        * If so, our callers still expect us to flush the TLB, but there
+        * aren't any user TLB entries in init_mm to worry about.
+        *
+        * This needs to happen before any other sanity checks due to
+        * intel_idle's shenanigans.
+        */
+       if (loaded_mm == &init_mm)
+               return;
+
        if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
                BUG();
-       if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
-               cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
-               load_cr3(swapper_pg_dir);
-               /*
-                * This gets called in the idle path where RCU
-                * functions differently.  Tracing normally
-                * uses RCU, so we have to call the tracepoint
-                * specially here.
-                */
-               trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
-       }
+
+       switch_mm(NULL, &init_mm, NULL);
 }
 EXPORT_SYMBOL_GPL(leave_mm);
 
@@ -65,108 +64,109 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
                        struct task_struct *tsk)
 {
        unsigned cpu = smp_processor_id();
+       struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
 
-       if (likely(prev != next)) {
-               if (IS_ENABLED(CONFIG_VMAP_STACK)) {
-                       /*
-                        * If our current stack is in vmalloc space and isn't
-                        * mapped in the new pgd, we'll double-fault.  Forcibly
-                        * map it.
-                        */
-                       unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
-
-                       pgd_t *pgd = next->pgd + stack_pgd_index;
+       /*
+        * NB: The scheduler will call us with prev == next when
+        * switching from lazy TLB mode to normal mode if active_mm
+        * isn't changing.  When this happens, there is no guarantee
+        * that CR3 (and hence cpu_tlbstate.loaded_mm) matches next.
+        *
+        * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
+        */
 
-                       if (unlikely(pgd_none(*pgd)))
-                               set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
-               }
-
-               this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
-               this_cpu_write(cpu_tlbstate.active_mm, next);
+       this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
 
-               cpumask_set_cpu(cpu, mm_cpumask(next));
+       if (real_prev == next) {
+               /*
+                * There's nothing to do: we always keep the per-mm control
+                * regs in sync with cpu_tlbstate.loaded_mm.  Just
+                * sanity-check mm_cpumask.
+                */
+               if (WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(next))))
+                       cpumask_set_cpu(cpu, mm_cpumask(next));
+               return;
+       }
 
+       if (IS_ENABLED(CONFIG_VMAP_STACK)) {
                /*
-                * Re-load page tables.
-                *
-                * This logic has an ordering constraint:
-                *
-                *  CPU 0: Write to a PTE for 'next'
-                *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
-                *  CPU 1: set bit 1 in next's mm_cpumask
-                *  CPU 1: load from the PTE that CPU 0 writes (implicit)
-                *
-                * We need to prevent an outcome in which CPU 1 observes
-                * the new PTE value and CPU 0 observes bit 1 clear in
-                * mm_cpumask.  (If that occurs, then the IPI will never
-                * be sent, and CPU 0's TLB will contain a stale entry.)
-                *
-                * The bad outcome can occur if either CPU's load is
-                * reordered before that CPU's store, so both CPUs must
-                * execute full barriers to prevent this from happening.
-                *
-                * Thus, switch_mm needs a full barrier between the
-                * store to mm_cpumask and any operation that could load
-                * from next->pgd.  TLB fills are special and can happen
-                * due to instruction fetches or for no reason at all,
-                * and neither LOCK nor MFENCE orders them.
-                * Fortunately, load_cr3() is serializing and gives the
-                * ordering guarantee we need.
-                *
+                * If our current stack is in vmalloc space and isn't
+                * mapped in the new pgd, we'll double-fault.  Forcibly
+                * map it.
                 */
-               load_cr3(next->pgd);
+               unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
 
-               trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
+               pgd_t *pgd = next->pgd + stack_pgd_index;
 
-               /* Stop flush ipis for the previous mm */
-               cpumask_clear_cpu(cpu, mm_cpumask(prev));
+               if (unlikely(pgd_none(*pgd)))
+                       set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
+       }
 
-               /* Load per-mm CR4 state */
-               load_mm_cr4(next);
+       this_cpu_write(cpu_tlbstate.loaded_mm, next);
+
+       WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
+       cpumask_set_cpu(cpu, mm_cpumask(next));
+
+       /*
+        * Re-load page tables.
+        *
+        * This logic has an ordering constraint:
+        *
+        *  CPU 0: Write to a PTE for 'next'
+        *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
+        *  CPU 1: set bit 1 in next's mm_cpumask
+        *  CPU 1: load from the PTE that CPU 0 writes (implicit)
+        *
+        * We need to prevent an outcome in which CPU 1 observes
+        * the new PTE value and CPU 0 observes bit 1 clear in
+        * mm_cpumask.  (If that occurs, then the IPI will never
+        * be sent, and CPU 0's TLB will contain a stale entry.)
+        *
+        * The bad outcome can occur if either CPU's load is
+        * reordered before that CPU's store, so both CPUs must
+        * execute full barriers to prevent this from happening.
+        *
+        * Thus, switch_mm needs a full barrier between the
+        * store to mm_cpumask and any operation that could load
+        * from next->pgd.  TLB fills are special and can happen
+        * due to instruction fetches or for no reason at all,
+        * and neither LOCK nor MFENCE orders them.
+        * Fortunately, load_cr3() is serializing and gives the
+        * ordering guarantee we need.
+        */
+       load_cr3(next->pgd);
+
+       /*
+        * This gets called via leave_mm() in the idle path where RCU
+        * functions differently.  Tracing normally uses RCU, so we have to
+        * call the tracepoint specially here.
+        */
+       trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
+
+       /* Stop flush ipis for the previous mm */
+       WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
+                    real_prev != &init_mm);
+       cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
+
+       /* Load per-mm CR4 state */
+       load_mm_cr4(next);
 
 #ifdef CONFIG_MODIFY_LDT_SYSCALL
-               /*
-                * Load the LDT, if the LDT is different.
-                *
-                * It's possible that prev->context.ldt doesn't match
-                * the LDT register.  This can happen if leave_mm(prev)
-                * was called and then modify_ldt changed
-                * prev->context.ldt but suppressed an IPI to this CPU.
-                * In this case, prev->context.ldt != NULL, because we
-                * never set context.ldt to NULL while the mm still
-                * exists.  That means that next->context.ldt !=
-                * prev->context.ldt, because mms never share an LDT.
-                */
-               if (unlikely(prev->context.ldt != next->context.ldt))
-                       load_mm_ldt(next);
+       /*
+        * Load the LDT, if the LDT is different.
+        *
+        * It's possible that prev->context.ldt doesn't match
+        * the LDT register.  This can happen if leave_mm(prev)
+        * was called and then modify_ldt changed
+        * prev->context.ldt but suppressed an IPI to this CPU.
+        * In this case, prev->context.ldt != NULL, because we
+        * never set context.ldt to NULL while the mm still
+        * exists.  That means that next->context.ldt !=
+        * prev->context.ldt, because mms never share an LDT.
+        */
+       if (unlikely(real_prev->context.ldt != next->context.ldt))
+               load_mm_ldt(next);
 #endif
-       } else {
-               this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
-               BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
-
-               if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
-                       /*
-                        * On established mms, the mm_cpumask is only changed
-                        * from irq context, from ptep_clear_flush() while in
-                        * lazy tlb mode, and here. Irqs are blocked during
-                        * schedule, protecting us from simultaneous changes.
-                        */
-                       cpumask_set_cpu(cpu, mm_cpumask(next));
-
-                       /*
-                        * We were in lazy tlb mode and leave_mm disabled
-                        * tlb flush IPI delivery. We must reload CR3
-                        * to make sure to use no freed page tables.
-                        *
-                        * As above, load_cr3() is serializing and orders TLB
-                        * fills with respect to the mm_cpumask write.
-                        */
-                       load_cr3(next->pgd);
-                       trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
-                       load_mm_cr4(next);
-                       load_mm_ldt(next);
-               }
-       }
 }
 
 /*
@@ -246,7 +246,7 @@ static void flush_tlb_func_remote(void *info)
 
        inc_irq_stat(irq_tlb_count);
 
-       if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.active_mm))
+       if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
                return;
 
        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
@@ -314,7 +314,7 @@ void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
                info.end = TLB_FLUSH_ALL;
        }
 
-       if (mm == current->active_mm)
+       if (mm == this_cpu_read(cpu_tlbstate.loaded_mm))
                flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
        if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
                flush_tlb_others(mm_cpumask(mm), &info);
index 4b926c6b813c9a9a08c2e5ac5084a3e2da961c2c..21beb37114b7db07b86bc79a454fe4e318a97afc 100644 (file)
@@ -975,37 +975,32 @@ static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
        spin_unlock(&mm->page_table_lock);
 }
 
-
-#ifdef CONFIG_SMP
-/* Another cpu may still have their %cr3 pointing at the pagetable, so
-   we need to repoint it somewhere else before we can unpin it. */
-static void drop_other_mm_ref(void *info)
+static void drop_mm_ref_this_cpu(void *info)
 {
        struct mm_struct *mm = info;
-       struct mm_struct *active_mm;
-
-       active_mm = this_cpu_read(cpu_tlbstate.active_mm);
 
-       if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
+       if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
                leave_mm(smp_processor_id());
 
-       /* If this cpu still has a stale cr3 reference, then make sure
-          it has been flushed. */
+       /*
+        * If this cpu still has a stale cr3 reference, then make sure
+        * it has been flushed.
+        */
        if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
-               load_cr3(swapper_pg_dir);
+               xen_mc_flush();
 }
 
+#ifdef CONFIG_SMP
+/*
+ * Another cpu may still have their %cr3 pointing at the pagetable, so
+ * we need to repoint it somewhere else before we can unpin it.
+ */
 static void xen_drop_mm_ref(struct mm_struct *mm)
 {
        cpumask_var_t mask;
        unsigned cpu;
 
-       if (current->active_mm == mm) {
-               if (current->mm == mm)
-                       load_cr3(swapper_pg_dir);
-               else
-                       leave_mm(smp_processor_id());
-       }
+       drop_mm_ref_this_cpu(mm);
 
        /* Get the "official" set of cpus referring to our pagetable. */
        if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
@@ -1013,31 +1008,31 @@ static void xen_drop_mm_ref(struct mm_struct *mm)
                        if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
                            && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
                                continue;
-                       smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
+                       smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
                }
                return;
        }
        cpumask_copy(mask, mm_cpumask(mm));
 
-       /* It's possible that a vcpu may have a stale reference to our
-          cr3, because its in lazy mode, and it hasn't yet flushed
-          its set of pending hypercalls yet.  In this case, we can
-          look at its actual current cr3 value, and force it to flush
-          if needed. */
+       /*
+        * It's possible that a vcpu may have a stale reference to our
+        * cr3, because its in lazy mode, and it hasn't yet flushed
+        * its set of pending hypercalls yet.  In this case, we can
+        * look at its actual current cr3 value, and force it to flush
+        * if needed.
+        */
        for_each_online_cpu(cpu) {
                if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
                        cpumask_set_cpu(cpu, mask);
        }
 
-       if (!cpumask_empty(mask))
-               smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
+       smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
        free_cpumask_var(mask);
 }
 #else
 static void xen_drop_mm_ref(struct mm_struct *mm)
 {
-       if (current->active_mm == mm)
-               load_cr3(swapper_pg_dir);
+       drop_mm_ref_this_cpu(mm);
 }
 #endif