]> git.kernelconcepts.de Git - karo-tx-uboot.git/commitdiff
nand: Freescale Integrated Flash Controller NAND support
authorDipen Dudhat <Dipen.Dudhat@freescale.com>
Tue, 22 Mar 2011 03:57:39 +0000 (09:27 +0530)
committerKumar Gala <galak@kernel.crashing.org>
Fri, 30 Sep 2011 00:01:04 +0000 (19:01 -0500)
Add NAND support (including spl) on IFC, such as is found on the p1010.

Note that using hardware ECC on IFC with small-page NAND (which is what
comes on the p1010rdb reference board) means there will be insufficient
OOB space for JFFS2, since IFC does not support 1-bit ECC.  UBI should
work, as it does not use OOB for anything but ECC.

When hardware ECC is not enabled in CSOR, software ECC is now used.

Signed-off-by: Dipen Dudhat <Dipen.Dudhat@freescale.com>
[scottwood@freescale.com: ECC rework and misc fixes]
Signed-off-by: Scott Wood <scottwood@freescale.com>
arch/powerpc/cpu/mpc85xx/cpu_init_nand.c
arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds
arch/powerpc/include/asm/fsl_ifc.h
drivers/mtd/nand/Makefile
drivers/mtd/nand/fsl_ifc_nand.c [new file with mode: 0644]
nand_spl/nand_boot_fsl_ifc.c [new file with mode: 0644]

index 796d3984261e889ef456bf1188897fd7668f08bc..6d01479a98a5558141b6030c99147f52f9a3ee09 100644 (file)
  */
 
 #include <common.h>
+#include <asm/fsl_ifc.h>
 #include <asm/io.h>
 
 void cpu_init_f(void)
 {
+#ifdef CONFIG_FSL_LBC
        fsl_lbc_t *lbc = LBC_BASE_ADDR;
 
        /*
@@ -39,6 +41,14 @@ void cpu_init_f(void)
 #else
 #error  CONFIG_SYS_NAND_BR_PRELIM, CONFIG_SYS_NAND_OR_PRELIM must be defined
 #endif
+#endif
+#ifdef CONFIG_FSL_IFC
+#if defined(CONFIG_SYS_CSPR0) && defined(CONFIG_SYS_CSOR0)
+       set_ifc_cspr(IFC_CS0, CONFIG_SYS_CSPR0);
+       set_ifc_amask(IFC_CS0, CONFIG_SYS_AMASK0);
+       set_ifc_csor(IFC_CS0, CONFIG_SYS_CSOR0);
+#endif
+#endif
 
 #if defined(CONFIG_SYS_RAMBOOT) && defined(CONFIG_SYS_INIT_L2_ADDR)
        ccsr_l2cache_t *l2cache = (void *)CONFIG_SYS_MPC85xx_L2_ADDR;
index 8410bd797933a16662e2574a487e1b33cf1ab046..852f9aa4a392038212175544ecb017fca3ed2087 100644 (file)
@@ -23,6 +23,8 @@
  * MA 02111-1307 USA
  */
 
+#include "config.h"    /* CONFIG_BOARDDIR */
+
 OUTPUT_ARCH(powerpc)
 SECTIONS
 {
@@ -52,8 +54,18 @@ SECTIONS
        . = ALIGN(8);
        __init_begin = .;
        __init_end = .;
-
-       .resetvec ADDR(.text) + 0xffc : {
+#if defined(CONFIG_FSL_IFC) /* Restrict bootpg at 4K boundry for IFC */
+       .bootpg ADDR(.text) + 0x1000 :
+       {
+               start.o (.bootpg)
+       }
+#define RESET_VECTOR_OFFSET 0x1ffc /* IFC has 8K sram */
+#elif defined(CONFIG_FSL_ELBC)
+#define RESET_VECTOR_OFFSET 0xffc /* LBC has 4k sram */
+#else
+#error unknown NAND controller
+#endif
+       .resetvec ADDR(.text) + RESET_VECTOR_OFFSET : {
                KEEP(*(.resetvec))
        } = 0xffff
 
@@ -64,4 +76,4 @@ SECTIONS
        }
        __bss_end__ = .;
 }
-ASSERT(__init_end <= 0xfff00ffc, "NAND bootstrap too big");
+ASSERT(__init_end <= (0xfff00000 + RESET_VECTOR_OFFSET), "NAND bootstrap too big");
index d4d98090556a90738fc04c884d591107a033b292..fb12363c881095b87dfadcd900ff2fe639fb18c6 100644 (file)
@@ -69,6 +69,7 @@
  */
 /* Enable ECC Encoder */
 #define CSOR_NAND_ECC_ENC_EN           0x80000000
+#define CSOR_NAND_ECC_MODE_MASK                0x30000000
 /* 4 bit correction per 520 Byte sector */
 #define CSOR_NAND_ECC_MODE_4           0x00000000
 /* 8 bit correction per 528 Byte sector */
@@ -857,10 +858,7 @@ struct fsl_ifc_nand {
        u32 res19[0x10];
        u32 nand_fsr;
        u32 res20;
-       u32 nand_eccstat0;
-       u32 nand_eccstat1;
-       u32 nand_eccstat2;
-       u32 nand_eccstat3;
+       u32 nand_eccstat[4];
        u32 res21[0x20];
        u32 nanndcr;
        u32 res22[0x2];
index 8b598f6bfef8769964fa149fb2526a48d394f613..3353dcd8c8d4a9e7a4aa2a91cd670cb7b5e2b2a9 100644 (file)
@@ -37,6 +37,7 @@ COBJS-$(CONFIG_NAND_ATMEL) += atmel_nand.o
 COBJS-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o
 COBJS-$(CONFIG_NAND_DAVINCI) += davinci_nand.o
 COBJS-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o
+COBJS-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o
 COBJS-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o
 COBJS-$(CONFIG_NAND_KB9202) += kb9202_nand.o
 COBJS-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c
new file mode 100644 (file)
index 0000000..b3f3c3c
--- /dev/null
@@ -0,0 +1,850 @@
+/* Integrated Flash Controller NAND Machine Driver
+ *
+ * Copyright (c) 2011 Freescale Semiconductor, Inc
+ *
+ * Authors: Dipen Dudhat <Dipen.Dudhat@freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <common.h>
+#include <malloc.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+
+#include <asm/io.h>
+#include <asm/errno.h>
+#include <asm/fsl_ifc.h>
+
+#define MAX_BANKS      4
+#define ERR_BYTE       0xFF /* Value returned for read bytes
+                               when read failed */
+#define IFC_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for IFC
+                               NAND Machine */
+
+struct fsl_ifc_ctrl;
+
+/* mtd information per set */
+struct fsl_ifc_mtd {
+       struct mtd_info mtd;
+       struct nand_chip chip;
+       struct fsl_ifc_ctrl *ctrl;
+
+       struct device *dev;
+       int bank;               /* Chip select bank number                */
+       unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
+       u8 __iomem *vbase;      /* Chip select base virtual address       */
+};
+
+/* overview of the fsl ifc controller */
+struct fsl_ifc_ctrl {
+       struct nand_hw_control controller;
+       struct fsl_ifc_mtd *chips[MAX_BANKS];
+
+       /* device info */
+       struct fsl_ifc *regs;
+       uint8_t __iomem *addr;   /* Address of assigned IFC buffer        */
+       unsigned int cs_nand;    /* On which chipsel NAND is connected    */
+       unsigned int page;       /* Last page written to / read from      */
+       unsigned int read_bytes; /* Number of bytes read during command   */
+       unsigned int column;     /* Saved column from SEQIN               */
+       unsigned int index;      /* Pointer to next byte to 'read'        */
+       unsigned int status;     /* status read from NEESR after last op  */
+       unsigned int oob;        /* Non zero if operating on OOB data     */
+       unsigned int eccread;    /* Non zero for a full-page ECC read     */
+};
+
+static struct fsl_ifc_ctrl *ifc_ctrl;
+
+/* 512-byte page with 4-bit ECC, 8-bit */
+static struct nand_ecclayout oob_512_8bit_ecc4 = {
+       .eccbytes = 8,
+       .eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
+       .oobfree = { {0, 5}, {6, 2} },
+};
+
+/* 512-byte page with 4-bit ECC, 16-bit */
+static struct nand_ecclayout oob_512_16bit_ecc4 = {
+       .eccbytes = 8,
+       .eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
+       .oobfree = { {2, 6}, },
+};
+
+/* 2048-byte page size with 4-bit ECC */
+static struct nand_ecclayout oob_2048_ecc4 = {
+       .eccbytes = 32,
+       .eccpos = {
+               8, 9, 10, 11, 12, 13, 14, 15,
+               16, 17, 18, 19, 20, 21, 22, 23,
+               24, 25, 26, 27, 28, 29, 30, 31,
+               32, 33, 34, 35, 36, 37, 38, 39,
+       },
+       .oobfree = { {2, 6}, {40, 24} },
+};
+
+/* 4096-byte page size with 4-bit ECC */
+static struct nand_ecclayout oob_4096_ecc4 = {
+       .eccbytes = 64,
+       .eccpos = {
+               8, 9, 10, 11, 12, 13, 14, 15,
+               16, 17, 18, 19, 20, 21, 22, 23,
+               24, 25, 26, 27, 28, 29, 30, 31,
+               32, 33, 34, 35, 36, 37, 38, 39,
+               40, 41, 42, 43, 44, 45, 46, 47,
+               48, 49, 50, 51, 52, 53, 54, 55,
+               56, 57, 58, 59, 60, 61, 62, 63,
+               64, 65, 66, 67, 68, 69, 70, 71,
+       },
+       .oobfree = { {2, 6}, {72, 56} },
+};
+
+/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */
+static struct nand_ecclayout oob_4096_ecc8 = {
+       .eccbytes = 128,
+       .eccpos = {
+               8, 9, 10, 11, 12, 13, 14, 15,
+               16, 17, 18, 19, 20, 21, 22, 23,
+               24, 25, 26, 27, 28, 29, 30, 31,
+               32, 33, 34, 35, 36, 37, 38, 39,
+               40, 41, 42, 43, 44, 45, 46, 47,
+               48, 49, 50, 51, 52, 53, 54, 55,
+               56, 57, 58, 59, 60, 61, 62, 63,
+               64, 65, 66, 67, 68, 69, 70, 71,
+               72, 73, 74, 75, 76, 77, 78, 79,
+               80, 81, 82, 83, 84, 85, 86, 87,
+               88, 89, 90, 91, 92, 93, 94, 95,
+               96, 97, 98, 99, 100, 101, 102, 103,
+               104, 105, 106, 107, 108, 109, 110, 111,
+               112, 113, 114, 115, 116, 117, 118, 119,
+               120, 121, 122, 123, 124, 125, 126, 127,
+               128, 129, 130, 131, 132, 133, 134, 135,
+       },
+       .oobfree = { {2, 6}, {136, 82} },
+};
+
+
+/*
+ * Generic flash bbt descriptors
+ */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+                  NAND_BBT_2BIT | NAND_BBT_VERSION,
+       .offs = 2, /* 0 on 8-bit small page */
+       .len = 4,
+       .veroffs = 6,
+       .maxblocks = 4,
+       .pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+                  NAND_BBT_2BIT | NAND_BBT_VERSION,
+       .offs = 2, /* 0 on 8-bit small page */
+       .len = 4,
+       .veroffs = 6,
+       .maxblocks = 4,
+       .pattern = mirror_pattern,
+};
+
+/*
+ * Set up the IFC hardware block and page address fields, and the ifc nand
+ * structure addr field to point to the correct IFC buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc *ifc = ctrl->regs;
+       int buf_num;
+
+       ctrl->page = page_addr;
+
+       /* Program ROW0/COL0 */
+       out_be32(&ifc->ifc_nand.row0, page_addr);
+       out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);
+
+       buf_num = page_addr & priv->bufnum_mask;
+
+       ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
+       ctrl->index = column;
+
+       /* for OOB data point to the second half of the buffer */
+       if (oob)
+               ctrl->index += mtd->writesize;
+}
+
+static int is_blank(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
+                   unsigned int bufnum)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
+       u32 __iomem *main = (u32 *)addr;
+       u8 __iomem *oob = addr + mtd->writesize;
+       int i;
+
+       for (i = 0; i < mtd->writesize / 4; i++) {
+               if (__raw_readl(&main[i]) != 0xffffffff)
+                       return 0;
+       }
+
+       for (i = 0; i < chip->ecc.layout->eccbytes; i++) {
+               int pos = chip->ecc.layout->eccpos[i];
+
+               if (__raw_readb(&oob[pos]) != 0xff)
+                       return 0;
+       }
+
+       return 1;
+}
+
+/* returns nonzero if entire page is blank */
+static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
+                         u32 *eccstat, unsigned int bufnum)
+{
+       u32 reg = eccstat[bufnum / 4];
+       int errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
+
+       if (errors == 15) { /* uncorrectable */
+               /* Blank pages fail hw ECC checks */
+               if (is_blank(mtd, ctrl, bufnum))
+                       return 1;
+
+               /*
+                * We disable ECCER reporting in hardware due to
+                * erratum IFC-A002770 -- so report it now if we
+                * see an uncorrectable error in ECCSTAT.
+                */
+               ctrl->status |= IFC_NAND_EVTER_STAT_ECCER;
+       } else if (errors > 0) {
+               mtd->ecc_stats.corrected += errors;
+       }
+
+       return 0;
+}
+
+/*
+ * execute IFC NAND command and wait for it to complete
+ */
+static int fsl_ifc_run_command(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc *ifc = ctrl->regs;
+       long long end_tick;
+       u32 eccstat[4];
+       int i;
+
+       /* set the chip select for NAND Transaction */
+       out_be32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand);
+
+       /* start read/write seq */
+       out_be32(&ifc->ifc_nand.nandseq_strt,
+                IFC_NAND_SEQ_STRT_FIR_STRT);
+
+       /* wait for NAND Machine complete flag or timeout */
+       end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks();
+
+       while (end_tick > get_ticks()) {
+               ctrl->status = in_be32(&ifc->ifc_nand.nand_evter_stat);
+
+               if (ctrl->status & IFC_NAND_EVTER_STAT_OPC)
+                       break;
+       }
+
+       out_be32(&ifc->ifc_nand.nand_evter_stat, ctrl->status);
+
+       if (ctrl->status & IFC_NAND_EVTER_STAT_FTOER)
+               printf("%s: Flash Time Out Error\n", __func__);
+       if (ctrl->status & IFC_NAND_EVTER_STAT_WPER)
+               printf("%s: Write Protect Error\n", __func__);
+
+       if (ctrl->eccread) {
+               int bufperpage = mtd->writesize / 512;
+               int bufnum = (ctrl->page & priv->bufnum_mask) * bufperpage;
+               int bufnum_end = bufnum + bufperpage - 1;
+
+               for (i = bufnum / 4; i <= bufnum_end / 4; i++)
+                       eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]);
+
+               for (i = bufnum; i <= bufnum_end; i++) {
+                       if (check_read_ecc(mtd, ctrl, eccstat, i))
+                               break;
+               }
+
+               ctrl->eccread = 0;
+       }
+
+       /* returns 0 on success otherwise non-zero) */
+       return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
+}
+
+static void fsl_ifc_do_read(struct nand_chip *chip,
+                           int oob,
+                           struct mtd_info *mtd)
+{
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc *ifc = ctrl->regs;
+
+       /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
+       if (mtd->writesize > 512) {
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                        (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                        (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+                        (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+                        (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+                        (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
+               out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                       (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+                       (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+       } else {
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                        (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                        (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+                        (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
+                        (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
+
+               if (oob)
+                       out_be32(&ifc->ifc_nand.nand_fcr0,
+                                NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
+               else
+                       out_be32(&ifc->ifc_nand.nand_fcr0,
+                               NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+       }
+}
+
+/* cmdfunc send commands to the IFC NAND Machine */
+static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+                            int column, int page_addr)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc *ifc = ctrl->regs;
+
+       /* clear the read buffer */
+       ctrl->read_bytes = 0;
+       if (command != NAND_CMD_PAGEPROG)
+               ctrl->index = 0;
+
+       switch (command) {
+       /* READ0 read the entire buffer to use hardware ECC. */
+       case NAND_CMD_READ0: {
+               out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+               set_addr(mtd, 0, page_addr, 0);
+
+               ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+               ctrl->index += column;
+
+               if (chip->ecc.mode == NAND_ECC_HW)
+                       ctrl->eccread = 1;
+
+               fsl_ifc_do_read(chip, 0, mtd);
+               fsl_ifc_run_command(mtd);
+               return;
+       }
+
+       /* READOOB reads only the OOB because no ECC is performed. */
+       case NAND_CMD_READOOB:
+               out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
+               set_addr(mtd, column, page_addr, 1);
+
+               ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+               fsl_ifc_do_read(chip, 1, mtd);
+               fsl_ifc_run_command(mtd);
+
+               return;
+
+       /* READID must read all possible bytes while CEB is active */
+       case NAND_CMD_READID:
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                               (IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                               (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
+                               (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                               NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
+               /* 4 bytes for manuf, device and exts */
+               out_be32(&ifc->ifc_nand.nand_fbcr, 4);
+               ctrl->read_bytes = 4;
+
+               set_addr(mtd, 0, 0, 0);
+               fsl_ifc_run_command(mtd);
+               return;
+
+       /* ERASE1 stores the block and page address */
+       case NAND_CMD_ERASE1:
+               set_addr(mtd, 0, page_addr, 0);
+               return;
+
+       /* ERASE2 uses the block and page address from ERASE1 */
+       case NAND_CMD_ERASE2:
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                        (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                        (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+                        (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
+
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                        (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
+                        (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
+
+               out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+               ctrl->read_bytes = 0;
+               fsl_ifc_run_command(mtd);
+               return;
+
+       /* SEQIN sets up the addr buffer and all registers except the length */
+       case NAND_CMD_SEQIN: {
+               u32 nand_fcr0;
+               ctrl->column = column;
+               ctrl->oob = 0;
+
+               if (mtd->writesize > 512) {
+                       nand_fcr0 =
+                               (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
+                               (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT);
+
+                       out_be32(&ifc->ifc_nand.nand_fir0,
+                                (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                                (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+                                (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+                                (IFC_FIR_OP_WBCD  << IFC_NAND_FIR0_OP3_SHIFT) |
+                                (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT));
+                       out_be32(&ifc->ifc_nand.nand_fir1, 0);
+               } else {
+                       nand_fcr0 = ((NAND_CMD_PAGEPROG <<
+                                       IFC_NAND_FCR0_CMD1_SHIFT) |
+                                   (NAND_CMD_SEQIN <<
+                                       IFC_NAND_FCR0_CMD2_SHIFT));
+
+                       out_be32(&ifc->ifc_nand.nand_fir0,
+                                (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                                (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
+                                (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+                                (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
+                                (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
+                       out_be32(&ifc->ifc_nand.nand_fir1,
+                                (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT));
+
+                       if (column >= mtd->writesize) {
+                               /* OOB area --> READOOB */
+                               column -= mtd->writesize;
+                               nand_fcr0 |= NAND_CMD_READOOB <<
+                                               IFC_NAND_FCR0_CMD0_SHIFT;
+                               ctrl->oob = 1;
+                       } else if (column < 256) {
+                               /* First 256 bytes --> READ0 */
+                               nand_fcr0 |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
+                       } else {
+                               /* Second 256 bytes --> READ1 */
+                               nand_fcr0 |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
+                       }
+               }
+
+               out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
+               set_addr(mtd, column, page_addr, ctrl->oob);
+               return;
+       }
+
+       /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+       case NAND_CMD_PAGEPROG:
+               if (ctrl->oob)
+                       out_be32(&ifc->ifc_nand.nand_fbcr, ctrl->index);
+               else
+                       out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+
+               fsl_ifc_run_command(mtd);
+               return;
+
+       case NAND_CMD_STATUS:
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                               (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                               (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                               NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
+               out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+               set_addr(mtd, 0, 0, 0);
+               ctrl->read_bytes = 1;
+
+               fsl_ifc_run_command(mtd);
+
+               /* Chip sometimes reporting write protect even when it's not */
+               out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
+               return;
+
+       case NAND_CMD_RESET:
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                               IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                               NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
+               fsl_ifc_run_command(mtd);
+               return;
+
+       default:
+               printf("%s: error, unsupported command 0x%x.\n",
+                       __func__, command);
+       }
+}
+
+/*
+ * Write buf to the IFC NAND Controller Data Buffer
+ */
+static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+       if (len <= 0) {
+               printf("%s of %d bytes", __func__, len);
+               ctrl->status = 0;
+               return;
+       }
+
+       if ((unsigned int)len > bufsize - ctrl->index) {
+               printf("%s beyond end of buffer "
+                      "(%d requested, %u available)\n",
+                       __func__, len, bufsize - ctrl->index);
+               len = bufsize - ctrl->index;
+       }
+
+       memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
+       ctrl->index += len;
+}
+
+/*
+ * read a byte from either the IFC hardware buffer if it has any data left
+ * otherwise issue a command to read a single byte.
+ */
+static u8 fsl_ifc_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+       /* If there are still bytes in the IFC buffer, then use the
+        * next byte. */
+       if (ctrl->index < ctrl->read_bytes)
+               return in_8(&ctrl->addr[ctrl->index++]);
+
+       printf("%s beyond end of buffer\n", __func__);
+       return ERR_BYTE;
+}
+
+/*
+ * Read two bytes from the IFC hardware buffer
+ * read function for 16-bit buswith
+ */
+static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       uint16_t data;
+
+       /*
+        * If there are still bytes in the IFC buffer, then use the
+        * next byte.
+        */
+       if (ctrl->index < ctrl->read_bytes) {
+               data = in_be16((uint16_t *)&ctrl->
+                                       addr[ctrl->index]);
+               ctrl->index += 2;
+               return (uint8_t)data;
+       }
+
+       printf("%s beyond end of buffer\n", __func__);
+       return ERR_BYTE;
+}
+
+/*
+ * Read from the IFC Controller Data Buffer
+ */
+static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       int avail;
+
+       if (len < 0)
+               return;
+
+       avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
+       memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
+       ctrl->index += avail;
+
+       if (len > avail)
+               printf("%s beyond end of buffer "
+                      "(%d requested, %d available)\n",
+                      __func__, len, avail);
+}
+
+/*
+ * Verify buffer against the IFC Controller Data Buffer
+ */
+static int fsl_ifc_verify_buf(struct mtd_info *mtd,
+                              const u_char *buf, int len)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       int i;
+
+       if (len < 0) {
+               printf("%s of %d bytes", __func__, len);
+               return -EINVAL;
+       }
+
+       if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
+               printf("%s beyond end of buffer "
+                      "(%d requested, %u available)\n",
+                      __func__, len, ctrl->read_bytes - ctrl->index);
+
+               ctrl->index = ctrl->read_bytes;
+               return -EINVAL;
+       }
+
+       for (i = 0; i < len; i++)
+               if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
+                       break;
+
+       ctrl->index += len;
+       return i == len && ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
+}
+
+/* This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+       struct fsl_ifc *ifc = ctrl->regs;
+       u32 nand_fsr;
+
+       if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+               return NAND_STATUS_FAIL;
+
+       /* Use READ_STATUS command, but wait for the device to be ready */
+       out_be32(&ifc->ifc_nand.nand_fir0,
+                (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
+       out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
+                       IFC_NAND_FCR0_CMD0_SHIFT);
+       out_be32(&ifc->ifc_nand.nand_fbcr, 1);
+       set_addr(mtd, 0, 0, 0);
+       ctrl->read_bytes = 1;
+
+       fsl_ifc_run_command(mtd);
+
+       if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+               return NAND_STATUS_FAIL;
+
+       nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr);
+
+       /* Chip sometimes reporting write protect even when it's not */
+       nand_fsr = nand_fsr | NAND_STATUS_WP;
+       return nand_fsr;
+}
+
+static int fsl_ifc_read_page(struct mtd_info *mtd,
+                             struct nand_chip *chip,
+                             uint8_t *buf, int page)
+{
+       struct fsl_ifc_mtd *priv = chip->priv;
+       struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+       fsl_ifc_read_buf(mtd, buf, mtd->writesize);
+       fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+       if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+               mtd->ecc_stats.failed++;
+
+       return 0;
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static void fsl_ifc_write_page(struct mtd_info *mtd,
+                               struct nand_chip *chip,
+                               const uint8_t *buf)
+{
+       fsl_ifc_write_buf(mtd, buf, mtd->writesize);
+       fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+}
+
+static void fsl_ifc_ctrl_init(void)
+{
+       ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL);
+       if (!ifc_ctrl)
+               return;
+
+       ifc_ctrl->regs = IFC_BASE_ADDR;
+
+       /* clear event registers */
+       out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_stat, ~0U);
+       out_be32(&ifc_ctrl->regs->ifc_nand.pgrdcmpl_evt_stat, ~0U);
+
+       /* Enable error and event for any detected errors */
+       out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_en,
+                       IFC_NAND_EVTER_EN_OPC_EN |
+                       IFC_NAND_EVTER_EN_PGRDCMPL_EN |
+                       IFC_NAND_EVTER_EN_FTOER_EN |
+                       IFC_NAND_EVTER_EN_WPER_EN);
+
+       out_be32(&ifc_ctrl->regs->ifc_nand.ncfgr, 0x0);
+}
+
+static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
+{
+}
+
+int board_nand_init(struct nand_chip *nand)
+{
+       struct fsl_ifc_mtd *priv;
+       struct nand_ecclayout *layout;
+       uint32_t cspr = 0, csor = 0;
+
+       if (!ifc_ctrl) {
+               fsl_ifc_ctrl_init();
+               if (!ifc_ctrl)
+                       return -1;
+       }
+
+       priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+       if (!priv)
+               return -ENOMEM;
+
+       priv->ctrl = ifc_ctrl;
+       priv->vbase = nand->IO_ADDR_R;
+
+       /* Find which chip select it is connected to.
+        */
+       for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
+               phys_addr_t base_addr = virt_to_phys(nand->IO_ADDR_R);
+
+               cspr = in_be32(&ifc_ctrl->regs->cspr_cs[priv->bank].cspr);
+               csor = in_be32(&ifc_ctrl->regs->csor_cs[priv->bank].csor);
+
+               if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND &&
+                   (cspr & CSPR_BA) == CSPR_PHYS_ADDR(base_addr)) {
+                       ifc_ctrl->cs_nand = priv->bank << IFC_NAND_CSEL_SHIFT;
+                       break;
+               }
+       }
+
+       if (priv->bank >= MAX_BANKS) {
+               printf("%s: address did not match any "
+                      "chip selects\n", __func__);
+               return -ENODEV;
+       }
+
+       ifc_ctrl->chips[priv->bank] = priv;
+
+       /* fill in nand_chip structure */
+       /* set up function call table */
+
+       nand->write_buf = fsl_ifc_write_buf;
+       nand->read_buf = fsl_ifc_read_buf;
+       nand->verify_buf = fsl_ifc_verify_buf;
+       nand->select_chip = fsl_ifc_select_chip;
+       nand->cmdfunc = fsl_ifc_cmdfunc;
+       nand->waitfunc = fsl_ifc_wait;
+
+       /* set up nand options */
+       nand->bbt_td = &bbt_main_descr;
+       nand->bbt_md = &bbt_mirror_descr;
+
+       /* set up nand options */
+       nand->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
+                       NAND_USE_FLASH_BBT;
+
+       if (cspr & CSPR_PORT_SIZE_16) {
+               nand->read_byte = fsl_ifc_read_byte16;
+               nand->options |= NAND_BUSWIDTH_16;
+       } else {
+               nand->read_byte = fsl_ifc_read_byte;
+       }
+
+       nand->controller = &ifc_ctrl->controller;
+       nand->priv = priv;
+
+       nand->ecc.read_page = fsl_ifc_read_page;
+       nand->ecc.write_page = fsl_ifc_write_page;
+
+       /* Hardware generates ECC per 512 Bytes */
+       nand->ecc.size = 512;
+       nand->ecc.bytes = 8;
+
+       switch (csor & CSOR_NAND_PGS_MASK) {
+       case CSOR_NAND_PGS_512:
+               if (nand->options & NAND_BUSWIDTH_16) {
+                       layout = &oob_512_16bit_ecc4;
+               } else {
+                       layout = &oob_512_8bit_ecc4;
+
+                       /* Avoid conflict with bad block marker */
+                       bbt_main_descr.offs = 0;
+                       bbt_mirror_descr.offs = 0;
+               }
+
+               priv->bufnum_mask = 15;
+               break;
+
+       case CSOR_NAND_PGS_2K:
+               layout = &oob_2048_ecc4;
+               priv->bufnum_mask = 3;
+               break;
+
+       case CSOR_NAND_PGS_4K:
+               if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
+                   CSOR_NAND_ECC_MODE_4) {
+                       layout = &oob_4096_ecc4;
+               } else {
+                       layout = &oob_4096_ecc8;
+                       nand->ecc.bytes = 16;
+               }
+
+               priv->bufnum_mask = 1;
+               break;
+
+       default:
+               printf("ifc nand: bad csor %#x: bad page size\n", csor);
+               return -ENODEV;
+       }
+
+       /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
+       if (csor & CSOR_NAND_ECC_DEC_EN) {
+               nand->ecc.mode = NAND_ECC_HW;
+               nand->ecc.layout = layout;
+       } else {
+               nand->ecc.mode = NAND_ECC_SOFT;
+       }
+
+       return 0;
+}
diff --git a/nand_spl/nand_boot_fsl_ifc.c b/nand_spl/nand_boot_fsl_ifc.c
new file mode 100644 (file)
index 0000000..44972c5
--- /dev/null
@@ -0,0 +1,271 @@
+/*
+ * NAND boot for FSL Integrated Flash Controller, NAND Flash Control Machine
+ *
+ * Copyright 2011 Freescale Semiconductor, Inc.
+ * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/fsl_ifc.h>
+#include <linux/mtd/nand.h>
+
+static inline int is_blank(uchar *addr, int page_size)
+{
+       int i;
+
+       for (i = 0; i < page_size; i++) {
+               if (__raw_readb(&addr[i]) != 0xff)
+                       return 0;
+       }
+
+       /*
+        * For the SPL, don't worry about uncorrectable errors
+        * where the main area is all FFs but shouldn't be.
+        */
+       return 1;
+}
+
+/* returns nonzero if entire page is blank */
+static inline int check_read_ecc(uchar *buf, u32 *eccstat,
+                                unsigned int bufnum, int page_size)
+{
+       u32 reg = eccstat[bufnum / 4];
+       int errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
+
+       if (errors == 15) { /* uncorrectable */
+               /* Blank pages fail hw ECC checks */
+               if (is_blank(buf, page_size))
+                       return 1;
+
+               puts("ecc error\n");
+               for (;;)
+                       ;
+       }
+
+       return 0;
+}
+
+static inline void nand_wait(uchar *buf, int bufnum, int page_size)
+{
+       struct fsl_ifc *ifc = IFC_BASE_ADDR;
+       u32 status;
+       u32 eccstat[4];
+       int bufperpage = page_size / 512;
+       int bufnum_end, i;
+
+       bufnum *= bufperpage;
+       bufnum_end = bufnum + bufperpage - 1;
+
+       do {
+               status = in_be32(&ifc->ifc_nand.nand_evter_stat);
+       } while (!(status & IFC_NAND_EVTER_STAT_OPC));
+
+       if (status & IFC_NAND_EVTER_STAT_FTOER) {
+               puts("flash time out error\n");
+               for (;;)
+                       ;
+       }
+
+       for (i = bufnum / 4; i <= bufnum_end / 4; i++)
+               eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]);
+
+       for (i = bufnum; i <= bufnum_end; i++) {
+               if (check_read_ecc(buf, eccstat, i, page_size))
+                       break;
+       }
+
+       out_be32(&ifc->ifc_nand.nand_evter_stat, status);
+}
+
+static inline int bad_block(uchar *marker, int port_size)
+{
+       if (port_size == 8)
+               return __raw_readb(marker) != 0xff;
+       else
+               return __raw_readw((u16 *)marker) != 0xffff;
+}
+
+static void nand_load(unsigned int offs, int uboot_size, uchar *dst)
+{
+       struct fsl_ifc *ifc = IFC_BASE_ADDR;
+       uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
+       int page_size;
+       int port_size;
+       int pages_per_blk;
+       int blk_size;
+       int bad_marker = 0;
+       int bufnum_mask, bufnum;
+
+       int csor, cspr;
+       int pos = 0;
+       int j = 0;
+
+       int sram_addr;
+       int pg_no;
+
+       /* Get NAND Flash configuration */
+       csor = CONFIG_SYS_NAND_CSOR;
+       cspr = CONFIG_SYS_NAND_CSPR;
+
+       if (!(csor & CSOR_NAND_ECC_DEC_EN)) {
+               /* soft ECC in SPL is unimplemented */
+               puts("WARNING: soft ECC not checked in SPL\n");
+       } else {
+               u32 hwcsor;
+
+               /* make sure board is configured with ECC on boot */
+               hwcsor = in_be32(&ifc->csor_cs[0].csor);
+               if (!(hwcsor & CSOR_NAND_ECC_DEC_EN))
+                       puts("WARNING: ECC not checked in SPL, "
+                               "check board cfg\n");
+       }
+
+       port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
+
+       if (csor & CSOR_NAND_PGS_4K) {
+               page_size = 4096;
+               bufnum_mask = 1;
+       } else if (csor & CSOR_NAND_PGS_2K) {
+               page_size = 2048;
+               bufnum_mask = 3;
+       } else {
+               page_size = 512;
+               bufnum_mask = 15;
+
+               if (port_size == 8)
+                       bad_marker = 5;
+       }
+
+       pages_per_blk =
+               32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
+
+       blk_size = pages_per_blk * page_size;
+
+       /* Open Full SRAM mapping for spare are access */
+       out_be32(&ifc->ifc_nand.ncfgr, 0x0);
+
+       /* Clear Boot events */
+       out_be32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
+
+       /* Program FIR/FCR for Large/Small page */
+       if (page_size > 512) {
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                        (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                        (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+                        (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+                        (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+                        (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
+               out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                       (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+                       (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+       } else {
+               out_be32(&ifc->ifc_nand.nand_fir0,
+                        (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+                        (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+                        (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
+                        (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
+               out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+               out_be32(&ifc->ifc_nand.nand_fcr0,
+                       NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+       }
+
+       /* Program FBCR = 0 for full page read */
+       out_be32(&ifc->ifc_nand.nand_fbcr, 0);
+
+       /* Read and copy u-boot on SDRAM from NAND device, In parallel
+        * check for Bad block if found skip it and read continue to
+        * next Block
+        */
+       while (pos < uboot_size) {
+               int i = 0;
+               do {
+                       pg_no = offs / page_size;
+                       bufnum = pg_no & bufnum_mask;
+                       sram_addr = bufnum * page_size * 2;
+
+                       out_be32(&ifc->ifc_nand.row0, pg_no);
+                       out_be32(&ifc->ifc_nand.col0, 0);
+                       /* start read */
+                       out_be32(&ifc->ifc_nand.nandseq_strt,
+                               IFC_NAND_SEQ_STRT_FIR_STRT);
+
+                       /* wait for read to complete */
+                       nand_wait(&buf[sram_addr], bufnum, page_size);
+
+                       /*
+                        * If either of the first two pages are marked bad,
+                        * continue to the next block.
+                        */
+                       if (i++ < 2 &&
+                           bad_block(&buf[sram_addr + page_size + bad_marker],
+                                     port_size)) {
+                               puts("skipping\n");
+                               offs = (offs + blk_size) & ~(blk_size - 1);
+                               pos &= ~(blk_size - 1);
+                               break;
+                       }
+
+                       for (j = 0; j < page_size; j++)
+                               dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
+
+                       pos += page_size;
+                       offs += page_size;
+               } while ((offs & (blk_size - 1)) && (pos < uboot_size));
+       }
+}
+
+/*
+ * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
+ * configured and available since this code loads the main U-boot image
+ * from NAND into SDRAM and starts from there.
+ */
+void nand_boot(void)
+{
+       __attribute__((noreturn)) void (*uboot)(void);
+
+       /*
+        * Load U-Boot image from NAND into RAM
+        */
+       nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
+                 (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
+
+#ifdef CONFIG_NAND_ENV_DST
+       nand_load(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
+                 (uchar *)CONFIG_NAND_ENV_DST);
+
+#ifdef CONFIG_ENV_OFFSET_REDUND
+       nand_load(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
+                 (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
+#endif
+#endif
+
+       /*
+        * Jump to U-Boot image
+        */
+       /*
+        * Clean d-cache and invalidate i-cache, to
+        * make sure that no stale data is executed.
+        */
+       flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
+       uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
+       uboot();
+}