]> git.kernelconcepts.de Git - karo-tx-uboot.git/commitdiff
add code to handle Android sparse image format
authorSteve Rae <srae@broadcom.com>
Wed, 3 Sep 2014 17:05:51 +0000 (10:05 -0700)
committerTom Rini <trini@ti.com>
Tue, 16 Sep 2014 16:23:57 +0000 (12:23 -0400)
Add original file (pristine) from :
  https://www.codeaurora.org/cgit/quic/la/kernel/lk/plain/app/aboot/aboot.c?h=master
[3b5092d20bd15a7a2879c13e9f64acc48d04af2d]

Signed-off-by: Steve Rae <srae@broadcom.com>
common/aboot.c [new file with mode: 0644]

diff --git a/common/aboot.c b/common/aboot.c
new file mode 100644 (file)
index 0000000..3b5092d
--- /dev/null
@@ -0,0 +1,2643 @@
+/*
+ * Copyright (c) 2009, Google Inc.
+ * All rights reserved.
+ *
+ * Copyright (c) 2009-2014, The Linux Foundation. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in the
+ *       documentation and/or other materials provided with the distribution.
+ *     * Neither the name of The Linux Foundation nor
+ *       the names of its contributors may be used to endorse or promote
+ *       products derived from this software without specific prior written
+ *       permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NON-INFRINGEMENT ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+#include <app.h>
+#include <debug.h>
+#include <arch/arm.h>
+#include <string.h>
+#include <stdlib.h>
+#include <limits.h>
+#include <kernel/thread.h>
+#include <arch/ops.h>
+
+#include <dev/flash.h>
+#include <lib/ptable.h>
+#include <dev/keys.h>
+#include <dev/fbcon.h>
+#include <baseband.h>
+#include <target.h>
+#include <mmc.h>
+#include <partition_parser.h>
+#include <platform.h>
+#include <crypto_hash.h>
+#include <malloc.h>
+#include <boot_stats.h>
+#include <sha.h>
+#include <platform/iomap.h>
+#include <boot_device.h>
+
+#if DEVICE_TREE
+#include <libfdt.h>
+#include <dev_tree.h>
+#endif
+
+#include "image_verify.h"
+#include "recovery.h"
+#include "bootimg.h"
+#include "fastboot.h"
+#include "sparse_format.h"
+#include "mmc.h"
+#include "devinfo.h"
+#include "board.h"
+#include "scm.h"
+
+extern  bool target_use_signed_kernel(void);
+extern void platform_uninit(void);
+extern void target_uninit(void);
+extern int get_target_boot_params(const char *cmdline, const char *part,
+                                 char *buf, int buflen);
+
+void write_device_info_mmc(device_info *dev);
+void write_device_info_flash(device_info *dev);
+
+#define EXPAND(NAME) #NAME
+#define TARGET(NAME) EXPAND(NAME)
+
+#ifdef MEMBASE
+#define EMMC_BOOT_IMG_HEADER_ADDR (0xFF000+(MEMBASE))
+#else
+#define EMMC_BOOT_IMG_HEADER_ADDR 0xFF000
+#endif
+
+#ifndef MEMSIZE
+#define MEMSIZE 1024*1024
+#endif
+
+#define MAX_TAGS_SIZE   1024
+
+#define RECOVERY_MODE   0x77665502
+#define FASTBOOT_MODE   0x77665500
+
+/* make 4096 as default size to ensure EFS,EXT4's erasing */
+#define DEFAULT_ERASE_SIZE  4096
+#define MAX_PANEL_BUF_SIZE 128
+
+#define UBI_MAGIC      "UBI#"
+#define DISPLAY_DEFAULT_PREFIX "mdss_mdp"
+#define UBI_MAGIC_SIZE 0x04
+#define BOOT_DEV_MAX_LEN  64
+
+#define IS_ARM64(ptr) (ptr->magic_64 == KERNEL64_HDR_MAGIC) ? true : false
+
+#define ADD_OF(a, b) (UINT_MAX - b > a) ? (a + b) : UINT_MAX
+
+#if UFS_SUPPORT
+static const char *emmc_cmdline = " androidboot.bootdevice=";
+#else
+static const char *emmc_cmdline = " androidboot.emmc=true";
+#endif
+static const char *usb_sn_cmdline = " androidboot.serialno=";
+static const char *androidboot_mode = " androidboot.mode=";
+static const char *loglevel         = " quiet";
+static const char *battchg_pause = " androidboot.mode=charger";
+static const char *auth_kernel = " androidboot.authorized_kernel=true";
+static const char *secondary_gpt_enable = " gpt";
+
+static const char *baseband_apq     = " androidboot.baseband=apq";
+static const char *baseband_msm     = " androidboot.baseband=msm";
+static const char *baseband_csfb    = " androidboot.baseband=csfb";
+static const char *baseband_svlte2a = " androidboot.baseband=svlte2a";
+static const char *baseband_mdm     = " androidboot.baseband=mdm";
+static const char *baseband_mdm2    = " androidboot.baseband=mdm2";
+static const char *baseband_sglte   = " androidboot.baseband=sglte";
+static const char *baseband_dsda    = " androidboot.baseband=dsda";
+static const char *baseband_dsda2   = " androidboot.baseband=dsda2";
+static const char *baseband_sglte2  = " androidboot.baseband=sglte2";
+static const char *warmboot_cmdline = " qpnp-power-on.warm_boot=1";
+
+static unsigned page_size = 0;
+static unsigned page_mask = 0;
+static char ffbm_mode_string[FFBM_MODE_BUF_SIZE];
+static bool boot_into_ffbm;
+static char target_boot_params[64];
+
+/* Assuming unauthorized kernel image by default */
+static int auth_kernel_img = 0;
+
+static device_info device = {DEVICE_MAGIC, 0, 0, 0, 0};
+
+struct atag_ptbl_entry
+{
+       char name[16];
+       unsigned offset;
+       unsigned size;
+       unsigned flags;
+};
+
+/*
+ * Partition info, required to be published
+ * for fastboot
+ */
+struct getvar_partition_info {
+       const char part_name[MAX_GPT_NAME_SIZE]; /* Partition name */
+       char getvar_size[MAX_GET_VAR_NAME_SIZE]; /* fastboot get var name for size */
+       char getvar_type[MAX_GET_VAR_NAME_SIZE]; /* fastboot get var name for type */
+       char size_response[MAX_RSP_SIZE];        /* fastboot response for size */
+       char type_response[MAX_RSP_SIZE];        /* fastboot response for type */
+};
+
+/*
+ * Right now, we are publishing the info for only
+ * three partitions
+ */
+struct getvar_partition_info part_info[] =
+{
+       { "system"  , "partition-size:", "partition-type:", "", "ext4" },
+       { "userdata", "partition-size:", "partition-type:", "", "ext4" },
+       { "cache"   , "partition-size:", "partition-type:", "", "ext4" },
+};
+
+char max_download_size[MAX_RSP_SIZE];
+char charger_screen_enabled[MAX_RSP_SIZE];
+char sn_buf[13];
+char display_panel_buf[MAX_PANEL_BUF_SIZE];
+char panel_display_mode[MAX_RSP_SIZE];
+
+extern int emmc_recovery_init(void);
+
+#if NO_KEYPAD_DRIVER
+extern int fastboot_trigger(void);
+#endif
+
+static void update_ker_tags_rdisk_addr(struct boot_img_hdr *hdr, bool is_arm64)
+{
+       /* overwrite the destination of specified for the project */
+#ifdef ABOOT_IGNORE_BOOT_HEADER_ADDRS
+       if (is_arm64)
+               hdr->kernel_addr = ABOOT_FORCE_KERNEL64_ADDR;
+       else
+               hdr->kernel_addr = ABOOT_FORCE_KERNEL_ADDR;
+       hdr->ramdisk_addr = ABOOT_FORCE_RAMDISK_ADDR;
+       hdr->tags_addr = ABOOT_FORCE_TAGS_ADDR;
+#endif
+}
+
+static void ptentry_to_tag(unsigned **ptr, struct ptentry *ptn)
+{
+       struct atag_ptbl_entry atag_ptn;
+
+       memcpy(atag_ptn.name, ptn->name, 16);
+       atag_ptn.name[15] = '\0';
+       atag_ptn.offset = ptn->start;
+       atag_ptn.size = ptn->length;
+       atag_ptn.flags = ptn->flags;
+       memcpy(*ptr, &atag_ptn, sizeof(struct atag_ptbl_entry));
+       *ptr += sizeof(struct atag_ptbl_entry) / sizeof(unsigned);
+}
+
+unsigned char *update_cmdline(const char * cmdline)
+{
+       int cmdline_len = 0;
+       int have_cmdline = 0;
+       unsigned char *cmdline_final = NULL;
+       int pause_at_bootup = 0;
+       bool warm_boot = false;
+       bool gpt_exists = partition_gpt_exists();
+       int have_target_boot_params = 0;
+       char *boot_dev_buf = NULL;
+
+       if (cmdline && cmdline[0]) {
+               cmdline_len = strlen(cmdline);
+               have_cmdline = 1;
+       }
+       if (target_is_emmc_boot()) {
+               cmdline_len += strlen(emmc_cmdline);
+#if UFS_SUPPORT
+               boot_dev_buf = (char *) malloc(sizeof(char) * BOOT_DEV_MAX_LEN);
+               ASSERT(boot_dev_buf);
+               platform_boot_dev_cmdline(boot_dev_buf);
+               cmdline_len += strlen(boot_dev_buf);
+#endif
+       }
+
+       cmdline_len += strlen(usb_sn_cmdline);
+       cmdline_len += strlen(sn_buf);
+
+       if (boot_into_recovery && gpt_exists)
+               cmdline_len += strlen(secondary_gpt_enable);
+
+       if (boot_into_ffbm) {
+               cmdline_len += strlen(androidboot_mode);
+               cmdline_len += strlen(ffbm_mode_string);
+               /* reduce kernel console messages to speed-up boot */
+               cmdline_len += strlen(loglevel);
+       } else if (device.charger_screen_enabled &&
+                       target_pause_for_battery_charge()) {
+               pause_at_bootup = 1;
+               cmdline_len += strlen(battchg_pause);
+       }
+
+       if(target_use_signed_kernel() && auth_kernel_img) {
+               cmdline_len += strlen(auth_kernel);
+       }
+
+       if (get_target_boot_params(cmdline, boot_into_recovery ? "recoveryfs" :
+                                                                "system",
+                                  target_boot_params,
+                                  sizeof(target_boot_params)) == 0) {
+               have_target_boot_params = 1;
+               cmdline_len += strlen(target_boot_params);
+       }
+
+       /* Determine correct androidboot.baseband to use */
+       switch(target_baseband())
+       {
+               case BASEBAND_APQ:
+                       cmdline_len += strlen(baseband_apq);
+                       break;
+
+               case BASEBAND_MSM:
+                       cmdline_len += strlen(baseband_msm);
+                       break;
+
+               case BASEBAND_CSFB:
+                       cmdline_len += strlen(baseband_csfb);
+                       break;
+
+               case BASEBAND_SVLTE2A:
+                       cmdline_len += strlen(baseband_svlte2a);
+                       break;
+
+               case BASEBAND_MDM:
+                       cmdline_len += strlen(baseband_mdm);
+                       break;
+
+               case BASEBAND_MDM2:
+                       cmdline_len += strlen(baseband_mdm2);
+                       break;
+
+               case BASEBAND_SGLTE:
+                       cmdline_len += strlen(baseband_sglte);
+                       break;
+
+               case BASEBAND_SGLTE2:
+                       cmdline_len += strlen(baseband_sglte2);
+                       break;
+
+               case BASEBAND_DSDA:
+                       cmdline_len += strlen(baseband_dsda);
+                       break;
+
+               case BASEBAND_DSDA2:
+                       cmdline_len += strlen(baseband_dsda2);
+                       break;
+       }
+
+       if (cmdline) {
+               if ((strstr(cmdline, DISPLAY_DEFAULT_PREFIX) == NULL) &&
+                       target_display_panel_node(device.display_panel,
+                       display_panel_buf, MAX_PANEL_BUF_SIZE) &&
+                       strlen(display_panel_buf)) {
+                       cmdline_len += strlen(display_panel_buf);
+               }
+       }
+
+       if (target_warm_boot()) {
+               warm_boot = true;
+               cmdline_len += strlen(warmboot_cmdline);
+       }
+
+       if (cmdline_len > 0) {
+               const char *src;
+               unsigned char *dst = (unsigned char*) malloc((cmdline_len + 4) & (~3));
+               ASSERT(dst != NULL);
+
+               /* Save start ptr for debug print */
+               cmdline_final = dst;
+               if (have_cmdline) {
+                       src = cmdline;
+                       while ((*dst++ = *src++));
+               }
+               if (target_is_emmc_boot()) {
+                       src = emmc_cmdline;
+                       if (have_cmdline) --dst;
+                       have_cmdline = 1;
+                       while ((*dst++ = *src++));
+#if UFS_SUPPORT
+                       src = boot_dev_buf;
+                       if (have_cmdline) --dst;
+                       while ((*dst++ = *src++));
+#endif
+               }
+
+               src = usb_sn_cmdline;
+               if (have_cmdline) --dst;
+               have_cmdline = 1;
+               while ((*dst++ = *src++));
+               src = sn_buf;
+               if (have_cmdline) --dst;
+               have_cmdline = 1;
+               while ((*dst++ = *src++));
+               if (warm_boot) {
+                       if (have_cmdline) --dst;
+                       src = warmboot_cmdline;
+                       while ((*dst++ = *src++));
+               }
+
+               if (boot_into_recovery && gpt_exists) {
+                       src = secondary_gpt_enable;
+                       if (have_cmdline) --dst;
+                       while ((*dst++ = *src++));
+               }
+
+               if (boot_into_ffbm) {
+                       src = androidboot_mode;
+                       if (have_cmdline) --dst;
+                       while ((*dst++ = *src++));
+                       src = ffbm_mode_string;
+                       if (have_cmdline) --dst;
+                       while ((*dst++ = *src++));
+                       src = loglevel;
+                       if (have_cmdline) --dst;
+                       while ((*dst++ = *src++));
+               } else if (pause_at_bootup) {
+                       src = battchg_pause;
+                       if (have_cmdline) --dst;
+                       while ((*dst++ = *src++));
+               }
+
+               if(target_use_signed_kernel() && auth_kernel_img) {
+                       src = auth_kernel;
+                       if (have_cmdline) --dst;
+                       while ((*dst++ = *src++));
+               }
+
+               switch(target_baseband())
+               {
+                       case BASEBAND_APQ:
+                               src = baseband_apq;
+                               if (have_cmdline) --dst;
+                               while ((*dst++ = *src++));
+                               break;
+
+                       case BASEBAND_MSM:
+                               src = baseband_msm;
+                               if (have_cmdline) --dst;
+                               while ((*dst++ = *src++));
+                               break;
+
+                       case BASEBAND_CSFB:
+                               src = baseband_csfb;
+                               if (have_cmdline) --dst;
+                               while ((*dst++ = *src++));
+                               break;
+
+                       case BASEBAND_SVLTE2A:
+                               src = baseband_svlte2a;
+                               if (have_cmdline) --dst;
+                               while ((*dst++ = *src++));
+                               break;
+
+                       case BASEBAND_MDM:
+                               src = baseband_mdm;
+                               if (have_cmdline) --dst;
+                               while ((*dst++ = *src++));
+                               break;
+
+                       case BASEBAND_MDM2:
+                               src = baseband_mdm2;
+                               if (have_cmdline) --dst;
+                               while ((*dst++ = *src++));
+                               break;
+
+                       case BASEBAND_SGLTE:
+                               src = baseband_sglte;
+                               if (have_cmdline) --dst;
+                               while ((*dst++ = *src++));
+                               break;
+
+                       case BASEBAND_SGLTE2:
+                               src = baseband_sglte2;
+                               if (have_cmdline) --dst;
+                               while ((*dst++ = *src++));
+                               break;
+
+                       case BASEBAND_DSDA:
+                               src = baseband_dsda;
+                               if (have_cmdline) --dst;
+                               while ((*dst++ = *src++));
+                               break;
+
+                       case BASEBAND_DSDA2:
+                               src = baseband_dsda2;
+                               if (have_cmdline) --dst;
+                               while ((*dst++ = *src++));
+                               break;
+               }
+
+               if (strlen(display_panel_buf)) {
+                       src = display_panel_buf;
+                       if (have_cmdline) --dst;
+                       while ((*dst++ = *src++));
+               }
+
+               if (have_target_boot_params) {
+                       if (have_cmdline) --dst;
+                       src = target_boot_params;
+                       while ((*dst++ = *src++));
+               }
+       }
+
+
+       if (boot_dev_buf)
+               free(boot_dev_buf);
+
+       dprintf(INFO, "cmdline: %s\n", cmdline_final);
+       return cmdline_final;
+}
+
+unsigned *atag_core(unsigned *ptr)
+{
+       /* CORE */
+       *ptr++ = 2;
+       *ptr++ = 0x54410001;
+
+       return ptr;
+
+}
+
+unsigned *atag_ramdisk(unsigned *ptr, void *ramdisk,
+                                                          unsigned ramdisk_size)
+{
+       if (ramdisk_size) {
+               *ptr++ = 4;
+               *ptr++ = 0x54420005;
+               *ptr++ = (unsigned)ramdisk;
+               *ptr++ = ramdisk_size;
+       }
+
+       return ptr;
+}
+
+unsigned *atag_ptable(unsigned **ptr_addr)
+{
+       int i;
+       struct ptable *ptable;
+
+       if ((ptable = flash_get_ptable()) && (ptable->count != 0)) {
+               *(*ptr_addr)++ = 2 + (ptable->count * (sizeof(struct atag_ptbl_entry) /
+                                                       sizeof(unsigned)));
+               *(*ptr_addr)++ = 0x4d534d70;
+               for (i = 0; i < ptable->count; ++i)
+                       ptentry_to_tag(ptr_addr, ptable_get(ptable, i));
+       }
+
+       return (*ptr_addr);
+}
+
+unsigned *atag_cmdline(unsigned *ptr, const char *cmdline)
+{
+       int cmdline_length = 0;
+       int n;
+       char *dest;
+
+       cmdline_length = strlen((const char*)cmdline);
+       n = (cmdline_length + 4) & (~3);
+
+       *ptr++ = (n / 4) + 2;
+       *ptr++ = 0x54410009;
+       dest = (char *) ptr;
+       while ((*dest++ = *cmdline++));
+       ptr += (n / 4);
+
+       return ptr;
+}
+
+unsigned *atag_end(unsigned *ptr)
+{
+       /* END */
+       *ptr++ = 0;
+       *ptr++ = 0;
+
+       return ptr;
+}
+
+void generate_atags(unsigned *ptr, const char *cmdline,
+                    void *ramdisk, unsigned ramdisk_size)
+{
+
+       ptr = atag_core(ptr);
+       ptr = atag_ramdisk(ptr, ramdisk, ramdisk_size);
+       ptr = target_atag_mem(ptr);
+
+       /* Skip NAND partition ATAGS for eMMC boot */
+       if (!target_is_emmc_boot()){
+               ptr = atag_ptable(&ptr);
+       }
+
+       ptr = atag_cmdline(ptr, cmdline);
+       ptr = atag_end(ptr);
+}
+
+typedef void entry_func_ptr(unsigned, unsigned, unsigned*);
+void boot_linux(void *kernel, unsigned *tags,
+               const char *cmdline, unsigned machtype,
+               void *ramdisk, unsigned ramdisk_size)
+{
+       unsigned char *final_cmdline;
+#if DEVICE_TREE
+       int ret = 0;
+#endif
+
+       void (*entry)(unsigned, unsigned, unsigned*) = (entry_func_ptr*)(PA((addr_t)kernel));
+       uint32_t tags_phys = PA((addr_t)tags);
+       struct kernel64_hdr *kptr = (struct kernel64_hdr*)kernel;
+
+       ramdisk = PA(ramdisk);
+
+       final_cmdline = update_cmdline((const char*)cmdline);
+
+#if DEVICE_TREE
+       dprintf(INFO, "Updating device tree: start\n");
+
+       /* Update the Device Tree */
+       ret = update_device_tree((void *)tags, final_cmdline, ramdisk, ramdisk_size);
+       if(ret)
+       {
+               dprintf(CRITICAL, "ERROR: Updating Device Tree Failed \n");
+               ASSERT(0);
+       }
+       dprintf(INFO, "Updating device tree: done\n");
+#else
+       /* Generating the Atags */
+       generate_atags(tags, final_cmdline, ramdisk, ramdisk_size);
+#endif
+
+       /* Perform target specific cleanup */
+       target_uninit();
+
+       /* Turn off splash screen if enabled */
+#if DISPLAY_SPLASH_SCREEN
+       target_display_shutdown();
+#endif
+
+
+       dprintf(INFO, "booting linux @ %p, ramdisk @ %p (%d), tags/device tree @ %p\n",
+               entry, ramdisk, ramdisk_size, tags_phys);
+
+       enter_critical_section();
+
+       /* do any platform specific cleanup before kernel entry */
+       platform_uninit();
+
+       arch_disable_cache(UCACHE);
+
+#if ARM_WITH_MMU
+       arch_disable_mmu();
+#endif
+       bs_set_timestamp(BS_KERNEL_ENTRY);
+
+       if (IS_ARM64(kptr))
+               /* Jump to a 64bit kernel */
+               scm_elexec_call((paddr_t)kernel, tags_phys);
+       else
+               /* Jump to a 32bit kernel */
+               entry(0, machtype, (unsigned*)tags_phys);
+}
+
+/* Function to check if the memory address range falls within the aboot
+ * boundaries.
+ * start: Start of the memory region
+ * size: Size of the memory region
+ */
+int check_aboot_addr_range_overlap(uint32_t start, uint32_t size)
+{
+       /* Check for boundary conditions. */
+       if ((UINT_MAX - start) < size)
+               return -1;
+
+       /* Check for memory overlap. */
+       if ((start < MEMBASE) && ((start + size) <= MEMBASE))
+               return 0;
+       else if (start >= (MEMBASE + MEMSIZE))
+               return 0;
+       else
+               return -1;
+}
+
+#define ROUND_TO_PAGE(x,y) (((x) + (y)) & (~(y)))
+
+BUF_DMA_ALIGN(buf, BOOT_IMG_MAX_PAGE_SIZE); //Equal to max-supported pagesize
+#if DEVICE_TREE
+BUF_DMA_ALIGN(dt_buf, BOOT_IMG_MAX_PAGE_SIZE);
+#endif
+
+static void verify_signed_bootimg(uint32_t bootimg_addr, uint32_t bootimg_size)
+{
+       int ret;
+#if IMAGE_VERIF_ALGO_SHA1
+       uint32_t auth_algo = CRYPTO_AUTH_ALG_SHA1;
+#else
+       uint32_t auth_algo = CRYPTO_AUTH_ALG_SHA256;
+#endif
+
+       /* Assume device is rooted at this time. */
+       device.is_tampered = 1;
+
+       dprintf(INFO, "Authenticating boot image (%d): start\n", bootimg_size);
+
+       ret = image_verify((unsigned char *)bootimg_addr,
+                                          (unsigned char *)(bootimg_addr + bootimg_size),
+                                          bootimg_size,
+                                          auth_algo);
+
+       dprintf(INFO, "Authenticating boot image: done return value = %d\n", ret);
+
+       if (ret)
+       {
+               /* Authorized kernel */
+               device.is_tampered = 0;
+               auth_kernel_img = 1;
+       }
+
+#if USE_PCOM_SECBOOT
+       set_tamper_flag(device.is_tampered);
+#endif
+
+       if(device.is_tampered)
+       {
+               write_device_info_mmc(&device);
+       #ifdef TZ_TAMPER_FUSE
+               set_tamper_fuse_cmd();
+       #endif
+       #ifdef ASSERT_ON_TAMPER
+               dprintf(CRITICAL, "Device is tampered. Asserting..\n");
+               ASSERT(0);
+       #endif
+       }
+}
+
+static bool check_format_bit()
+{
+       bool ret = false;
+       int index;
+       uint64_t offset;
+       struct boot_selection_info *in = NULL;
+       char *buf = NULL;
+
+       index = partition_get_index("bootselect");
+       if (index == INVALID_PTN)
+       {
+               dprintf(INFO, "Unable to locate /bootselect partition\n");
+               return ret;
+       }
+       offset = partition_get_offset(index);
+       if(!offset)
+       {
+               dprintf(INFO, "partition /bootselect doesn't exist\n");
+               return ret;
+       }
+       buf = (char *) memalign(CACHE_LINE, ROUNDUP(page_size, CACHE_LINE));
+       ASSERT(buf);
+       if (mmc_read(offset, (unsigned int *)buf, page_size))
+       {
+               dprintf(INFO, "mmc read failure /bootselect %d\n", page_size);
+               free(buf);
+               return ret;
+       }
+       in = (struct boot_selection_info *) buf;
+       if ((in->signature == BOOTSELECT_SIGNATURE) &&
+                       (in->version == BOOTSELECT_VERSION)) {
+               if ((in->state_info & BOOTSELECT_FORMAT) &&
+                               !(in->state_info & BOOTSELECT_FACTORY))
+                       ret = true;
+       } else {
+               dprintf(CRITICAL, "Signature: 0x%08x or version: 0x%08x mismatched of /bootselect\n",
+                               in->signature, in->version);
+               ASSERT(0);
+       }
+       free(buf);
+       return ret;
+}
+
+int boot_linux_from_mmc(void)
+{
+       struct boot_img_hdr *hdr = (void*) buf;
+       struct boot_img_hdr *uhdr;
+       unsigned offset = 0;
+       int rcode;
+       unsigned long long ptn = 0;
+       int index = INVALID_PTN;
+
+       unsigned char *image_addr = 0;
+       unsigned kernel_actual;
+       unsigned ramdisk_actual;
+       unsigned imagesize_actual;
+       unsigned second_actual = 0;
+
+#if DEVICE_TREE
+       struct dt_table *table;
+       struct dt_entry dt_entry;
+       unsigned dt_table_offset;
+       uint32_t dt_actual;
+       uint32_t dt_hdr_size;
+#endif
+       BUF_DMA_ALIGN(kbuf, BOOT_IMG_MAX_PAGE_SIZE);
+       struct kernel64_hdr *kptr = (void*) kbuf;
+
+       if (check_format_bit())
+               boot_into_recovery = 1;
+
+       if (!boot_into_recovery) {
+               memset(ffbm_mode_string, '\0', sizeof(ffbm_mode_string));
+               rcode = get_ffbm(ffbm_mode_string, sizeof(ffbm_mode_string));
+               if (rcode <= 0) {
+                       boot_into_ffbm = false;
+                       if (rcode < 0)
+                               dprintf(CRITICAL,"failed to get ffbm cookie");
+               } else
+                       boot_into_ffbm = true;
+       } else
+               boot_into_ffbm = false;
+       uhdr = (struct boot_img_hdr *)EMMC_BOOT_IMG_HEADER_ADDR;
+       if (!memcmp(uhdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
+               dprintf(INFO, "Unified boot method!\n");
+               hdr = uhdr;
+               goto unified_boot;
+       }
+       if (!boot_into_recovery) {
+               index = partition_get_index("boot");
+               ptn = partition_get_offset(index);
+               if(ptn == 0) {
+                       dprintf(CRITICAL, "ERROR: No boot partition found\n");
+                    return -1;
+               }
+       }
+       else {
+               index = partition_get_index("recovery");
+               ptn = partition_get_offset(index);
+               if(ptn == 0) {
+                       dprintf(CRITICAL, "ERROR: No recovery partition found\n");
+                    return -1;
+               }
+       }
+
+       if (mmc_read(ptn + offset, (unsigned int *) buf, page_size)) {
+               dprintf(CRITICAL, "ERROR: Cannot read boot image header\n");
+                return -1;
+       }
+
+       if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
+               dprintf(CRITICAL, "ERROR: Invalid boot image header\n");
+                return -1;
+       }
+
+       if (hdr->page_size && (hdr->page_size != page_size)) {
+
+               if (hdr->page_size > BOOT_IMG_MAX_PAGE_SIZE) {
+                       dprintf(CRITICAL, "ERROR: Invalid page size\n");
+                       return -1;
+               }
+               page_size = hdr->page_size;
+               page_mask = page_size - 1;
+       }
+
+       /* Read the next page to get kernel Image header
+        * which lives in the second page for arm64 targets.
+        */
+
+       if (mmc_read(ptn + page_size, (unsigned int *) kbuf, page_size)) {
+               dprintf(CRITICAL, "ERROR: Cannot read boot image header\n");
+                return -1;
+       }
+
+       /*
+        * Update the kernel/ramdisk/tags address if the boot image header
+        * has default values, these default values come from mkbootimg when
+        * the boot image is flashed using fastboot flash:raw
+        */
+       update_ker_tags_rdisk_addr(hdr, IS_ARM64(kptr));
+
+       /* Get virtual addresses since the hdr saves physical addresses. */
+       hdr->kernel_addr = VA((addr_t)(hdr->kernel_addr));
+       hdr->ramdisk_addr = VA((addr_t)(hdr->ramdisk_addr));
+       hdr->tags_addr = VA((addr_t)(hdr->tags_addr));
+
+       kernel_actual  = ROUND_TO_PAGE(hdr->kernel_size,  page_mask);
+       ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);
+
+       /* Check if the addresses in the header are valid. */
+       if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) ||
+               check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual))
+       {
+               dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n");
+               return -1;
+       }
+
+#ifndef DEVICE_TREE
+       if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE))
+       {
+               dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n");
+               return -1;
+       }
+#endif
+
+       /* Authenticate Kernel */
+       dprintf(INFO, "use_signed_kernel=%d, is_unlocked=%d, is_tampered=%d.\n",
+               (int) target_use_signed_kernel(),
+               device.is_unlocked,
+               device.is_tampered);
+
+       if(target_use_signed_kernel() && (!device.is_unlocked))
+       {
+               offset = 0;
+
+               image_addr = (unsigned char *)target_get_scratch_address();
+
+#if DEVICE_TREE
+               dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask);
+               imagesize_actual = (page_size + kernel_actual + ramdisk_actual + dt_actual);
+
+               if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_actual))
+               {
+                       dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
+                       return -1;
+               }
+#else
+               imagesize_actual = (page_size + kernel_actual + ramdisk_actual);
+
+#endif
+
+               dprintf(INFO, "Loading boot image (%d): start\n", imagesize_actual);
+               bs_set_timestamp(BS_KERNEL_LOAD_START);
+
+               if (check_aboot_addr_range_overlap(image_addr, imagesize_actual))
+               {
+                       dprintf(CRITICAL, "Boot image buffer address overlaps with aboot addresses.\n");
+                       return -1;
+               }
+
+               /* Read image without signature */
+               if (mmc_read(ptn + offset, (void *)image_addr, imagesize_actual))
+               {
+                       dprintf(CRITICAL, "ERROR: Cannot read boot image\n");
+                               return -1;
+               }
+
+               dprintf(INFO, "Loading boot image (%d): done\n", imagesize_actual);
+               bs_set_timestamp(BS_KERNEL_LOAD_DONE);
+
+               offset = imagesize_actual;
+
+               if (check_aboot_addr_range_overlap(image_addr + offset, page_size))
+               {
+                       dprintf(CRITICAL, "Signature read buffer address overlaps with aboot addresses.\n");
+                       return -1;
+               }
+
+               /* Read signature */
+               if(mmc_read(ptn + offset, (void *)(image_addr + offset), page_size))
+               {
+                       dprintf(CRITICAL, "ERROR: Cannot read boot image signature\n");
+                       return -1;
+               }
+
+               verify_signed_bootimg(image_addr, imagesize_actual);
+
+               /* Move kernel, ramdisk and device tree to correct address */
+               memmove((void*) hdr->kernel_addr, (char *)(image_addr + page_size), hdr->kernel_size);
+               memmove((void*) hdr->ramdisk_addr, (char *)(image_addr + page_size + kernel_actual), hdr->ramdisk_size);
+
+               #if DEVICE_TREE
+               if(hdr->dt_size) {
+                       dt_table_offset = ((uint32_t)image_addr + page_size + kernel_actual + ramdisk_actual + second_actual);
+                       table = (struct dt_table*) dt_table_offset;
+
+                       if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) {
+                               dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n");
+                               return -1;
+                       }
+
+                       /* Find index of device tree within device tree table */
+                       if(dev_tree_get_entry_info(table, &dt_entry) != 0){
+                               dprintf(CRITICAL, "ERROR: Device Tree Blob cannot be found\n");
+                               return -1;
+                       }
+
+                       /* Validate and Read device device tree in the "tags_add */
+                       if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size))
+                       {
+                               dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
+                               return -1;
+                       }
+
+                       memmove((void *)hdr->tags_addr, (char *)dt_table_offset + dt_entry.offset, dt_entry.size);
+               } else {
+                       /*
+                        * If appended dev tree is found, update the atags with
+                        * memory address to the DTB appended location on RAM.
+                        * Else update with the atags address in the kernel header
+                        */
+                       void *dtb;
+                       dtb = dev_tree_appended((void*) hdr->kernel_addr,
+                                               hdr->kernel_size,
+                                               (void *)hdr->tags_addr);
+                       if (!dtb) {
+                               dprintf(CRITICAL, "ERROR: Appended Device Tree Blob not found\n");
+                               return -1;
+                       }
+               }
+               #endif
+       }
+       else
+       {
+               second_actual  = ROUND_TO_PAGE(hdr->second_size,  page_mask);
+
+               dprintf(INFO, "Loading boot image (%d): start\n",
+                               kernel_actual + ramdisk_actual);
+               bs_set_timestamp(BS_KERNEL_LOAD_START);
+
+               offset = page_size;
+
+               /* Load kernel */
+               if (mmc_read(ptn + offset, (void *)hdr->kernel_addr, kernel_actual)) {
+                       dprintf(CRITICAL, "ERROR: Cannot read kernel image\n");
+                                       return -1;
+               }
+               offset += kernel_actual;
+
+               /* Load ramdisk */
+               if(ramdisk_actual != 0)
+               {
+                       if (mmc_read(ptn + offset, (void *)hdr->ramdisk_addr, ramdisk_actual)) {
+                               dprintf(CRITICAL, "ERROR: Cannot read ramdisk image\n");
+                               return -1;
+                       }
+               }
+               offset += ramdisk_actual;
+
+               dprintf(INFO, "Loading boot image (%d): done\n",
+                               kernel_actual + ramdisk_actual);
+               bs_set_timestamp(BS_KERNEL_LOAD_DONE);
+
+               if(hdr->second_size != 0) {
+                       offset += second_actual;
+                       /* Second image loading not implemented. */
+                       ASSERT(0);
+               }
+
+               #if DEVICE_TREE
+               if(hdr->dt_size != 0) {
+                       /* Read the first page of device tree table into buffer */
+                       if(mmc_read(ptn + offset,(unsigned int *) dt_buf, page_size)) {
+                               dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n");
+                               return -1;
+                       }
+                       table = (struct dt_table*) dt_buf;
+
+                       if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) {
+                               dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n");
+                               return -1;
+                       }
+
+                       table = (struct dt_table*) memalign(CACHE_LINE, dt_hdr_size);
+                       if (!table)
+                               return -1;
+
+                       /* Read the entire device tree table into buffer */
+                       if(mmc_read(ptn + offset,(unsigned int *) table, dt_hdr_size)) {
+                               dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n");
+                               return -1;
+                       }
+
+                       /* Find index of device tree within device tree table */
+                       if(dev_tree_get_entry_info(table, &dt_entry) != 0){
+                               dprintf(CRITICAL, "ERROR: Getting device tree address failed\n");
+                               return -1;
+                       }
+
+                       /* Validate and Read device device tree in the "tags_add */
+                       if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size))
+                       {
+                               dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
+                               return -1;
+                       }
+
+                       if(mmc_read(ptn + offset + dt_entry.offset,
+                                                (void *)hdr->tags_addr, dt_entry.size)) {
+                               dprintf(CRITICAL, "ERROR: Cannot read device tree\n");
+                               return -1;
+                       }
+                       #ifdef TZ_SAVE_KERNEL_HASH
+                       aboot_save_boot_hash_mmc(hdr->kernel_addr, kernel_actual,
+                                      hdr->ramdisk_addr, ramdisk_actual,
+                                      ptn, offset, hdr->dt_size);
+                       #endif /* TZ_SAVE_KERNEL_HASH */
+
+               } else {
+
+                       /* Validate the tags_addr */
+                       if (check_aboot_addr_range_overlap(hdr->tags_addr, kernel_actual))
+                       {
+                               dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
+                               return -1;
+                       }
+                       /*
+                        * If appended dev tree is found, update the atags with
+                        * memory address to the DTB appended location on RAM.
+                        * Else update with the atags address in the kernel header
+                        */
+                       void *dtb;
+                       dtb = dev_tree_appended((void*) hdr->kernel_addr,
+                                               kernel_actual,
+                                               (void *)hdr->tags_addr);
+                       if (!dtb) {
+                               dprintf(CRITICAL, "ERROR: Appended Device Tree Blob not found\n");
+                               return -1;
+                       }
+               }
+               #endif
+       }
+
+       if (boot_into_recovery && !device.is_unlocked && !device.is_tampered)
+               target_load_ssd_keystore();
+
+unified_boot:
+
+       boot_linux((void *)hdr->kernel_addr, (void *)hdr->tags_addr,
+                  (const char *)hdr->cmdline, board_machtype(),
+                  (void *)hdr->ramdisk_addr, hdr->ramdisk_size);
+
+       return 0;
+}
+
+int boot_linux_from_flash(void)
+{
+       struct boot_img_hdr *hdr = (void*) buf;
+       struct ptentry *ptn;
+       struct ptable *ptable;
+       unsigned offset = 0;
+
+       unsigned char *image_addr = 0;
+       unsigned kernel_actual;
+       unsigned ramdisk_actual;
+       unsigned imagesize_actual;
+       unsigned second_actual;
+
+#if DEVICE_TREE
+       struct dt_table *table;
+       struct dt_entry dt_entry;
+       uint32_t dt_actual;
+       uint32_t dt_hdr_size;
+#endif
+
+       if (target_is_emmc_boot()) {
+               hdr = (struct boot_img_hdr *)EMMC_BOOT_IMG_HEADER_ADDR;
+               if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
+                       dprintf(CRITICAL, "ERROR: Invalid boot image header\n");
+                       return -1;
+               }
+               goto continue_boot;
+       }
+
+       ptable = flash_get_ptable();
+       if (ptable == NULL) {
+               dprintf(CRITICAL, "ERROR: Partition table not found\n");
+               return -1;
+       }
+
+       if(!boot_into_recovery)
+       {
+               ptn = ptable_find(ptable, "boot");
+
+               if (ptn == NULL) {
+                       dprintf(CRITICAL, "ERROR: No boot partition found\n");
+                       return -1;
+               }
+       }
+       else
+       {
+               ptn = ptable_find(ptable, "recovery");
+               if (ptn == NULL) {
+                       dprintf(CRITICAL, "ERROR: No recovery partition found\n");
+                       return -1;
+               }
+       }
+
+       if (flash_read(ptn, offset, buf, page_size)) {
+               dprintf(CRITICAL, "ERROR: Cannot read boot image header\n");
+               return -1;
+       }
+
+       if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
+               dprintf(CRITICAL, "ERROR: Invalid boot image header\n");
+               return -1;
+       }
+
+       if (hdr->page_size != page_size) {
+               dprintf(CRITICAL, "ERROR: Invalid boot image pagesize. Device pagesize: %d, Image pagesize: %d\n",page_size,hdr->page_size);
+               return -1;
+       }
+
+       /*
+        * Update the kernel/ramdisk/tags address if the boot image header
+        * has default values, these default values come from mkbootimg when
+        * the boot image is flashed using fastboot flash:raw
+        */
+       update_ker_tags_rdisk_addr(hdr, false);
+
+       /* Get virtual addresses since the hdr saves physical addresses. */
+       hdr->kernel_addr = VA((addr_t)(hdr->kernel_addr));
+       hdr->ramdisk_addr = VA((addr_t)(hdr->ramdisk_addr));
+       hdr->tags_addr = VA((addr_t)(hdr->tags_addr));
+
+       kernel_actual  = ROUND_TO_PAGE(hdr->kernel_size,  page_mask);
+       ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);
+
+       /* Check if the addresses in the header are valid. */
+       if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) ||
+               check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual))
+       {
+               dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n");
+               return -1;
+       }
+
+#ifndef DEVICE_TREE
+               if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE))
+               {
+                       dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n");
+                       return -1;
+               }
+#endif
+
+       /* Authenticate Kernel */
+       if(target_use_signed_kernel() && (!device.is_unlocked))
+       {
+               image_addr = (unsigned char *)target_get_scratch_address();
+               offset = 0;
+
+#if DEVICE_TREE
+               dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask);
+               imagesize_actual = (page_size + kernel_actual + ramdisk_actual + dt_actual);
+
+               if (check_aboot_addr_range_overlap(hdr->tags_addr, hdr->dt_size))
+               {
+                       dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
+                       return -1;
+               }
+#else
+               imagesize_actual = (page_size + kernel_actual + ramdisk_actual);
+#endif
+
+               dprintf(INFO, "Loading boot image (%d): start\n", imagesize_actual);
+               bs_set_timestamp(BS_KERNEL_LOAD_START);
+
+               /* Read image without signature */
+               if (flash_read(ptn, offset, (void *)image_addr, imagesize_actual))
+               {
+                       dprintf(CRITICAL, "ERROR: Cannot read boot image\n");
+                               return -1;
+               }
+
+               dprintf(INFO, "Loading boot image (%d): done\n", imagesize_actual);
+               bs_set_timestamp(BS_KERNEL_LOAD_DONE);
+
+               offset = imagesize_actual;
+               /* Read signature */
+               if (flash_read(ptn, offset, (void *)(image_addr + offset), page_size))
+               {
+                       dprintf(CRITICAL, "ERROR: Cannot read boot image signature\n");
+                       return -1;
+               }
+
+               verify_signed_bootimg(image_addr, imagesize_actual);
+
+               /* Move kernel and ramdisk to correct address */
+               memmove((void*) hdr->kernel_addr, (char *)(image_addr + page_size), hdr->kernel_size);
+               memmove((void*) hdr->ramdisk_addr, (char *)(image_addr + page_size + kernel_actual), hdr->ramdisk_size);
+#if DEVICE_TREE
+               /* Validate and Read device device tree in the "tags_add */
+               if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size))
+               {
+                       dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
+                       return -1;
+               }
+
+               memmove((void*) hdr->tags_addr, (char *)(image_addr + page_size + kernel_actual + ramdisk_actual), hdr->dt_size);
+#endif
+
+               /* Make sure everything from scratch address is read before next step!*/
+               if(device.is_tampered)
+               {
+                       write_device_info_flash(&device);
+               }
+#if USE_PCOM_SECBOOT
+               set_tamper_flag(device.is_tampered);
+#endif
+       }
+       else
+       {
+               offset = page_size;
+
+               kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask);
+               ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);
+               second_actual = ROUND_TO_PAGE(hdr->second_size, page_mask);
+
+               dprintf(INFO, "Loading boot image (%d): start\n",
+                               kernel_actual + ramdisk_actual);
+               bs_set_timestamp(BS_KERNEL_LOAD_START);
+
+               if (flash_read(ptn, offset, (void *)hdr->kernel_addr, kernel_actual)) {
+                       dprintf(CRITICAL, "ERROR: Cannot read kernel image\n");
+                       return -1;
+               }
+               offset += kernel_actual;
+
+               if (flash_read(ptn, offset, (void *)hdr->ramdisk_addr, ramdisk_actual)) {
+                       dprintf(CRITICAL, "ERROR: Cannot read ramdisk image\n");
+                       return -1;
+               }
+               offset += ramdisk_actual;
+
+               dprintf(INFO, "Loading boot image (%d): done\n",
+                               kernel_actual + ramdisk_actual);
+               bs_set_timestamp(BS_KERNEL_LOAD_DONE);
+
+               if(hdr->second_size != 0) {
+                       offset += second_actual;
+                       /* Second image loading not implemented. */
+                       ASSERT(0);
+               }
+
+#if DEVICE_TREE
+               if(hdr->dt_size != 0) {
+
+                       /* Read the device tree table into buffer */
+                       if(flash_read(ptn, offset, (void *) dt_buf, page_size)) {
+                               dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n");
+                               return -1;
+                       }
+
+                       table = (struct dt_table*) dt_buf;
+
+                       if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) {
+                               dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n");
+                               return -1;
+                       }
+
+                       table = (struct dt_table*) memalign(CACHE_LINE, dt_hdr_size);
+                       if (!table)
+                               return -1;
+
+                       /* Read the entire device tree table into buffer */
+                       if(flash_read(ptn, offset, (void *)table, dt_hdr_size)) {
+                               dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n");
+                               return -1;
+                       }
+
+
+                       /* Find index of device tree within device tree table */
+                       if(dev_tree_get_entry_info(table, &dt_entry) != 0){
+                               dprintf(CRITICAL, "ERROR: Getting device tree address failed\n");
+                               return -1;
+                       }
+
+                       /* Validate and Read device device tree in the "tags_add */
+                       if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size))
+                       {
+                               dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
+                               return -1;
+                       }
+
+                       /* Read device device tree in the "tags_add */
+                       if(flash_read(ptn, offset + dt_entry.offset,
+                                                (void *)hdr->tags_addr, dt_entry.size)) {
+                               dprintf(CRITICAL, "ERROR: Cannot read device tree\n");
+                               return -1;
+                       }
+               }
+#endif
+
+       }
+continue_boot:
+
+       /* TODO: create/pass atags to kernel */
+
+       boot_linux((void *)hdr->kernel_addr, (void *)hdr->tags_addr,
+                  (const char *)hdr->cmdline, board_machtype(),
+                  (void *)hdr->ramdisk_addr, hdr->ramdisk_size);
+
+       return 0;
+}
+
+BUF_DMA_ALIGN(info_buf, BOOT_IMG_MAX_PAGE_SIZE);
+void write_device_info_mmc(device_info *dev)
+{
+       struct device_info *info = (void*) info_buf;
+       unsigned long long ptn = 0;
+       unsigned long long size;
+       int index = INVALID_PTN;
+       uint32_t blocksize;
+       uint8_t lun = 0;
+
+       index = partition_get_index("aboot");
+       ptn = partition_get_offset(index);
+       if(ptn == 0)
+       {
+               return;
+       }
+
+       lun = partition_get_lun(index);
+       mmc_set_lun(lun);
+
+       size = partition_get_size(index);
+
+       memcpy(info, dev, sizeof(device_info));
+
+       blocksize = mmc_get_device_blocksize();
+
+       if(mmc_write((ptn + size - blocksize), blocksize, (void *)info_buf))
+       {
+               dprintf(CRITICAL, "ERROR: Cannot write device info\n");
+               return;
+       }
+}
+
+void read_device_info_mmc(device_info *dev)
+{
+       struct device_info *info = (void*) info_buf;
+       unsigned long long ptn = 0;
+       unsigned long long size;
+       int index = INVALID_PTN;
+       uint32_t blocksize;
+
+       index = partition_get_index("aboot");
+       ptn = partition_get_offset(index);
+       if(ptn == 0)
+       {
+               return;
+       }
+
+       size = partition_get_size(index);
+
+       blocksize = mmc_get_device_blocksize();
+
+       if(mmc_read((ptn + size - blocksize), (void *)info_buf, blocksize))
+       {
+               dprintf(CRITICAL, "ERROR: Cannot read device info\n");
+               return;
+       }
+
+       if (memcmp(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE))
+       {
+               memcpy(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE);
+               info->is_unlocked = 0;
+               info->is_tampered = 0;
+               info->charger_screen_enabled = 0;
+
+               write_device_info_mmc(info);
+       }
+       memcpy(dev, info, sizeof(device_info));
+}
+
+void write_device_info_flash(device_info *dev)
+{
+       struct device_info *info = (void *) info_buf;
+       struct ptentry *ptn;
+       struct ptable *ptable;
+
+       ptable = flash_get_ptable();
+       if (ptable == NULL)
+       {
+               dprintf(CRITICAL, "ERROR: Partition table not found\n");
+               return;
+       }
+
+       ptn = ptable_find(ptable, "devinfo");
+       if (ptn == NULL)
+       {
+               dprintf(CRITICAL, "ERROR: No boot partition found\n");
+                       return;
+       }
+
+       memcpy(info, dev, sizeof(device_info));
+
+       if (flash_write(ptn, 0, (void *)info_buf, page_size))
+       {
+               dprintf(CRITICAL, "ERROR: Cannot write device info\n");
+                       return;
+       }
+}
+
+void read_device_info_flash(device_info *dev)
+{
+       struct device_info *info = (void*) info_buf;
+       struct ptentry *ptn;
+       struct ptable *ptable;
+
+       ptable = flash_get_ptable();
+       if (ptable == NULL)
+       {
+               dprintf(CRITICAL, "ERROR: Partition table not found\n");
+               return;
+       }
+
+       ptn = ptable_find(ptable, "devinfo");
+       if (ptn == NULL)
+       {
+               dprintf(CRITICAL, "ERROR: No boot partition found\n");
+                       return;
+       }
+
+       if (flash_read(ptn, 0, (void *)info_buf, page_size))
+       {
+               dprintf(CRITICAL, "ERROR: Cannot write device info\n");
+                       return;
+       }
+
+       if (memcmp(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE))
+       {
+               memcpy(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE);
+               info->is_unlocked = 0;
+               info->is_tampered = 0;
+               write_device_info_flash(info);
+       }
+       memcpy(dev, info, sizeof(device_info));
+}
+
+void write_device_info(device_info *dev)
+{
+       if(target_is_emmc_boot())
+       {
+               write_device_info_mmc(dev);
+       }
+       else
+       {
+               write_device_info_flash(dev);
+       }
+}
+
+void read_device_info(device_info *dev)
+{
+       if(target_is_emmc_boot())
+       {
+               read_device_info_mmc(dev);
+       }
+       else
+       {
+               read_device_info_flash(dev);
+       }
+}
+
+void reset_device_info()
+{
+       dprintf(ALWAYS, "reset_device_info called.");
+       device.is_tampered = 0;
+       write_device_info(&device);
+}
+
+void set_device_root()
+{
+       dprintf(ALWAYS, "set_device_root called.");
+       device.is_tampered = 1;
+       write_device_info(&device);
+}
+
+#if DEVICE_TREE
+int copy_dtb(uint8_t *boot_image_start)
+{
+       uint32 dt_image_offset = 0;
+       uint32_t n;
+       struct dt_table *table;
+       struct dt_entry dt_entry;
+       uint32_t dt_hdr_size;
+
+       struct boot_img_hdr *hdr = (struct boot_img_hdr *) (boot_image_start);
+
+       if(hdr->dt_size != 0) {
+
+               /* add kernel offset */
+               dt_image_offset += page_size;
+               n = ROUND_TO_PAGE(hdr->kernel_size, page_mask);
+               dt_image_offset += n;
+
+               /* add ramdisk offset */
+               n = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);
+               dt_image_offset += n;
+
+               /* add second offset */
+               if(hdr->second_size != 0) {
+                       n = ROUND_TO_PAGE(hdr->second_size, page_mask);
+                       dt_image_offset += n;
+               }
+
+               /* offset now point to start of dt.img */
+               table = (struct dt_table*)(boot_image_start + dt_image_offset);
+
+               if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) {
+                       dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n");
+                       return -1;
+               }
+               /* Find index of device tree within device tree table */
+               if(dev_tree_get_entry_info(table, &dt_entry) != 0){
+                       dprintf(CRITICAL, "ERROR: Getting device tree address failed\n");
+                       return -1;
+               }
+
+               /* Validate and Read device device tree in the "tags_add */
+               if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size))
+               {
+                       dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");
+                       return -1;
+               }
+
+               /* Read device device tree in the "tags_add */
+               memmove((void*) hdr->tags_addr,
+                               boot_image_start + dt_image_offset +  dt_entry.offset,
+                               dt_entry.size);
+       } else
+               return -1;
+
+       /* Everything looks fine. Return success. */
+       return 0;
+}
+#endif
+
+void cmd_boot(const char *arg, void *data, unsigned sz)
+{
+       unsigned kernel_actual;
+       unsigned ramdisk_actual;
+       uint32_t image_actual;
+       uint32_t dt_actual = 0;
+       uint32_t sig_actual = SIGNATURE_SIZE;
+       struct boot_img_hdr *hdr;
+       struct kernel64_hdr *kptr;
+       char *ptr = ((char*) data);
+       int ret = 0;
+       uint8_t dtb_copied = 0;
+
+       if (sz < sizeof(hdr)) {
+               fastboot_fail("invalid bootimage header");
+               return;
+       }
+
+       hdr = (struct boot_img_hdr *)data;
+
+       /* ensure commandline is terminated */
+       hdr->cmdline[BOOT_ARGS_SIZE-1] = 0;
+
+       if(target_is_emmc_boot() && hdr->page_size) {
+               page_size = hdr->page_size;
+               page_mask = page_size - 1;
+       }
+
+       kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask);
+       ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);
+#if DEVICE_TREE
+       dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask);
+#endif
+
+       image_actual = ADD_OF(page_size, kernel_actual);
+       image_actual = ADD_OF(image_actual, ramdisk_actual);
+       image_actual = ADD_OF(image_actual, dt_actual);
+
+       if (target_use_signed_kernel() && (!device.is_unlocked))
+               image_actual = ADD_OF(image_actual, sig_actual);
+
+       /* sz should have atleast raw boot image */
+       if (image_actual > sz) {
+               fastboot_fail("bootimage: incomplete or not signed");
+               return;
+       }
+
+       /* Verify the boot image
+        * device & page_size are initialized in aboot_init
+        */
+       if (target_use_signed_kernel() && (!device.is_unlocked))
+               /* Pass size excluding signature size, otherwise we would try to
+                * access signature beyond its length
+                */
+               verify_signed_bootimg((uint32_t)data, (image_actual - sig_actual));
+
+       /*
+        * Update the kernel/ramdisk/tags address if the boot image header
+        * has default values, these default values come from mkbootimg when
+        * the boot image is flashed using fastboot flash:raw
+        */
+       kptr = (struct kernel64_hdr*)((char*) data + page_size);
+       update_ker_tags_rdisk_addr(hdr, IS_ARM64(kptr));
+
+       /* Get virtual addresses since the hdr saves physical addresses. */
+       hdr->kernel_addr = VA(hdr->kernel_addr);
+       hdr->ramdisk_addr = VA(hdr->ramdisk_addr);
+       hdr->tags_addr = VA(hdr->tags_addr);
+
+       /* Check if the addresses in the header are valid. */
+       if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) ||
+               check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual))
+       {
+               dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n");
+               return;
+       }
+
+#if DEVICE_TREE
+       /* find correct dtb and copy it to right location */
+       ret = copy_dtb(data);
+
+       dtb_copied = !ret ? 1 : 0;
+#else
+       if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE))
+       {
+               dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n");
+               return;
+       }
+#endif
+
+       /* Load ramdisk & kernel */
+       memmove((void*) hdr->ramdisk_addr, ptr + page_size + kernel_actual, hdr->ramdisk_size);
+       memmove((void*) hdr->kernel_addr, ptr + page_size, hdr->kernel_size);
+
+#if DEVICE_TREE
+       /*
+        * If dtb is not found look for appended DTB in the kernel.
+        * If appended dev tree is found, update the atags with
+        * memory address to the DTB appended location on RAM.
+        * Else update with the atags address in the kernel header
+        */
+       if (!dtb_copied) {
+               void *dtb;
+               dtb = dev_tree_appended((void *)hdr->kernel_addr, hdr->kernel_size,
+                                       (void *)hdr->tags_addr);
+               if (!dtb) {
+                       fastboot_fail("dtb not found");
+                       return;
+               }
+       }
+#endif
+
+#ifndef DEVICE_TREE
+       if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE))
+       {
+               dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n");
+               return;
+       }
+#endif
+
+       fastboot_okay("");
+       fastboot_stop();
+
+       boot_linux((void*) hdr->kernel_addr, (void*) hdr->tags_addr,
+                  (const char*) hdr->cmdline, board_machtype(),
+                  (void*) hdr->ramdisk_addr, hdr->ramdisk_size);
+}
+
+void cmd_erase(const char *arg, void *data, unsigned sz)
+{
+       struct ptentry *ptn;
+       struct ptable *ptable;
+
+       ptable = flash_get_ptable();
+       if (ptable == NULL) {
+               fastboot_fail("partition table doesn't exist");
+               return;
+       }
+
+       ptn = ptable_find(ptable, arg);
+       if (ptn == NULL) {
+               fastboot_fail("unknown partition name");
+               return;
+       }
+
+       if (flash_erase(ptn)) {
+               fastboot_fail("failed to erase partition");
+               return;
+       }
+       fastboot_okay("");
+}
+
+
+void cmd_erase_mmc(const char *arg, void *data, unsigned sz)
+{
+       BUF_DMA_ALIGN(out, DEFAULT_ERASE_SIZE);
+       unsigned long long ptn = 0;
+       unsigned long long size = 0;
+       int index = INVALID_PTN;
+       uint8_t lun = 0;
+
+       index = partition_get_index(arg);
+       ptn = partition_get_offset(index);
+       size = partition_get_size(index);
+
+       if(ptn == 0) {
+               fastboot_fail("Partition table doesn't exist\n");
+               return;
+       }
+
+       lun = partition_get_lun(index);
+       mmc_set_lun(lun);
+
+#if MMC_SDHCI_SUPPORT
+       if (mmc_erase_card(ptn, size)) {
+               fastboot_fail("failed to erase partition\n");
+               return;
+       }
+#else
+       size = partition_get_size(index);
+       if (size > DEFAULT_ERASE_SIZE)
+               size = DEFAULT_ERASE_SIZE;
+
+       /* Simple inefficient version of erase. Just writing
+       0 in first several blocks */
+       if (mmc_write(ptn , size, (unsigned int *)out)) {
+               fastboot_fail("failed to erase partition");
+               return;
+       }
+#endif
+       fastboot_okay("");
+}
+
+
+void cmd_flash_mmc_img(const char *arg, void *data, unsigned sz)
+{
+       unsigned long long ptn = 0;
+       unsigned long long size = 0;
+       int index = INVALID_PTN;
+       char *token = NULL;
+       char *pname = NULL;
+       uint8_t lun = 0;
+       bool lun_set = false;
+
+       token = strtok(arg, ":");
+       pname = token;
+       token = strtok(NULL, ":");
+       if(token)
+       {
+               lun = atoi(token);
+               mmc_set_lun(lun);
+               lun_set = true;
+       }
+
+       if (pname)
+       {
+               if (!strcmp(pname, "partition"))
+               {
+                       dprintf(INFO, "Attempt to write partition image.\n");
+                       if (write_partition(sz, (unsigned char *) data)) {
+                               fastboot_fail("failed to write partition");
+                               return;
+                       }
+               }
+               else
+               {
+                       index = partition_get_index(pname);
+                       ptn = partition_get_offset(index);
+                       if(ptn == 0) {
+                               fastboot_fail("partition table doesn't exist");
+                               return;
+                       }
+
+                       if (!strcmp(pname, "boot") || !strcmp(pname, "recovery")) {
+                               if (memcmp((void *)data, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
+                                       fastboot_fail("image is not a boot image");
+                                       return;
+                               }
+                       }
+
+                       if(!lun_set)
+                       {
+                               lun = partition_get_lun(index);
+                               mmc_set_lun(lun);
+                       }
+
+                       size = partition_get_size(index);
+                       if (ROUND_TO_PAGE(sz,511) > size) {
+                               fastboot_fail("size too large");
+                               return;
+                       }
+                       else if (mmc_write(ptn , sz, (unsigned int *)data)) {
+                               fastboot_fail("flash write failure");
+                               return;
+                       }
+               }
+       }
+       fastboot_okay("");
+       return;
+}
+
+void cmd_flash_mmc_sparse_img(const char *arg, void *data, unsigned sz)
+{
+       unsigned int chunk;
+       unsigned int chunk_data_sz;
+       uint32_t *fill_buf = NULL;
+       uint32_t fill_val;
+       uint32_t chunk_blk_cnt = 0;
+       sparse_header_t *sparse_header;
+       chunk_header_t *chunk_header;
+       uint32_t total_blocks = 0;
+       unsigned long long ptn = 0;
+       unsigned long long size = 0;
+       int index = INVALID_PTN;
+       int i;
+       uint8_t lun = 0;
+
+       index = partition_get_index(arg);
+       ptn = partition_get_offset(index);
+       if(ptn == 0) {
+               fastboot_fail("partition table doesn't exist");
+               return;
+       }
+
+       size = partition_get_size(index);
+       if (ROUND_TO_PAGE(sz,511) > size) {
+               fastboot_fail("size too large");
+               return;
+       }
+
+       lun = partition_get_lun(index);
+       mmc_set_lun(lun);
+
+       /* Read and skip over sparse image header */
+       sparse_header = (sparse_header_t *) data;
+       if ((sparse_header->total_blks * sparse_header->blk_sz) > size) {
+               fastboot_fail("size too large");
+               return;
+       }
+
+       data += sparse_header->file_hdr_sz;
+       if(sparse_header->file_hdr_sz > sizeof(sparse_header_t))
+       {
+               /* Skip the remaining bytes in a header that is longer than
+                * we expected.
+                */
+               data += (sparse_header->file_hdr_sz - sizeof(sparse_header_t));
+       }
+
+       dprintf (SPEW, "=== Sparse Image Header ===\n");
+       dprintf (SPEW, "magic: 0x%x\n", sparse_header->magic);
+       dprintf (SPEW, "major_version: 0x%x\n", sparse_header->major_version);
+       dprintf (SPEW, "minor_version: 0x%x\n", sparse_header->minor_version);
+       dprintf (SPEW, "file_hdr_sz: %d\n", sparse_header->file_hdr_sz);
+       dprintf (SPEW, "chunk_hdr_sz: %d\n", sparse_header->chunk_hdr_sz);
+       dprintf (SPEW, "blk_sz: %d\n", sparse_header->blk_sz);
+       dprintf (SPEW, "total_blks: %d\n", sparse_header->total_blks);
+       dprintf (SPEW, "total_chunks: %d\n", sparse_header->total_chunks);
+
+       /* Start processing chunks */
+       for (chunk=0; chunk<sparse_header->total_chunks; chunk++)
+       {
+               /* Read and skip over chunk header */
+               chunk_header = (chunk_header_t *) data;
+               data += sizeof(chunk_header_t);
+
+               dprintf (SPEW, "=== Chunk Header ===\n");
+               dprintf (SPEW, "chunk_type: 0x%x\n", chunk_header->chunk_type);
+               dprintf (SPEW, "chunk_data_sz: 0x%x\n", chunk_header->chunk_sz);
+               dprintf (SPEW, "total_size: 0x%x\n", chunk_header->total_sz);
+
+               if(sparse_header->chunk_hdr_sz > sizeof(chunk_header_t))
+               {
+                       /* Skip the remaining bytes in a header that is longer than
+                        * we expected.
+                        */
+                       data += (sparse_header->chunk_hdr_sz - sizeof(chunk_header_t));
+               }
+
+               chunk_data_sz = sparse_header->blk_sz * chunk_header->chunk_sz;
+               switch (chunk_header->chunk_type)
+               {
+                       case CHUNK_TYPE_RAW:
+                       if(chunk_header->total_sz != (sparse_header->chunk_hdr_sz +
+                                                                                       chunk_data_sz))
+                       {
+                               fastboot_fail("Bogus chunk size for chunk type Raw");
+                               return;
+                       }
+
+                       if(mmc_write(ptn + ((uint64_t)total_blocks*sparse_header->blk_sz),
+                                               chunk_data_sz,
+                                               (unsigned int*)data))
+                       {
+                               fastboot_fail("flash write failure");
+                               return;
+                       }
+                       total_blocks += chunk_header->chunk_sz;
+                       data += chunk_data_sz;
+                       break;
+
+                       case CHUNK_TYPE_FILL:
+                       if(chunk_header->total_sz != (sparse_header->chunk_hdr_sz +
+                                                                                       sizeof(uint32_t)))
+                       {
+                               fastboot_fail("Bogus chunk size for chunk type FILL");
+                               return;
+                       }
+
+                       fill_buf = (uint32_t *)memalign(CACHE_LINE, ROUNDUP(sparse_header->blk_sz, CACHE_LINE));
+                       if (!fill_buf)
+                       {
+                               fastboot_fail("Malloc failed for: CHUNK_TYPE_FILL");
+                               return;
+                       }
+
+                       fill_val = *(uint32_t *)data;
+                       data = (char *) data + sizeof(uint32_t);
+                       chunk_blk_cnt = chunk_data_sz / sparse_header->blk_sz;
+
+                       for (i = 0; i < (sparse_header->blk_sz / sizeof(fill_val)); i++)
+                       {
+                               fill_buf[i] = fill_val;
+                       }
+
+                       for (i = 0; i < chunk_blk_cnt; i++)
+                       {
+                               if(mmc_write(ptn + ((uint64_t)total_blocks*sparse_header->blk_sz),
+                                                       sparse_header->blk_sz,
+                                                       fill_buf))
+                               {
+                                       fastboot_fail("flash write failure");
+                                       free(fill_buf);
+                                       return;
+                               }
+
+                               total_blocks++;
+                       }
+
+                       free(fill_buf);
+                       break;
+
+                       case CHUNK_TYPE_DONT_CARE:
+                       total_blocks += chunk_header->chunk_sz;
+                       break;
+
+                       case CHUNK_TYPE_CRC:
+                       if(chunk_header->total_sz != sparse_header->chunk_hdr_sz)
+                       {
+                               fastboot_fail("Bogus chunk size for chunk type Dont Care");
+                               return;
+                       }
+                       total_blocks += chunk_header->chunk_sz;
+                       data += chunk_data_sz;
+                       break;
+
+                       default:
+                       dprintf(CRITICAL, "Unkown chunk type: %x\n",chunk_header->chunk_type);
+                       fastboot_fail("Unknown chunk type");
+                       return;
+               }
+       }
+
+       dprintf(INFO, "Wrote %d blocks, expected to write %d blocks\n",
+                                       total_blocks, sparse_header->total_blks);
+
+       if(total_blocks != sparse_header->total_blks)
+       {
+               fastboot_fail("sparse image write failure");
+       }
+
+       fastboot_okay("");
+       return;
+}
+
+void cmd_flash_mmc(const char *arg, void *data, unsigned sz)
+{
+       sparse_header_t *sparse_header;
+       /* 8 Byte Magic + 2048 Byte xml + Encrypted Data */
+       unsigned int *magic_number = (unsigned int *) data;
+
+#ifdef SSD_ENABLE
+       int              ret=0;
+       uint32           major_version=0;
+       uint32           minor_version=0;
+
+       ret = scm_svc_version(&major_version,&minor_version);
+       if(!ret)
+       {
+               if(major_version >= 2)
+               {
+                       if( !strcmp(arg, "ssd") || !strcmp(arg, "tqs") )
+                       {
+                               ret = encrypt_scm((uint32 **) &data, &sz);
+                               if (ret != 0) {
+                                       dprintf(CRITICAL, "ERROR: Encryption Failure\n");
+                                       return;
+                               }
+
+                               /* Protect only for SSD */
+                               if (!strcmp(arg, "ssd")) {
+                                       ret = scm_protect_keystore((uint32 *) data, sz);
+                                       if (ret != 0) {
+                                               dprintf(CRITICAL, "ERROR: scm_protect_keystore Failed\n");
+                                               return;
+                                       }
+                               }
+                       }
+                       else
+                       {
+                               ret = decrypt_scm_v2((uint32 **) &data, &sz);
+                               if(ret != 0)
+                               {
+                                       dprintf(CRITICAL,"ERROR: Decryption Failure\n");
+                                       return;
+                               }
+                       }
+               }
+               else
+               {
+                       if (magic_number[0] == DECRYPT_MAGIC_0 &&
+                       magic_number[1] == DECRYPT_MAGIC_1)
+                       {
+                               ret = decrypt_scm((uint32 **) &data, &sz);
+                               if (ret != 0) {
+                                       dprintf(CRITICAL, "ERROR: Invalid secure image\n");
+                                       return;
+                               }
+                       }
+                       else if (magic_number[0] == ENCRYPT_MAGIC_0 &&
+                               magic_number[1] == ENCRYPT_MAGIC_1)
+                       {
+                               ret = encrypt_scm((uint32 **) &data, &sz);
+                               if (ret != 0) {
+                                       dprintf(CRITICAL, "ERROR: Encryption Failure\n");
+                                       return;
+                               }
+                       }
+               }
+       }
+       else
+       {
+               dprintf(CRITICAL,"INVALID SVC Version\n");
+               return;
+       }
+#endif /* SSD_ENABLE */
+
+       sparse_header = (sparse_header_t *) data;
+       if (sparse_header->magic != SPARSE_HEADER_MAGIC)
+               cmd_flash_mmc_img(arg, data, sz);
+       else
+               cmd_flash_mmc_sparse_img(arg, data, sz);
+       return;
+}
+
+void cmd_flash(const char *arg, void *data, unsigned sz)
+{
+       struct ptentry *ptn;
+       struct ptable *ptable;
+       unsigned extra = 0;
+
+       ptable = flash_get_ptable();
+       if (ptable == NULL) {
+               fastboot_fail("partition table doesn't exist");
+               return;
+       }
+
+       ptn = ptable_find(ptable, arg);
+       if (ptn == NULL) {
+               fastboot_fail("unknown partition name");
+               return;
+       }
+
+       if (!strcmp(ptn->name, "boot") || !strcmp(ptn->name, "recovery")) {
+               if (memcmp((void *)data, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {
+                       fastboot_fail("image is not a boot image");
+                       return;
+               }
+       }
+
+       if (!strcmp(ptn->name, "system")
+               || !strcmp(ptn->name, "userdata")
+               || !strcmp(ptn->name, "persist")
+               || !strcmp(ptn->name, "recoveryfs")
+               || !strcmp(ptn->name, "modem"))
+       {
+               if (memcmp((void *)data, UBI_MAGIC, UBI_MAGIC_SIZE))
+                       extra = 1;
+               else
+                       extra = 0;
+       }
+       else
+               sz = ROUND_TO_PAGE(sz, page_mask);
+
+       dprintf(INFO, "writing %d bytes to '%s'\n", sz, ptn->name);
+       if (flash_write(ptn, extra, data, sz)) {
+               fastboot_fail("flash write failure");
+               return;
+       }
+       dprintf(INFO, "partition '%s' updated\n", ptn->name);
+       fastboot_okay("");
+}
+
+void cmd_continue(const char *arg, void *data, unsigned sz)
+{
+       fastboot_okay("");
+       fastboot_stop();
+       if (target_is_emmc_boot())
+       {
+               boot_linux_from_mmc();
+       }
+       else
+       {
+               boot_linux_from_flash();
+       }
+}
+
+void cmd_reboot(const char *arg, void *data, unsigned sz)
+{
+       dprintf(INFO, "rebooting the device\n");
+       fastboot_okay("");
+       reboot_device(0);
+}
+
+void cmd_reboot_bootloader(const char *arg, void *data, unsigned sz)
+{
+       dprintf(INFO, "rebooting the device\n");
+       fastboot_okay("");
+       reboot_device(FASTBOOT_MODE);
+}
+
+void cmd_oem_enable_charger_screen(const char *arg, void *data, unsigned size)
+{
+       dprintf(INFO, "Enabling charger screen check\n");
+       device.charger_screen_enabled = 1;
+       write_device_info(&device);
+       fastboot_okay("");
+}
+
+void cmd_oem_disable_charger_screen(const char *arg, void *data, unsigned size)
+{
+       dprintf(INFO, "Disabling charger screen check\n");
+       device.charger_screen_enabled = 0;
+       write_device_info(&device);
+       fastboot_okay("");
+}
+
+void cmd_oem_select_display_panel(const char *arg, void *data, unsigned size)
+{
+       dprintf(INFO, "Selecting display panel %s\n", arg);
+       if (arg)
+               strlcpy(device.display_panel, arg,
+                       sizeof(device.display_panel));
+       write_device_info(&device);
+       fastboot_okay("");
+}
+
+void cmd_oem_unlock(const char *arg, void *data, unsigned sz)
+{
+       if(!device.is_unlocked)
+       {
+               device.is_unlocked = 1;
+               write_device_info(&device);
+       }
+       fastboot_okay("");
+}
+
+void cmd_oem_devinfo(const char *arg, void *data, unsigned sz)
+{
+       char response[128];
+       snprintf(response, sizeof(response), "\tDevice tampered: %s", (device.is_tampered ? "true" : "false"));
+       fastboot_info(response);
+       snprintf(response, sizeof(response), "\tDevice unlocked: %s", (device.is_unlocked ? "true" : "false"));
+       fastboot_info(response);
+       snprintf(response, sizeof(response), "\tCharger screen enabled: %s", (device.charger_screen_enabled ? "true" : "false"));
+       fastboot_info(response);
+       snprintf(response, sizeof(response), "\tDisplay panel: %s", (device.display_panel));
+       fastboot_info(response);
+       fastboot_okay("");
+}
+
+void cmd_preflash(const char *arg, void *data, unsigned sz)
+{
+       fastboot_okay("");
+}
+
+static struct fbimage logo_header = {0};
+struct fbimage* splash_screen_flash();
+
+int splash_screen_check_header(struct fbimage *logo)
+{
+       if (memcmp(logo->header.magic, LOGO_IMG_MAGIC, 8))
+               return -1;
+       if (logo->header.width == 0 || logo->header.height == 0)
+               return -1;
+       return 0;
+}
+
+struct fbimage* splash_screen_flash()
+{
+       struct ptentry *ptn;
+       struct ptable *ptable;
+       struct fbcon_config *fb_display = NULL;
+       struct fbimage *logo = &logo_header;
+
+
+       ptable = flash_get_ptable();
+       if (ptable == NULL) {
+       dprintf(CRITICAL, "ERROR: Partition table not found\n");
+       return NULL;
+       }
+       ptn = ptable_find(ptable, "splash");
+       if (ptn == NULL) {
+               dprintf(CRITICAL, "ERROR: splash Partition not found\n");
+               return NULL;
+       }
+
+       if (flash_read(ptn, 0,(unsigned int *) logo, sizeof(logo->header))) {
+               dprintf(CRITICAL, "ERROR: Cannot read boot image header\n");
+               return NULL;
+       }
+
+       if (splash_screen_check_header(logo)) {
+               dprintf(CRITICAL, "ERROR: Boot image header invalid\n");
+               return NULL;
+       }
+
+       fb_display = fbcon_display();
+       if (fb_display) {
+               uint8_t *base = (uint8_t *) fb_display->base;
+               if (logo->header.width != fb_display->width || logo->header.height != fb_display->height) {
+                               base += LOGO_IMG_OFFSET;
+               }
+
+               if (flash_read(ptn + sizeof(logo->header), 0,
+                       base,
+                       ((((logo->header.width * logo->header.height * fb_display->bpp/8) + 511) >> 9) << 9))) {
+                       fbcon_clear();
+                       dprintf(CRITICAL, "ERROR: Cannot read splash image\n");
+                       return NULL;
+               }
+               logo->image = base;
+       }
+
+       return logo;
+}
+
+struct fbimage* splash_screen_mmc()
+{
+       int index = INVALID_PTN;
+       unsigned long long ptn = 0;
+       struct fbcon_config *fb_display = NULL;
+       struct fbimage *logo = &logo_header;
+
+       index = partition_get_index("splash");
+       if (index == 0) {
+               dprintf(CRITICAL, "ERROR: splash Partition table not found\n");
+               return NULL;
+       }
+
+       ptn = partition_get_offset(index);
+       if (ptn == 0) {
+               dprintf(CRITICAL, "ERROR: splash Partition invalid\n");
+               return NULL;
+       }
+
+       if (mmc_read(ptn, (unsigned int *) logo, sizeof(logo->header))) {
+               dprintf(CRITICAL, "ERROR: Cannot read splash image header\n");
+               return NULL;
+       }
+
+       if (splash_screen_check_header(logo)) {
+               dprintf(CRITICAL, "ERROR: Splash image header invalid\n");
+               return NULL;
+       }
+
+       fb_display = fbcon_display();
+       if (fb_display) {
+               uint8_t *base = (uint8_t *) fb_display->base;
+               if (logo->header.width != fb_display->width || logo->header.height != fb_display->height)
+                               base += LOGO_IMG_OFFSET;
+
+               if (mmc_read(ptn + sizeof(logo->header),
+                       base,
+                       ((((logo->header.width * logo->header.height * fb_display->bpp/8) + 511) >> 9) << 9))) {
+                       fbcon_clear();
+                       dprintf(CRITICAL, "ERROR: Cannot read splash image\n");
+                       return NULL;
+               }
+
+               logo->image = base;
+       }
+
+       return logo;
+}
+
+
+struct fbimage* fetch_image_from_partition()
+{
+       if (target_is_emmc_boot()) {
+               return splash_screen_mmc();
+       } else {
+               return splash_screen_flash();
+       }
+}
+
+/* Get the size from partiton name */
+static void get_partition_size(const char *arg, char *response)
+{
+       uint64_t ptn = 0;
+       uint64_t size;
+       int index = INVALID_PTN;
+
+       index = partition_get_index(arg);
+
+       if (index == INVALID_PTN)
+       {
+               dprintf(CRITICAL, "Invalid partition index\n");
+               return;
+       }
+
+       ptn = partition_get_offset(index);
+
+       if(!ptn)
+       {
+               dprintf(CRITICAL, "Invalid partition name %s\n", arg);
+               return;
+       }
+
+       size = partition_get_size(index);
+
+       snprintf(response, MAX_RSP_SIZE, "\t 0x%llx", size);
+       return;
+}
+
+/*
+ * Publish the partition type & size info
+ * fastboot getvar will publish the required information.
+ * fastboot getvar partition_size:<partition_name>: partition size in hex
+ * fastboot getvar partition_type:<partition_name>: partition type (ext/fat)
+ */
+static void publish_getvar_partition_info(struct getvar_partition_info *info, uint8_t num_parts)
+{
+       uint8_t i;
+
+       for (i = 0; i < num_parts; i++) {
+               get_partition_size(info[i].part_name, info[i].size_response);
+
+               if (strlcat(info[i].getvar_size, info[i].part_name, MAX_GET_VAR_NAME_SIZE) >= MAX_GET_VAR_NAME_SIZE)
+               {
+                       dprintf(CRITICAL, "partition size name truncated\n");
+                       return;
+               }
+               if (strlcat(info[i].getvar_type, info[i].part_name, MAX_GET_VAR_NAME_SIZE) >= MAX_GET_VAR_NAME_SIZE)
+               {
+                       dprintf(CRITICAL, "partition type name truncated\n");
+                       return;
+               }
+
+               /* publish partition size & type info */
+               fastboot_publish((const char *) info[i].getvar_size, (const char *) info[i].size_response);
+               fastboot_publish((const char *) info[i].getvar_type, (const char *) info[i].type_response);
+       }
+}
+
+/* register commands and variables for fastboot */
+void aboot_fastboot_register_commands(void)
+{
+       if (target_is_emmc_boot())
+       {
+               fastboot_register("flash:", cmd_flash_mmc);
+               fastboot_register("erase:", cmd_erase_mmc);
+       }
+       else
+       {
+               fastboot_register("flash:", cmd_flash);
+               fastboot_register("erase:", cmd_erase);
+       }
+
+       fastboot_register("boot",              cmd_boot);
+       fastboot_register("continue",          cmd_continue);
+       fastboot_register("reboot",            cmd_reboot);
+       fastboot_register("reboot-bootloader", cmd_reboot_bootloader);
+       fastboot_register("oem unlock",        cmd_oem_unlock);
+       fastboot_register("oem device-info",   cmd_oem_devinfo);
+       fastboot_register("preflash",          cmd_preflash);
+       fastboot_register("oem enable-charger-screen",
+                       cmd_oem_enable_charger_screen);
+       fastboot_register("oem disable-charger-screen",
+                       cmd_oem_disable_charger_screen);
+       fastboot_register("oem select-display-panel",
+                       cmd_oem_select_display_panel);
+       /* publish variables and their values */
+       fastboot_publish("product",  TARGET(BOARD));
+       fastboot_publish("kernel",   "lk");
+       fastboot_publish("serialno", sn_buf);
+
+       /*
+        * partition info is supported only for emmc partitions
+        * Calling this for NAND prints some error messages which
+        * is harmless but misleading. Avoid calling this for NAND
+        * devices.
+        */
+       if (target_is_emmc_boot())
+               publish_getvar_partition_info(part_info, ARRAY_SIZE(part_info));
+
+       /* Max download size supported */
+       snprintf(max_download_size, MAX_RSP_SIZE, "\t0x%x",
+                       target_get_max_flash_size());
+       fastboot_publish("max-download-size", (const char *) max_download_size);
+       /* Is the charger screen check enabled */
+       snprintf(charger_screen_enabled, MAX_RSP_SIZE, "%d",
+                       device.charger_screen_enabled);
+       fastboot_publish("charger-screen-enabled",
+                       (const char *) charger_screen_enabled);
+       snprintf(panel_display_mode, MAX_RSP_SIZE, "%s",
+                       device.display_panel);
+       fastboot_publish("display-panel",
+                       (const char *) panel_display_mode);
+}
+
+void aboot_init(const struct app_descriptor *app)
+{
+       unsigned reboot_mode = 0;
+       bool boot_into_fastboot = false;
+
+       /* Setup page size information for nv storage */
+       if (target_is_emmc_boot())
+       {
+               page_size = mmc_page_size();
+               page_mask = page_size - 1;
+       }
+       else
+       {
+               page_size = flash_page_size();
+               page_mask = page_size - 1;
+       }
+
+       ASSERT((MEMBASE + MEMSIZE) > MEMBASE);
+
+       read_device_info(&device);
+
+       /* Display splash screen if enabled */
+#if DISPLAY_SPLASH_SCREEN
+       dprintf(SPEW, "Display Init: Start\n");
+       target_display_init(device.display_panel);
+       dprintf(SPEW, "Display Init: Done\n");
+#endif
+
+
+       target_serialno((unsigned char *) sn_buf);
+       dprintf(SPEW,"serial number: %s\n",sn_buf);
+
+       memset(display_panel_buf, '\0', MAX_PANEL_BUF_SIZE);
+
+       /* Check if we should do something other than booting up */
+       if (keys_get_state(KEY_VOLUMEUP) && keys_get_state(KEY_VOLUMEDOWN))
+       {
+               dprintf(ALWAYS,"dload mode key sequence detected\n");
+               if (set_download_mode(EMERGENCY_DLOAD))
+               {
+                       dprintf(CRITICAL,"dload mode not supported by target\n");
+               }
+               else
+               {
+                       reboot_device(DLOAD);
+                       dprintf(CRITICAL,"Failed to reboot into dload mode\n");
+               }
+               boot_into_fastboot = true;
+       }
+       if (!boot_into_fastboot)
+       {
+               if (keys_get_state(KEY_HOME) || keys_get_state(KEY_VOLUMEUP))
+                       boot_into_recovery = 1;
+               if (!boot_into_recovery &&
+                       (keys_get_state(KEY_BACK) || keys_get_state(KEY_VOLUMEDOWN)))
+                       boot_into_fastboot = true;
+       }
+       #if NO_KEYPAD_DRIVER
+       if (fastboot_trigger())
+               boot_into_fastboot = true;
+       #endif
+
+       reboot_mode = check_reboot_mode();
+       if (reboot_mode == RECOVERY_MODE) {
+               boot_into_recovery = 1;
+       } else if(reboot_mode == FASTBOOT_MODE) {
+               boot_into_fastboot = true;
+       }
+
+       if (!boot_into_fastboot)
+       {
+               if (target_is_emmc_boot())
+               {
+                       if(emmc_recovery_init())
+                               dprintf(ALWAYS,"error in emmc_recovery_init\n");
+                       if(target_use_signed_kernel())
+                       {
+                               if((device.is_unlocked) || (device.is_tampered))
+                               {
+                               #ifdef TZ_TAMPER_FUSE
+                                       set_tamper_fuse_cmd();
+                               #endif
+                               #if USE_PCOM_SECBOOT
+                                       set_tamper_flag(device.is_tampered);
+                               #endif
+                               }
+                       }
+                       boot_linux_from_mmc();
+               }
+               else
+               {
+                       recovery_init();
+       #if USE_PCOM_SECBOOT
+               if((device.is_unlocked) || (device.is_tampered))
+                       set_tamper_flag(device.is_tampered);
+       #endif
+                       boot_linux_from_flash();
+               }
+               dprintf(CRITICAL, "ERROR: Could not do normal boot. Reverting "
+                       "to fastboot mode.\n");
+       }
+
+       /* We are here means regular boot did not happen. Start fastboot. */
+
+       /* register aboot specific fastboot commands */
+       aboot_fastboot_register_commands();
+
+       /* dump partition table for debug info */
+       partition_dump();
+
+       /* initialize and start fastboot */
+       fastboot_init(target_get_scratch_address(), target_get_max_flash_size());
+}
+
+uint32_t get_page_size()
+{
+       return page_size;
+}
+
+/*
+ * Calculated and save hash (SHA256) for non-signed boot image.
+ *
+ * Hash the same data that is checked on the signed boot image.
+ * Kernel and Ramdisk are already read to memory buffers.
+ * Need to read the entire device-tree from mmc
+ * since non-signed image only read the DT tags of the relevant platform.
+ *
+ * @param kernel_addr - kernel bufer
+ * @param kernel_actual - kernel size in bytes
+ * @param ramdisk_addr - ramdisk buffer
+ * @param ramdisk_actual - ramdisk size
+ * @param ptn - partition
+ * @param dt_offset - device tree offset on mmc partition
+ * @param dt_size
+ *
+ * @return int - 0 on success, negative value on failure.
+ */
+int aboot_save_boot_hash_mmc(void *kernel_addr, unsigned kernel_actual,
+                  void *ramdisk_addr, unsigned ramdisk_actual,
+                  unsigned long long ptn,
+                  unsigned dt_offset, unsigned dt_size)
+{
+       SHA256_CTX sha256_ctx;
+       char digest[32]={0};
+       char *buf = (char *)target_get_scratch_address();
+       unsigned dt_actual = ROUND_TO_PAGE(dt_size, page_mask);
+       unsigned imagesize_actual = page_size + kernel_actual + ramdisk_actual + dt_actual;
+
+       SHA256_Init(&sha256_ctx);
+
+       /* Read Boot Header */
+       if (mmc_read(ptn, buf, page_size))
+       {
+               dprintf(CRITICAL, "ERROR: mmc_read() fail.\n");
+               return -1;
+       }
+       /* Read entire Device Tree */
+       if (mmc_read(ptn + dt_offset, buf+page_size, dt_actual))
+       {
+               dprintf(CRITICAL, "ERROR: mmc_read() fail.\n");
+               return -1;
+       }
+       SHA256_Update(&sha256_ctx, buf, page_size); // Boot Header
+       SHA256_Update(&sha256_ctx, kernel_addr, kernel_actual);
+       SHA256_Update(&sha256_ctx, ramdisk_addr, ramdisk_actual);
+       SHA256_Update(&sha256_ctx, buf+page_size, dt_actual); // Device Tree
+
+       SHA256_Final(digest, &sha256_ctx);
+
+       save_kernel_hash_cmd(digest);
+       dprintf(INFO, "aboot_save_boot_hash_mmc: imagesize_actual size %d bytes.\n", (int) imagesize_actual);
+
+       return 0;
+}
+
+APP_START(aboot)
+       .init = aboot_init,
+APP_END