]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm/kernel/smp.c
Merge remote-tracking branch 'userns/for-next'
[karo-tx-linux.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/nmi.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 #include <linux/cpufreq.h>
29 #include <linux/irq_work.h>
30
31 #include <linux/atomic.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60
61 /*
62  * control for which core is the next to come out of the secondary
63  * boot "holding pen"
64  */
65 volatile int pen_release = -1;
66
67 enum ipi_msg_type {
68         IPI_WAKEUP,
69         IPI_TIMER,
70         IPI_RESCHEDULE,
71         IPI_CALL_FUNC,
72         IPI_CALL_FUNC_SINGLE,
73         IPI_CPU_STOP,
74         IPI_IRQ_WORK,
75         IPI_COMPLETION,
76         IPI_CPU_BACKTRACE = 15,
77 };
78
79 static DECLARE_COMPLETION(cpu_running);
80
81 static struct smp_operations smp_ops;
82
83 void __init smp_set_ops(const struct smp_operations *ops)
84 {
85         if (ops)
86                 smp_ops = *ops;
87 };
88
89 static unsigned long get_arch_pgd(pgd_t *pgd)
90 {
91 #ifdef CONFIG_ARM_LPAE
92         return __phys_to_pfn(virt_to_phys(pgd));
93 #else
94         return virt_to_phys(pgd);
95 #endif
96 }
97
98 int __cpu_up(unsigned int cpu, struct task_struct *idle)
99 {
100         int ret;
101
102         if (!smp_ops.smp_boot_secondary)
103                 return -ENOSYS;
104
105         /*
106          * We need to tell the secondary core where to find
107          * its stack and the page tables.
108          */
109         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
110 #ifdef CONFIG_ARM_MPU
111         secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
112 #endif
113
114 #ifdef CONFIG_MMU
115         secondary_data.pgdir = virt_to_phys(idmap_pgd);
116         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
117 #endif
118         sync_cache_w(&secondary_data);
119
120         /*
121          * Now bring the CPU into our world.
122          */
123         ret = smp_ops.smp_boot_secondary(cpu, idle);
124         if (ret == 0) {
125                 /*
126                  * CPU was successfully started, wait for it
127                  * to come online or time out.
128                  */
129                 wait_for_completion_timeout(&cpu_running,
130                                                  msecs_to_jiffies(1000));
131
132                 if (!cpu_online(cpu)) {
133                         pr_crit("CPU%u: failed to come online\n", cpu);
134                         ret = -EIO;
135                 }
136         } else {
137                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138         }
139
140
141         memset(&secondary_data, 0, sizeof(secondary_data));
142         return ret;
143 }
144
145 /* platform specific SMP operations */
146 void __init smp_init_cpus(void)
147 {
148         if (smp_ops.smp_init_cpus)
149                 smp_ops.smp_init_cpus();
150 }
151
152 int platform_can_secondary_boot(void)
153 {
154         return !!smp_ops.smp_boot_secondary;
155 }
156
157 int platform_can_cpu_hotplug(void)
158 {
159 #ifdef CONFIG_HOTPLUG_CPU
160         if (smp_ops.cpu_kill)
161                 return 1;
162 #endif
163
164         return 0;
165 }
166
167 #ifdef CONFIG_HOTPLUG_CPU
168 static int platform_cpu_kill(unsigned int cpu)
169 {
170         if (smp_ops.cpu_kill)
171                 return smp_ops.cpu_kill(cpu);
172         return 1;
173 }
174
175 static int platform_cpu_disable(unsigned int cpu)
176 {
177         if (smp_ops.cpu_disable)
178                 return smp_ops.cpu_disable(cpu);
179
180         return 0;
181 }
182
183 int platform_can_hotplug_cpu(unsigned int cpu)
184 {
185         /* cpu_die must be specified to support hotplug */
186         if (!smp_ops.cpu_die)
187                 return 0;
188
189         if (smp_ops.cpu_can_disable)
190                 return smp_ops.cpu_can_disable(cpu);
191
192         /*
193          * By default, allow disabling all CPUs except the first one,
194          * since this is special on a lot of platforms, e.g. because
195          * of clock tick interrupts.
196          */
197         return cpu != 0;
198 }
199
200 /*
201  * __cpu_disable runs on the processor to be shutdown.
202  */
203 int __cpu_disable(void)
204 {
205         unsigned int cpu = smp_processor_id();
206         int ret;
207
208         ret = platform_cpu_disable(cpu);
209         if (ret)
210                 return ret;
211
212         /*
213          * Take this CPU offline.  Once we clear this, we can't return,
214          * and we must not schedule until we're ready to give up the cpu.
215          */
216         set_cpu_online(cpu, false);
217
218         /*
219          * OK - migrate IRQs away from this CPU
220          */
221         migrate_irqs();
222
223         /*
224          * Flush user cache and TLB mappings, and then remove this CPU
225          * from the vm mask set of all processes.
226          *
227          * Caches are flushed to the Level of Unification Inner Shareable
228          * to write-back dirty lines to unified caches shared by all CPUs.
229          */
230         flush_cache_louis();
231         local_flush_tlb_all();
232
233         clear_tasks_mm_cpumask(cpu);
234
235         return 0;
236 }
237
238 static DECLARE_COMPLETION(cpu_died);
239
240 /*
241  * called on the thread which is asking for a CPU to be shutdown -
242  * waits until shutdown has completed, or it is timed out.
243  */
244 void __cpu_die(unsigned int cpu)
245 {
246         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
247                 pr_err("CPU%u: cpu didn't die\n", cpu);
248                 return;
249         }
250         pr_notice("CPU%u: shutdown\n", cpu);
251
252         /*
253          * platform_cpu_kill() is generally expected to do the powering off
254          * and/or cutting of clocks to the dying CPU.  Optionally, this may
255          * be done by the CPU which is dying in preference to supporting
256          * this call, but that means there is _no_ synchronisation between
257          * the requesting CPU and the dying CPU actually losing power.
258          */
259         if (!platform_cpu_kill(cpu))
260                 pr_err("CPU%u: unable to kill\n", cpu);
261 }
262
263 /*
264  * Called from the idle thread for the CPU which has been shutdown.
265  *
266  * Note that we disable IRQs here, but do not re-enable them
267  * before returning to the caller. This is also the behaviour
268  * of the other hotplug-cpu capable cores, so presumably coming
269  * out of idle fixes this.
270  */
271 void arch_cpu_idle_dead(void)
272 {
273         unsigned int cpu = smp_processor_id();
274
275         idle_task_exit();
276
277         local_irq_disable();
278
279         /*
280          * Flush the data out of the L1 cache for this CPU.  This must be
281          * before the completion to ensure that data is safely written out
282          * before platform_cpu_kill() gets called - which may disable
283          * *this* CPU and power down its cache.
284          */
285         flush_cache_louis();
286
287         /*
288          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
289          * this returns, power and/or clocks can be removed at any point
290          * from this CPU and its cache by platform_cpu_kill().
291          */
292         complete(&cpu_died);
293
294         /*
295          * Ensure that the cache lines associated with that completion are
296          * written out.  This covers the case where _this_ CPU is doing the
297          * powering down, to ensure that the completion is visible to the
298          * CPU waiting for this one.
299          */
300         flush_cache_louis();
301
302         /*
303          * The actual CPU shutdown procedure is at least platform (if not
304          * CPU) specific.  This may remove power, or it may simply spin.
305          *
306          * Platforms are generally expected *NOT* to return from this call,
307          * although there are some which do because they have no way to
308          * power down the CPU.  These platforms are the _only_ reason we
309          * have a return path which uses the fragment of assembly below.
310          *
311          * The return path should not be used for platforms which can
312          * power off the CPU.
313          */
314         if (smp_ops.cpu_die)
315                 smp_ops.cpu_die(cpu);
316
317         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
318                 cpu);
319
320         /*
321          * Do not return to the idle loop - jump back to the secondary
322          * cpu initialisation.  There's some initialisation which needs
323          * to be repeated to undo the effects of taking the CPU offline.
324          */
325         __asm__("mov    sp, %0\n"
326         "       mov     fp, #0\n"
327         "       b       secondary_start_kernel"
328                 :
329                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
330 }
331 #endif /* CONFIG_HOTPLUG_CPU */
332
333 /*
334  * Called by both boot and secondaries to move global data into
335  * per-processor storage.
336  */
337 static void smp_store_cpu_info(unsigned int cpuid)
338 {
339         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
340
341         cpu_info->loops_per_jiffy = loops_per_jiffy;
342         cpu_info->cpuid = read_cpuid_id();
343
344         store_cpu_topology(cpuid);
345 }
346
347 /*
348  * This is the secondary CPU boot entry.  We're using this CPUs
349  * idle thread stack, but a set of temporary page tables.
350  */
351 asmlinkage void secondary_start_kernel(void)
352 {
353         struct mm_struct *mm = &init_mm;
354         unsigned int cpu;
355
356         /*
357          * The identity mapping is uncached (strongly ordered), so
358          * switch away from it before attempting any exclusive accesses.
359          */
360         cpu_switch_mm(mm->pgd, mm);
361         local_flush_bp_all();
362         enter_lazy_tlb(mm, current);
363         local_flush_tlb_all();
364
365         /*
366          * All kernel threads share the same mm context; grab a
367          * reference and switch to it.
368          */
369         cpu = smp_processor_id();
370         atomic_inc(&mm->mm_count);
371         current->active_mm = mm;
372         cpumask_set_cpu(cpu, mm_cpumask(mm));
373
374         cpu_init();
375
376         pr_debug("CPU%u: Booted secondary processor\n", cpu);
377
378         preempt_disable();
379         trace_hardirqs_off();
380
381         /*
382          * Give the platform a chance to do its own initialisation.
383          */
384         if (smp_ops.smp_secondary_init)
385                 smp_ops.smp_secondary_init(cpu);
386
387         notify_cpu_starting(cpu);
388
389         calibrate_delay();
390
391         smp_store_cpu_info(cpu);
392
393         /*
394          * OK, now it's safe to let the boot CPU continue.  Wait for
395          * the CPU migration code to notice that the CPU is online
396          * before we continue - which happens after __cpu_up returns.
397          */
398         set_cpu_online(cpu, true);
399         complete(&cpu_running);
400
401         local_irq_enable();
402         local_fiq_enable();
403         local_abt_enable();
404
405         /*
406          * OK, it's off to the idle thread for us
407          */
408         cpu_startup_entry(CPUHP_ONLINE);
409 }
410
411 void __init smp_cpus_done(unsigned int max_cpus)
412 {
413         int cpu;
414         unsigned long bogosum = 0;
415
416         for_each_online_cpu(cpu)
417                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
418
419         printk(KERN_INFO "SMP: Total of %d processors activated "
420                "(%lu.%02lu BogoMIPS).\n",
421                num_online_cpus(),
422                bogosum / (500000/HZ),
423                (bogosum / (5000/HZ)) % 100);
424
425         hyp_mode_check();
426 }
427
428 void __init smp_prepare_boot_cpu(void)
429 {
430         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
431 }
432
433 void __init smp_prepare_cpus(unsigned int max_cpus)
434 {
435         unsigned int ncores = num_possible_cpus();
436
437         init_cpu_topology();
438
439         smp_store_cpu_info(smp_processor_id());
440
441         /*
442          * are we trying to boot more cores than exist?
443          */
444         if (max_cpus > ncores)
445                 max_cpus = ncores;
446         if (ncores > 1 && max_cpus) {
447                 /*
448                  * Initialise the present map, which describes the set of CPUs
449                  * actually populated at the present time. A platform should
450                  * re-initialize the map in the platforms smp_prepare_cpus()
451                  * if present != possible (e.g. physical hotplug).
452                  */
453                 init_cpu_present(cpu_possible_mask);
454
455                 /*
456                  * Initialise the SCU if there are more than one CPU
457                  * and let them know where to start.
458                  */
459                 if (smp_ops.smp_prepare_cpus)
460                         smp_ops.smp_prepare_cpus(max_cpus);
461         }
462 }
463
464 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
465
466 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
467 {
468         if (!__smp_cross_call)
469                 __smp_cross_call = fn;
470 }
471
472 static const char *ipi_types[NR_IPI] __tracepoint_string = {
473 #define S(x,s)  [x] = s
474         S(IPI_WAKEUP, "CPU wakeup interrupts"),
475         S(IPI_TIMER, "Timer broadcast interrupts"),
476         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
477         S(IPI_CALL_FUNC, "Function call interrupts"),
478         S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
479         S(IPI_CPU_STOP, "CPU stop interrupts"),
480         S(IPI_IRQ_WORK, "IRQ work interrupts"),
481         S(IPI_COMPLETION, "completion interrupts"),
482 };
483
484 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
485 {
486         trace_ipi_raise(target, ipi_types[ipinr]);
487         __smp_cross_call(target, ipinr);
488 }
489
490 void show_ipi_list(struct seq_file *p, int prec)
491 {
492         unsigned int cpu, i;
493
494         for (i = 0; i < NR_IPI; i++) {
495                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
496
497                 for_each_online_cpu(cpu)
498                         seq_printf(p, "%10u ",
499                                    __get_irq_stat(cpu, ipi_irqs[i]));
500
501                 seq_printf(p, " %s\n", ipi_types[i]);
502         }
503 }
504
505 u64 smp_irq_stat_cpu(unsigned int cpu)
506 {
507         u64 sum = 0;
508         int i;
509
510         for (i = 0; i < NR_IPI; i++)
511                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
512
513         return sum;
514 }
515
516 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
517 {
518         smp_cross_call(mask, IPI_CALL_FUNC);
519 }
520
521 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
522 {
523         smp_cross_call(mask, IPI_WAKEUP);
524 }
525
526 void arch_send_call_function_single_ipi(int cpu)
527 {
528         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
529 }
530
531 #ifdef CONFIG_IRQ_WORK
532 void arch_irq_work_raise(void)
533 {
534         if (arch_irq_work_has_interrupt())
535                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
536 }
537 #endif
538
539 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
540 void tick_broadcast(const struct cpumask *mask)
541 {
542         smp_cross_call(mask, IPI_TIMER);
543 }
544 #endif
545
546 static DEFINE_RAW_SPINLOCK(stop_lock);
547
548 /*
549  * ipi_cpu_stop - handle IPI from smp_send_stop()
550  */
551 static void ipi_cpu_stop(unsigned int cpu)
552 {
553         if (system_state == SYSTEM_BOOTING ||
554             system_state == SYSTEM_RUNNING) {
555                 raw_spin_lock(&stop_lock);
556                 pr_crit("CPU%u: stopping\n", cpu);
557                 dump_stack();
558                 raw_spin_unlock(&stop_lock);
559         }
560
561         set_cpu_online(cpu, false);
562
563         local_fiq_disable();
564         local_irq_disable();
565
566         while (1)
567                 cpu_relax();
568 }
569
570 static DEFINE_PER_CPU(struct completion *, cpu_completion);
571
572 int register_ipi_completion(struct completion *completion, int cpu)
573 {
574         per_cpu(cpu_completion, cpu) = completion;
575         return IPI_COMPLETION;
576 }
577
578 static void ipi_complete(unsigned int cpu)
579 {
580         complete(per_cpu(cpu_completion, cpu));
581 }
582
583 /*
584  * Main handler for inter-processor interrupts
585  */
586 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
587 {
588         handle_IPI(ipinr, regs);
589 }
590
591 void handle_IPI(int ipinr, struct pt_regs *regs)
592 {
593         unsigned int cpu = smp_processor_id();
594         struct pt_regs *old_regs = set_irq_regs(regs);
595
596         if ((unsigned)ipinr < NR_IPI) {
597                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
598                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
599         }
600
601         switch (ipinr) {
602         case IPI_WAKEUP:
603                 break;
604
605 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
606         case IPI_TIMER:
607                 irq_enter();
608                 tick_receive_broadcast();
609                 irq_exit();
610                 break;
611 #endif
612
613         case IPI_RESCHEDULE:
614                 scheduler_ipi();
615                 break;
616
617         case IPI_CALL_FUNC:
618                 irq_enter();
619                 generic_smp_call_function_interrupt();
620                 irq_exit();
621                 break;
622
623         case IPI_CALL_FUNC_SINGLE:
624                 irq_enter();
625                 generic_smp_call_function_single_interrupt();
626                 irq_exit();
627                 break;
628
629         case IPI_CPU_STOP:
630                 irq_enter();
631                 ipi_cpu_stop(cpu);
632                 irq_exit();
633                 break;
634
635 #ifdef CONFIG_IRQ_WORK
636         case IPI_IRQ_WORK:
637                 irq_enter();
638                 irq_work_run();
639                 irq_exit();
640                 break;
641 #endif
642
643         case IPI_COMPLETION:
644                 irq_enter();
645                 ipi_complete(cpu);
646                 irq_exit();
647                 break;
648
649         case IPI_CPU_BACKTRACE:
650                 irq_enter();
651                 nmi_cpu_backtrace(regs);
652                 irq_exit();
653                 break;
654
655         default:
656                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
657                         cpu, ipinr);
658                 break;
659         }
660
661         if ((unsigned)ipinr < NR_IPI)
662                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
663         set_irq_regs(old_regs);
664 }
665
666 void smp_send_reschedule(int cpu)
667 {
668         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
669 }
670
671 void smp_send_stop(void)
672 {
673         unsigned long timeout;
674         struct cpumask mask;
675
676         cpumask_copy(&mask, cpu_online_mask);
677         cpumask_clear_cpu(smp_processor_id(), &mask);
678         if (!cpumask_empty(&mask))
679                 smp_cross_call(&mask, IPI_CPU_STOP);
680
681         /* Wait up to one second for other CPUs to stop */
682         timeout = USEC_PER_SEC;
683         while (num_online_cpus() > 1 && timeout--)
684                 udelay(1);
685
686         if (num_online_cpus() > 1)
687                 pr_warn("SMP: failed to stop secondary CPUs\n");
688 }
689
690 /*
691  * not supported here
692  */
693 int setup_profiling_timer(unsigned int multiplier)
694 {
695         return -EINVAL;
696 }
697
698 #ifdef CONFIG_CPU_FREQ
699
700 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
701 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
702 static unsigned long global_l_p_j_ref;
703 static unsigned long global_l_p_j_ref_freq;
704
705 static int cpufreq_callback(struct notifier_block *nb,
706                                         unsigned long val, void *data)
707 {
708         struct cpufreq_freqs *freq = data;
709         int cpu = freq->cpu;
710
711         if (freq->flags & CPUFREQ_CONST_LOOPS)
712                 return NOTIFY_OK;
713
714         if (!per_cpu(l_p_j_ref, cpu)) {
715                 per_cpu(l_p_j_ref, cpu) =
716                         per_cpu(cpu_data, cpu).loops_per_jiffy;
717                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
718                 if (!global_l_p_j_ref) {
719                         global_l_p_j_ref = loops_per_jiffy;
720                         global_l_p_j_ref_freq = freq->old;
721                 }
722         }
723
724         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
725             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
726                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
727                                                 global_l_p_j_ref_freq,
728                                                 freq->new);
729                 per_cpu(cpu_data, cpu).loops_per_jiffy =
730                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
731                                         per_cpu(l_p_j_ref_freq, cpu),
732                                         freq->new);
733         }
734         return NOTIFY_OK;
735 }
736
737 static struct notifier_block cpufreq_notifier = {
738         .notifier_call  = cpufreq_callback,
739 };
740
741 static int __init register_cpufreq_notifier(void)
742 {
743         return cpufreq_register_notifier(&cpufreq_notifier,
744                                                 CPUFREQ_TRANSITION_NOTIFIER);
745 }
746 core_initcall(register_cpufreq_notifier);
747
748 #endif
749
750 static void raise_nmi(cpumask_t *mask)
751 {
752         /*
753          * Generate the backtrace directly if we are running in a calling
754          * context that is not preemptible by the backtrace IPI. Note
755          * that nmi_cpu_backtrace() automatically removes the current cpu
756          * from mask.
757          */
758         if (cpumask_test_cpu(smp_processor_id(), mask) && irqs_disabled())
759                 nmi_cpu_backtrace(NULL);
760
761         smp_cross_call(mask, IPI_CPU_BACKTRACE);
762 }
763
764 void arch_trigger_all_cpu_backtrace(bool include_self)
765 {
766         nmi_trigger_all_cpu_backtrace(include_self, raise_nmi);
767 }