]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm/kvm/mmu.c
KVM: ia64: drop kvm.h from installed user headers
[karo-tx-linux.git] / arch / arm / kvm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31
32 #include "trace.h"
33
34 extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static void *init_bounce_page;
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define kvm_pmd_huge(_x)        (pmd_huge(_x) || pmd_trans_huge(_x))
48 #define kvm_pud_huge(_x)        pud_huge(_x)
49
50 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
51 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
52
53 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54 {
55         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 }
57
58 /**
59  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60  * @kvm:        pointer to kvm structure.
61  *
62  * Interface to HYP function to flush all VM TLB entries
63  */
64 void kvm_flush_remote_tlbs(struct kvm *kvm)
65 {
66         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67 }
68
69 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70 {
71         /*
72          * This function also gets called when dealing with HYP page
73          * tables. As HYP doesn't have an associated struct kvm (and
74          * the HYP page tables are fairly static), we don't do
75          * anything there.
76          */
77         if (kvm)
78                 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
79 }
80
81 /**
82  * stage2_dissolve_pmd() - clear and flush huge PMD entry
83  * @kvm:        pointer to kvm structure.
84  * @addr:       IPA
85  * @pmd:        pmd pointer for IPA
86  *
87  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
88  * pages in the range dirty.
89  */
90 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
91 {
92         if (!kvm_pmd_huge(*pmd))
93                 return;
94
95         pmd_clear(pmd);
96         kvm_tlb_flush_vmid_ipa(kvm, addr);
97         put_page(virt_to_page(pmd));
98 }
99
100 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
101                                   int min, int max)
102 {
103         void *page;
104
105         BUG_ON(max > KVM_NR_MEM_OBJS);
106         if (cache->nobjs >= min)
107                 return 0;
108         while (cache->nobjs < max) {
109                 page = (void *)__get_free_page(PGALLOC_GFP);
110                 if (!page)
111                         return -ENOMEM;
112                 cache->objects[cache->nobjs++] = page;
113         }
114         return 0;
115 }
116
117 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
118 {
119         while (mc->nobjs)
120                 free_page((unsigned long)mc->objects[--mc->nobjs]);
121 }
122
123 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
124 {
125         void *p;
126
127         BUG_ON(!mc || !mc->nobjs);
128         p = mc->objects[--mc->nobjs];
129         return p;
130 }
131
132 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
133 {
134         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
135         pgd_clear(pgd);
136         kvm_tlb_flush_vmid_ipa(kvm, addr);
137         pud_free(NULL, pud_table);
138         put_page(virt_to_page(pgd));
139 }
140
141 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
142 {
143         pmd_t *pmd_table = pmd_offset(pud, 0);
144         VM_BUG_ON(pud_huge(*pud));
145         pud_clear(pud);
146         kvm_tlb_flush_vmid_ipa(kvm, addr);
147         pmd_free(NULL, pmd_table);
148         put_page(virt_to_page(pud));
149 }
150
151 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
152 {
153         pte_t *pte_table = pte_offset_kernel(pmd, 0);
154         VM_BUG_ON(kvm_pmd_huge(*pmd));
155         pmd_clear(pmd);
156         kvm_tlb_flush_vmid_ipa(kvm, addr);
157         pte_free_kernel(NULL, pte_table);
158         put_page(virt_to_page(pmd));
159 }
160
161 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
162                        phys_addr_t addr, phys_addr_t end)
163 {
164         phys_addr_t start_addr = addr;
165         pte_t *pte, *start_pte;
166
167         start_pte = pte = pte_offset_kernel(pmd, addr);
168         do {
169                 if (!pte_none(*pte)) {
170                         kvm_set_pte(pte, __pte(0));
171                         put_page(virt_to_page(pte));
172                         kvm_tlb_flush_vmid_ipa(kvm, addr);
173                 }
174         } while (pte++, addr += PAGE_SIZE, addr != end);
175
176         if (kvm_pte_table_empty(kvm, start_pte))
177                 clear_pmd_entry(kvm, pmd, start_addr);
178 }
179
180 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
181                        phys_addr_t addr, phys_addr_t end)
182 {
183         phys_addr_t next, start_addr = addr;
184         pmd_t *pmd, *start_pmd;
185
186         start_pmd = pmd = pmd_offset(pud, addr);
187         do {
188                 next = kvm_pmd_addr_end(addr, end);
189                 if (!pmd_none(*pmd)) {
190                         if (kvm_pmd_huge(*pmd)) {
191                                 pmd_clear(pmd);
192                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
193                                 put_page(virt_to_page(pmd));
194                         } else {
195                                 unmap_ptes(kvm, pmd, addr, next);
196                         }
197                 }
198         } while (pmd++, addr = next, addr != end);
199
200         if (kvm_pmd_table_empty(kvm, start_pmd))
201                 clear_pud_entry(kvm, pud, start_addr);
202 }
203
204 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
205                        phys_addr_t addr, phys_addr_t end)
206 {
207         phys_addr_t next, start_addr = addr;
208         pud_t *pud, *start_pud;
209
210         start_pud = pud = pud_offset(pgd, addr);
211         do {
212                 next = kvm_pud_addr_end(addr, end);
213                 if (!pud_none(*pud)) {
214                         if (pud_huge(*pud)) {
215                                 pud_clear(pud);
216                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
217                                 put_page(virt_to_page(pud));
218                         } else {
219                                 unmap_pmds(kvm, pud, addr, next);
220                         }
221                 }
222         } while (pud++, addr = next, addr != end);
223
224         if (kvm_pud_table_empty(kvm, start_pud))
225                 clear_pgd_entry(kvm, pgd, start_addr);
226 }
227
228
229 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
230                         phys_addr_t start, u64 size)
231 {
232         pgd_t *pgd;
233         phys_addr_t addr = start, end = start + size;
234         phys_addr_t next;
235
236         pgd = pgdp + pgd_index(addr);
237         do {
238                 next = kvm_pgd_addr_end(addr, end);
239                 if (!pgd_none(*pgd))
240                         unmap_puds(kvm, pgd, addr, next);
241         } while (pgd++, addr = next, addr != end);
242 }
243
244 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
245                               phys_addr_t addr, phys_addr_t end)
246 {
247         pte_t *pte;
248
249         pte = pte_offset_kernel(pmd, addr);
250         do {
251                 if (!pte_none(*pte)) {
252                         hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
253                         kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
254                 }
255         } while (pte++, addr += PAGE_SIZE, addr != end);
256 }
257
258 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
259                               phys_addr_t addr, phys_addr_t end)
260 {
261         pmd_t *pmd;
262         phys_addr_t next;
263
264         pmd = pmd_offset(pud, addr);
265         do {
266                 next = kvm_pmd_addr_end(addr, end);
267                 if (!pmd_none(*pmd)) {
268                         if (kvm_pmd_huge(*pmd)) {
269                                 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
270                                 kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
271                         } else {
272                                 stage2_flush_ptes(kvm, pmd, addr, next);
273                         }
274                 }
275         } while (pmd++, addr = next, addr != end);
276 }
277
278 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
279                               phys_addr_t addr, phys_addr_t end)
280 {
281         pud_t *pud;
282         phys_addr_t next;
283
284         pud = pud_offset(pgd, addr);
285         do {
286                 next = kvm_pud_addr_end(addr, end);
287                 if (!pud_none(*pud)) {
288                         if (pud_huge(*pud)) {
289                                 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
290                                 kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
291                         } else {
292                                 stage2_flush_pmds(kvm, pud, addr, next);
293                         }
294                 }
295         } while (pud++, addr = next, addr != end);
296 }
297
298 static void stage2_flush_memslot(struct kvm *kvm,
299                                  struct kvm_memory_slot *memslot)
300 {
301         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
302         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
303         phys_addr_t next;
304         pgd_t *pgd;
305
306         pgd = kvm->arch.pgd + pgd_index(addr);
307         do {
308                 next = kvm_pgd_addr_end(addr, end);
309                 stage2_flush_puds(kvm, pgd, addr, next);
310         } while (pgd++, addr = next, addr != end);
311 }
312
313 /**
314  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
315  * @kvm: The struct kvm pointer
316  *
317  * Go through the stage 2 page tables and invalidate any cache lines
318  * backing memory already mapped to the VM.
319  */
320 void stage2_flush_vm(struct kvm *kvm)
321 {
322         struct kvm_memslots *slots;
323         struct kvm_memory_slot *memslot;
324         int idx;
325
326         idx = srcu_read_lock(&kvm->srcu);
327         spin_lock(&kvm->mmu_lock);
328
329         slots = kvm_memslots(kvm);
330         kvm_for_each_memslot(memslot, slots)
331                 stage2_flush_memslot(kvm, memslot);
332
333         spin_unlock(&kvm->mmu_lock);
334         srcu_read_unlock(&kvm->srcu, idx);
335 }
336
337 /**
338  * free_boot_hyp_pgd - free HYP boot page tables
339  *
340  * Free the HYP boot page tables. The bounce page is also freed.
341  */
342 void free_boot_hyp_pgd(void)
343 {
344         mutex_lock(&kvm_hyp_pgd_mutex);
345
346         if (boot_hyp_pgd) {
347                 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
348                 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
349                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
350                 boot_hyp_pgd = NULL;
351         }
352
353         if (hyp_pgd)
354                 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
355
356         free_page((unsigned long)init_bounce_page);
357         init_bounce_page = NULL;
358
359         mutex_unlock(&kvm_hyp_pgd_mutex);
360 }
361
362 /**
363  * free_hyp_pgds - free Hyp-mode page tables
364  *
365  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
366  * therefore contains either mappings in the kernel memory area (above
367  * PAGE_OFFSET), or device mappings in the vmalloc range (from
368  * VMALLOC_START to VMALLOC_END).
369  *
370  * boot_hyp_pgd should only map two pages for the init code.
371  */
372 void free_hyp_pgds(void)
373 {
374         unsigned long addr;
375
376         free_boot_hyp_pgd();
377
378         mutex_lock(&kvm_hyp_pgd_mutex);
379
380         if (hyp_pgd) {
381                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
382                         unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
383                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
384                         unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
385
386                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
387                 hyp_pgd = NULL;
388         }
389
390         mutex_unlock(&kvm_hyp_pgd_mutex);
391 }
392
393 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
394                                     unsigned long end, unsigned long pfn,
395                                     pgprot_t prot)
396 {
397         pte_t *pte;
398         unsigned long addr;
399
400         addr = start;
401         do {
402                 pte = pte_offset_kernel(pmd, addr);
403                 kvm_set_pte(pte, pfn_pte(pfn, prot));
404                 get_page(virt_to_page(pte));
405                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
406                 pfn++;
407         } while (addr += PAGE_SIZE, addr != end);
408 }
409
410 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
411                                    unsigned long end, unsigned long pfn,
412                                    pgprot_t prot)
413 {
414         pmd_t *pmd;
415         pte_t *pte;
416         unsigned long addr, next;
417
418         addr = start;
419         do {
420                 pmd = pmd_offset(pud, addr);
421
422                 BUG_ON(pmd_sect(*pmd));
423
424                 if (pmd_none(*pmd)) {
425                         pte = pte_alloc_one_kernel(NULL, addr);
426                         if (!pte) {
427                                 kvm_err("Cannot allocate Hyp pte\n");
428                                 return -ENOMEM;
429                         }
430                         pmd_populate_kernel(NULL, pmd, pte);
431                         get_page(virt_to_page(pmd));
432                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
433                 }
434
435                 next = pmd_addr_end(addr, end);
436
437                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
438                 pfn += (next - addr) >> PAGE_SHIFT;
439         } while (addr = next, addr != end);
440
441         return 0;
442 }
443
444 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
445                                    unsigned long end, unsigned long pfn,
446                                    pgprot_t prot)
447 {
448         pud_t *pud;
449         pmd_t *pmd;
450         unsigned long addr, next;
451         int ret;
452
453         addr = start;
454         do {
455                 pud = pud_offset(pgd, addr);
456
457                 if (pud_none_or_clear_bad(pud)) {
458                         pmd = pmd_alloc_one(NULL, addr);
459                         if (!pmd) {
460                                 kvm_err("Cannot allocate Hyp pmd\n");
461                                 return -ENOMEM;
462                         }
463                         pud_populate(NULL, pud, pmd);
464                         get_page(virt_to_page(pud));
465                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
466                 }
467
468                 next = pud_addr_end(addr, end);
469                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
470                 if (ret)
471                         return ret;
472                 pfn += (next - addr) >> PAGE_SHIFT;
473         } while (addr = next, addr != end);
474
475         return 0;
476 }
477
478 static int __create_hyp_mappings(pgd_t *pgdp,
479                                  unsigned long start, unsigned long end,
480                                  unsigned long pfn, pgprot_t prot)
481 {
482         pgd_t *pgd;
483         pud_t *pud;
484         unsigned long addr, next;
485         int err = 0;
486
487         mutex_lock(&kvm_hyp_pgd_mutex);
488         addr = start & PAGE_MASK;
489         end = PAGE_ALIGN(end);
490         do {
491                 pgd = pgdp + pgd_index(addr);
492
493                 if (pgd_none(*pgd)) {
494                         pud = pud_alloc_one(NULL, addr);
495                         if (!pud) {
496                                 kvm_err("Cannot allocate Hyp pud\n");
497                                 err = -ENOMEM;
498                                 goto out;
499                         }
500                         pgd_populate(NULL, pgd, pud);
501                         get_page(virt_to_page(pgd));
502                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
503                 }
504
505                 next = pgd_addr_end(addr, end);
506                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
507                 if (err)
508                         goto out;
509                 pfn += (next - addr) >> PAGE_SHIFT;
510         } while (addr = next, addr != end);
511 out:
512         mutex_unlock(&kvm_hyp_pgd_mutex);
513         return err;
514 }
515
516 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
517 {
518         if (!is_vmalloc_addr(kaddr)) {
519                 BUG_ON(!virt_addr_valid(kaddr));
520                 return __pa(kaddr);
521         } else {
522                 return page_to_phys(vmalloc_to_page(kaddr)) +
523                        offset_in_page(kaddr);
524         }
525 }
526
527 /**
528  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
529  * @from:       The virtual kernel start address of the range
530  * @to:         The virtual kernel end address of the range (exclusive)
531  *
532  * The same virtual address as the kernel virtual address is also used
533  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
534  * physical pages.
535  */
536 int create_hyp_mappings(void *from, void *to)
537 {
538         phys_addr_t phys_addr;
539         unsigned long virt_addr;
540         unsigned long start = KERN_TO_HYP((unsigned long)from);
541         unsigned long end = KERN_TO_HYP((unsigned long)to);
542
543         start = start & PAGE_MASK;
544         end = PAGE_ALIGN(end);
545
546         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
547                 int err;
548
549                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
550                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
551                                             virt_addr + PAGE_SIZE,
552                                             __phys_to_pfn(phys_addr),
553                                             PAGE_HYP);
554                 if (err)
555                         return err;
556         }
557
558         return 0;
559 }
560
561 /**
562  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
563  * @from:       The kernel start VA of the range
564  * @to:         The kernel end VA of the range (exclusive)
565  * @phys_addr:  The physical start address which gets mapped
566  *
567  * The resulting HYP VA is the same as the kernel VA, modulo
568  * HYP_PAGE_OFFSET.
569  */
570 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
571 {
572         unsigned long start = KERN_TO_HYP((unsigned long)from);
573         unsigned long end = KERN_TO_HYP((unsigned long)to);
574
575         /* Check for a valid kernel IO mapping */
576         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
577                 return -EINVAL;
578
579         return __create_hyp_mappings(hyp_pgd, start, end,
580                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
581 }
582
583 /**
584  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
585  * @kvm:        The KVM struct pointer for the VM.
586  *
587  * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
588  * support either full 40-bit input addresses or limited to 32-bit input
589  * addresses). Clears the allocated pages.
590  *
591  * Note we don't need locking here as this is only called when the VM is
592  * created, which can only be done once.
593  */
594 int kvm_alloc_stage2_pgd(struct kvm *kvm)
595 {
596         int ret;
597         pgd_t *pgd;
598
599         if (kvm->arch.pgd != NULL) {
600                 kvm_err("kvm_arch already initialized?\n");
601                 return -EINVAL;
602         }
603
604         if (KVM_PREALLOC_LEVEL > 0) {
605                 /*
606                  * Allocate fake pgd for the page table manipulation macros to
607                  * work.  This is not used by the hardware and we have no
608                  * alignment requirement for this allocation.
609                  */
610                 pgd = (pgd_t *)kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
611                                        GFP_KERNEL | __GFP_ZERO);
612         } else {
613                 /*
614                  * Allocate actual first-level Stage-2 page table used by the
615                  * hardware for Stage-2 page table walks.
616                  */
617                 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, S2_PGD_ORDER);
618         }
619
620         if (!pgd)
621                 return -ENOMEM;
622
623         ret = kvm_prealloc_hwpgd(kvm, pgd);
624         if (ret)
625                 goto out_err;
626
627         kvm_clean_pgd(pgd);
628         kvm->arch.pgd = pgd;
629         return 0;
630 out_err:
631         if (KVM_PREALLOC_LEVEL > 0)
632                 kfree(pgd);
633         else
634                 free_pages((unsigned long)pgd, S2_PGD_ORDER);
635         return ret;
636 }
637
638 /**
639  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
640  * @kvm:   The VM pointer
641  * @start: The intermediate physical base address of the range to unmap
642  * @size:  The size of the area to unmap
643  *
644  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
645  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
646  * destroying the VM), otherwise another faulting VCPU may come in and mess
647  * with things behind our backs.
648  */
649 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
650 {
651         unmap_range(kvm, kvm->arch.pgd, start, size);
652 }
653
654 static void stage2_unmap_memslot(struct kvm *kvm,
655                                  struct kvm_memory_slot *memslot)
656 {
657         hva_t hva = memslot->userspace_addr;
658         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
659         phys_addr_t size = PAGE_SIZE * memslot->npages;
660         hva_t reg_end = hva + size;
661
662         /*
663          * A memory region could potentially cover multiple VMAs, and any holes
664          * between them, so iterate over all of them to find out if we should
665          * unmap any of them.
666          *
667          *     +--------------------------------------------+
668          * +---------------+----------------+   +----------------+
669          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
670          * +---------------+----------------+   +----------------+
671          *     |               memory region                |
672          *     +--------------------------------------------+
673          */
674         do {
675                 struct vm_area_struct *vma = find_vma(current->mm, hva);
676                 hva_t vm_start, vm_end;
677
678                 if (!vma || vma->vm_start >= reg_end)
679                         break;
680
681                 /*
682                  * Take the intersection of this VMA with the memory region
683                  */
684                 vm_start = max(hva, vma->vm_start);
685                 vm_end = min(reg_end, vma->vm_end);
686
687                 if (!(vma->vm_flags & VM_PFNMAP)) {
688                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
689                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
690                 }
691                 hva = vm_end;
692         } while (hva < reg_end);
693 }
694
695 /**
696  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
697  * @kvm: The struct kvm pointer
698  *
699  * Go through the memregions and unmap any reguler RAM
700  * backing memory already mapped to the VM.
701  */
702 void stage2_unmap_vm(struct kvm *kvm)
703 {
704         struct kvm_memslots *slots;
705         struct kvm_memory_slot *memslot;
706         int idx;
707
708         idx = srcu_read_lock(&kvm->srcu);
709         spin_lock(&kvm->mmu_lock);
710
711         slots = kvm_memslots(kvm);
712         kvm_for_each_memslot(memslot, slots)
713                 stage2_unmap_memslot(kvm, memslot);
714
715         spin_unlock(&kvm->mmu_lock);
716         srcu_read_unlock(&kvm->srcu, idx);
717 }
718
719 /**
720  * kvm_free_stage2_pgd - free all stage-2 tables
721  * @kvm:        The KVM struct pointer for the VM.
722  *
723  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
724  * underlying level-2 and level-3 tables before freeing the actual level-1 table
725  * and setting the struct pointer to NULL.
726  *
727  * Note we don't need locking here as this is only called when the VM is
728  * destroyed, which can only be done once.
729  */
730 void kvm_free_stage2_pgd(struct kvm *kvm)
731 {
732         if (kvm->arch.pgd == NULL)
733                 return;
734
735         unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
736         kvm_free_hwpgd(kvm);
737         if (KVM_PREALLOC_LEVEL > 0)
738                 kfree(kvm->arch.pgd);
739         else
740                 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
741         kvm->arch.pgd = NULL;
742 }
743
744 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
745                              phys_addr_t addr)
746 {
747         pgd_t *pgd;
748         pud_t *pud;
749
750         pgd = kvm->arch.pgd + pgd_index(addr);
751         if (WARN_ON(pgd_none(*pgd))) {
752                 if (!cache)
753                         return NULL;
754                 pud = mmu_memory_cache_alloc(cache);
755                 pgd_populate(NULL, pgd, pud);
756                 get_page(virt_to_page(pgd));
757         }
758
759         return pud_offset(pgd, addr);
760 }
761
762 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
763                              phys_addr_t addr)
764 {
765         pud_t *pud;
766         pmd_t *pmd;
767
768         pud = stage2_get_pud(kvm, cache, addr);
769         if (pud_none(*pud)) {
770                 if (!cache)
771                         return NULL;
772                 pmd = mmu_memory_cache_alloc(cache);
773                 pud_populate(NULL, pud, pmd);
774                 get_page(virt_to_page(pud));
775         }
776
777         return pmd_offset(pud, addr);
778 }
779
780 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
781                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
782 {
783         pmd_t *pmd, old_pmd;
784
785         pmd = stage2_get_pmd(kvm, cache, addr);
786         VM_BUG_ON(!pmd);
787
788         /*
789          * Mapping in huge pages should only happen through a fault.  If a
790          * page is merged into a transparent huge page, the individual
791          * subpages of that huge page should be unmapped through MMU
792          * notifiers before we get here.
793          *
794          * Merging of CompoundPages is not supported; they should become
795          * splitting first, unmapped, merged, and mapped back in on-demand.
796          */
797         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
798
799         old_pmd = *pmd;
800         kvm_set_pmd(pmd, *new_pmd);
801         if (pmd_present(old_pmd))
802                 kvm_tlb_flush_vmid_ipa(kvm, addr);
803         else
804                 get_page(virt_to_page(pmd));
805         return 0;
806 }
807
808 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
809                           phys_addr_t addr, const pte_t *new_pte,
810                           unsigned long flags)
811 {
812         pmd_t *pmd;
813         pte_t *pte, old_pte;
814         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
815         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
816
817         VM_BUG_ON(logging_active && !cache);
818
819         /* Create stage-2 page table mapping - Levels 0 and 1 */
820         pmd = stage2_get_pmd(kvm, cache, addr);
821         if (!pmd) {
822                 /*
823                  * Ignore calls from kvm_set_spte_hva for unallocated
824                  * address ranges.
825                  */
826                 return 0;
827         }
828
829         /*
830          * While dirty page logging - dissolve huge PMD, then continue on to
831          * allocate page.
832          */
833         if (logging_active)
834                 stage2_dissolve_pmd(kvm, addr, pmd);
835
836         /* Create stage-2 page mappings - Level 2 */
837         if (pmd_none(*pmd)) {
838                 if (!cache)
839                         return 0; /* ignore calls from kvm_set_spte_hva */
840                 pte = mmu_memory_cache_alloc(cache);
841                 kvm_clean_pte(pte);
842                 pmd_populate_kernel(NULL, pmd, pte);
843                 get_page(virt_to_page(pmd));
844         }
845
846         pte = pte_offset_kernel(pmd, addr);
847
848         if (iomap && pte_present(*pte))
849                 return -EFAULT;
850
851         /* Create 2nd stage page table mapping - Level 3 */
852         old_pte = *pte;
853         kvm_set_pte(pte, *new_pte);
854         if (pte_present(old_pte))
855                 kvm_tlb_flush_vmid_ipa(kvm, addr);
856         else
857                 get_page(virt_to_page(pte));
858
859         return 0;
860 }
861
862 /**
863  * kvm_phys_addr_ioremap - map a device range to guest IPA
864  *
865  * @kvm:        The KVM pointer
866  * @guest_ipa:  The IPA at which to insert the mapping
867  * @pa:         The physical address of the device
868  * @size:       The size of the mapping
869  */
870 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
871                           phys_addr_t pa, unsigned long size, bool writable)
872 {
873         phys_addr_t addr, end;
874         int ret = 0;
875         unsigned long pfn;
876         struct kvm_mmu_memory_cache cache = { 0, };
877
878         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
879         pfn = __phys_to_pfn(pa);
880
881         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
882                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
883
884                 if (writable)
885                         kvm_set_s2pte_writable(&pte);
886
887                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
888                                                 KVM_NR_MEM_OBJS);
889                 if (ret)
890                         goto out;
891                 spin_lock(&kvm->mmu_lock);
892                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
893                                                 KVM_S2PTE_FLAG_IS_IOMAP);
894                 spin_unlock(&kvm->mmu_lock);
895                 if (ret)
896                         goto out;
897
898                 pfn++;
899         }
900
901 out:
902         mmu_free_memory_cache(&cache);
903         return ret;
904 }
905
906 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
907 {
908         pfn_t pfn = *pfnp;
909         gfn_t gfn = *ipap >> PAGE_SHIFT;
910
911         if (PageTransCompound(pfn_to_page(pfn))) {
912                 unsigned long mask;
913                 /*
914                  * The address we faulted on is backed by a transparent huge
915                  * page.  However, because we map the compound huge page and
916                  * not the individual tail page, we need to transfer the
917                  * refcount to the head page.  We have to be careful that the
918                  * THP doesn't start to split while we are adjusting the
919                  * refcounts.
920                  *
921                  * We are sure this doesn't happen, because mmu_notifier_retry
922                  * was successful and we are holding the mmu_lock, so if this
923                  * THP is trying to split, it will be blocked in the mmu
924                  * notifier before touching any of the pages, specifically
925                  * before being able to call __split_huge_page_refcount().
926                  *
927                  * We can therefore safely transfer the refcount from PG_tail
928                  * to PG_head and switch the pfn from a tail page to the head
929                  * page accordingly.
930                  */
931                 mask = PTRS_PER_PMD - 1;
932                 VM_BUG_ON((gfn & mask) != (pfn & mask));
933                 if (pfn & mask) {
934                         *ipap &= PMD_MASK;
935                         kvm_release_pfn_clean(pfn);
936                         pfn &= ~mask;
937                         kvm_get_pfn(pfn);
938                         *pfnp = pfn;
939                 }
940
941                 return true;
942         }
943
944         return false;
945 }
946
947 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
948 {
949         if (kvm_vcpu_trap_is_iabt(vcpu))
950                 return false;
951
952         return kvm_vcpu_dabt_iswrite(vcpu);
953 }
954
955 static bool kvm_is_device_pfn(unsigned long pfn)
956 {
957         return !pfn_valid(pfn);
958 }
959
960 /**
961  * stage2_wp_ptes - write protect PMD range
962  * @pmd:        pointer to pmd entry
963  * @addr:       range start address
964  * @end:        range end address
965  */
966 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
967 {
968         pte_t *pte;
969
970         pte = pte_offset_kernel(pmd, addr);
971         do {
972                 if (!pte_none(*pte)) {
973                         if (!kvm_s2pte_readonly(pte))
974                                 kvm_set_s2pte_readonly(pte);
975                 }
976         } while (pte++, addr += PAGE_SIZE, addr != end);
977 }
978
979 /**
980  * stage2_wp_pmds - write protect PUD range
981  * @pud:        pointer to pud entry
982  * @addr:       range start address
983  * @end:        range end address
984  */
985 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
986 {
987         pmd_t *pmd;
988         phys_addr_t next;
989
990         pmd = pmd_offset(pud, addr);
991
992         do {
993                 next = kvm_pmd_addr_end(addr, end);
994                 if (!pmd_none(*pmd)) {
995                         if (kvm_pmd_huge(*pmd)) {
996                                 if (!kvm_s2pmd_readonly(pmd))
997                                         kvm_set_s2pmd_readonly(pmd);
998                         } else {
999                                 stage2_wp_ptes(pmd, addr, next);
1000                         }
1001                 }
1002         } while (pmd++, addr = next, addr != end);
1003 }
1004
1005 /**
1006   * stage2_wp_puds - write protect PGD range
1007   * @pgd:       pointer to pgd entry
1008   * @addr:      range start address
1009   * @end:       range end address
1010   *
1011   * Process PUD entries, for a huge PUD we cause a panic.
1012   */
1013 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1014 {
1015         pud_t *pud;
1016         phys_addr_t next;
1017
1018         pud = pud_offset(pgd, addr);
1019         do {
1020                 next = kvm_pud_addr_end(addr, end);
1021                 if (!pud_none(*pud)) {
1022                         /* TODO:PUD not supported, revisit later if supported */
1023                         BUG_ON(kvm_pud_huge(*pud));
1024                         stage2_wp_pmds(pud, addr, next);
1025                 }
1026         } while (pud++, addr = next, addr != end);
1027 }
1028
1029 /**
1030  * stage2_wp_range() - write protect stage2 memory region range
1031  * @kvm:        The KVM pointer
1032  * @addr:       Start address of range
1033  * @end:        End address of range
1034  */
1035 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1036 {
1037         pgd_t *pgd;
1038         phys_addr_t next;
1039
1040         pgd = kvm->arch.pgd + pgd_index(addr);
1041         do {
1042                 /*
1043                  * Release kvm_mmu_lock periodically if the memory region is
1044                  * large. Otherwise, we may see kernel panics with
1045                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1046                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1047                  * will also starve other vCPUs.
1048                  */
1049                 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1050                         cond_resched_lock(&kvm->mmu_lock);
1051
1052                 next = kvm_pgd_addr_end(addr, end);
1053                 if (pgd_present(*pgd))
1054                         stage2_wp_puds(pgd, addr, next);
1055         } while (pgd++, addr = next, addr != end);
1056 }
1057
1058 /**
1059  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1060  * @kvm:        The KVM pointer
1061  * @slot:       The memory slot to write protect
1062  *
1063  * Called to start logging dirty pages after memory region
1064  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1065  * all present PMD and PTEs are write protected in the memory region.
1066  * Afterwards read of dirty page log can be called.
1067  *
1068  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1069  * serializing operations for VM memory regions.
1070  */
1071 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1072 {
1073         struct kvm_memory_slot *memslot = id_to_memslot(kvm->memslots, slot);
1074         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1075         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1076
1077         spin_lock(&kvm->mmu_lock);
1078         stage2_wp_range(kvm, start, end);
1079         spin_unlock(&kvm->mmu_lock);
1080         kvm_flush_remote_tlbs(kvm);
1081 }
1082
1083 /**
1084  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1085  * @kvm:        The KVM pointer
1086  * @slot:       The memory slot associated with mask
1087  * @gfn_offset: The gfn offset in memory slot
1088  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1089  *              slot to be write protected
1090  *
1091  * Walks bits set in mask write protects the associated pte's. Caller must
1092  * acquire kvm_mmu_lock.
1093  */
1094 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1095                 struct kvm_memory_slot *slot,
1096                 gfn_t gfn_offset, unsigned long mask)
1097 {
1098         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1099         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1100         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1101
1102         stage2_wp_range(kvm, start, end);
1103 }
1104
1105 /*
1106  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1107  * dirty pages.
1108  *
1109  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1110  * enable dirty logging for them.
1111  */
1112 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1113                 struct kvm_memory_slot *slot,
1114                 gfn_t gfn_offset, unsigned long mask)
1115 {
1116         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1117 }
1118
1119 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1120                           struct kvm_memory_slot *memslot, unsigned long hva,
1121                           unsigned long fault_status)
1122 {
1123         int ret;
1124         bool write_fault, writable, hugetlb = false, force_pte = false;
1125         unsigned long mmu_seq;
1126         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1127         struct kvm *kvm = vcpu->kvm;
1128         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1129         struct vm_area_struct *vma;
1130         pfn_t pfn;
1131         pgprot_t mem_type = PAGE_S2;
1132         bool fault_ipa_uncached;
1133         bool logging_active = memslot_is_logging(memslot);
1134         unsigned long flags = 0;
1135
1136         write_fault = kvm_is_write_fault(vcpu);
1137         if (fault_status == FSC_PERM && !write_fault) {
1138                 kvm_err("Unexpected L2 read permission error\n");
1139                 return -EFAULT;
1140         }
1141
1142         /* Let's check if we will get back a huge page backed by hugetlbfs */
1143         down_read(&current->mm->mmap_sem);
1144         vma = find_vma_intersection(current->mm, hva, hva + 1);
1145         if (unlikely(!vma)) {
1146                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1147                 up_read(&current->mm->mmap_sem);
1148                 return -EFAULT;
1149         }
1150
1151         if (is_vm_hugetlb_page(vma) && !logging_active) {
1152                 hugetlb = true;
1153                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1154         } else {
1155                 /*
1156                  * Pages belonging to memslots that don't have the same
1157                  * alignment for userspace and IPA cannot be mapped using
1158                  * block descriptors even if the pages belong to a THP for
1159                  * the process, because the stage-2 block descriptor will
1160                  * cover more than a single THP and we loose atomicity for
1161                  * unmapping, updates, and splits of the THP or other pages
1162                  * in the stage-2 block range.
1163                  */
1164                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1165                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1166                         force_pte = true;
1167         }
1168         up_read(&current->mm->mmap_sem);
1169
1170         /* We need minimum second+third level pages */
1171         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1172                                      KVM_NR_MEM_OBJS);
1173         if (ret)
1174                 return ret;
1175
1176         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1177         /*
1178          * Ensure the read of mmu_notifier_seq happens before we call
1179          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1180          * the page we just got a reference to gets unmapped before we have a
1181          * chance to grab the mmu_lock, which ensure that if the page gets
1182          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1183          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1184          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1185          */
1186         smp_rmb();
1187
1188         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1189         if (is_error_pfn(pfn))
1190                 return -EFAULT;
1191
1192         if (kvm_is_device_pfn(pfn)) {
1193                 mem_type = PAGE_S2_DEVICE;
1194                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1195         } else if (logging_active) {
1196                 /*
1197                  * Faults on pages in a memslot with logging enabled
1198                  * should not be mapped with huge pages (it introduces churn
1199                  * and performance degradation), so force a pte mapping.
1200                  */
1201                 force_pte = true;
1202                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1203
1204                 /*
1205                  * Only actually map the page as writable if this was a write
1206                  * fault.
1207                  */
1208                 if (!write_fault)
1209                         writable = false;
1210         }
1211
1212         spin_lock(&kvm->mmu_lock);
1213         if (mmu_notifier_retry(kvm, mmu_seq))
1214                 goto out_unlock;
1215
1216         if (!hugetlb && !force_pte)
1217                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1218
1219         fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1220
1221         if (hugetlb) {
1222                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1223                 new_pmd = pmd_mkhuge(new_pmd);
1224                 if (writable) {
1225                         kvm_set_s2pmd_writable(&new_pmd);
1226                         kvm_set_pfn_dirty(pfn);
1227                 }
1228                 coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE,
1229                                           fault_ipa_uncached);
1230                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1231         } else {
1232                 pte_t new_pte = pfn_pte(pfn, mem_type);
1233
1234                 if (writable) {
1235                         kvm_set_s2pte_writable(&new_pte);
1236                         kvm_set_pfn_dirty(pfn);
1237                         mark_page_dirty(kvm, gfn);
1238                 }
1239                 coherent_cache_guest_page(vcpu, hva, PAGE_SIZE,
1240                                           fault_ipa_uncached);
1241                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1242         }
1243
1244 out_unlock:
1245         spin_unlock(&kvm->mmu_lock);
1246         kvm_release_pfn_clean(pfn);
1247         return ret;
1248 }
1249
1250 /**
1251  * kvm_handle_guest_abort - handles all 2nd stage aborts
1252  * @vcpu:       the VCPU pointer
1253  * @run:        the kvm_run structure
1254  *
1255  * Any abort that gets to the host is almost guaranteed to be caused by a
1256  * missing second stage translation table entry, which can mean that either the
1257  * guest simply needs more memory and we must allocate an appropriate page or it
1258  * can mean that the guest tried to access I/O memory, which is emulated by user
1259  * space. The distinction is based on the IPA causing the fault and whether this
1260  * memory region has been registered as standard RAM by user space.
1261  */
1262 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1263 {
1264         unsigned long fault_status;
1265         phys_addr_t fault_ipa;
1266         struct kvm_memory_slot *memslot;
1267         unsigned long hva;
1268         bool is_iabt, write_fault, writable;
1269         gfn_t gfn;
1270         int ret, idx;
1271
1272         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1273         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1274
1275         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1276                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1277
1278         /* Check the stage-2 fault is trans. fault or write fault */
1279         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1280         if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
1281                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1282                         kvm_vcpu_trap_get_class(vcpu),
1283                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1284                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1285                 return -EFAULT;
1286         }
1287
1288         idx = srcu_read_lock(&vcpu->kvm->srcu);
1289
1290         gfn = fault_ipa >> PAGE_SHIFT;
1291         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1292         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1293         write_fault = kvm_is_write_fault(vcpu);
1294         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1295                 if (is_iabt) {
1296                         /* Prefetch Abort on I/O address */
1297                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1298                         ret = 1;
1299                         goto out_unlock;
1300                 }
1301
1302                 /*
1303                  * The IPA is reported as [MAX:12], so we need to
1304                  * complement it with the bottom 12 bits from the
1305                  * faulting VA. This is always 12 bits, irrespective
1306                  * of the page size.
1307                  */
1308                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1309                 ret = io_mem_abort(vcpu, run, fault_ipa);
1310                 goto out_unlock;
1311         }
1312
1313         /* Userspace should not be able to register out-of-bounds IPAs */
1314         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1315
1316         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1317         if (ret == 0)
1318                 ret = 1;
1319 out_unlock:
1320         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1321         return ret;
1322 }
1323
1324 static void handle_hva_to_gpa(struct kvm *kvm,
1325                               unsigned long start,
1326                               unsigned long end,
1327                               void (*handler)(struct kvm *kvm,
1328                                               gpa_t gpa, void *data),
1329                               void *data)
1330 {
1331         struct kvm_memslots *slots;
1332         struct kvm_memory_slot *memslot;
1333
1334         slots = kvm_memslots(kvm);
1335
1336         /* we only care about the pages that the guest sees */
1337         kvm_for_each_memslot(memslot, slots) {
1338                 unsigned long hva_start, hva_end;
1339                 gfn_t gfn, gfn_end;
1340
1341                 hva_start = max(start, memslot->userspace_addr);
1342                 hva_end = min(end, memslot->userspace_addr +
1343                                         (memslot->npages << PAGE_SHIFT));
1344                 if (hva_start >= hva_end)
1345                         continue;
1346
1347                 /*
1348                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1349                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1350                  */
1351                 gfn = hva_to_gfn_memslot(hva_start, memslot);
1352                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1353
1354                 for (; gfn < gfn_end; ++gfn) {
1355                         gpa_t gpa = gfn << PAGE_SHIFT;
1356                         handler(kvm, gpa, data);
1357                 }
1358         }
1359 }
1360
1361 static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1362 {
1363         unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1364 }
1365
1366 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1367 {
1368         unsigned long end = hva + PAGE_SIZE;
1369
1370         if (!kvm->arch.pgd)
1371                 return 0;
1372
1373         trace_kvm_unmap_hva(hva);
1374         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1375         return 0;
1376 }
1377
1378 int kvm_unmap_hva_range(struct kvm *kvm,
1379                         unsigned long start, unsigned long end)
1380 {
1381         if (!kvm->arch.pgd)
1382                 return 0;
1383
1384         trace_kvm_unmap_hva_range(start, end);
1385         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1386         return 0;
1387 }
1388
1389 static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1390 {
1391         pte_t *pte = (pte_t *)data;
1392
1393         /*
1394          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1395          * flag clear because MMU notifiers will have unmapped a huge PMD before
1396          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1397          * therefore stage2_set_pte() never needs to clear out a huge PMD
1398          * through this calling path.
1399          */
1400         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1401 }
1402
1403
1404 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1405 {
1406         unsigned long end = hva + PAGE_SIZE;
1407         pte_t stage2_pte;
1408
1409         if (!kvm->arch.pgd)
1410                 return;
1411
1412         trace_kvm_set_spte_hva(hva);
1413         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1414         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1415 }
1416
1417 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1418 {
1419         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1420 }
1421
1422 phys_addr_t kvm_mmu_get_httbr(void)
1423 {
1424         return virt_to_phys(hyp_pgd);
1425 }
1426
1427 phys_addr_t kvm_mmu_get_boot_httbr(void)
1428 {
1429         return virt_to_phys(boot_hyp_pgd);
1430 }
1431
1432 phys_addr_t kvm_get_idmap_vector(void)
1433 {
1434         return hyp_idmap_vector;
1435 }
1436
1437 int kvm_mmu_init(void)
1438 {
1439         int err;
1440
1441         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1442         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1443         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1444
1445         if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1446                 /*
1447                  * Our init code is crossing a page boundary. Allocate
1448                  * a bounce page, copy the code over and use that.
1449                  */
1450                 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1451                 phys_addr_t phys_base;
1452
1453                 init_bounce_page = (void *)__get_free_page(GFP_KERNEL);
1454                 if (!init_bounce_page) {
1455                         kvm_err("Couldn't allocate HYP init bounce page\n");
1456                         err = -ENOMEM;
1457                         goto out;
1458                 }
1459
1460                 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1461                 /*
1462                  * Warning: the code we just copied to the bounce page
1463                  * must be flushed to the point of coherency.
1464                  * Otherwise, the data may be sitting in L2, and HYP
1465                  * mode won't be able to observe it as it runs with
1466                  * caches off at that point.
1467                  */
1468                 kvm_flush_dcache_to_poc(init_bounce_page, len);
1469
1470                 phys_base = kvm_virt_to_phys(init_bounce_page);
1471                 hyp_idmap_vector += phys_base - hyp_idmap_start;
1472                 hyp_idmap_start = phys_base;
1473                 hyp_idmap_end = phys_base + len;
1474
1475                 kvm_info("Using HYP init bounce page @%lx\n",
1476                          (unsigned long)phys_base);
1477         }
1478
1479         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1480         boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1481
1482         if (!hyp_pgd || !boot_hyp_pgd) {
1483                 kvm_err("Hyp mode PGD not allocated\n");
1484                 err = -ENOMEM;
1485                 goto out;
1486         }
1487
1488         /* Create the idmap in the boot page tables */
1489         err =   __create_hyp_mappings(boot_hyp_pgd,
1490                                       hyp_idmap_start, hyp_idmap_end,
1491                                       __phys_to_pfn(hyp_idmap_start),
1492                                       PAGE_HYP);
1493
1494         if (err) {
1495                 kvm_err("Failed to idmap %lx-%lx\n",
1496                         hyp_idmap_start, hyp_idmap_end);
1497                 goto out;
1498         }
1499
1500         /* Map the very same page at the trampoline VA */
1501         err =   __create_hyp_mappings(boot_hyp_pgd,
1502                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1503                                       __phys_to_pfn(hyp_idmap_start),
1504                                       PAGE_HYP);
1505         if (err) {
1506                 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1507                         TRAMPOLINE_VA);
1508                 goto out;
1509         }
1510
1511         /* Map the same page again into the runtime page tables */
1512         err =   __create_hyp_mappings(hyp_pgd,
1513                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1514                                       __phys_to_pfn(hyp_idmap_start),
1515                                       PAGE_HYP);
1516         if (err) {
1517                 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1518                         TRAMPOLINE_VA);
1519                 goto out;
1520         }
1521
1522         return 0;
1523 out:
1524         free_hyp_pgds();
1525         return err;
1526 }
1527
1528 void kvm_arch_commit_memory_region(struct kvm *kvm,
1529                                    struct kvm_userspace_memory_region *mem,
1530                                    const struct kvm_memory_slot *old,
1531                                    enum kvm_mr_change change)
1532 {
1533         /*
1534          * At this point memslot has been committed and there is an
1535          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1536          * memory slot is write protected.
1537          */
1538         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1539                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1540 }
1541
1542 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1543                                    struct kvm_memory_slot *memslot,
1544                                    struct kvm_userspace_memory_region *mem,
1545                                    enum kvm_mr_change change)
1546 {
1547         hva_t hva = mem->userspace_addr;
1548         hva_t reg_end = hva + mem->memory_size;
1549         bool writable = !(mem->flags & KVM_MEM_READONLY);
1550         int ret = 0;
1551
1552         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1553                         change != KVM_MR_FLAGS_ONLY)
1554                 return 0;
1555
1556         /*
1557          * Prevent userspace from creating a memory region outside of the IPA
1558          * space addressable by the KVM guest IPA space.
1559          */
1560         if (memslot->base_gfn + memslot->npages >=
1561             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1562                 return -EFAULT;
1563
1564         /*
1565          * A memory region could potentially cover multiple VMAs, and any holes
1566          * between them, so iterate over all of them to find out if we can map
1567          * any of them right now.
1568          *
1569          *     +--------------------------------------------+
1570          * +---------------+----------------+   +----------------+
1571          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1572          * +---------------+----------------+   +----------------+
1573          *     |               memory region                |
1574          *     +--------------------------------------------+
1575          */
1576         do {
1577                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1578                 hva_t vm_start, vm_end;
1579
1580                 if (!vma || vma->vm_start >= reg_end)
1581                         break;
1582
1583                 /*
1584                  * Mapping a read-only VMA is only allowed if the
1585                  * memory region is configured as read-only.
1586                  */
1587                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1588                         ret = -EPERM;
1589                         break;
1590                 }
1591
1592                 /*
1593                  * Take the intersection of this VMA with the memory region
1594                  */
1595                 vm_start = max(hva, vma->vm_start);
1596                 vm_end = min(reg_end, vma->vm_end);
1597
1598                 if (vma->vm_flags & VM_PFNMAP) {
1599                         gpa_t gpa = mem->guest_phys_addr +
1600                                     (vm_start - mem->userspace_addr);
1601                         phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) +
1602                                          vm_start - vma->vm_start;
1603
1604                         /* IO region dirty page logging not allowed */
1605                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1606                                 return -EINVAL;
1607
1608                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1609                                                     vm_end - vm_start,
1610                                                     writable);
1611                         if (ret)
1612                                 break;
1613                 }
1614                 hva = vm_end;
1615         } while (hva < reg_end);
1616
1617         if (change == KVM_MR_FLAGS_ONLY)
1618                 return ret;
1619
1620         spin_lock(&kvm->mmu_lock);
1621         if (ret)
1622                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1623         else
1624                 stage2_flush_memslot(kvm, memslot);
1625         spin_unlock(&kvm->mmu_lock);
1626         return ret;
1627 }
1628
1629 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1630                            struct kvm_memory_slot *dont)
1631 {
1632 }
1633
1634 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1635                             unsigned long npages)
1636 {
1637         /*
1638          * Readonly memslots are not incoherent with the caches by definition,
1639          * but in practice, they are used mostly to emulate ROMs or NOR flashes
1640          * that the guest may consider devices and hence map as uncached.
1641          * To prevent incoherency issues in these cases, tag all readonly
1642          * regions as incoherent.
1643          */
1644         if (slot->flags & KVM_MEM_READONLY)
1645                 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1646         return 0;
1647 }
1648
1649 void kvm_arch_memslots_updated(struct kvm *kvm)
1650 {
1651 }
1652
1653 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1654 {
1655 }
1656
1657 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1658                                    struct kvm_memory_slot *slot)
1659 {
1660         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1661         phys_addr_t size = slot->npages << PAGE_SHIFT;
1662
1663         spin_lock(&kvm->mmu_lock);
1664         unmap_stage2_range(kvm, gpa, size);
1665         spin_unlock(&kvm->mmu_lock);
1666 }