]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm/probes/kprobes/core.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[karo-tx-linux.git] / arch / arm / probes / kprobes / core.c
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/sched/debug.h>
28 #include <linux/stringify.h>
29 #include <asm/traps.h>
30 #include <asm/opcodes.h>
31 #include <asm/cacheflush.h>
32 #include <linux/percpu.h>
33 #include <linux/bug.h>
34 #include <asm/patch.h>
35
36 #include "../decode-arm.h"
37 #include "../decode-thumb.h"
38 #include "core.h"
39
40 #define MIN_STACK_SIZE(addr)                            \
41         min((unsigned long)MAX_STACK_SIZE,              \
42             (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
43
44 #define flush_insns(addr, size)                         \
45         flush_icache_range((unsigned long)(addr),       \
46                            (unsigned long)(addr) +      \
47                            (size))
48
49 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
50 #define JPROBE_MAGIC_ADDR               0xffffffff
51
52 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
53 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
54
55
56 int __kprobes arch_prepare_kprobe(struct kprobe *p)
57 {
58         kprobe_opcode_t insn;
59         kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
60         unsigned long addr = (unsigned long)p->addr;
61         bool thumb;
62         kprobe_decode_insn_t *decode_insn;
63         const union decode_action *actions;
64         int is;
65         const struct decode_checker **checkers;
66
67         if (in_exception_text(addr))
68                 return -EINVAL;
69
70 #ifdef CONFIG_THUMB2_KERNEL
71         thumb = true;
72         addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
73         insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
74         if (is_wide_instruction(insn)) {
75                 u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
76                 insn = __opcode_thumb32_compose(insn, inst2);
77                 decode_insn = thumb32_probes_decode_insn;
78                 actions = kprobes_t32_actions;
79                 checkers = kprobes_t32_checkers;
80         } else {
81                 decode_insn = thumb16_probes_decode_insn;
82                 actions = kprobes_t16_actions;
83                 checkers = kprobes_t16_checkers;
84         }
85 #else /* !CONFIG_THUMB2_KERNEL */
86         thumb = false;
87         if (addr & 0x3)
88                 return -EINVAL;
89         insn = __mem_to_opcode_arm(*p->addr);
90         decode_insn = arm_probes_decode_insn;
91         actions = kprobes_arm_actions;
92         checkers = kprobes_arm_checkers;
93 #endif
94
95         p->opcode = insn;
96         p->ainsn.insn = tmp_insn;
97
98         switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
99         case INSN_REJECTED:     /* not supported */
100                 return -EINVAL;
101
102         case INSN_GOOD:         /* instruction uses slot */
103                 p->ainsn.insn = get_insn_slot();
104                 if (!p->ainsn.insn)
105                         return -ENOMEM;
106                 for (is = 0; is < MAX_INSN_SIZE; ++is)
107                         p->ainsn.insn[is] = tmp_insn[is];
108                 flush_insns(p->ainsn.insn,
109                                 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
110                 p->ainsn.insn_fn = (probes_insn_fn_t *)
111                                         ((uintptr_t)p->ainsn.insn | thumb);
112                 break;
113
114         case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
115                 p->ainsn.insn = NULL;
116                 break;
117         }
118
119         /*
120          * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
121          * 'str r0, [sp, #-68]' should also be prohibited.
122          * See __und_svc.
123          */
124         if ((p->ainsn.stack_space < 0) ||
125                         (p->ainsn.stack_space > MAX_STACK_SIZE))
126                 return -EINVAL;
127
128         return 0;
129 }
130
131 void __kprobes arch_arm_kprobe(struct kprobe *p)
132 {
133         unsigned int brkp;
134         void *addr;
135
136         if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
137                 /* Remove any Thumb flag */
138                 addr = (void *)((uintptr_t)p->addr & ~1);
139
140                 if (is_wide_instruction(p->opcode))
141                         brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
142                 else
143                         brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
144         } else {
145                 kprobe_opcode_t insn = p->opcode;
146
147                 addr = p->addr;
148                 brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
149
150                 if (insn >= 0xe0000000)
151                         brkp |= 0xe0000000;  /* Unconditional instruction */
152                 else
153                         brkp |= insn & 0xf0000000;  /* Copy condition from insn */
154         }
155
156         patch_text(addr, brkp);
157 }
158
159 /*
160  * The actual disarming is done here on each CPU and synchronized using
161  * stop_machine. This synchronization is necessary on SMP to avoid removing
162  * a probe between the moment the 'Undefined Instruction' exception is raised
163  * and the moment the exception handler reads the faulting instruction from
164  * memory. It is also needed to atomically set the two half-words of a 32-bit
165  * Thumb breakpoint.
166  */
167 struct patch {
168         void *addr;
169         unsigned int insn;
170 };
171
172 static int __kprobes_remove_breakpoint(void *data)
173 {
174         struct patch *p = data;
175         __patch_text(p->addr, p->insn);
176         return 0;
177 }
178
179 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
180 {
181         struct patch p = {
182                 .addr = addr,
183                 .insn = insn,
184         };
185         stop_machine_cpuslocked(__kprobes_remove_breakpoint, &p,
186                                 cpu_online_mask);
187 }
188
189 void __kprobes arch_disarm_kprobe(struct kprobe *p)
190 {
191         kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
192                         p->opcode);
193 }
194
195 void __kprobes arch_remove_kprobe(struct kprobe *p)
196 {
197         if (p->ainsn.insn) {
198                 free_insn_slot(p->ainsn.insn, 0);
199                 p->ainsn.insn = NULL;
200         }
201 }
202
203 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
204 {
205         kcb->prev_kprobe.kp = kprobe_running();
206         kcb->prev_kprobe.status = kcb->kprobe_status;
207 }
208
209 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
210 {
211         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
212         kcb->kprobe_status = kcb->prev_kprobe.status;
213 }
214
215 static void __kprobes set_current_kprobe(struct kprobe *p)
216 {
217         __this_cpu_write(current_kprobe, p);
218 }
219
220 static void __kprobes
221 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
222 {
223 #ifdef CONFIG_THUMB2_KERNEL
224         regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
225         if (is_wide_instruction(p->opcode))
226                 regs->ARM_pc += 4;
227         else
228                 regs->ARM_pc += 2;
229 #else
230         regs->ARM_pc += 4;
231 #endif
232 }
233
234 static inline void __kprobes
235 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
236 {
237         p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
238 }
239
240 /*
241  * Called with IRQs disabled. IRQs must remain disabled from that point
242  * all the way until processing this kprobe is complete.  The current
243  * kprobes implementation cannot process more than one nested level of
244  * kprobe, and that level is reserved for user kprobe handlers, so we can't
245  * risk encountering a new kprobe in an interrupt handler.
246  */
247 void __kprobes kprobe_handler(struct pt_regs *regs)
248 {
249         struct kprobe *p, *cur;
250         struct kprobe_ctlblk *kcb;
251
252         kcb = get_kprobe_ctlblk();
253         cur = kprobe_running();
254
255 #ifdef CONFIG_THUMB2_KERNEL
256         /*
257          * First look for a probe which was registered using an address with
258          * bit 0 set, this is the usual situation for pointers to Thumb code.
259          * If not found, fallback to looking for one with bit 0 clear.
260          */
261         p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
262         if (!p)
263                 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
264
265 #else /* ! CONFIG_THUMB2_KERNEL */
266         p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
267 #endif
268
269         if (p) {
270                 if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
271                         /*
272                          * Probe hit but conditional execution check failed,
273                          * so just skip the instruction and continue as if
274                          * nothing had happened.
275                          * In this case, we can skip recursing check too.
276                          */
277                         singlestep_skip(p, regs);
278                 } else if (cur) {
279                         /* Kprobe is pending, so we're recursing. */
280                         switch (kcb->kprobe_status) {
281                         case KPROBE_HIT_ACTIVE:
282                         case KPROBE_HIT_SSDONE:
283                         case KPROBE_HIT_SS:
284                                 /* A pre- or post-handler probe got us here. */
285                                 kprobes_inc_nmissed_count(p);
286                                 save_previous_kprobe(kcb);
287                                 set_current_kprobe(p);
288                                 kcb->kprobe_status = KPROBE_REENTER;
289                                 singlestep(p, regs, kcb);
290                                 restore_previous_kprobe(kcb);
291                                 break;
292                         case KPROBE_REENTER:
293                                 /* A nested probe was hit in FIQ, it is a BUG */
294                                 pr_warn("Unrecoverable kprobe detected at %p.\n",
295                                         p->addr);
296                                 /* fall through */
297                         default:
298                                 /* impossible cases */
299                                 BUG();
300                         }
301                 } else {
302                         /* Probe hit and conditional execution check ok. */
303                         set_current_kprobe(p);
304                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
305
306                         /*
307                          * If we have no pre-handler or it returned 0, we
308                          * continue with normal processing.  If we have a
309                          * pre-handler and it returned non-zero, it prepped
310                          * for calling the break_handler below on re-entry,
311                          * so get out doing nothing more here.
312                          */
313                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
314                                 kcb->kprobe_status = KPROBE_HIT_SS;
315                                 singlestep(p, regs, kcb);
316                                 if (p->post_handler) {
317                                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
318                                         p->post_handler(p, regs, 0);
319                                 }
320                                 reset_current_kprobe();
321                         }
322                 }
323         } else if (cur) {
324                 /* We probably hit a jprobe.  Call its break handler. */
325                 if (cur->break_handler && cur->break_handler(cur, regs)) {
326                         kcb->kprobe_status = KPROBE_HIT_SS;
327                         singlestep(cur, regs, kcb);
328                         if (cur->post_handler) {
329                                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
330                                 cur->post_handler(cur, regs, 0);
331                         }
332                 }
333                 reset_current_kprobe();
334         } else {
335                 /*
336                  * The probe was removed and a race is in progress.
337                  * There is nothing we can do about it.  Let's restart
338                  * the instruction.  By the time we can restart, the
339                  * real instruction will be there.
340                  */
341         }
342 }
343
344 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
345 {
346         unsigned long flags;
347         local_irq_save(flags);
348         kprobe_handler(regs);
349         local_irq_restore(flags);
350         return 0;
351 }
352
353 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
354 {
355         struct kprobe *cur = kprobe_running();
356         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
357
358         switch (kcb->kprobe_status) {
359         case KPROBE_HIT_SS:
360         case KPROBE_REENTER:
361                 /*
362                  * We are here because the instruction being single
363                  * stepped caused a page fault. We reset the current
364                  * kprobe and the PC to point back to the probe address
365                  * and allow the page fault handler to continue as a
366                  * normal page fault.
367                  */
368                 regs->ARM_pc = (long)cur->addr;
369                 if (kcb->kprobe_status == KPROBE_REENTER) {
370                         restore_previous_kprobe(kcb);
371                 } else {
372                         reset_current_kprobe();
373                 }
374                 break;
375
376         case KPROBE_HIT_ACTIVE:
377         case KPROBE_HIT_SSDONE:
378                 /*
379                  * We increment the nmissed count for accounting,
380                  * we can also use npre/npostfault count for accounting
381                  * these specific fault cases.
382                  */
383                 kprobes_inc_nmissed_count(cur);
384
385                 /*
386                  * We come here because instructions in the pre/post
387                  * handler caused the page_fault, this could happen
388                  * if handler tries to access user space by
389                  * copy_from_user(), get_user() etc. Let the
390                  * user-specified handler try to fix it.
391                  */
392                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
393                         return 1;
394                 break;
395
396         default:
397                 break;
398         }
399
400         return 0;
401 }
402
403 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
404                                        unsigned long val, void *data)
405 {
406         /*
407          * notify_die() is currently never called on ARM,
408          * so this callback is currently empty.
409          */
410         return NOTIFY_DONE;
411 }
412
413 /*
414  * When a retprobed function returns, trampoline_handler() is called,
415  * calling the kretprobe's handler. We construct a struct pt_regs to
416  * give a view of registers r0-r11 to the user return-handler.  This is
417  * not a complete pt_regs structure, but that should be plenty sufficient
418  * for kretprobe handlers which should normally be interested in r0 only
419  * anyway.
420  */
421 void __naked __kprobes kretprobe_trampoline(void)
422 {
423         __asm__ __volatile__ (
424                 "stmdb  sp!, {r0 - r11}         \n\t"
425                 "mov    r0, sp                  \n\t"
426                 "bl     trampoline_handler      \n\t"
427                 "mov    lr, r0                  \n\t"
428                 "ldmia  sp!, {r0 - r11}         \n\t"
429 #ifdef CONFIG_THUMB2_KERNEL
430                 "bx     lr                      \n\t"
431 #else
432                 "mov    pc, lr                  \n\t"
433 #endif
434                 : : : "memory");
435 }
436
437 /* Called from kretprobe_trampoline */
438 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
439 {
440         struct kretprobe_instance *ri = NULL;
441         struct hlist_head *head, empty_rp;
442         struct hlist_node *tmp;
443         unsigned long flags, orig_ret_address = 0;
444         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
445         kprobe_opcode_t *correct_ret_addr = NULL;
446
447         INIT_HLIST_HEAD(&empty_rp);
448         kretprobe_hash_lock(current, &head, &flags);
449
450         /*
451          * It is possible to have multiple instances associated with a given
452          * task either because multiple functions in the call path have
453          * a return probe installed on them, and/or more than one return
454          * probe was registered for a target function.
455          *
456          * We can handle this because:
457          *     - instances are always inserted at the head of the list
458          *     - when multiple return probes are registered for the same
459          *       function, the first instance's ret_addr will point to the
460          *       real return address, and all the rest will point to
461          *       kretprobe_trampoline
462          */
463         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
464                 if (ri->task != current)
465                         /* another task is sharing our hash bucket */
466                         continue;
467
468                 orig_ret_address = (unsigned long)ri->ret_addr;
469
470                 if (orig_ret_address != trampoline_address)
471                         /*
472                          * This is the real return address. Any other
473                          * instances associated with this task are for
474                          * other calls deeper on the call stack
475                          */
476                         break;
477         }
478
479         kretprobe_assert(ri, orig_ret_address, trampoline_address);
480
481         correct_ret_addr = ri->ret_addr;
482         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
483                 if (ri->task != current)
484                         /* another task is sharing our hash bucket */
485                         continue;
486
487                 orig_ret_address = (unsigned long)ri->ret_addr;
488                 if (ri->rp && ri->rp->handler) {
489                         __this_cpu_write(current_kprobe, &ri->rp->kp);
490                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
491                         ri->ret_addr = correct_ret_addr;
492                         ri->rp->handler(ri, regs);
493                         __this_cpu_write(current_kprobe, NULL);
494                 }
495
496                 recycle_rp_inst(ri, &empty_rp);
497
498                 if (orig_ret_address != trampoline_address)
499                         /*
500                          * This is the real return address. Any other
501                          * instances associated with this task are for
502                          * other calls deeper on the call stack
503                          */
504                         break;
505         }
506
507         kretprobe_hash_unlock(current, &flags);
508
509         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
510                 hlist_del(&ri->hlist);
511                 kfree(ri);
512         }
513
514         return (void *)orig_ret_address;
515 }
516
517 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
518                                       struct pt_regs *regs)
519 {
520         ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
521
522         /* Replace the return addr with trampoline addr. */
523         regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
524 }
525
526 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
527 {
528         struct jprobe *jp = container_of(p, struct jprobe, kp);
529         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
530         long sp_addr = regs->ARM_sp;
531         long cpsr;
532
533         kcb->jprobe_saved_regs = *regs;
534         memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
535         regs->ARM_pc = (long)jp->entry;
536
537         cpsr = regs->ARM_cpsr | PSR_I_BIT;
538 #ifdef CONFIG_THUMB2_KERNEL
539         /* Set correct Thumb state in cpsr */
540         if (regs->ARM_pc & 1)
541                 cpsr |= PSR_T_BIT;
542         else
543                 cpsr &= ~PSR_T_BIT;
544 #endif
545         regs->ARM_cpsr = cpsr;
546
547         preempt_disable();
548         return 1;
549 }
550
551 void __kprobes jprobe_return(void)
552 {
553         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
554
555         __asm__ __volatile__ (
556                 /*
557                  * Setup an empty pt_regs. Fill SP and PC fields as
558                  * they're needed by longjmp_break_handler.
559                  *
560                  * We allocate some slack between the original SP and start of
561                  * our fabricated regs. To be precise we want to have worst case
562                  * covered which is STMFD with all 16 regs so we allocate 2 *
563                  * sizeof(struct_pt_regs)).
564                  *
565                  * This is to prevent any simulated instruction from writing
566                  * over the regs when they are accessing the stack.
567                  */
568 #ifdef CONFIG_THUMB2_KERNEL
569                 "sub    r0, %0, %1              \n\t"
570                 "mov    sp, r0                  \n\t"
571 #else
572                 "sub    sp, %0, %1              \n\t"
573 #endif
574                 "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
575                 "str    %0, [sp, %2]            \n\t"
576                 "str    r0, [sp, %3]            \n\t"
577                 "mov    r0, sp                  \n\t"
578                 "bl     kprobe_handler          \n\t"
579
580                 /*
581                  * Return to the context saved by setjmp_pre_handler
582                  * and restored by longjmp_break_handler.
583                  */
584 #ifdef CONFIG_THUMB2_KERNEL
585                 "ldr    lr, [sp, %2]            \n\t" /* lr = saved sp */
586                 "ldrd   r0, r1, [sp, %5]        \n\t" /* r0,r1 = saved lr,pc */
587                 "ldr    r2, [sp, %4]            \n\t" /* r2 = saved psr */
588                 "stmdb  lr!, {r0, r1, r2}       \n\t" /* push saved lr and */
589                                                       /* rfe context */
590                 "ldmia  sp, {r0 - r12}          \n\t"
591                 "mov    sp, lr                  \n\t"
592                 "ldr    lr, [sp], #4            \n\t"
593                 "rfeia  sp!                     \n\t"
594 #else
595                 "ldr    r0, [sp, %4]            \n\t"
596                 "msr    cpsr_cxsf, r0           \n\t"
597                 "ldmia  sp, {r0 - pc}           \n\t"
598 #endif
599                 :
600                 : "r" (kcb->jprobe_saved_regs.ARM_sp),
601                   "I" (sizeof(struct pt_regs) * 2),
602                   "J" (offsetof(struct pt_regs, ARM_sp)),
603                   "J" (offsetof(struct pt_regs, ARM_pc)),
604                   "J" (offsetof(struct pt_regs, ARM_cpsr)),
605                   "J" (offsetof(struct pt_regs, ARM_lr))
606                 : "memory", "cc");
607 }
608
609 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
610 {
611         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
612         long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
613         long orig_sp = regs->ARM_sp;
614         struct jprobe *jp = container_of(p, struct jprobe, kp);
615
616         if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
617                 if (orig_sp != stack_addr) {
618                         struct pt_regs *saved_regs =
619                                 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
620                         printk("current sp %lx does not match saved sp %lx\n",
621                                orig_sp, stack_addr);
622                         printk("Saved registers for jprobe %p\n", jp);
623                         show_regs(saved_regs);
624                         printk("Current registers\n");
625                         show_regs(regs);
626                         BUG();
627                 }
628                 *regs = kcb->jprobe_saved_regs;
629                 memcpy((void *)stack_addr, kcb->jprobes_stack,
630                        MIN_STACK_SIZE(stack_addr));
631                 preempt_enable_no_resched();
632                 return 1;
633         }
634         return 0;
635 }
636
637 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
638 {
639         return 0;
640 }
641
642 #ifdef CONFIG_THUMB2_KERNEL
643
644 static struct undef_hook kprobes_thumb16_break_hook = {
645         .instr_mask     = 0xffff,
646         .instr_val      = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
647         .cpsr_mask      = MODE_MASK,
648         .cpsr_val       = SVC_MODE,
649         .fn             = kprobe_trap_handler,
650 };
651
652 static struct undef_hook kprobes_thumb32_break_hook = {
653         .instr_mask     = 0xffffffff,
654         .instr_val      = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
655         .cpsr_mask      = MODE_MASK,
656         .cpsr_val       = SVC_MODE,
657         .fn             = kprobe_trap_handler,
658 };
659
660 #else  /* !CONFIG_THUMB2_KERNEL */
661
662 static struct undef_hook kprobes_arm_break_hook = {
663         .instr_mask     = 0x0fffffff,
664         .instr_val      = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
665         .cpsr_mask      = MODE_MASK,
666         .cpsr_val       = SVC_MODE,
667         .fn             = kprobe_trap_handler,
668 };
669
670 #endif /* !CONFIG_THUMB2_KERNEL */
671
672 int __init arch_init_kprobes()
673 {
674         arm_probes_decode_init();
675 #ifdef CONFIG_THUMB2_KERNEL
676         register_undef_hook(&kprobes_thumb16_break_hook);
677         register_undef_hook(&kprobes_thumb32_break_hook);
678 #else
679         register_undef_hook(&kprobes_arm_break_hook);
680 #endif
681         return 0;
682 }