]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/arm64/kvm/sys_regs.c
Merge tag 'driver-core-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
27
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 #include <asm/sysreg.h>
40
41 #include <trace/events/kvm.h>
42
43 #include "sys_regs.h"
44
45 #include "trace.h"
46
47 /*
48  * All of this file is extremly similar to the ARM coproc.c, but the
49  * types are different. My gut feeling is that it should be pretty
50  * easy to merge, but that would be an ABI breakage -- again. VFP
51  * would also need to be abstracted.
52  *
53  * For AArch32, we only take care of what is being trapped. Anything
54  * that has to do with init and userspace access has to go via the
55  * 64bit interface.
56  */
57
58 static bool read_from_write_only(struct kvm_vcpu *vcpu,
59                                  struct sys_reg_params *params,
60                                  const struct sys_reg_desc *r)
61 {
62         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
63         print_sys_reg_instr(params);
64         kvm_inject_undefined(vcpu);
65         return false;
66 }
67
68 static bool write_to_read_only(struct kvm_vcpu *vcpu,
69                                struct sys_reg_params *params,
70                                const struct sys_reg_desc *r)
71 {
72         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
73         print_sys_reg_instr(params);
74         kvm_inject_undefined(vcpu);
75         return false;
76 }
77
78 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
79 static u32 cache_levels;
80
81 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
82 #define CSSELR_MAX 12
83
84 /* Which cache CCSIDR represents depends on CSSELR value. */
85 static u32 get_ccsidr(u32 csselr)
86 {
87         u32 ccsidr;
88
89         /* Make sure noone else changes CSSELR during this! */
90         local_irq_disable();
91         write_sysreg(csselr, csselr_el1);
92         isb();
93         ccsidr = read_sysreg(ccsidr_el1);
94         local_irq_enable();
95
96         return ccsidr;
97 }
98
99 /*
100  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
101  */
102 static bool access_dcsw(struct kvm_vcpu *vcpu,
103                         struct sys_reg_params *p,
104                         const struct sys_reg_desc *r)
105 {
106         if (!p->is_write)
107                 return read_from_write_only(vcpu, p, r);
108
109         kvm_set_way_flush(vcpu);
110         return true;
111 }
112
113 /*
114  * Generic accessor for VM registers. Only called as long as HCR_TVM
115  * is set. If the guest enables the MMU, we stop trapping the VM
116  * sys_regs and leave it in complete control of the caches.
117  */
118 static bool access_vm_reg(struct kvm_vcpu *vcpu,
119                           struct sys_reg_params *p,
120                           const struct sys_reg_desc *r)
121 {
122         bool was_enabled = vcpu_has_cache_enabled(vcpu);
123
124         BUG_ON(!p->is_write);
125
126         if (!p->is_aarch32) {
127                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
128         } else {
129                 if (!p->is_32bit)
130                         vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
131                 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
132         }
133
134         kvm_toggle_cache(vcpu, was_enabled);
135         return true;
136 }
137
138 /*
139  * Trap handler for the GICv3 SGI generation system register.
140  * Forward the request to the VGIC emulation.
141  * The cp15_64 code makes sure this automatically works
142  * for both AArch64 and AArch32 accesses.
143  */
144 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
145                            struct sys_reg_params *p,
146                            const struct sys_reg_desc *r)
147 {
148         if (!p->is_write)
149                 return read_from_write_only(vcpu, p, r);
150
151         vgic_v3_dispatch_sgi(vcpu, p->regval);
152
153         return true;
154 }
155
156 static bool access_gic_sre(struct kvm_vcpu *vcpu,
157                            struct sys_reg_params *p,
158                            const struct sys_reg_desc *r)
159 {
160         if (p->is_write)
161                 return ignore_write(vcpu, p);
162
163         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
164         return true;
165 }
166
167 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
168                         struct sys_reg_params *p,
169                         const struct sys_reg_desc *r)
170 {
171         if (p->is_write)
172                 return ignore_write(vcpu, p);
173         else
174                 return read_zero(vcpu, p);
175 }
176
177 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
178                            struct sys_reg_params *p,
179                            const struct sys_reg_desc *r)
180 {
181         if (p->is_write) {
182                 return ignore_write(vcpu, p);
183         } else {
184                 p->regval = (1 << 3);
185                 return true;
186         }
187 }
188
189 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
190                                    struct sys_reg_params *p,
191                                    const struct sys_reg_desc *r)
192 {
193         if (p->is_write) {
194                 return ignore_write(vcpu, p);
195         } else {
196                 p->regval = read_sysreg(dbgauthstatus_el1);
197                 return true;
198         }
199 }
200
201 /*
202  * We want to avoid world-switching all the DBG registers all the
203  * time:
204  * 
205  * - If we've touched any debug register, it is likely that we're
206  *   going to touch more of them. It then makes sense to disable the
207  *   traps and start doing the save/restore dance
208  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
209  *   then mandatory to save/restore the registers, as the guest
210  *   depends on them.
211  * 
212  * For this, we use a DIRTY bit, indicating the guest has modified the
213  * debug registers, used as follow:
214  *
215  * On guest entry:
216  * - If the dirty bit is set (because we're coming back from trapping),
217  *   disable the traps, save host registers, restore guest registers.
218  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
219  *   set the dirty bit, disable the traps, save host registers,
220  *   restore guest registers.
221  * - Otherwise, enable the traps
222  *
223  * On guest exit:
224  * - If the dirty bit is set, save guest registers, restore host
225  *   registers and clear the dirty bit. This ensure that the host can
226  *   now use the debug registers.
227  */
228 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
229                             struct sys_reg_params *p,
230                             const struct sys_reg_desc *r)
231 {
232         if (p->is_write) {
233                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
234                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
235         } else {
236                 p->regval = vcpu_sys_reg(vcpu, r->reg);
237         }
238
239         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
240
241         return true;
242 }
243
244 /*
245  * reg_to_dbg/dbg_to_reg
246  *
247  * A 32 bit write to a debug register leave top bits alone
248  * A 32 bit read from a debug register only returns the bottom bits
249  *
250  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
251  * hyp.S code switches between host and guest values in future.
252  */
253 static void reg_to_dbg(struct kvm_vcpu *vcpu,
254                        struct sys_reg_params *p,
255                        u64 *dbg_reg)
256 {
257         u64 val = p->regval;
258
259         if (p->is_32bit) {
260                 val &= 0xffffffffUL;
261                 val |= ((*dbg_reg >> 32) << 32);
262         }
263
264         *dbg_reg = val;
265         vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
266 }
267
268 static void dbg_to_reg(struct kvm_vcpu *vcpu,
269                        struct sys_reg_params *p,
270                        u64 *dbg_reg)
271 {
272         p->regval = *dbg_reg;
273         if (p->is_32bit)
274                 p->regval &= 0xffffffffUL;
275 }
276
277 static bool trap_bvr(struct kvm_vcpu *vcpu,
278                      struct sys_reg_params *p,
279                      const struct sys_reg_desc *rd)
280 {
281         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
282
283         if (p->is_write)
284                 reg_to_dbg(vcpu, p, dbg_reg);
285         else
286                 dbg_to_reg(vcpu, p, dbg_reg);
287
288         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
289
290         return true;
291 }
292
293 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
294                 const struct kvm_one_reg *reg, void __user *uaddr)
295 {
296         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
297
298         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
299                 return -EFAULT;
300         return 0;
301 }
302
303 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
304         const struct kvm_one_reg *reg, void __user *uaddr)
305 {
306         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
307
308         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
309                 return -EFAULT;
310         return 0;
311 }
312
313 static void reset_bvr(struct kvm_vcpu *vcpu,
314                       const struct sys_reg_desc *rd)
315 {
316         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
317 }
318
319 static bool trap_bcr(struct kvm_vcpu *vcpu,
320                      struct sys_reg_params *p,
321                      const struct sys_reg_desc *rd)
322 {
323         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
324
325         if (p->is_write)
326                 reg_to_dbg(vcpu, p, dbg_reg);
327         else
328                 dbg_to_reg(vcpu, p, dbg_reg);
329
330         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
331
332         return true;
333 }
334
335 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
336                 const struct kvm_one_reg *reg, void __user *uaddr)
337 {
338         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
339
340         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
341                 return -EFAULT;
342
343         return 0;
344 }
345
346 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
347         const struct kvm_one_reg *reg, void __user *uaddr)
348 {
349         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
350
351         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
352                 return -EFAULT;
353         return 0;
354 }
355
356 static void reset_bcr(struct kvm_vcpu *vcpu,
357                       const struct sys_reg_desc *rd)
358 {
359         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
360 }
361
362 static bool trap_wvr(struct kvm_vcpu *vcpu,
363                      struct sys_reg_params *p,
364                      const struct sys_reg_desc *rd)
365 {
366         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
367
368         if (p->is_write)
369                 reg_to_dbg(vcpu, p, dbg_reg);
370         else
371                 dbg_to_reg(vcpu, p, dbg_reg);
372
373         trace_trap_reg(__func__, rd->reg, p->is_write,
374                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
375
376         return true;
377 }
378
379 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
380                 const struct kvm_one_reg *reg, void __user *uaddr)
381 {
382         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
383
384         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
385                 return -EFAULT;
386         return 0;
387 }
388
389 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
390         const struct kvm_one_reg *reg, void __user *uaddr)
391 {
392         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
393
394         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
395                 return -EFAULT;
396         return 0;
397 }
398
399 static void reset_wvr(struct kvm_vcpu *vcpu,
400                       const struct sys_reg_desc *rd)
401 {
402         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
403 }
404
405 static bool trap_wcr(struct kvm_vcpu *vcpu,
406                      struct sys_reg_params *p,
407                      const struct sys_reg_desc *rd)
408 {
409         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
410
411         if (p->is_write)
412                 reg_to_dbg(vcpu, p, dbg_reg);
413         else
414                 dbg_to_reg(vcpu, p, dbg_reg);
415
416         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
417
418         return true;
419 }
420
421 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
422                 const struct kvm_one_reg *reg, void __user *uaddr)
423 {
424         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
425
426         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
427                 return -EFAULT;
428         return 0;
429 }
430
431 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
432         const struct kvm_one_reg *reg, void __user *uaddr)
433 {
434         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
435
436         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
437                 return -EFAULT;
438         return 0;
439 }
440
441 static void reset_wcr(struct kvm_vcpu *vcpu,
442                       const struct sys_reg_desc *rd)
443 {
444         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
445 }
446
447 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
448 {
449         vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
450 }
451
452 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
453 {
454         u64 mpidr;
455
456         /*
457          * Map the vcpu_id into the first three affinity level fields of
458          * the MPIDR. We limit the number of VCPUs in level 0 due to a
459          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
460          * of the GICv3 to be able to address each CPU directly when
461          * sending IPIs.
462          */
463         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
464         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
465         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
466         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
467 }
468
469 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
470 {
471         u64 pmcr, val;
472
473         pmcr = read_sysreg(pmcr_el0);
474         /*
475          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
476          * except PMCR.E resetting to zero.
477          */
478         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
479                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
480         vcpu_sys_reg(vcpu, PMCR_EL0) = val;
481 }
482
483 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
484 {
485         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
486         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
487
488         if (!enabled)
489                 kvm_inject_undefined(vcpu);
490
491         return !enabled;
492 }
493
494 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
495 {
496         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
497 }
498
499 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
500 {
501         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
502 }
503
504 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
505 {
506         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
507 }
508
509 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
510 {
511         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
512 }
513
514 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
515                         const struct sys_reg_desc *r)
516 {
517         u64 val;
518
519         if (!kvm_arm_pmu_v3_ready(vcpu))
520                 return trap_raz_wi(vcpu, p, r);
521
522         if (pmu_access_el0_disabled(vcpu))
523                 return false;
524
525         if (p->is_write) {
526                 /* Only update writeable bits of PMCR */
527                 val = vcpu_sys_reg(vcpu, PMCR_EL0);
528                 val &= ~ARMV8_PMU_PMCR_MASK;
529                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
530                 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
531                 kvm_pmu_handle_pmcr(vcpu, val);
532         } else {
533                 /* PMCR.P & PMCR.C are RAZ */
534                 val = vcpu_sys_reg(vcpu, PMCR_EL0)
535                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
536                 p->regval = val;
537         }
538
539         return true;
540 }
541
542 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
543                           const struct sys_reg_desc *r)
544 {
545         if (!kvm_arm_pmu_v3_ready(vcpu))
546                 return trap_raz_wi(vcpu, p, r);
547
548         if (pmu_access_event_counter_el0_disabled(vcpu))
549                 return false;
550
551         if (p->is_write)
552                 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
553         else
554                 /* return PMSELR.SEL field */
555                 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
556                             & ARMV8_PMU_COUNTER_MASK;
557
558         return true;
559 }
560
561 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
562                           const struct sys_reg_desc *r)
563 {
564         u64 pmceid;
565
566         if (!kvm_arm_pmu_v3_ready(vcpu))
567                 return trap_raz_wi(vcpu, p, r);
568
569         BUG_ON(p->is_write);
570
571         if (pmu_access_el0_disabled(vcpu))
572                 return false;
573
574         if (!(p->Op2 & 1))
575                 pmceid = read_sysreg(pmceid0_el0);
576         else
577                 pmceid = read_sysreg(pmceid1_el0);
578
579         p->regval = pmceid;
580
581         return true;
582 }
583
584 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
585 {
586         u64 pmcr, val;
587
588         pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
589         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
590         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
591                 kvm_inject_undefined(vcpu);
592                 return false;
593         }
594
595         return true;
596 }
597
598 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
599                               struct sys_reg_params *p,
600                               const struct sys_reg_desc *r)
601 {
602         u64 idx;
603
604         if (!kvm_arm_pmu_v3_ready(vcpu))
605                 return trap_raz_wi(vcpu, p, r);
606
607         if (r->CRn == 9 && r->CRm == 13) {
608                 if (r->Op2 == 2) {
609                         /* PMXEVCNTR_EL0 */
610                         if (pmu_access_event_counter_el0_disabled(vcpu))
611                                 return false;
612
613                         idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
614                               & ARMV8_PMU_COUNTER_MASK;
615                 } else if (r->Op2 == 0) {
616                         /* PMCCNTR_EL0 */
617                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
618                                 return false;
619
620                         idx = ARMV8_PMU_CYCLE_IDX;
621                 } else {
622                         return false;
623                 }
624         } else if (r->CRn == 0 && r->CRm == 9) {
625                 /* PMCCNTR */
626                 if (pmu_access_event_counter_el0_disabled(vcpu))
627                         return false;
628
629                 idx = ARMV8_PMU_CYCLE_IDX;
630         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
631                 /* PMEVCNTRn_EL0 */
632                 if (pmu_access_event_counter_el0_disabled(vcpu))
633                         return false;
634
635                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
636         } else {
637                 return false;
638         }
639
640         if (!pmu_counter_idx_valid(vcpu, idx))
641                 return false;
642
643         if (p->is_write) {
644                 if (pmu_access_el0_disabled(vcpu))
645                         return false;
646
647                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
648         } else {
649                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
650         }
651
652         return true;
653 }
654
655 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
656                                const struct sys_reg_desc *r)
657 {
658         u64 idx, reg;
659
660         if (!kvm_arm_pmu_v3_ready(vcpu))
661                 return trap_raz_wi(vcpu, p, r);
662
663         if (pmu_access_el0_disabled(vcpu))
664                 return false;
665
666         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
667                 /* PMXEVTYPER_EL0 */
668                 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
669                 reg = PMEVTYPER0_EL0 + idx;
670         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
671                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
672                 if (idx == ARMV8_PMU_CYCLE_IDX)
673                         reg = PMCCFILTR_EL0;
674                 else
675                         /* PMEVTYPERn_EL0 */
676                         reg = PMEVTYPER0_EL0 + idx;
677         } else {
678                 BUG();
679         }
680
681         if (!pmu_counter_idx_valid(vcpu, idx))
682                 return false;
683
684         if (p->is_write) {
685                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
686                 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
687         } else {
688                 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
689         }
690
691         return true;
692 }
693
694 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
695                            const struct sys_reg_desc *r)
696 {
697         u64 val, mask;
698
699         if (!kvm_arm_pmu_v3_ready(vcpu))
700                 return trap_raz_wi(vcpu, p, r);
701
702         if (pmu_access_el0_disabled(vcpu))
703                 return false;
704
705         mask = kvm_pmu_valid_counter_mask(vcpu);
706         if (p->is_write) {
707                 val = p->regval & mask;
708                 if (r->Op2 & 0x1) {
709                         /* accessing PMCNTENSET_EL0 */
710                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
711                         kvm_pmu_enable_counter(vcpu, val);
712                 } else {
713                         /* accessing PMCNTENCLR_EL0 */
714                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
715                         kvm_pmu_disable_counter(vcpu, val);
716                 }
717         } else {
718                 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
719         }
720
721         return true;
722 }
723
724 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
725                            const struct sys_reg_desc *r)
726 {
727         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
728
729         if (!kvm_arm_pmu_v3_ready(vcpu))
730                 return trap_raz_wi(vcpu, p, r);
731
732         if (!vcpu_mode_priv(vcpu)) {
733                 kvm_inject_undefined(vcpu);
734                 return false;
735         }
736
737         if (p->is_write) {
738                 u64 val = p->regval & mask;
739
740                 if (r->Op2 & 0x1)
741                         /* accessing PMINTENSET_EL1 */
742                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
743                 else
744                         /* accessing PMINTENCLR_EL1 */
745                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
746         } else {
747                 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
748         }
749
750         return true;
751 }
752
753 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
754                          const struct sys_reg_desc *r)
755 {
756         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
757
758         if (!kvm_arm_pmu_v3_ready(vcpu))
759                 return trap_raz_wi(vcpu, p, r);
760
761         if (pmu_access_el0_disabled(vcpu))
762                 return false;
763
764         if (p->is_write) {
765                 if (r->CRm & 0x2)
766                         /* accessing PMOVSSET_EL0 */
767                         vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
768                 else
769                         /* accessing PMOVSCLR_EL0 */
770                         vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
771         } else {
772                 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
773         }
774
775         return true;
776 }
777
778 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
779                            const struct sys_reg_desc *r)
780 {
781         u64 mask;
782
783         if (!kvm_arm_pmu_v3_ready(vcpu))
784                 return trap_raz_wi(vcpu, p, r);
785
786         if (!p->is_write)
787                 return read_from_write_only(vcpu, p, r);
788
789         if (pmu_write_swinc_el0_disabled(vcpu))
790                 return false;
791
792         mask = kvm_pmu_valid_counter_mask(vcpu);
793         kvm_pmu_software_increment(vcpu, p->regval & mask);
794         return true;
795 }
796
797 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
798                              const struct sys_reg_desc *r)
799 {
800         if (!kvm_arm_pmu_v3_ready(vcpu))
801                 return trap_raz_wi(vcpu, p, r);
802
803         if (p->is_write) {
804                 if (!vcpu_mode_priv(vcpu)) {
805                         kvm_inject_undefined(vcpu);
806                         return false;
807                 }
808
809                 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
810                                                     & ARMV8_PMU_USERENR_MASK;
811         } else {
812                 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
813                             & ARMV8_PMU_USERENR_MASK;
814         }
815
816         return true;
817 }
818
819 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
820 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
821         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
822           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
823         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
824           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
825         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
826           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
827         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
828           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
829
830 /* Macro to expand the PMEVCNTRn_EL0 register */
831 #define PMU_PMEVCNTR_EL0(n)                                             \
832         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
833           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
834
835 /* Macro to expand the PMEVTYPERn_EL0 register */
836 #define PMU_PMEVTYPER_EL0(n)                                            \
837         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
838           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
839
840 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
841                 struct sys_reg_params *p,
842                 const struct sys_reg_desc *r)
843 {
844         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
845         u64 now = kvm_phys_timer_read();
846
847         if (p->is_write)
848                 ptimer->cnt_cval = p->regval + now;
849         else
850                 p->regval = ptimer->cnt_cval - now;
851
852         return true;
853 }
854
855 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
856                 struct sys_reg_params *p,
857                 const struct sys_reg_desc *r)
858 {
859         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
860
861         if (p->is_write) {
862                 /* ISTATUS bit is read-only */
863                 ptimer->cnt_ctl = p->regval & ~ARCH_TIMER_CTRL_IT_STAT;
864         } else {
865                 u64 now = kvm_phys_timer_read();
866
867                 p->regval = ptimer->cnt_ctl;
868                 /*
869                  * Set ISTATUS bit if it's expired.
870                  * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
871                  * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
872                  * regardless of ENABLE bit for our implementation convenience.
873                  */
874                 if (ptimer->cnt_cval <= now)
875                         p->regval |= ARCH_TIMER_CTRL_IT_STAT;
876         }
877
878         return true;
879 }
880
881 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
882                 struct sys_reg_params *p,
883                 const struct sys_reg_desc *r)
884 {
885         struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
886
887         if (p->is_write)
888                 ptimer->cnt_cval = p->regval;
889         else
890                 p->regval = ptimer->cnt_cval;
891
892         return true;
893 }
894
895 /*
896  * Architected system registers.
897  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
898  *
899  * Debug handling: We do trap most, if not all debug related system
900  * registers. The implementation is good enough to ensure that a guest
901  * can use these with minimal performance degradation. The drawback is
902  * that we don't implement any of the external debug, none of the
903  * OSlock protocol. This should be revisited if we ever encounter a
904  * more demanding guest...
905  */
906 static const struct sys_reg_desc sys_reg_descs[] = {
907         { SYS_DESC(SYS_DC_ISW), access_dcsw },
908         { SYS_DESC(SYS_DC_CSW), access_dcsw },
909         { SYS_DESC(SYS_DC_CISW), access_dcsw },
910
911         DBG_BCR_BVR_WCR_WVR_EL1(0),
912         DBG_BCR_BVR_WCR_WVR_EL1(1),
913         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
914         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
915         DBG_BCR_BVR_WCR_WVR_EL1(2),
916         DBG_BCR_BVR_WCR_WVR_EL1(3),
917         DBG_BCR_BVR_WCR_WVR_EL1(4),
918         DBG_BCR_BVR_WCR_WVR_EL1(5),
919         DBG_BCR_BVR_WCR_WVR_EL1(6),
920         DBG_BCR_BVR_WCR_WVR_EL1(7),
921         DBG_BCR_BVR_WCR_WVR_EL1(8),
922         DBG_BCR_BVR_WCR_WVR_EL1(9),
923         DBG_BCR_BVR_WCR_WVR_EL1(10),
924         DBG_BCR_BVR_WCR_WVR_EL1(11),
925         DBG_BCR_BVR_WCR_WVR_EL1(12),
926         DBG_BCR_BVR_WCR_WVR_EL1(13),
927         DBG_BCR_BVR_WCR_WVR_EL1(14),
928         DBG_BCR_BVR_WCR_WVR_EL1(15),
929
930         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
931         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
932         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
933         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
934         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
935         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
936         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
937         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
938
939         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
940         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
941         // DBGDTR[TR]X_EL0 share the same encoding
942         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
943
944         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
945
946         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
947         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
948         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
949         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
950         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
951         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
952
953         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
954         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
955         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
956         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
957         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
958
959         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
960         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
961
962         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
963         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
964
965         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
966
967         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
968         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
969         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
970         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
971         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
972         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
973         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
974         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
975         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
976         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
977
978         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
979         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
980
981         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
982
983         { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
984
985         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
986         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
987         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
988         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
989         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
990         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
991         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
992         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
993         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
994         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
995         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
996         /*
997          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
998          * in 32bit mode. Here we choose to reset it as zero for consistency.
999          */
1000         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1001         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1002
1003         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1004         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1005
1006         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1007         { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1008         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1009
1010         /* PMEVCNTRn_EL0 */
1011         PMU_PMEVCNTR_EL0(0),
1012         PMU_PMEVCNTR_EL0(1),
1013         PMU_PMEVCNTR_EL0(2),
1014         PMU_PMEVCNTR_EL0(3),
1015         PMU_PMEVCNTR_EL0(4),
1016         PMU_PMEVCNTR_EL0(5),
1017         PMU_PMEVCNTR_EL0(6),
1018         PMU_PMEVCNTR_EL0(7),
1019         PMU_PMEVCNTR_EL0(8),
1020         PMU_PMEVCNTR_EL0(9),
1021         PMU_PMEVCNTR_EL0(10),
1022         PMU_PMEVCNTR_EL0(11),
1023         PMU_PMEVCNTR_EL0(12),
1024         PMU_PMEVCNTR_EL0(13),
1025         PMU_PMEVCNTR_EL0(14),
1026         PMU_PMEVCNTR_EL0(15),
1027         PMU_PMEVCNTR_EL0(16),
1028         PMU_PMEVCNTR_EL0(17),
1029         PMU_PMEVCNTR_EL0(18),
1030         PMU_PMEVCNTR_EL0(19),
1031         PMU_PMEVCNTR_EL0(20),
1032         PMU_PMEVCNTR_EL0(21),
1033         PMU_PMEVCNTR_EL0(22),
1034         PMU_PMEVCNTR_EL0(23),
1035         PMU_PMEVCNTR_EL0(24),
1036         PMU_PMEVCNTR_EL0(25),
1037         PMU_PMEVCNTR_EL0(26),
1038         PMU_PMEVCNTR_EL0(27),
1039         PMU_PMEVCNTR_EL0(28),
1040         PMU_PMEVCNTR_EL0(29),
1041         PMU_PMEVCNTR_EL0(30),
1042         /* PMEVTYPERn_EL0 */
1043         PMU_PMEVTYPER_EL0(0),
1044         PMU_PMEVTYPER_EL0(1),
1045         PMU_PMEVTYPER_EL0(2),
1046         PMU_PMEVTYPER_EL0(3),
1047         PMU_PMEVTYPER_EL0(4),
1048         PMU_PMEVTYPER_EL0(5),
1049         PMU_PMEVTYPER_EL0(6),
1050         PMU_PMEVTYPER_EL0(7),
1051         PMU_PMEVTYPER_EL0(8),
1052         PMU_PMEVTYPER_EL0(9),
1053         PMU_PMEVTYPER_EL0(10),
1054         PMU_PMEVTYPER_EL0(11),
1055         PMU_PMEVTYPER_EL0(12),
1056         PMU_PMEVTYPER_EL0(13),
1057         PMU_PMEVTYPER_EL0(14),
1058         PMU_PMEVTYPER_EL0(15),
1059         PMU_PMEVTYPER_EL0(16),
1060         PMU_PMEVTYPER_EL0(17),
1061         PMU_PMEVTYPER_EL0(18),
1062         PMU_PMEVTYPER_EL0(19),
1063         PMU_PMEVTYPER_EL0(20),
1064         PMU_PMEVTYPER_EL0(21),
1065         PMU_PMEVTYPER_EL0(22),
1066         PMU_PMEVTYPER_EL0(23),
1067         PMU_PMEVTYPER_EL0(24),
1068         PMU_PMEVTYPER_EL0(25),
1069         PMU_PMEVTYPER_EL0(26),
1070         PMU_PMEVTYPER_EL0(27),
1071         PMU_PMEVTYPER_EL0(28),
1072         PMU_PMEVTYPER_EL0(29),
1073         PMU_PMEVTYPER_EL0(30),
1074         /*
1075          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1076          * in 32bit mode. Here we choose to reset it as zero for consistency.
1077          */
1078         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1079
1080         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1081         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1082         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1083 };
1084
1085 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1086                         struct sys_reg_params *p,
1087                         const struct sys_reg_desc *r)
1088 {
1089         if (p->is_write) {
1090                 return ignore_write(vcpu, p);
1091         } else {
1092                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1093                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1094                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1095
1096                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1097                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1098                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1099                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1100                 return true;
1101         }
1102 }
1103
1104 static bool trap_debug32(struct kvm_vcpu *vcpu,
1105                          struct sys_reg_params *p,
1106                          const struct sys_reg_desc *r)
1107 {
1108         if (p->is_write) {
1109                 vcpu_cp14(vcpu, r->reg) = p->regval;
1110                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1111         } else {
1112                 p->regval = vcpu_cp14(vcpu, r->reg);
1113         }
1114
1115         return true;
1116 }
1117
1118 /* AArch32 debug register mappings
1119  *
1120  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1121  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1122  *
1123  * All control registers and watchpoint value registers are mapped to
1124  * the lower 32 bits of their AArch64 equivalents. We share the trap
1125  * handlers with the above AArch64 code which checks what mode the
1126  * system is in.
1127  */
1128
1129 static bool trap_xvr(struct kvm_vcpu *vcpu,
1130                      struct sys_reg_params *p,
1131                      const struct sys_reg_desc *rd)
1132 {
1133         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1134
1135         if (p->is_write) {
1136                 u64 val = *dbg_reg;
1137
1138                 val &= 0xffffffffUL;
1139                 val |= p->regval << 32;
1140                 *dbg_reg = val;
1141
1142                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1143         } else {
1144                 p->regval = *dbg_reg >> 32;
1145         }
1146
1147         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1148
1149         return true;
1150 }
1151
1152 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1153         /* DBGBVRn */                                                   \
1154         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1155         /* DBGBCRn */                                                   \
1156         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1157         /* DBGWVRn */                                                   \
1158         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1159         /* DBGWCRn */                                                   \
1160         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1161
1162 #define DBGBXVR(n)                                                      \
1163         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1164
1165 /*
1166  * Trapped cp14 registers. We generally ignore most of the external
1167  * debug, on the principle that they don't really make sense to a
1168  * guest. Revisit this one day, would this principle change.
1169  */
1170 static const struct sys_reg_desc cp14_regs[] = {
1171         /* DBGIDR */
1172         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1173         /* DBGDTRRXext */
1174         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1175
1176         DBG_BCR_BVR_WCR_WVR(0),
1177         /* DBGDSCRint */
1178         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1179         DBG_BCR_BVR_WCR_WVR(1),
1180         /* DBGDCCINT */
1181         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1182         /* DBGDSCRext */
1183         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1184         DBG_BCR_BVR_WCR_WVR(2),
1185         /* DBGDTR[RT]Xint */
1186         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1187         /* DBGDTR[RT]Xext */
1188         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1189         DBG_BCR_BVR_WCR_WVR(3),
1190         DBG_BCR_BVR_WCR_WVR(4),
1191         DBG_BCR_BVR_WCR_WVR(5),
1192         /* DBGWFAR */
1193         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1194         /* DBGOSECCR */
1195         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1196         DBG_BCR_BVR_WCR_WVR(6),
1197         /* DBGVCR */
1198         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1199         DBG_BCR_BVR_WCR_WVR(7),
1200         DBG_BCR_BVR_WCR_WVR(8),
1201         DBG_BCR_BVR_WCR_WVR(9),
1202         DBG_BCR_BVR_WCR_WVR(10),
1203         DBG_BCR_BVR_WCR_WVR(11),
1204         DBG_BCR_BVR_WCR_WVR(12),
1205         DBG_BCR_BVR_WCR_WVR(13),
1206         DBG_BCR_BVR_WCR_WVR(14),
1207         DBG_BCR_BVR_WCR_WVR(15),
1208
1209         /* DBGDRAR (32bit) */
1210         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1211
1212         DBGBXVR(0),
1213         /* DBGOSLAR */
1214         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1215         DBGBXVR(1),
1216         /* DBGOSLSR */
1217         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1218         DBGBXVR(2),
1219         DBGBXVR(3),
1220         /* DBGOSDLR */
1221         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1222         DBGBXVR(4),
1223         /* DBGPRCR */
1224         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1225         DBGBXVR(5),
1226         DBGBXVR(6),
1227         DBGBXVR(7),
1228         DBGBXVR(8),
1229         DBGBXVR(9),
1230         DBGBXVR(10),
1231         DBGBXVR(11),
1232         DBGBXVR(12),
1233         DBGBXVR(13),
1234         DBGBXVR(14),
1235         DBGBXVR(15),
1236
1237         /* DBGDSAR (32bit) */
1238         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1239
1240         /* DBGDEVID2 */
1241         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1242         /* DBGDEVID1 */
1243         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1244         /* DBGDEVID */
1245         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1246         /* DBGCLAIMSET */
1247         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1248         /* DBGCLAIMCLR */
1249         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1250         /* DBGAUTHSTATUS */
1251         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1252 };
1253
1254 /* Trapped cp14 64bit registers */
1255 static const struct sys_reg_desc cp14_64_regs[] = {
1256         /* DBGDRAR (64bit) */
1257         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1258
1259         /* DBGDSAR (64bit) */
1260         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1261 };
1262
1263 /* Macro to expand the PMEVCNTRn register */
1264 #define PMU_PMEVCNTR(n)                                                 \
1265         /* PMEVCNTRn */                                                 \
1266         { Op1(0), CRn(0b1110),                                          \
1267           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1268           access_pmu_evcntr }
1269
1270 /* Macro to expand the PMEVTYPERn register */
1271 #define PMU_PMEVTYPER(n)                                                \
1272         /* PMEVTYPERn */                                                \
1273         { Op1(0), CRn(0b1110),                                          \
1274           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1275           access_pmu_evtyper }
1276
1277 /*
1278  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1279  * depending on the way they are accessed (as a 32bit or a 64bit
1280  * register).
1281  */
1282 static const struct sys_reg_desc cp15_regs[] = {
1283         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1284
1285         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1286         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1287         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1288         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1289         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1290         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1291         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1292         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1293         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1294         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1295         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1296
1297         /*
1298          * DC{C,I,CI}SW operations:
1299          */
1300         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1301         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1302         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1303
1304         /* PMU */
1305         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1306         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1307         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1308         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1309         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1310         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1311         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1312         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1313         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1314         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1315         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1316         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1317         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1318         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1319         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1320
1321         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1322         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1323         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1324         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1325
1326         /* ICC_SRE */
1327         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1328
1329         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1330
1331         /* PMEVCNTRn */
1332         PMU_PMEVCNTR(0),
1333         PMU_PMEVCNTR(1),
1334         PMU_PMEVCNTR(2),
1335         PMU_PMEVCNTR(3),
1336         PMU_PMEVCNTR(4),
1337         PMU_PMEVCNTR(5),
1338         PMU_PMEVCNTR(6),
1339         PMU_PMEVCNTR(7),
1340         PMU_PMEVCNTR(8),
1341         PMU_PMEVCNTR(9),
1342         PMU_PMEVCNTR(10),
1343         PMU_PMEVCNTR(11),
1344         PMU_PMEVCNTR(12),
1345         PMU_PMEVCNTR(13),
1346         PMU_PMEVCNTR(14),
1347         PMU_PMEVCNTR(15),
1348         PMU_PMEVCNTR(16),
1349         PMU_PMEVCNTR(17),
1350         PMU_PMEVCNTR(18),
1351         PMU_PMEVCNTR(19),
1352         PMU_PMEVCNTR(20),
1353         PMU_PMEVCNTR(21),
1354         PMU_PMEVCNTR(22),
1355         PMU_PMEVCNTR(23),
1356         PMU_PMEVCNTR(24),
1357         PMU_PMEVCNTR(25),
1358         PMU_PMEVCNTR(26),
1359         PMU_PMEVCNTR(27),
1360         PMU_PMEVCNTR(28),
1361         PMU_PMEVCNTR(29),
1362         PMU_PMEVCNTR(30),
1363         /* PMEVTYPERn */
1364         PMU_PMEVTYPER(0),
1365         PMU_PMEVTYPER(1),
1366         PMU_PMEVTYPER(2),
1367         PMU_PMEVTYPER(3),
1368         PMU_PMEVTYPER(4),
1369         PMU_PMEVTYPER(5),
1370         PMU_PMEVTYPER(6),
1371         PMU_PMEVTYPER(7),
1372         PMU_PMEVTYPER(8),
1373         PMU_PMEVTYPER(9),
1374         PMU_PMEVTYPER(10),
1375         PMU_PMEVTYPER(11),
1376         PMU_PMEVTYPER(12),
1377         PMU_PMEVTYPER(13),
1378         PMU_PMEVTYPER(14),
1379         PMU_PMEVTYPER(15),
1380         PMU_PMEVTYPER(16),
1381         PMU_PMEVTYPER(17),
1382         PMU_PMEVTYPER(18),
1383         PMU_PMEVTYPER(19),
1384         PMU_PMEVTYPER(20),
1385         PMU_PMEVTYPER(21),
1386         PMU_PMEVTYPER(22),
1387         PMU_PMEVTYPER(23),
1388         PMU_PMEVTYPER(24),
1389         PMU_PMEVTYPER(25),
1390         PMU_PMEVTYPER(26),
1391         PMU_PMEVTYPER(27),
1392         PMU_PMEVTYPER(28),
1393         PMU_PMEVTYPER(29),
1394         PMU_PMEVTYPER(30),
1395         /* PMCCFILTR */
1396         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1397 };
1398
1399 static const struct sys_reg_desc cp15_64_regs[] = {
1400         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1401         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1402         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1403         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1404 };
1405
1406 /* Target specific emulation tables */
1407 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1408
1409 void kvm_register_target_sys_reg_table(unsigned int target,
1410                                        struct kvm_sys_reg_target_table *table)
1411 {
1412         target_tables[target] = table;
1413 }
1414
1415 /* Get specific register table for this target. */
1416 static const struct sys_reg_desc *get_target_table(unsigned target,
1417                                                    bool mode_is_64,
1418                                                    size_t *num)
1419 {
1420         struct kvm_sys_reg_target_table *table;
1421
1422         table = target_tables[target];
1423         if (mode_is_64) {
1424                 *num = table->table64.num;
1425                 return table->table64.table;
1426         } else {
1427                 *num = table->table32.num;
1428                 return table->table32.table;
1429         }
1430 }
1431
1432 #define reg_to_match_value(x)                                           \
1433         ({                                                              \
1434                 unsigned long val;                                      \
1435                 val  = (x)->Op0 << 14;                                  \
1436                 val |= (x)->Op1 << 11;                                  \
1437                 val |= (x)->CRn << 7;                                   \
1438                 val |= (x)->CRm << 3;                                   \
1439                 val |= (x)->Op2;                                        \
1440                 val;                                                    \
1441          })
1442
1443 static int match_sys_reg(const void *key, const void *elt)
1444 {
1445         const unsigned long pval = (unsigned long)key;
1446         const struct sys_reg_desc *r = elt;
1447
1448         return pval - reg_to_match_value(r);
1449 }
1450
1451 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1452                                          const struct sys_reg_desc table[],
1453                                          unsigned int num)
1454 {
1455         unsigned long pval = reg_to_match_value(params);
1456
1457         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1458 }
1459
1460 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1461 {
1462         kvm_inject_undefined(vcpu);
1463         return 1;
1464 }
1465
1466 static void perform_access(struct kvm_vcpu *vcpu,
1467                            struct sys_reg_params *params,
1468                            const struct sys_reg_desc *r)
1469 {
1470         /*
1471          * Not having an accessor means that we have configured a trap
1472          * that we don't know how to handle. This certainly qualifies
1473          * as a gross bug that should be fixed right away.
1474          */
1475         BUG_ON(!r->access);
1476
1477         /* Skip instruction if instructed so */
1478         if (likely(r->access(vcpu, params, r)))
1479                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1480 }
1481
1482 /*
1483  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1484  *                call the corresponding trap handler.
1485  *
1486  * @params: pointer to the descriptor of the access
1487  * @table: array of trap descriptors
1488  * @num: size of the trap descriptor array
1489  *
1490  * Return 0 if the access has been handled, and -1 if not.
1491  */
1492 static int emulate_cp(struct kvm_vcpu *vcpu,
1493                       struct sys_reg_params *params,
1494                       const struct sys_reg_desc *table,
1495                       size_t num)
1496 {
1497         const struct sys_reg_desc *r;
1498
1499         if (!table)
1500                 return -1;      /* Not handled */
1501
1502         r = find_reg(params, table, num);
1503
1504         if (r) {
1505                 perform_access(vcpu, params, r);
1506                 return 0;
1507         }
1508
1509         /* Not handled */
1510         return -1;
1511 }
1512
1513 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1514                                 struct sys_reg_params *params)
1515 {
1516         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1517         int cp = -1;
1518
1519         switch(hsr_ec) {
1520         case ESR_ELx_EC_CP15_32:
1521         case ESR_ELx_EC_CP15_64:
1522                 cp = 15;
1523                 break;
1524         case ESR_ELx_EC_CP14_MR:
1525         case ESR_ELx_EC_CP14_64:
1526                 cp = 14;
1527                 break;
1528         default:
1529                 WARN_ON(1);
1530         }
1531
1532         kvm_err("Unsupported guest CP%d access at: %08lx\n",
1533                 cp, *vcpu_pc(vcpu));
1534         print_sys_reg_instr(params);
1535         kvm_inject_undefined(vcpu);
1536 }
1537
1538 /**
1539  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1540  * @vcpu: The VCPU pointer
1541  * @run:  The kvm_run struct
1542  */
1543 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1544                             const struct sys_reg_desc *global,
1545                             size_t nr_global,
1546                             const struct sys_reg_desc *target_specific,
1547                             size_t nr_specific)
1548 {
1549         struct sys_reg_params params;
1550         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1551         int Rt = kvm_vcpu_sys_get_rt(vcpu);
1552         int Rt2 = (hsr >> 10) & 0x1f;
1553
1554         params.is_aarch32 = true;
1555         params.is_32bit = false;
1556         params.CRm = (hsr >> 1) & 0xf;
1557         params.is_write = ((hsr & 1) == 0);
1558
1559         params.Op0 = 0;
1560         params.Op1 = (hsr >> 16) & 0xf;
1561         params.Op2 = 0;
1562         params.CRn = 0;
1563
1564         /*
1565          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1566          * backends between AArch32 and AArch64, we get away with it.
1567          */
1568         if (params.is_write) {
1569                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1570                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1571         }
1572
1573         /*
1574          * Try to emulate the coprocessor access using the target
1575          * specific table first, and using the global table afterwards.
1576          * If either of the tables contains a handler, handle the
1577          * potential register operation in the case of a read and return
1578          * with success.
1579          */
1580         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1581             !emulate_cp(vcpu, &params, global, nr_global)) {
1582                 /* Split up the value between registers for the read side */
1583                 if (!params.is_write) {
1584                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1585                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1586                 }
1587
1588                 return 1;
1589         }
1590
1591         unhandled_cp_access(vcpu, &params);
1592         return 1;
1593 }
1594
1595 /**
1596  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1597  * @vcpu: The VCPU pointer
1598  * @run:  The kvm_run struct
1599  */
1600 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1601                             const struct sys_reg_desc *global,
1602                             size_t nr_global,
1603                             const struct sys_reg_desc *target_specific,
1604                             size_t nr_specific)
1605 {
1606         struct sys_reg_params params;
1607         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1608         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
1609
1610         params.is_aarch32 = true;
1611         params.is_32bit = true;
1612         params.CRm = (hsr >> 1) & 0xf;
1613         params.regval = vcpu_get_reg(vcpu, Rt);
1614         params.is_write = ((hsr & 1) == 0);
1615         params.CRn = (hsr >> 10) & 0xf;
1616         params.Op0 = 0;
1617         params.Op1 = (hsr >> 14) & 0x7;
1618         params.Op2 = (hsr >> 17) & 0x7;
1619
1620         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1621             !emulate_cp(vcpu, &params, global, nr_global)) {
1622                 if (!params.is_write)
1623                         vcpu_set_reg(vcpu, Rt, params.regval);
1624                 return 1;
1625         }
1626
1627         unhandled_cp_access(vcpu, &params);
1628         return 1;
1629 }
1630
1631 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1632 {
1633         const struct sys_reg_desc *target_specific;
1634         size_t num;
1635
1636         target_specific = get_target_table(vcpu->arch.target, false, &num);
1637         return kvm_handle_cp_64(vcpu,
1638                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1639                                 target_specific, num);
1640 }
1641
1642 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1643 {
1644         const struct sys_reg_desc *target_specific;
1645         size_t num;
1646
1647         target_specific = get_target_table(vcpu->arch.target, false, &num);
1648         return kvm_handle_cp_32(vcpu,
1649                                 cp15_regs, ARRAY_SIZE(cp15_regs),
1650                                 target_specific, num);
1651 }
1652
1653 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1654 {
1655         return kvm_handle_cp_64(vcpu,
1656                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1657                                 NULL, 0);
1658 }
1659
1660 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1661 {
1662         return kvm_handle_cp_32(vcpu,
1663                                 cp14_regs, ARRAY_SIZE(cp14_regs),
1664                                 NULL, 0);
1665 }
1666
1667 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1668                            struct sys_reg_params *params)
1669 {
1670         size_t num;
1671         const struct sys_reg_desc *table, *r;
1672
1673         table = get_target_table(vcpu->arch.target, true, &num);
1674
1675         /* Search target-specific then generic table. */
1676         r = find_reg(params, table, num);
1677         if (!r)
1678                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1679
1680         if (likely(r)) {
1681                 perform_access(vcpu, params, r);
1682         } else {
1683                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1684                         *vcpu_pc(vcpu));
1685                 print_sys_reg_instr(params);
1686                 kvm_inject_undefined(vcpu);
1687         }
1688         return 1;
1689 }
1690
1691 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1692                               const struct sys_reg_desc *table, size_t num)
1693 {
1694         unsigned long i;
1695
1696         for (i = 0; i < num; i++)
1697                 if (table[i].reset)
1698                         table[i].reset(vcpu, &table[i]);
1699 }
1700
1701 /**
1702  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1703  * @vcpu: The VCPU pointer
1704  * @run:  The kvm_run struct
1705  */
1706 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1707 {
1708         struct sys_reg_params params;
1709         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1710         int Rt = kvm_vcpu_sys_get_rt(vcpu);
1711         int ret;
1712
1713         trace_kvm_handle_sys_reg(esr);
1714
1715         params.is_aarch32 = false;
1716         params.is_32bit = false;
1717         params.Op0 = (esr >> 20) & 3;
1718         params.Op1 = (esr >> 14) & 0x7;
1719         params.CRn = (esr >> 10) & 0xf;
1720         params.CRm = (esr >> 1) & 0xf;
1721         params.Op2 = (esr >> 17) & 0x7;
1722         params.regval = vcpu_get_reg(vcpu, Rt);
1723         params.is_write = !(esr & 1);
1724
1725         ret = emulate_sys_reg(vcpu, &params);
1726
1727         if (!params.is_write)
1728                 vcpu_set_reg(vcpu, Rt, params.regval);
1729         return ret;
1730 }
1731
1732 /******************************************************************************
1733  * Userspace API
1734  *****************************************************************************/
1735
1736 static bool index_to_params(u64 id, struct sys_reg_params *params)
1737 {
1738         switch (id & KVM_REG_SIZE_MASK) {
1739         case KVM_REG_SIZE_U64:
1740                 /* Any unused index bits means it's not valid. */
1741                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1742                               | KVM_REG_ARM_COPROC_MASK
1743                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1744                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1745                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1746                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1747                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1748                         return false;
1749                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1750                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1751                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1752                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1753                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1754                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1755                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1756                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1757                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1758                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1759                 return true;
1760         default:
1761                 return false;
1762         }
1763 }
1764
1765 const struct sys_reg_desc *find_reg_by_id(u64 id,
1766                                           struct sys_reg_params *params,
1767                                           const struct sys_reg_desc table[],
1768                                           unsigned int num)
1769 {
1770         if (!index_to_params(id, params))
1771                 return NULL;
1772
1773         return find_reg(params, table, num);
1774 }
1775
1776 /* Decode an index value, and find the sys_reg_desc entry. */
1777 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1778                                                     u64 id)
1779 {
1780         size_t num;
1781         const struct sys_reg_desc *table, *r;
1782         struct sys_reg_params params;
1783
1784         /* We only do sys_reg for now. */
1785         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1786                 return NULL;
1787
1788         table = get_target_table(vcpu->arch.target, true, &num);
1789         r = find_reg_by_id(id, &params, table, num);
1790         if (!r)
1791                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1792
1793         /* Not saved in the sys_reg array? */
1794         if (r && !r->reg)
1795                 r = NULL;
1796
1797         return r;
1798 }
1799
1800 /*
1801  * These are the invariant sys_reg registers: we let the guest see the
1802  * host versions of these, so they're part of the guest state.
1803  *
1804  * A future CPU may provide a mechanism to present different values to
1805  * the guest, or a future kvm may trap them.
1806  */
1807
1808 #define FUNCTION_INVARIANT(reg)                                         \
1809         static void get_##reg(struct kvm_vcpu *v,                       \
1810                               const struct sys_reg_desc *r)             \
1811         {                                                               \
1812                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
1813         }
1814
1815 FUNCTION_INVARIANT(midr_el1)
1816 FUNCTION_INVARIANT(ctr_el0)
1817 FUNCTION_INVARIANT(revidr_el1)
1818 FUNCTION_INVARIANT(id_pfr0_el1)
1819 FUNCTION_INVARIANT(id_pfr1_el1)
1820 FUNCTION_INVARIANT(id_dfr0_el1)
1821 FUNCTION_INVARIANT(id_afr0_el1)
1822 FUNCTION_INVARIANT(id_mmfr0_el1)
1823 FUNCTION_INVARIANT(id_mmfr1_el1)
1824 FUNCTION_INVARIANT(id_mmfr2_el1)
1825 FUNCTION_INVARIANT(id_mmfr3_el1)
1826 FUNCTION_INVARIANT(id_isar0_el1)
1827 FUNCTION_INVARIANT(id_isar1_el1)
1828 FUNCTION_INVARIANT(id_isar2_el1)
1829 FUNCTION_INVARIANT(id_isar3_el1)
1830 FUNCTION_INVARIANT(id_isar4_el1)
1831 FUNCTION_INVARIANT(id_isar5_el1)
1832 FUNCTION_INVARIANT(clidr_el1)
1833 FUNCTION_INVARIANT(aidr_el1)
1834
1835 /* ->val is filled in by kvm_sys_reg_table_init() */
1836 static struct sys_reg_desc invariant_sys_regs[] = {
1837         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
1838         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
1839         { SYS_DESC(SYS_ID_PFR0_EL1), NULL, get_id_pfr0_el1 },
1840         { SYS_DESC(SYS_ID_PFR1_EL1), NULL, get_id_pfr1_el1 },
1841         { SYS_DESC(SYS_ID_DFR0_EL1), NULL, get_id_dfr0_el1 },
1842         { SYS_DESC(SYS_ID_AFR0_EL1), NULL, get_id_afr0_el1 },
1843         { SYS_DESC(SYS_ID_MMFR0_EL1), NULL, get_id_mmfr0_el1 },
1844         { SYS_DESC(SYS_ID_MMFR1_EL1), NULL, get_id_mmfr1_el1 },
1845         { SYS_DESC(SYS_ID_MMFR2_EL1), NULL, get_id_mmfr2_el1 },
1846         { SYS_DESC(SYS_ID_MMFR3_EL1), NULL, get_id_mmfr3_el1 },
1847         { SYS_DESC(SYS_ID_ISAR0_EL1), NULL, get_id_isar0_el1 },
1848         { SYS_DESC(SYS_ID_ISAR1_EL1), NULL, get_id_isar1_el1 },
1849         { SYS_DESC(SYS_ID_ISAR2_EL1), NULL, get_id_isar2_el1 },
1850         { SYS_DESC(SYS_ID_ISAR3_EL1), NULL, get_id_isar3_el1 },
1851         { SYS_DESC(SYS_ID_ISAR4_EL1), NULL, get_id_isar4_el1 },
1852         { SYS_DESC(SYS_ID_ISAR5_EL1), NULL, get_id_isar5_el1 },
1853         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
1854         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
1855         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
1856 };
1857
1858 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1859 {
1860         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1861                 return -EFAULT;
1862         return 0;
1863 }
1864
1865 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1866 {
1867         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1868                 return -EFAULT;
1869         return 0;
1870 }
1871
1872 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1873 {
1874         struct sys_reg_params params;
1875         const struct sys_reg_desc *r;
1876
1877         r = find_reg_by_id(id, &params, invariant_sys_regs,
1878                            ARRAY_SIZE(invariant_sys_regs));
1879         if (!r)
1880                 return -ENOENT;
1881
1882         return reg_to_user(uaddr, &r->val, id);
1883 }
1884
1885 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1886 {
1887         struct sys_reg_params params;
1888         const struct sys_reg_desc *r;
1889         int err;
1890         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1891
1892         r = find_reg_by_id(id, &params, invariant_sys_regs,
1893                            ARRAY_SIZE(invariant_sys_regs));
1894         if (!r)
1895                 return -ENOENT;
1896
1897         err = reg_from_user(&val, uaddr, id);
1898         if (err)
1899                 return err;
1900
1901         /* This is what we mean by invariant: you can't change it. */
1902         if (r->val != val)
1903                 return -EINVAL;
1904
1905         return 0;
1906 }
1907
1908 static bool is_valid_cache(u32 val)
1909 {
1910         u32 level, ctype;
1911
1912         if (val >= CSSELR_MAX)
1913                 return false;
1914
1915         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1916         level = (val >> 1);
1917         ctype = (cache_levels >> (level * 3)) & 7;
1918
1919         switch (ctype) {
1920         case 0: /* No cache */
1921                 return false;
1922         case 1: /* Instruction cache only */
1923                 return (val & 1);
1924         case 2: /* Data cache only */
1925         case 4: /* Unified cache */
1926                 return !(val & 1);
1927         case 3: /* Separate instruction and data caches */
1928                 return true;
1929         default: /* Reserved: we can't know instruction or data. */
1930                 return false;
1931         }
1932 }
1933
1934 static int demux_c15_get(u64 id, void __user *uaddr)
1935 {
1936         u32 val;
1937         u32 __user *uval = uaddr;
1938
1939         /* Fail if we have unknown bits set. */
1940         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1941                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1942                 return -ENOENT;
1943
1944         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1945         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1946                 if (KVM_REG_SIZE(id) != 4)
1947                         return -ENOENT;
1948                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1949                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1950                 if (!is_valid_cache(val))
1951                         return -ENOENT;
1952
1953                 return put_user(get_ccsidr(val), uval);
1954         default:
1955                 return -ENOENT;
1956         }
1957 }
1958
1959 static int demux_c15_set(u64 id, void __user *uaddr)
1960 {
1961         u32 val, newval;
1962         u32 __user *uval = uaddr;
1963
1964         /* Fail if we have unknown bits set. */
1965         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1966                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1967                 return -ENOENT;
1968
1969         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1970         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1971                 if (KVM_REG_SIZE(id) != 4)
1972                         return -ENOENT;
1973                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1974                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1975                 if (!is_valid_cache(val))
1976                         return -ENOENT;
1977
1978                 if (get_user(newval, uval))
1979                         return -EFAULT;
1980
1981                 /* This is also invariant: you can't change it. */
1982                 if (newval != get_ccsidr(val))
1983                         return -EINVAL;
1984                 return 0;
1985         default:
1986                 return -ENOENT;
1987         }
1988 }
1989
1990 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1991 {
1992         const struct sys_reg_desc *r;
1993         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1994
1995         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1996                 return demux_c15_get(reg->id, uaddr);
1997
1998         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1999                 return -ENOENT;
2000
2001         r = index_to_sys_reg_desc(vcpu, reg->id);
2002         if (!r)
2003                 return get_invariant_sys_reg(reg->id, uaddr);
2004
2005         if (r->get_user)
2006                 return (r->get_user)(vcpu, r, reg, uaddr);
2007
2008         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2009 }
2010
2011 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2012 {
2013         const struct sys_reg_desc *r;
2014         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2015
2016         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2017                 return demux_c15_set(reg->id, uaddr);
2018
2019         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2020                 return -ENOENT;
2021
2022         r = index_to_sys_reg_desc(vcpu, reg->id);
2023         if (!r)
2024                 return set_invariant_sys_reg(reg->id, uaddr);
2025
2026         if (r->set_user)
2027                 return (r->set_user)(vcpu, r, reg, uaddr);
2028
2029         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2030 }
2031
2032 static unsigned int num_demux_regs(void)
2033 {
2034         unsigned int i, count = 0;
2035
2036         for (i = 0; i < CSSELR_MAX; i++)
2037                 if (is_valid_cache(i))
2038                         count++;
2039
2040         return count;
2041 }
2042
2043 static int write_demux_regids(u64 __user *uindices)
2044 {
2045         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2046         unsigned int i;
2047
2048         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2049         for (i = 0; i < CSSELR_MAX; i++) {
2050                 if (!is_valid_cache(i))
2051                         continue;
2052                 if (put_user(val | i, uindices))
2053                         return -EFAULT;
2054                 uindices++;
2055         }
2056         return 0;
2057 }
2058
2059 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2060 {
2061         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2062                 KVM_REG_ARM64_SYSREG |
2063                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2064                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2065                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2066                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2067                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2068 }
2069
2070 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2071 {
2072         if (!*uind)
2073                 return true;
2074
2075         if (put_user(sys_reg_to_index(reg), *uind))
2076                 return false;
2077
2078         (*uind)++;
2079         return true;
2080 }
2081
2082 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2083 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2084 {
2085         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2086         unsigned int total = 0;
2087         size_t num;
2088
2089         /* We check for duplicates here, to allow arch-specific overrides. */
2090         i1 = get_target_table(vcpu->arch.target, true, &num);
2091         end1 = i1 + num;
2092         i2 = sys_reg_descs;
2093         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2094
2095         BUG_ON(i1 == end1 || i2 == end2);
2096
2097         /* Walk carefully, as both tables may refer to the same register. */
2098         while (i1 || i2) {
2099                 int cmp = cmp_sys_reg(i1, i2);
2100                 /* target-specific overrides generic entry. */
2101                 if (cmp <= 0) {
2102                         /* Ignore registers we trap but don't save. */
2103                         if (i1->reg) {
2104                                 if (!copy_reg_to_user(i1, &uind))
2105                                         return -EFAULT;
2106                                 total++;
2107                         }
2108                 } else {
2109                         /* Ignore registers we trap but don't save. */
2110                         if (i2->reg) {
2111                                 if (!copy_reg_to_user(i2, &uind))
2112                                         return -EFAULT;
2113                                 total++;
2114                         }
2115                 }
2116
2117                 if (cmp <= 0 && ++i1 == end1)
2118                         i1 = NULL;
2119                 if (cmp >= 0 && ++i2 == end2)
2120                         i2 = NULL;
2121         }
2122         return total;
2123 }
2124
2125 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2126 {
2127         return ARRAY_SIZE(invariant_sys_regs)
2128                 + num_demux_regs()
2129                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2130 }
2131
2132 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2133 {
2134         unsigned int i;
2135         int err;
2136
2137         /* Then give them all the invariant registers' indices. */
2138         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2139                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2140                         return -EFAULT;
2141                 uindices++;
2142         }
2143
2144         err = walk_sys_regs(vcpu, uindices);
2145         if (err < 0)
2146                 return err;
2147         uindices += err;
2148
2149         return write_demux_regids(uindices);
2150 }
2151
2152 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2153 {
2154         unsigned int i;
2155
2156         for (i = 1; i < n; i++) {
2157                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2158                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2159                         return 1;
2160                 }
2161         }
2162
2163         return 0;
2164 }
2165
2166 void kvm_sys_reg_table_init(void)
2167 {
2168         unsigned int i;
2169         struct sys_reg_desc clidr;
2170
2171         /* Make sure tables are unique and in order. */
2172         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2173         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2174         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2175         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2176         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2177         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2178
2179         /* We abuse the reset function to overwrite the table itself. */
2180         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2181                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2182
2183         /*
2184          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2185          *
2186          *   If software reads the Cache Type fields from Ctype1
2187          *   upwards, once it has seen a value of 0b000, no caches
2188          *   exist at further-out levels of the hierarchy. So, for
2189          *   example, if Ctype3 is the first Cache Type field with a
2190          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2191          *   ignored.
2192          */
2193         get_clidr_el1(NULL, &clidr); /* Ugly... */
2194         cache_levels = clidr.val;
2195         for (i = 0; i < 7; i++)
2196                 if (((cache_levels >> (i*3)) & 7) == 0)
2197                         break;
2198         /* Clear all higher bits. */
2199         cache_levels &= (1 << (i*3))-1;
2200 }
2201
2202 /**
2203  * kvm_reset_sys_regs - sets system registers to reset value
2204  * @vcpu: The VCPU pointer
2205  *
2206  * This function finds the right table above and sets the registers on the
2207  * virtual CPU struct to their architecturally defined reset values.
2208  */
2209 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2210 {
2211         size_t num;
2212         const struct sys_reg_desc *table;
2213
2214         /* Catch someone adding a register without putting in reset entry. */
2215         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2216
2217         /* Generic chip reset first (so target could override). */
2218         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2219
2220         table = get_target_table(vcpu->arch.target, true, &num);
2221         reset_sys_reg_descs(vcpu, table, num);
2222
2223         for (num = 1; num < NR_SYS_REGS; num++)
2224                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2225                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
2226 }