]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/mips/kvm/mips.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24
25 #include <linux/kvm_host.h>
26
27 #include "interrupt.h"
28 #include "commpage.h"
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100     /* for EI/VI mode */
35 #endif
36
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
40         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
41         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
42         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
43         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
45         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
46         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
47         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
48         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
49         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
50         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
51         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
52         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
53         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
54         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
55         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
59         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
60         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
61         {NULL}
62 };
63
64 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
65 {
66         int i;
67
68         for_each_possible_cpu(i) {
69                 vcpu->arch.guest_kernel_asid[i] = 0;
70                 vcpu->arch.guest_user_asid[i] = 0;
71         }
72
73         return 0;
74 }
75
76 /*
77  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
78  * Config7, so we are "runnable" if interrupts are pending
79  */
80 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
81 {
82         return !!(vcpu->arch.pending_exceptions);
83 }
84
85 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
86 {
87         return 1;
88 }
89
90 int kvm_arch_hardware_enable(void)
91 {
92         return 0;
93 }
94
95 int kvm_arch_hardware_setup(void)
96 {
97         return 0;
98 }
99
100 void kvm_arch_check_processor_compat(void *rtn)
101 {
102         *(int *)rtn = 0;
103 }
104
105 static void kvm_mips_init_tlbs(struct kvm *kvm)
106 {
107         unsigned long wired;
108
109         /*
110          * Add a wired entry to the TLB, it is used to map the commpage to
111          * the Guest kernel
112          */
113         wired = read_c0_wired();
114         write_c0_wired(wired + 1);
115         mtc0_tlbw_hazard();
116         kvm->arch.commpage_tlb = wired;
117
118         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
119                   kvm->arch.commpage_tlb);
120 }
121
122 static void kvm_mips_init_vm_percpu(void *arg)
123 {
124         struct kvm *kvm = (struct kvm *)arg;
125
126         kvm_mips_init_tlbs(kvm);
127         kvm_mips_callbacks->vm_init(kvm);
128
129 }
130
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133         if (atomic_inc_return(&kvm_mips_instance) == 1) {
134                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
135                           __func__);
136                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
137         }
138
139         return 0;
140 }
141
142 void kvm_mips_free_vcpus(struct kvm *kvm)
143 {
144         unsigned int i;
145         struct kvm_vcpu *vcpu;
146
147         /* Put the pages we reserved for the guest pmap */
148         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
149                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
150                         kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
151         }
152         kfree(kvm->arch.guest_pmap);
153
154         kvm_for_each_vcpu(i, vcpu, kvm) {
155                 kvm_arch_vcpu_free(vcpu);
156         }
157
158         mutex_lock(&kvm->lock);
159
160         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
161                 kvm->vcpus[i] = NULL;
162
163         atomic_set(&kvm->online_vcpus, 0);
164
165         mutex_unlock(&kvm->lock);
166 }
167
168 static void kvm_mips_uninit_tlbs(void *arg)
169 {
170         /* Restore wired count */
171         write_c0_wired(0);
172         mtc0_tlbw_hazard();
173         /* Clear out all the TLBs */
174         kvm_local_flush_tlb_all();
175 }
176
177 void kvm_arch_destroy_vm(struct kvm *kvm)
178 {
179         kvm_mips_free_vcpus(kvm);
180
181         /* If this is the last instance, restore wired count */
182         if (atomic_dec_return(&kvm_mips_instance) == 0) {
183                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
184                           __func__);
185                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
186         }
187 }
188
189 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
190                         unsigned long arg)
191 {
192         return -ENOIOCTLCMD;
193 }
194
195 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
196                             unsigned long npages)
197 {
198         return 0;
199 }
200
201 int kvm_arch_prepare_memory_region(struct kvm *kvm,
202                                    struct kvm_memory_slot *memslot,
203                                    const struct kvm_userspace_memory_region *mem,
204                                    enum kvm_mr_change change)
205 {
206         return 0;
207 }
208
209 void kvm_arch_commit_memory_region(struct kvm *kvm,
210                                    const struct kvm_userspace_memory_region *mem,
211                                    const struct kvm_memory_slot *old,
212                                    const struct kvm_memory_slot *new,
213                                    enum kvm_mr_change change)
214 {
215         unsigned long npages = 0;
216         int i;
217
218         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
219                   __func__, kvm, mem->slot, mem->guest_phys_addr,
220                   mem->memory_size, mem->userspace_addr);
221
222         /* Setup Guest PMAP table */
223         if (!kvm->arch.guest_pmap) {
224                 if (mem->slot == 0)
225                         npages = mem->memory_size >> PAGE_SHIFT;
226
227                 if (npages) {
228                         kvm->arch.guest_pmap_npages = npages;
229                         kvm->arch.guest_pmap =
230                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
231
232                         if (!kvm->arch.guest_pmap) {
233                                 kvm_err("Failed to allocate guest PMAP\n");
234                                 return;
235                         }
236
237                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
238                                   npages, kvm->arch.guest_pmap);
239
240                         /* Now setup the page table */
241                         for (i = 0; i < npages; i++)
242                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
243                 }
244         }
245 }
246
247 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
248 {
249         int err, size, offset;
250         void *gebase;
251         int i;
252
253         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
254
255         if (!vcpu) {
256                 err = -ENOMEM;
257                 goto out;
258         }
259
260         err = kvm_vcpu_init(vcpu, kvm, id);
261
262         if (err)
263                 goto out_free_cpu;
264
265         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
266
267         /*
268          * Allocate space for host mode exception handlers that handle
269          * guest mode exits
270          */
271         if (cpu_has_veic || cpu_has_vint)
272                 size = 0x200 + VECTORSPACING * 64;
273         else
274                 size = 0x4000;
275
276         /* Save Linux EBASE */
277         vcpu->arch.host_ebase = (void *)read_c0_ebase();
278
279         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
280
281         if (!gebase) {
282                 err = -ENOMEM;
283                 goto out_uninit_cpu;
284         }
285         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
286                   ALIGN(size, PAGE_SIZE), gebase);
287
288         /* Save new ebase */
289         vcpu->arch.guest_ebase = gebase;
290
291         /* Copy L1 Guest Exception handler to correct offset */
292
293         /* TLB Refill, EXL = 0 */
294         memcpy(gebase, mips32_exception,
295                mips32_exceptionEnd - mips32_exception);
296
297         /* General Exception Entry point */
298         memcpy(gebase + 0x180, mips32_exception,
299                mips32_exceptionEnd - mips32_exception);
300
301         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
302         for (i = 0; i < 8; i++) {
303                 kvm_debug("L1 Vectored handler @ %p\n",
304                           gebase + 0x200 + (i * VECTORSPACING));
305                 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
306                        mips32_exceptionEnd - mips32_exception);
307         }
308
309         /* General handler, relocate to unmapped space for sanity's sake */
310         offset = 0x2000;
311         kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
312                   gebase + offset,
313                   mips32_GuestExceptionEnd - mips32_GuestException);
314
315         memcpy(gebase + offset, mips32_GuestException,
316                mips32_GuestExceptionEnd - mips32_GuestException);
317
318 #ifdef MODULE
319         offset += mips32_GuestExceptionEnd - mips32_GuestException;
320         memcpy(gebase + offset, (char *)__kvm_mips_vcpu_run,
321                __kvm_mips_vcpu_run_end - (char *)__kvm_mips_vcpu_run);
322         vcpu->arch.vcpu_run = gebase + offset;
323 #else
324         vcpu->arch.vcpu_run = __kvm_mips_vcpu_run;
325 #endif
326
327         /* Invalidate the icache for these ranges */
328         local_flush_icache_range((unsigned long)gebase,
329                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
330
331         /*
332          * Allocate comm page for guest kernel, a TLB will be reserved for
333          * mapping GVA @ 0xFFFF8000 to this page
334          */
335         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
336
337         if (!vcpu->arch.kseg0_commpage) {
338                 err = -ENOMEM;
339                 goto out_free_gebase;
340         }
341
342         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
343         kvm_mips_commpage_init(vcpu);
344
345         /* Init */
346         vcpu->arch.last_sched_cpu = -1;
347
348         /* Start off the timer */
349         kvm_mips_init_count(vcpu);
350
351         return vcpu;
352
353 out_free_gebase:
354         kfree(gebase);
355
356 out_uninit_cpu:
357         kvm_vcpu_uninit(vcpu);
358
359 out_free_cpu:
360         kfree(vcpu);
361
362 out:
363         return ERR_PTR(err);
364 }
365
366 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
367 {
368         hrtimer_cancel(&vcpu->arch.comparecount_timer);
369
370         kvm_vcpu_uninit(vcpu);
371
372         kvm_mips_dump_stats(vcpu);
373
374         kfree(vcpu->arch.guest_ebase);
375         kfree(vcpu->arch.kseg0_commpage);
376         kfree(vcpu);
377 }
378
379 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
380 {
381         kvm_arch_vcpu_free(vcpu);
382 }
383
384 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
385                                         struct kvm_guest_debug *dbg)
386 {
387         return -ENOIOCTLCMD;
388 }
389
390 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
391 {
392         int r = 0;
393         sigset_t sigsaved;
394
395         if (vcpu->sigset_active)
396                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
397
398         if (vcpu->mmio_needed) {
399                 if (!vcpu->mmio_is_write)
400                         kvm_mips_complete_mmio_load(vcpu, run);
401                 vcpu->mmio_needed = 0;
402         }
403
404         lose_fpu(1);
405
406         local_irq_disable();
407         /* Check if we have any exceptions/interrupts pending */
408         kvm_mips_deliver_interrupts(vcpu,
409                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
410
411         __kvm_guest_enter();
412
413         /* Disable hardware page table walking while in guest */
414         htw_stop();
415
416         r = vcpu->arch.vcpu_run(run, vcpu);
417
418         /* Re-enable HTW before enabling interrupts */
419         htw_start();
420
421         __kvm_guest_exit();
422         local_irq_enable();
423
424         if (vcpu->sigset_active)
425                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
426
427         return r;
428 }
429
430 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
431                              struct kvm_mips_interrupt *irq)
432 {
433         int intr = (int)irq->irq;
434         struct kvm_vcpu *dvcpu = NULL;
435
436         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
437                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
438                           (int)intr);
439
440         if (irq->cpu == -1)
441                 dvcpu = vcpu;
442         else
443                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
444
445         if (intr == 2 || intr == 3 || intr == 4) {
446                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
447
448         } else if (intr == -2 || intr == -3 || intr == -4) {
449                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
450         } else {
451                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
452                         irq->cpu, irq->irq);
453                 return -EINVAL;
454         }
455
456         dvcpu->arch.wait = 0;
457
458         if (swait_active(&dvcpu->wq))
459                 swake_up(&dvcpu->wq);
460
461         return 0;
462 }
463
464 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
465                                     struct kvm_mp_state *mp_state)
466 {
467         return -ENOIOCTLCMD;
468 }
469
470 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
471                                     struct kvm_mp_state *mp_state)
472 {
473         return -ENOIOCTLCMD;
474 }
475
476 static u64 kvm_mips_get_one_regs[] = {
477         KVM_REG_MIPS_R0,
478         KVM_REG_MIPS_R1,
479         KVM_REG_MIPS_R2,
480         KVM_REG_MIPS_R3,
481         KVM_REG_MIPS_R4,
482         KVM_REG_MIPS_R5,
483         KVM_REG_MIPS_R6,
484         KVM_REG_MIPS_R7,
485         KVM_REG_MIPS_R8,
486         KVM_REG_MIPS_R9,
487         KVM_REG_MIPS_R10,
488         KVM_REG_MIPS_R11,
489         KVM_REG_MIPS_R12,
490         KVM_REG_MIPS_R13,
491         KVM_REG_MIPS_R14,
492         KVM_REG_MIPS_R15,
493         KVM_REG_MIPS_R16,
494         KVM_REG_MIPS_R17,
495         KVM_REG_MIPS_R18,
496         KVM_REG_MIPS_R19,
497         KVM_REG_MIPS_R20,
498         KVM_REG_MIPS_R21,
499         KVM_REG_MIPS_R22,
500         KVM_REG_MIPS_R23,
501         KVM_REG_MIPS_R24,
502         KVM_REG_MIPS_R25,
503         KVM_REG_MIPS_R26,
504         KVM_REG_MIPS_R27,
505         KVM_REG_MIPS_R28,
506         KVM_REG_MIPS_R29,
507         KVM_REG_MIPS_R30,
508         KVM_REG_MIPS_R31,
509
510         KVM_REG_MIPS_HI,
511         KVM_REG_MIPS_LO,
512         KVM_REG_MIPS_PC,
513
514         KVM_REG_MIPS_CP0_INDEX,
515         KVM_REG_MIPS_CP0_CONTEXT,
516         KVM_REG_MIPS_CP0_USERLOCAL,
517         KVM_REG_MIPS_CP0_PAGEMASK,
518         KVM_REG_MIPS_CP0_WIRED,
519         KVM_REG_MIPS_CP0_HWRENA,
520         KVM_REG_MIPS_CP0_BADVADDR,
521         KVM_REG_MIPS_CP0_COUNT,
522         KVM_REG_MIPS_CP0_ENTRYHI,
523         KVM_REG_MIPS_CP0_COMPARE,
524         KVM_REG_MIPS_CP0_STATUS,
525         KVM_REG_MIPS_CP0_CAUSE,
526         KVM_REG_MIPS_CP0_EPC,
527         KVM_REG_MIPS_CP0_PRID,
528         KVM_REG_MIPS_CP0_CONFIG,
529         KVM_REG_MIPS_CP0_CONFIG1,
530         KVM_REG_MIPS_CP0_CONFIG2,
531         KVM_REG_MIPS_CP0_CONFIG3,
532         KVM_REG_MIPS_CP0_CONFIG4,
533         KVM_REG_MIPS_CP0_CONFIG5,
534         KVM_REG_MIPS_CP0_CONFIG7,
535         KVM_REG_MIPS_CP0_ERROREPC,
536
537         KVM_REG_MIPS_COUNT_CTL,
538         KVM_REG_MIPS_COUNT_RESUME,
539         KVM_REG_MIPS_COUNT_HZ,
540 };
541
542 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
543                             const struct kvm_one_reg *reg)
544 {
545         struct mips_coproc *cop0 = vcpu->arch.cop0;
546         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
547         int ret;
548         s64 v;
549         s64 vs[2];
550         unsigned int idx;
551
552         switch (reg->id) {
553         /* General purpose registers */
554         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
555                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
556                 break;
557         case KVM_REG_MIPS_HI:
558                 v = (long)vcpu->arch.hi;
559                 break;
560         case KVM_REG_MIPS_LO:
561                 v = (long)vcpu->arch.lo;
562                 break;
563         case KVM_REG_MIPS_PC:
564                 v = (long)vcpu->arch.pc;
565                 break;
566
567         /* Floating point registers */
568         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
569                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
570                         return -EINVAL;
571                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
572                 /* Odd singles in top of even double when FR=0 */
573                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
574                         v = get_fpr32(&fpu->fpr[idx], 0);
575                 else
576                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
577                 break;
578         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
579                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
580                         return -EINVAL;
581                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
582                 /* Can't access odd doubles in FR=0 mode */
583                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
584                         return -EINVAL;
585                 v = get_fpr64(&fpu->fpr[idx], 0);
586                 break;
587         case KVM_REG_MIPS_FCR_IR:
588                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
589                         return -EINVAL;
590                 v = boot_cpu_data.fpu_id;
591                 break;
592         case KVM_REG_MIPS_FCR_CSR:
593                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
594                         return -EINVAL;
595                 v = fpu->fcr31;
596                 break;
597
598         /* MIPS SIMD Architecture (MSA) registers */
599         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
600                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
601                         return -EINVAL;
602                 /* Can't access MSA registers in FR=0 mode */
603                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
604                         return -EINVAL;
605                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
606 #ifdef CONFIG_CPU_LITTLE_ENDIAN
607                 /* least significant byte first */
608                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
609                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
610 #else
611                 /* most significant byte first */
612                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
613                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
614 #endif
615                 break;
616         case KVM_REG_MIPS_MSA_IR:
617                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
618                         return -EINVAL;
619                 v = boot_cpu_data.msa_id;
620                 break;
621         case KVM_REG_MIPS_MSA_CSR:
622                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
623                         return -EINVAL;
624                 v = fpu->msacsr;
625                 break;
626
627         /* Co-processor 0 registers */
628         case KVM_REG_MIPS_CP0_INDEX:
629                 v = (long)kvm_read_c0_guest_index(cop0);
630                 break;
631         case KVM_REG_MIPS_CP0_CONTEXT:
632                 v = (long)kvm_read_c0_guest_context(cop0);
633                 break;
634         case KVM_REG_MIPS_CP0_USERLOCAL:
635                 v = (long)kvm_read_c0_guest_userlocal(cop0);
636                 break;
637         case KVM_REG_MIPS_CP0_PAGEMASK:
638                 v = (long)kvm_read_c0_guest_pagemask(cop0);
639                 break;
640         case KVM_REG_MIPS_CP0_WIRED:
641                 v = (long)kvm_read_c0_guest_wired(cop0);
642                 break;
643         case KVM_REG_MIPS_CP0_HWRENA:
644                 v = (long)kvm_read_c0_guest_hwrena(cop0);
645                 break;
646         case KVM_REG_MIPS_CP0_BADVADDR:
647                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
648                 break;
649         case KVM_REG_MIPS_CP0_ENTRYHI:
650                 v = (long)kvm_read_c0_guest_entryhi(cop0);
651                 break;
652         case KVM_REG_MIPS_CP0_COMPARE:
653                 v = (long)kvm_read_c0_guest_compare(cop0);
654                 break;
655         case KVM_REG_MIPS_CP0_STATUS:
656                 v = (long)kvm_read_c0_guest_status(cop0);
657                 break;
658         case KVM_REG_MIPS_CP0_CAUSE:
659                 v = (long)kvm_read_c0_guest_cause(cop0);
660                 break;
661         case KVM_REG_MIPS_CP0_EPC:
662                 v = (long)kvm_read_c0_guest_epc(cop0);
663                 break;
664         case KVM_REG_MIPS_CP0_PRID:
665                 v = (long)kvm_read_c0_guest_prid(cop0);
666                 break;
667         case KVM_REG_MIPS_CP0_CONFIG:
668                 v = (long)kvm_read_c0_guest_config(cop0);
669                 break;
670         case KVM_REG_MIPS_CP0_CONFIG1:
671                 v = (long)kvm_read_c0_guest_config1(cop0);
672                 break;
673         case KVM_REG_MIPS_CP0_CONFIG2:
674                 v = (long)kvm_read_c0_guest_config2(cop0);
675                 break;
676         case KVM_REG_MIPS_CP0_CONFIG3:
677                 v = (long)kvm_read_c0_guest_config3(cop0);
678                 break;
679         case KVM_REG_MIPS_CP0_CONFIG4:
680                 v = (long)kvm_read_c0_guest_config4(cop0);
681                 break;
682         case KVM_REG_MIPS_CP0_CONFIG5:
683                 v = (long)kvm_read_c0_guest_config5(cop0);
684                 break;
685         case KVM_REG_MIPS_CP0_CONFIG7:
686                 v = (long)kvm_read_c0_guest_config7(cop0);
687                 break;
688         case KVM_REG_MIPS_CP0_ERROREPC:
689                 v = (long)kvm_read_c0_guest_errorepc(cop0);
690                 break;
691         /* registers to be handled specially */
692         case KVM_REG_MIPS_CP0_COUNT:
693         case KVM_REG_MIPS_COUNT_CTL:
694         case KVM_REG_MIPS_COUNT_RESUME:
695         case KVM_REG_MIPS_COUNT_HZ:
696                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
697                 if (ret)
698                         return ret;
699                 break;
700         default:
701                 return -EINVAL;
702         }
703         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
704                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
705
706                 return put_user(v, uaddr64);
707         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
708                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
709                 u32 v32 = (u32)v;
710
711                 return put_user(v32, uaddr32);
712         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
713                 void __user *uaddr = (void __user *)(long)reg->addr;
714
715                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
716         } else {
717                 return -EINVAL;
718         }
719 }
720
721 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
722                             const struct kvm_one_reg *reg)
723 {
724         struct mips_coproc *cop0 = vcpu->arch.cop0;
725         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
726         s64 v;
727         s64 vs[2];
728         unsigned int idx;
729
730         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
731                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
732
733                 if (get_user(v, uaddr64) != 0)
734                         return -EFAULT;
735         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
736                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
737                 s32 v32;
738
739                 if (get_user(v32, uaddr32) != 0)
740                         return -EFAULT;
741                 v = (s64)v32;
742         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
743                 void __user *uaddr = (void __user *)(long)reg->addr;
744
745                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
746         } else {
747                 return -EINVAL;
748         }
749
750         switch (reg->id) {
751         /* General purpose registers */
752         case KVM_REG_MIPS_R0:
753                 /* Silently ignore requests to set $0 */
754                 break;
755         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
756                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
757                 break;
758         case KVM_REG_MIPS_HI:
759                 vcpu->arch.hi = v;
760                 break;
761         case KVM_REG_MIPS_LO:
762                 vcpu->arch.lo = v;
763                 break;
764         case KVM_REG_MIPS_PC:
765                 vcpu->arch.pc = v;
766                 break;
767
768         /* Floating point registers */
769         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
770                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
771                         return -EINVAL;
772                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
773                 /* Odd singles in top of even double when FR=0 */
774                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
775                         set_fpr32(&fpu->fpr[idx], 0, v);
776                 else
777                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
778                 break;
779         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
780                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
781                         return -EINVAL;
782                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
783                 /* Can't access odd doubles in FR=0 mode */
784                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
785                         return -EINVAL;
786                 set_fpr64(&fpu->fpr[idx], 0, v);
787                 break;
788         case KVM_REG_MIPS_FCR_IR:
789                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
790                         return -EINVAL;
791                 /* Read-only */
792                 break;
793         case KVM_REG_MIPS_FCR_CSR:
794                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
795                         return -EINVAL;
796                 fpu->fcr31 = v;
797                 break;
798
799         /* MIPS SIMD Architecture (MSA) registers */
800         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
801                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
802                         return -EINVAL;
803                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
804 #ifdef CONFIG_CPU_LITTLE_ENDIAN
805                 /* least significant byte first */
806                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
807                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
808 #else
809                 /* most significant byte first */
810                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
811                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
812 #endif
813                 break;
814         case KVM_REG_MIPS_MSA_IR:
815                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
816                         return -EINVAL;
817                 /* Read-only */
818                 break;
819         case KVM_REG_MIPS_MSA_CSR:
820                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
821                         return -EINVAL;
822                 fpu->msacsr = v;
823                 break;
824
825         /* Co-processor 0 registers */
826         case KVM_REG_MIPS_CP0_INDEX:
827                 kvm_write_c0_guest_index(cop0, v);
828                 break;
829         case KVM_REG_MIPS_CP0_CONTEXT:
830                 kvm_write_c0_guest_context(cop0, v);
831                 break;
832         case KVM_REG_MIPS_CP0_USERLOCAL:
833                 kvm_write_c0_guest_userlocal(cop0, v);
834                 break;
835         case KVM_REG_MIPS_CP0_PAGEMASK:
836                 kvm_write_c0_guest_pagemask(cop0, v);
837                 break;
838         case KVM_REG_MIPS_CP0_WIRED:
839                 kvm_write_c0_guest_wired(cop0, v);
840                 break;
841         case KVM_REG_MIPS_CP0_HWRENA:
842                 kvm_write_c0_guest_hwrena(cop0, v);
843                 break;
844         case KVM_REG_MIPS_CP0_BADVADDR:
845                 kvm_write_c0_guest_badvaddr(cop0, v);
846                 break;
847         case KVM_REG_MIPS_CP0_ENTRYHI:
848                 kvm_write_c0_guest_entryhi(cop0, v);
849                 break;
850         case KVM_REG_MIPS_CP0_STATUS:
851                 kvm_write_c0_guest_status(cop0, v);
852                 break;
853         case KVM_REG_MIPS_CP0_EPC:
854                 kvm_write_c0_guest_epc(cop0, v);
855                 break;
856         case KVM_REG_MIPS_CP0_PRID:
857                 kvm_write_c0_guest_prid(cop0, v);
858                 break;
859         case KVM_REG_MIPS_CP0_ERROREPC:
860                 kvm_write_c0_guest_errorepc(cop0, v);
861                 break;
862         /* registers to be handled specially */
863         case KVM_REG_MIPS_CP0_COUNT:
864         case KVM_REG_MIPS_CP0_COMPARE:
865         case KVM_REG_MIPS_CP0_CAUSE:
866         case KVM_REG_MIPS_CP0_CONFIG:
867         case KVM_REG_MIPS_CP0_CONFIG1:
868         case KVM_REG_MIPS_CP0_CONFIG2:
869         case KVM_REG_MIPS_CP0_CONFIG3:
870         case KVM_REG_MIPS_CP0_CONFIG4:
871         case KVM_REG_MIPS_CP0_CONFIG5:
872         case KVM_REG_MIPS_COUNT_CTL:
873         case KVM_REG_MIPS_COUNT_RESUME:
874         case KVM_REG_MIPS_COUNT_HZ:
875                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
876         default:
877                 return -EINVAL;
878         }
879         return 0;
880 }
881
882 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
883                                      struct kvm_enable_cap *cap)
884 {
885         int r = 0;
886
887         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
888                 return -EINVAL;
889         if (cap->flags)
890                 return -EINVAL;
891         if (cap->args[0])
892                 return -EINVAL;
893
894         switch (cap->cap) {
895         case KVM_CAP_MIPS_FPU:
896                 vcpu->arch.fpu_enabled = true;
897                 break;
898         case KVM_CAP_MIPS_MSA:
899                 vcpu->arch.msa_enabled = true;
900                 break;
901         default:
902                 r = -EINVAL;
903                 break;
904         }
905
906         return r;
907 }
908
909 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
910                          unsigned long arg)
911 {
912         struct kvm_vcpu *vcpu = filp->private_data;
913         void __user *argp = (void __user *)arg;
914         long r;
915
916         switch (ioctl) {
917         case KVM_SET_ONE_REG:
918         case KVM_GET_ONE_REG: {
919                 struct kvm_one_reg reg;
920
921                 if (copy_from_user(&reg, argp, sizeof(reg)))
922                         return -EFAULT;
923                 if (ioctl == KVM_SET_ONE_REG)
924                         return kvm_mips_set_reg(vcpu, &reg);
925                 else
926                         return kvm_mips_get_reg(vcpu, &reg);
927         }
928         case KVM_GET_REG_LIST: {
929                 struct kvm_reg_list __user *user_list = argp;
930                 u64 __user *reg_dest;
931                 struct kvm_reg_list reg_list;
932                 unsigned n;
933
934                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
935                         return -EFAULT;
936                 n = reg_list.n;
937                 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
938                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
939                         return -EFAULT;
940                 if (n < reg_list.n)
941                         return -E2BIG;
942                 reg_dest = user_list->reg;
943                 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
944                                  sizeof(kvm_mips_get_one_regs)))
945                         return -EFAULT;
946                 return 0;
947         }
948         case KVM_NMI:
949                 /* Treat the NMI as a CPU reset */
950                 r = kvm_mips_reset_vcpu(vcpu);
951                 break;
952         case KVM_INTERRUPT:
953                 {
954                         struct kvm_mips_interrupt irq;
955
956                         r = -EFAULT;
957                         if (copy_from_user(&irq, argp, sizeof(irq)))
958                                 goto out;
959
960                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
961                                   irq.irq);
962
963                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
964                         break;
965                 }
966         case KVM_ENABLE_CAP: {
967                 struct kvm_enable_cap cap;
968
969                 r = -EFAULT;
970                 if (copy_from_user(&cap, argp, sizeof(cap)))
971                         goto out;
972                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
973                 break;
974         }
975         default:
976                 r = -ENOIOCTLCMD;
977         }
978
979 out:
980         return r;
981 }
982
983 /* Get (and clear) the dirty memory log for a memory slot. */
984 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
985 {
986         struct kvm_memslots *slots;
987         struct kvm_memory_slot *memslot;
988         unsigned long ga, ga_end;
989         int is_dirty = 0;
990         int r;
991         unsigned long n;
992
993         mutex_lock(&kvm->slots_lock);
994
995         r = kvm_get_dirty_log(kvm, log, &is_dirty);
996         if (r)
997                 goto out;
998
999         /* If nothing is dirty, don't bother messing with page tables. */
1000         if (is_dirty) {
1001                 slots = kvm_memslots(kvm);
1002                 memslot = id_to_memslot(slots, log->slot);
1003
1004                 ga = memslot->base_gfn << PAGE_SHIFT;
1005                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1006
1007                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1008                          ga_end);
1009
1010                 n = kvm_dirty_bitmap_bytes(memslot);
1011                 memset(memslot->dirty_bitmap, 0, n);
1012         }
1013
1014         r = 0;
1015 out:
1016         mutex_unlock(&kvm->slots_lock);
1017         return r;
1018
1019 }
1020
1021 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1022 {
1023         long r;
1024
1025         switch (ioctl) {
1026         default:
1027                 r = -ENOIOCTLCMD;
1028         }
1029
1030         return r;
1031 }
1032
1033 int kvm_arch_init(void *opaque)
1034 {
1035         if (kvm_mips_callbacks) {
1036                 kvm_err("kvm: module already exists\n");
1037                 return -EEXIST;
1038         }
1039
1040         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1041 }
1042
1043 void kvm_arch_exit(void)
1044 {
1045         kvm_mips_callbacks = NULL;
1046 }
1047
1048 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1049                                   struct kvm_sregs *sregs)
1050 {
1051         return -ENOIOCTLCMD;
1052 }
1053
1054 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1055                                   struct kvm_sregs *sregs)
1056 {
1057         return -ENOIOCTLCMD;
1058 }
1059
1060 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1061 {
1062 }
1063
1064 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1065 {
1066         return -ENOIOCTLCMD;
1067 }
1068
1069 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1070 {
1071         return -ENOIOCTLCMD;
1072 }
1073
1074 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1075 {
1076         return VM_FAULT_SIGBUS;
1077 }
1078
1079 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1080 {
1081         int r;
1082
1083         switch (ext) {
1084         case KVM_CAP_ONE_REG:
1085         case KVM_CAP_ENABLE_CAP:
1086                 r = 1;
1087                 break;
1088         case KVM_CAP_COALESCED_MMIO:
1089                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1090                 break;
1091         case KVM_CAP_MIPS_FPU:
1092                 /* We don't handle systems with inconsistent cpu_has_fpu */
1093                 r = !!raw_cpu_has_fpu;
1094                 break;
1095         case KVM_CAP_MIPS_MSA:
1096                 /*
1097                  * We don't support MSA vector partitioning yet:
1098                  * 1) It would require explicit support which can't be tested
1099                  *    yet due to lack of support in current hardware.
1100                  * 2) It extends the state that would need to be saved/restored
1101                  *    by e.g. QEMU for migration.
1102                  *
1103                  * When vector partitioning hardware becomes available, support
1104                  * could be added by requiring a flag when enabling
1105                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1106                  * to save/restore the appropriate extra state.
1107                  */
1108                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1109                 break;
1110         default:
1111                 r = 0;
1112                 break;
1113         }
1114         return r;
1115 }
1116
1117 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1118 {
1119         return kvm_mips_pending_timer(vcpu);
1120 }
1121
1122 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1123 {
1124         int i;
1125         struct mips_coproc *cop0;
1126
1127         if (!vcpu)
1128                 return -1;
1129
1130         kvm_debug("VCPU Register Dump:\n");
1131         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1132         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1133
1134         for (i = 0; i < 32; i += 4) {
1135                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1136                        vcpu->arch.gprs[i],
1137                        vcpu->arch.gprs[i + 1],
1138                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1139         }
1140         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1141         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1142
1143         cop0 = vcpu->arch.cop0;
1144         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1145                   kvm_read_c0_guest_status(cop0),
1146                   kvm_read_c0_guest_cause(cop0));
1147
1148         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1149
1150         return 0;
1151 }
1152
1153 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1154 {
1155         int i;
1156
1157         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1158                 vcpu->arch.gprs[i] = regs->gpr[i];
1159         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1160         vcpu->arch.hi = regs->hi;
1161         vcpu->arch.lo = regs->lo;
1162         vcpu->arch.pc = regs->pc;
1163
1164         return 0;
1165 }
1166
1167 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1168 {
1169         int i;
1170
1171         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172                 regs->gpr[i] = vcpu->arch.gprs[i];
1173
1174         regs->hi = vcpu->arch.hi;
1175         regs->lo = vcpu->arch.lo;
1176         regs->pc = vcpu->arch.pc;
1177
1178         return 0;
1179 }
1180
1181 static void kvm_mips_comparecount_func(unsigned long data)
1182 {
1183         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1184
1185         kvm_mips_callbacks->queue_timer_int(vcpu);
1186
1187         vcpu->arch.wait = 0;
1188         if (swait_active(&vcpu->wq))
1189                 swake_up(&vcpu->wq);
1190 }
1191
1192 /* low level hrtimer wake routine */
1193 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1194 {
1195         struct kvm_vcpu *vcpu;
1196
1197         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1198         kvm_mips_comparecount_func((unsigned long) vcpu);
1199         return kvm_mips_count_timeout(vcpu);
1200 }
1201
1202 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1203 {
1204         kvm_mips_callbacks->vcpu_init(vcpu);
1205         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1206                      HRTIMER_MODE_REL);
1207         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1208         return 0;
1209 }
1210
1211 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1212                                   struct kvm_translation *tr)
1213 {
1214         return 0;
1215 }
1216
1217 /* Initial guest state */
1218 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1219 {
1220         return kvm_mips_callbacks->vcpu_setup(vcpu);
1221 }
1222
1223 static void kvm_mips_set_c0_status(void)
1224 {
1225         uint32_t status = read_c0_status();
1226
1227         if (cpu_has_dsp)
1228                 status |= (ST0_MX);
1229
1230         write_c0_status(status);
1231         ehb();
1232 }
1233
1234 /*
1235  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1236  */
1237 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1238 {
1239         uint32_t cause = vcpu->arch.host_cp0_cause;
1240         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1241         uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1242         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1243         enum emulation_result er = EMULATE_DONE;
1244         int ret = RESUME_GUEST;
1245
1246         /* re-enable HTW before enabling interrupts */
1247         htw_start();
1248
1249         /* Set a default exit reason */
1250         run->exit_reason = KVM_EXIT_UNKNOWN;
1251         run->ready_for_interrupt_injection = 1;
1252
1253         /*
1254          * Set the appropriate status bits based on host CPU features,
1255          * before we hit the scheduler
1256          */
1257         kvm_mips_set_c0_status();
1258
1259         local_irq_enable();
1260
1261         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1262                         cause, opc, run, vcpu);
1263
1264         /*
1265          * Do a privilege check, if in UM most of these exit conditions end up
1266          * causing an exception to be delivered to the Guest Kernel
1267          */
1268         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1269         if (er == EMULATE_PRIV_FAIL) {
1270                 goto skip_emul;
1271         } else if (er == EMULATE_FAIL) {
1272                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1273                 ret = RESUME_HOST;
1274                 goto skip_emul;
1275         }
1276
1277         switch (exccode) {
1278         case EXCCODE_INT:
1279                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1280
1281                 ++vcpu->stat.int_exits;
1282                 trace_kvm_exit(vcpu, INT_EXITS);
1283
1284                 if (need_resched())
1285                         cond_resched();
1286
1287                 ret = RESUME_GUEST;
1288                 break;
1289
1290         case EXCCODE_CPU:
1291                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1292
1293                 ++vcpu->stat.cop_unusable_exits;
1294                 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1295                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1296                 /* XXXKYMA: Might need to return to user space */
1297                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1298                         ret = RESUME_HOST;
1299                 break;
1300
1301         case EXCCODE_MOD:
1302                 ++vcpu->stat.tlbmod_exits;
1303                 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1304                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1305                 break;
1306
1307         case EXCCODE_TLBS:
1308                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1309                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1310                           badvaddr);
1311
1312                 ++vcpu->stat.tlbmiss_st_exits;
1313                 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1314                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1315                 break;
1316
1317         case EXCCODE_TLBL:
1318                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1319                           cause, opc, badvaddr);
1320
1321                 ++vcpu->stat.tlbmiss_ld_exits;
1322                 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1323                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1324                 break;
1325
1326         case EXCCODE_ADES:
1327                 ++vcpu->stat.addrerr_st_exits;
1328                 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1329                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1330                 break;
1331
1332         case EXCCODE_ADEL:
1333                 ++vcpu->stat.addrerr_ld_exits;
1334                 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1335                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1336                 break;
1337
1338         case EXCCODE_SYS:
1339                 ++vcpu->stat.syscall_exits;
1340                 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1341                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1342                 break;
1343
1344         case EXCCODE_RI:
1345                 ++vcpu->stat.resvd_inst_exits;
1346                 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1347                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1348                 break;
1349
1350         case EXCCODE_BP:
1351                 ++vcpu->stat.break_inst_exits;
1352                 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1353                 ret = kvm_mips_callbacks->handle_break(vcpu);
1354                 break;
1355
1356         case EXCCODE_TR:
1357                 ++vcpu->stat.trap_inst_exits;
1358                 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1359                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1360                 break;
1361
1362         case EXCCODE_MSAFPE:
1363                 ++vcpu->stat.msa_fpe_exits;
1364                 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1365                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1366                 break;
1367
1368         case EXCCODE_FPE:
1369                 ++vcpu->stat.fpe_exits;
1370                 trace_kvm_exit(vcpu, FPE_EXITS);
1371                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1372                 break;
1373
1374         case EXCCODE_MSADIS:
1375                 ++vcpu->stat.msa_disabled_exits;
1376                 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1377                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1378                 break;
1379
1380         default:
1381                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1382                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1383                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1384                 kvm_arch_vcpu_dump_regs(vcpu);
1385                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1386                 ret = RESUME_HOST;
1387                 break;
1388
1389         }
1390
1391 skip_emul:
1392         local_irq_disable();
1393
1394         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1395                 kvm_mips_deliver_interrupts(vcpu, cause);
1396
1397         if (!(ret & RESUME_HOST)) {
1398                 /* Only check for signals if not already exiting to userspace */
1399                 if (signal_pending(current)) {
1400                         run->exit_reason = KVM_EXIT_INTR;
1401                         ret = (-EINTR << 2) | RESUME_HOST;
1402                         ++vcpu->stat.signal_exits;
1403                         trace_kvm_exit(vcpu, SIGNAL_EXITS);
1404                 }
1405         }
1406
1407         if (ret == RESUME_GUEST) {
1408                 /*
1409                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1410                  * is live), restore FCR31 / MSACSR.
1411                  *
1412                  * This should be before returning to the guest exception
1413                  * vector, as it may well cause an [MSA] FP exception if there
1414                  * are pending exception bits unmasked. (see
1415                  * kvm_mips_csr_die_notifier() for how that is handled).
1416                  */
1417                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1418                     read_c0_status() & ST0_CU1)
1419                         __kvm_restore_fcsr(&vcpu->arch);
1420
1421                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1422                     read_c0_config5() & MIPS_CONF5_MSAEN)
1423                         __kvm_restore_msacsr(&vcpu->arch);
1424         }
1425
1426         /* Disable HTW before returning to guest or host */
1427         htw_stop();
1428
1429         return ret;
1430 }
1431
1432 /* Enable FPU for guest and restore context */
1433 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1434 {
1435         struct mips_coproc *cop0 = vcpu->arch.cop0;
1436         unsigned int sr, cfg5;
1437
1438         preempt_disable();
1439
1440         sr = kvm_read_c0_guest_status(cop0);
1441
1442         /*
1443          * If MSA state is already live, it is undefined how it interacts with
1444          * FR=0 FPU state, and we don't want to hit reserved instruction
1445          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1446          * play it safe and save it first.
1447          *
1448          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1449          * get called when guest CU1 is set, however we can't trust the guest
1450          * not to clobber the status register directly via the commpage.
1451          */
1452         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1453             vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1454                 kvm_lose_fpu(vcpu);
1455
1456         /*
1457          * Enable FPU for guest
1458          * We set FR and FRE according to guest context
1459          */
1460         change_c0_status(ST0_CU1 | ST0_FR, sr);
1461         if (cpu_has_fre) {
1462                 cfg5 = kvm_read_c0_guest_config5(cop0);
1463                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1464         }
1465         enable_fpu_hazard();
1466
1467         /* If guest FPU state not active, restore it now */
1468         if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1469                 __kvm_restore_fpu(&vcpu->arch);
1470                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1471         }
1472
1473         preempt_enable();
1474 }
1475
1476 #ifdef CONFIG_CPU_HAS_MSA
1477 /* Enable MSA for guest and restore context */
1478 void kvm_own_msa(struct kvm_vcpu *vcpu)
1479 {
1480         struct mips_coproc *cop0 = vcpu->arch.cop0;
1481         unsigned int sr, cfg5;
1482
1483         preempt_disable();
1484
1485         /*
1486          * Enable FPU if enabled in guest, since we're restoring FPU context
1487          * anyway. We set FR and FRE according to guest context.
1488          */
1489         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1490                 sr = kvm_read_c0_guest_status(cop0);
1491
1492                 /*
1493                  * If FR=0 FPU state is already live, it is undefined how it
1494                  * interacts with MSA state, so play it safe and save it first.
1495                  */
1496                 if (!(sr & ST0_FR) &&
1497                     (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1498                                 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1499                         kvm_lose_fpu(vcpu);
1500
1501                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1502                 if (sr & ST0_CU1 && cpu_has_fre) {
1503                         cfg5 = kvm_read_c0_guest_config5(cop0);
1504                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1505                 }
1506         }
1507
1508         /* Enable MSA for guest */
1509         set_c0_config5(MIPS_CONF5_MSAEN);
1510         enable_fpu_hazard();
1511
1512         switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1513         case KVM_MIPS_FPU_FPU:
1514                 /*
1515                  * Guest FPU state already loaded, only restore upper MSA state
1516                  */
1517                 __kvm_restore_msa_upper(&vcpu->arch);
1518                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1519                 break;
1520         case 0:
1521                 /* Neither FPU or MSA already active, restore full MSA state */
1522                 __kvm_restore_msa(&vcpu->arch);
1523                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1524                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1525                         vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1526                 break;
1527         default:
1528                 break;
1529         }
1530
1531         preempt_enable();
1532 }
1533 #endif
1534
1535 /* Drop FPU & MSA without saving it */
1536 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1537 {
1538         preempt_disable();
1539         if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1540                 disable_msa();
1541                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1542         }
1543         if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1544                 clear_c0_status(ST0_CU1 | ST0_FR);
1545                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1546         }
1547         preempt_enable();
1548 }
1549
1550 /* Save and disable FPU & MSA */
1551 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1552 {
1553         /*
1554          * FPU & MSA get disabled in root context (hardware) when it is disabled
1555          * in guest context (software), but the register state in the hardware
1556          * may still be in use. This is why we explicitly re-enable the hardware
1557          * before saving.
1558          */
1559
1560         preempt_disable();
1561         if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1562                 set_c0_config5(MIPS_CONF5_MSAEN);
1563                 enable_fpu_hazard();
1564
1565                 __kvm_save_msa(&vcpu->arch);
1566
1567                 /* Disable MSA & FPU */
1568                 disable_msa();
1569                 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1570                         clear_c0_status(ST0_CU1 | ST0_FR);
1571                         disable_fpu_hazard();
1572                 }
1573                 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1574         } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1575                 set_c0_status(ST0_CU1);
1576                 enable_fpu_hazard();
1577
1578                 __kvm_save_fpu(&vcpu->arch);
1579                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1580
1581                 /* Disable FPU */
1582                 clear_c0_status(ST0_CU1 | ST0_FR);
1583                 disable_fpu_hazard();
1584         }
1585         preempt_enable();
1586 }
1587
1588 /*
1589  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1590  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1591  * exception if cause bits are set in the value being written.
1592  */
1593 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1594                                    unsigned long cmd, void *ptr)
1595 {
1596         struct die_args *args = (struct die_args *)ptr;
1597         struct pt_regs *regs = args->regs;
1598         unsigned long pc;
1599
1600         /* Only interested in FPE and MSAFPE */
1601         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1602                 return NOTIFY_DONE;
1603
1604         /* Return immediately if guest context isn't active */
1605         if (!(current->flags & PF_VCPU))
1606                 return NOTIFY_DONE;
1607
1608         /* Should never get here from user mode */
1609         BUG_ON(user_mode(regs));
1610
1611         pc = instruction_pointer(regs);
1612         switch (cmd) {
1613         case DIE_FP:
1614                 /* match 2nd instruction in __kvm_restore_fcsr */
1615                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1616                         return NOTIFY_DONE;
1617                 break;
1618         case DIE_MSAFP:
1619                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1620                 if (!cpu_has_msa ||
1621                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1622                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1623                         return NOTIFY_DONE;
1624                 break;
1625         }
1626
1627         /* Move PC forward a little and continue executing */
1628         instruction_pointer(regs) += 4;
1629
1630         return NOTIFY_STOP;
1631 }
1632
1633 static struct notifier_block kvm_mips_csr_die_notifier = {
1634         .notifier_call = kvm_mips_csr_die_notify,
1635 };
1636
1637 static int __init kvm_mips_init(void)
1638 {
1639         int ret;
1640
1641         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1642
1643         if (ret)
1644                 return ret;
1645
1646         register_die_notifier(&kvm_mips_csr_die_notifier);
1647
1648         /*
1649          * On MIPS, kernel modules are executed from "mapped space", which
1650          * requires TLBs. The TLB handling code is statically linked with
1651          * the rest of the kernel (tlb.c) to avoid the possibility of
1652          * double faulting. The issue is that the TLB code references
1653          * routines that are part of the the KVM module, which are only
1654          * available once the module is loaded.
1655          */
1656         kvm_mips_gfn_to_pfn = gfn_to_pfn;
1657         kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1658         kvm_mips_is_error_pfn = is_error_pfn;
1659
1660         return 0;
1661 }
1662
1663 static void __exit kvm_mips_exit(void)
1664 {
1665         kvm_exit();
1666
1667         kvm_mips_gfn_to_pfn = NULL;
1668         kvm_mips_release_pfn_clean = NULL;
1669         kvm_mips_is_error_pfn = NULL;
1670
1671         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1672 }
1673
1674 module_init(kvm_mips_init);
1675 module_exit(kvm_mips_exit);
1676
1677 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);