]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/include/asm/nohash/64/pgalloc.h
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / arch / powerpc / include / asm / nohash / 64 / pgalloc.h
1 #ifndef _ASM_POWERPC_PGALLOC_64_H
2 #define _ASM_POWERPC_PGALLOC_64_H
3 /*
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9
10 #include <linux/slab.h>
11 #include <linux/cpumask.h>
12 #include <linux/percpu.h>
13
14 struct vmemmap_backing {
15         struct vmemmap_backing *list;
16         unsigned long phys;
17         unsigned long virt_addr;
18 };
19 extern struct vmemmap_backing *vmemmap_list;
20
21 /*
22  * Functions that deal with pagetables that could be at any level of
23  * the table need to be passed an "index_size" so they know how to
24  * handle allocation.  For PTE pages (which are linked to a struct
25  * page for now, and drawn from the main get_free_pages() pool), the
26  * allocation size will be (2^index_size * sizeof(pointer)) and
27  * allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
28  *
29  * The maximum index size needs to be big enough to allow any
30  * pagetable sizes we need, but small enough to fit in the low bits of
31  * any page table pointer.  In other words all pagetables, even tiny
32  * ones, must be aligned to allow at least enough low 0 bits to
33  * contain this value.  This value is also used as a mask, so it must
34  * be one less than a power of two.
35  */
36 #define MAX_PGTABLE_INDEX_SIZE  0xf
37
38 extern struct kmem_cache *pgtable_cache[];
39 #define PGT_CACHE(shift) ({                             \
40                         BUG_ON(!(shift));               \
41                         pgtable_cache[(shift) - 1];     \
42                 })
43
44 static inline pgd_t *pgd_alloc(struct mm_struct *mm)
45 {
46         return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), GFP_KERNEL);
47 }
48
49 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
50 {
51         kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
52 }
53
54 #ifndef CONFIG_PPC_64K_PAGES
55
56 #define pgd_populate(MM, PGD, PUD)      pgd_set(PGD, (unsigned long)PUD)
57
58 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
59 {
60         return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE), GFP_KERNEL);
61 }
62
63 static inline void pud_free(struct mm_struct *mm, pud_t *pud)
64 {
65         kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud);
66 }
67
68 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
69 {
70         pud_set(pud, (unsigned long)pmd);
71 }
72
73 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
74                                        pte_t *pte)
75 {
76         pmd_set(pmd, (unsigned long)pte);
77 }
78
79 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
80                                 pgtable_t pte_page)
81 {
82         pmd_set(pmd, (unsigned long)page_address(pte_page));
83 }
84
85 #define pmd_pgtable(pmd) pmd_page(pmd)
86
87 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
88                                           unsigned long address)
89 {
90         return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
91 }
92
93 static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
94                                       unsigned long address)
95 {
96         struct page *page;
97         pte_t *pte;
98
99         pte = pte_alloc_one_kernel(mm, address);
100         if (!pte)
101                 return NULL;
102         page = virt_to_page(pte);
103         if (!pgtable_page_ctor(page)) {
104                 __free_page(page);
105                 return NULL;
106         }
107         return page;
108 }
109
110 static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
111 {
112         free_page((unsigned long)pte);
113 }
114
115 static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
116 {
117         pgtable_page_dtor(ptepage);
118         __free_page(ptepage);
119 }
120
121 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
122 #ifdef CONFIG_SMP
123 extern void __tlb_remove_table(void *_table);
124 #endif
125 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
126                                   unsigned long address)
127 {
128         tlb_flush_pgtable(tlb, address);
129         pgtable_free_tlb(tlb, page_address(table), 0);
130 }
131
132 #else /* if CONFIG_PPC_64K_PAGES */
133
134 extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int);
135 extern void pte_fragment_free(unsigned long *, int);
136 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
137 #ifdef CONFIG_SMP
138 extern void __tlb_remove_table(void *_table);
139 #endif
140
141 #define pud_populate(mm, pud, pmd)      pud_set(pud, (unsigned long)pmd)
142
143 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
144                                        pte_t *pte)
145 {
146         pmd_set(pmd, (unsigned long)pte);
147 }
148
149 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
150                                 pgtable_t pte_page)
151 {
152         pmd_set(pmd, (unsigned long)pte_page);
153 }
154
155 static inline pgtable_t pmd_pgtable(pmd_t pmd)
156 {
157         return (pgtable_t)(pmd_val(pmd) & ~PMD_MASKED_BITS);
158 }
159
160 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
161                                           unsigned long address)
162 {
163         return (pte_t *)pte_fragment_alloc(mm, address, 1);
164 }
165
166 static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
167                                         unsigned long address)
168 {
169         return (pgtable_t)pte_fragment_alloc(mm, address, 0);
170 }
171
172 static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
173 {
174         pte_fragment_free((unsigned long *)pte, 1);
175 }
176
177 static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
178 {
179         pte_fragment_free((unsigned long *)ptepage, 0);
180 }
181
182 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
183                                   unsigned long address)
184 {
185         tlb_flush_pgtable(tlb, address);
186         pgtable_free_tlb(tlb, table, 0);
187 }
188 #endif /* CONFIG_PPC_64K_PAGES */
189
190 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
191 {
192         return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX), GFP_KERNEL);
193 }
194
195 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
196 {
197         kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd);
198 }
199
200 #define __pmd_free_tlb(tlb, pmd, addr)                \
201         pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX)
202 #ifndef CONFIG_PPC_64K_PAGES
203 #define __pud_free_tlb(tlb, pud, addr)                \
204         pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE)
205
206 #endif /* CONFIG_PPC_64K_PAGES */
207
208 #define check_pgt_cache()       do { } while (0)
209
210 #endif /* _ASM_POWERPC_PGALLOC_64_H */