]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kernel/process.c
Merge tag 'drm-misc-fixes-2017-07-27' of git://anongit.freedesktop.org/git/drm-misc...
[karo-tx-linux.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct *tsk)
81 {
82         /*
83          * If we are saving the current thread's registers, and the
84          * thread is in a transactional state, set the TIF_RESTORE_TM
85          * bit so that we know to restore the registers before
86          * returning to userspace.
87          */
88         if (tsk == current && tsk->thread.regs &&
89             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90             !test_thread_flag(TIF_RESTORE_TM)) {
91                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92                 set_thread_flag(TIF_RESTORE_TM);
93         }
94 }
95
96 static inline bool msr_tm_active(unsigned long msr)
97 {
98         return MSR_TM_ACTIVE(msr);
99 }
100 #else
101 static inline bool msr_tm_active(unsigned long msr) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104
105 bool strict_msr_control;
106 EXPORT_SYMBOL(strict_msr_control);
107
108 static int __init enable_strict_msr_control(char *str)
109 {
110         strict_msr_control = true;
111         pr_info("Enabling strict facility control\n");
112
113         return 0;
114 }
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116
117 unsigned long msr_check_and_set(unsigned long bits)
118 {
119         unsigned long oldmsr = mfmsr();
120         unsigned long newmsr;
121
122         newmsr = oldmsr | bits;
123
124 #ifdef CONFIG_VSX
125         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126                 newmsr |= MSR_VSX;
127 #endif
128
129         if (oldmsr != newmsr)
130                 mtmsr_isync(newmsr);
131
132         return newmsr;
133 }
134
135 void __msr_check_and_clear(unsigned long bits)
136 {
137         unsigned long oldmsr = mfmsr();
138         unsigned long newmsr;
139
140         newmsr = oldmsr & ~bits;
141
142 #ifdef CONFIG_VSX
143         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144                 newmsr &= ~MSR_VSX;
145 #endif
146
147         if (oldmsr != newmsr)
148                 mtmsr_isync(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct *tsk)
154 {
155         unsigned long msr;
156
157         save_fpu(tsk);
158         msr = tsk->thread.regs->msr;
159         msr &= ~MSR_FP;
160 #ifdef CONFIG_VSX
161         if (cpu_has_feature(CPU_FTR_VSX))
162                 msr &= ~MSR_VSX;
163 #endif
164         tsk->thread.regs->msr = msr;
165 }
166
167 void giveup_fpu(struct task_struct *tsk)
168 {
169         check_if_tm_restore_required(tsk);
170
171         msr_check_and_set(MSR_FP);
172         __giveup_fpu(tsk);
173         msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176
177 /*
178  * Make sure the floating-point register state in the
179  * the thread_struct is up to date for task tsk.
180  */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183         if (tsk->thread.regs) {
184                 /*
185                  * We need to disable preemption here because if we didn't,
186                  * another process could get scheduled after the regs->msr
187                  * test but before we have finished saving the FP registers
188                  * to the thread_struct.  That process could take over the
189                  * FPU, and then when we get scheduled again we would store
190                  * bogus values for the remaining FP registers.
191                  */
192                 preempt_disable();
193                 if (tsk->thread.regs->msr & MSR_FP) {
194                         /*
195                          * This should only ever be called for current or
196                          * for a stopped child process.  Since we save away
197                          * the FP register state on context switch,
198                          * there is something wrong if a stopped child appears
199                          * to still have its FP state in the CPU registers.
200                          */
201                         BUG_ON(tsk != current);
202                         giveup_fpu(tsk);
203                 }
204                 preempt_enable();
205         }
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208
209 void enable_kernel_fp(void)
210 {
211         unsigned long cpumsr;
212
213         WARN_ON(preemptible());
214
215         cpumsr = msr_check_and_set(MSR_FP);
216
217         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218                 check_if_tm_restore_required(current);
219                 /*
220                  * If a thread has already been reclaimed then the
221                  * checkpointed registers are on the CPU but have definitely
222                  * been saved by the reclaim code. Don't need to and *cannot*
223                  * giveup as this would save  to the 'live' structure not the
224                  * checkpointed structure.
225                  */
226                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227                         return;
228                 __giveup_fpu(current);
229         }
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232
233 static int restore_fp(struct task_struct *tsk) {
234         if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235                 load_fp_state(&current->thread.fp_state);
236                 current->thread.load_fp++;
237                 return 1;
238         }
239         return 0;
240 }
241 #else
242 static int restore_fp(struct task_struct *tsk) { return 0; }
243 #endif /* CONFIG_PPC_FPU */
244
245 #ifdef CONFIG_ALTIVEC
246 #define loadvec(thr) ((thr).load_vec)
247
248 static void __giveup_altivec(struct task_struct *tsk)
249 {
250         unsigned long msr;
251
252         save_altivec(tsk);
253         msr = tsk->thread.regs->msr;
254         msr &= ~MSR_VEC;
255 #ifdef CONFIG_VSX
256         if (cpu_has_feature(CPU_FTR_VSX))
257                 msr &= ~MSR_VSX;
258 #endif
259         tsk->thread.regs->msr = msr;
260 }
261
262 void giveup_altivec(struct task_struct *tsk)
263 {
264         check_if_tm_restore_required(tsk);
265
266         msr_check_and_set(MSR_VEC);
267         __giveup_altivec(tsk);
268         msr_check_and_clear(MSR_VEC);
269 }
270 EXPORT_SYMBOL(giveup_altivec);
271
272 void enable_kernel_altivec(void)
273 {
274         unsigned long cpumsr;
275
276         WARN_ON(preemptible());
277
278         cpumsr = msr_check_and_set(MSR_VEC);
279
280         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
281                 check_if_tm_restore_required(current);
282                 /*
283                  * If a thread has already been reclaimed then the
284                  * checkpointed registers are on the CPU but have definitely
285                  * been saved by the reclaim code. Don't need to and *cannot*
286                  * giveup as this would save  to the 'live' structure not the
287                  * checkpointed structure.
288                  */
289                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
290                         return;
291                 __giveup_altivec(current);
292         }
293 }
294 EXPORT_SYMBOL(enable_kernel_altivec);
295
296 /*
297  * Make sure the VMX/Altivec register state in the
298  * the thread_struct is up to date for task tsk.
299  */
300 void flush_altivec_to_thread(struct task_struct *tsk)
301 {
302         if (tsk->thread.regs) {
303                 preempt_disable();
304                 if (tsk->thread.regs->msr & MSR_VEC) {
305                         BUG_ON(tsk != current);
306                         giveup_altivec(tsk);
307                 }
308                 preempt_enable();
309         }
310 }
311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
312
313 static int restore_altivec(struct task_struct *tsk)
314 {
315         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
316                 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317                 load_vr_state(&tsk->thread.vr_state);
318                 tsk->thread.used_vr = 1;
319                 tsk->thread.load_vec++;
320
321                 return 1;
322         }
323         return 0;
324 }
325 #else
326 #define loadvec(thr) 0
327 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 #endif /* CONFIG_ALTIVEC */
329
330 #ifdef CONFIG_VSX
331 static void __giveup_vsx(struct task_struct *tsk)
332 {
333         if (tsk->thread.regs->msr & MSR_FP)
334                 __giveup_fpu(tsk);
335         if (tsk->thread.regs->msr & MSR_VEC)
336                 __giveup_altivec(tsk);
337         tsk->thread.regs->msr &= ~MSR_VSX;
338 }
339
340 static void giveup_vsx(struct task_struct *tsk)
341 {
342         check_if_tm_restore_required(tsk);
343
344         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345         __giveup_vsx(tsk);
346         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
347 }
348
349 static void save_vsx(struct task_struct *tsk)
350 {
351         if (tsk->thread.regs->msr & MSR_FP)
352                 save_fpu(tsk);
353         if (tsk->thread.regs->msr & MSR_VEC)
354                 save_altivec(tsk);
355 }
356
357 void enable_kernel_vsx(void)
358 {
359         unsigned long cpumsr;
360
361         WARN_ON(preemptible());
362
363         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
364
365         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
366                 check_if_tm_restore_required(current);
367                 /*
368                  * If a thread has already been reclaimed then the
369                  * checkpointed registers are on the CPU but have definitely
370                  * been saved by the reclaim code. Don't need to and *cannot*
371                  * giveup as this would save  to the 'live' structure not the
372                  * checkpointed structure.
373                  */
374                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
375                         return;
376                 if (current->thread.regs->msr & MSR_FP)
377                         __giveup_fpu(current);
378                 if (current->thread.regs->msr & MSR_VEC)
379                         __giveup_altivec(current);
380                 __giveup_vsx(current);
381         }
382 }
383 EXPORT_SYMBOL(enable_kernel_vsx);
384
385 void flush_vsx_to_thread(struct task_struct *tsk)
386 {
387         if (tsk->thread.regs) {
388                 preempt_disable();
389                 if (tsk->thread.regs->msr & MSR_VSX) {
390                         BUG_ON(tsk != current);
391                         giveup_vsx(tsk);
392                 }
393                 preempt_enable();
394         }
395 }
396 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
397
398 static int restore_vsx(struct task_struct *tsk)
399 {
400         if (cpu_has_feature(CPU_FTR_VSX)) {
401                 tsk->thread.used_vsr = 1;
402                 return 1;
403         }
404
405         return 0;
406 }
407 #else
408 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
409 static inline void save_vsx(struct task_struct *tsk) { }
410 #endif /* CONFIG_VSX */
411
412 #ifdef CONFIG_SPE
413 void giveup_spe(struct task_struct *tsk)
414 {
415         check_if_tm_restore_required(tsk);
416
417         msr_check_and_set(MSR_SPE);
418         __giveup_spe(tsk);
419         msr_check_and_clear(MSR_SPE);
420 }
421 EXPORT_SYMBOL(giveup_spe);
422
423 void enable_kernel_spe(void)
424 {
425         WARN_ON(preemptible());
426
427         msr_check_and_set(MSR_SPE);
428
429         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
430                 check_if_tm_restore_required(current);
431                 __giveup_spe(current);
432         }
433 }
434 EXPORT_SYMBOL(enable_kernel_spe);
435
436 void flush_spe_to_thread(struct task_struct *tsk)
437 {
438         if (tsk->thread.regs) {
439                 preempt_disable();
440                 if (tsk->thread.regs->msr & MSR_SPE) {
441                         BUG_ON(tsk != current);
442                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
443                         giveup_spe(tsk);
444                 }
445                 preempt_enable();
446         }
447 }
448 #endif /* CONFIG_SPE */
449
450 static unsigned long msr_all_available;
451
452 static int __init init_msr_all_available(void)
453 {
454 #ifdef CONFIG_PPC_FPU
455         msr_all_available |= MSR_FP;
456 #endif
457 #ifdef CONFIG_ALTIVEC
458         if (cpu_has_feature(CPU_FTR_ALTIVEC))
459                 msr_all_available |= MSR_VEC;
460 #endif
461 #ifdef CONFIG_VSX
462         if (cpu_has_feature(CPU_FTR_VSX))
463                 msr_all_available |= MSR_VSX;
464 #endif
465 #ifdef CONFIG_SPE
466         if (cpu_has_feature(CPU_FTR_SPE))
467                 msr_all_available |= MSR_SPE;
468 #endif
469
470         return 0;
471 }
472 early_initcall(init_msr_all_available);
473
474 void giveup_all(struct task_struct *tsk)
475 {
476         unsigned long usermsr;
477
478         if (!tsk->thread.regs)
479                 return;
480
481         usermsr = tsk->thread.regs->msr;
482
483         if ((usermsr & msr_all_available) == 0)
484                 return;
485
486         msr_check_and_set(msr_all_available);
487         check_if_tm_restore_required(tsk);
488
489 #ifdef CONFIG_PPC_FPU
490         if (usermsr & MSR_FP)
491                 __giveup_fpu(tsk);
492 #endif
493 #ifdef CONFIG_ALTIVEC
494         if (usermsr & MSR_VEC)
495                 __giveup_altivec(tsk);
496 #endif
497 #ifdef CONFIG_VSX
498         if (usermsr & MSR_VSX)
499                 __giveup_vsx(tsk);
500 #endif
501 #ifdef CONFIG_SPE
502         if (usermsr & MSR_SPE)
503                 __giveup_spe(tsk);
504 #endif
505
506         msr_check_and_clear(msr_all_available);
507 }
508 EXPORT_SYMBOL(giveup_all);
509
510 void restore_math(struct pt_regs *regs)
511 {
512         unsigned long msr;
513
514         /*
515          * Syscall exit makes a similar initial check before branching
516          * to restore_math. Keep them in synch.
517          */
518         if (!msr_tm_active(regs->msr) &&
519                 !current->thread.load_fp && !loadvec(current->thread))
520                 return;
521
522         msr = regs->msr;
523         msr_check_and_set(msr_all_available);
524
525         /*
526          * Only reload if the bit is not set in the user MSR, the bit BEING set
527          * indicates that the registers are hot
528          */
529         if ((!(msr & MSR_FP)) && restore_fp(current))
530                 msr |= MSR_FP | current->thread.fpexc_mode;
531
532         if ((!(msr & MSR_VEC)) && restore_altivec(current))
533                 msr |= MSR_VEC;
534
535         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
536                         restore_vsx(current)) {
537                 msr |= MSR_VSX;
538         }
539
540         msr_check_and_clear(msr_all_available);
541
542         regs->msr = msr;
543 }
544
545 void save_all(struct task_struct *tsk)
546 {
547         unsigned long usermsr;
548
549         if (!tsk->thread.regs)
550                 return;
551
552         usermsr = tsk->thread.regs->msr;
553
554         if ((usermsr & msr_all_available) == 0)
555                 return;
556
557         msr_check_and_set(msr_all_available);
558
559         /*
560          * Saving the way the register space is in hardware, save_vsx boils
561          * down to a save_fpu() and save_altivec()
562          */
563         if (usermsr & MSR_VSX) {
564                 save_vsx(tsk);
565         } else {
566                 if (usermsr & MSR_FP)
567                         save_fpu(tsk);
568
569                 if (usermsr & MSR_VEC)
570                         save_altivec(tsk);
571         }
572
573         if (usermsr & MSR_SPE)
574                 __giveup_spe(tsk);
575
576         msr_check_and_clear(msr_all_available);
577 }
578
579 void flush_all_to_thread(struct task_struct *tsk)
580 {
581         if (tsk->thread.regs) {
582                 preempt_disable();
583                 BUG_ON(tsk != current);
584                 save_all(tsk);
585
586 #ifdef CONFIG_SPE
587                 if (tsk->thread.regs->msr & MSR_SPE)
588                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
589 #endif
590
591                 preempt_enable();
592         }
593 }
594 EXPORT_SYMBOL(flush_all_to_thread);
595
596 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
597 void do_send_trap(struct pt_regs *regs, unsigned long address,
598                   unsigned long error_code, int signal_code, int breakpt)
599 {
600         siginfo_t info;
601
602         current->thread.trap_nr = signal_code;
603         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
604                         11, SIGSEGV) == NOTIFY_STOP)
605                 return;
606
607         /* Deliver the signal to userspace */
608         info.si_signo = SIGTRAP;
609         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
610         info.si_code = signal_code;
611         info.si_addr = (void __user *)address;
612         force_sig_info(SIGTRAP, &info, current);
613 }
614 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
615 void do_break (struct pt_regs *regs, unsigned long address,
616                     unsigned long error_code)
617 {
618         siginfo_t info;
619
620         current->thread.trap_nr = TRAP_HWBKPT;
621         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
622                         11, SIGSEGV) == NOTIFY_STOP)
623                 return;
624
625         if (debugger_break_match(regs))
626                 return;
627
628         /* Clear the breakpoint */
629         hw_breakpoint_disable();
630
631         /* Deliver the signal to userspace */
632         info.si_signo = SIGTRAP;
633         info.si_errno = 0;
634         info.si_code = TRAP_HWBKPT;
635         info.si_addr = (void __user *)address;
636         force_sig_info(SIGTRAP, &info, current);
637 }
638 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
639
640 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
641
642 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
643 /*
644  * Set the debug registers back to their default "safe" values.
645  */
646 static void set_debug_reg_defaults(struct thread_struct *thread)
647 {
648         thread->debug.iac1 = thread->debug.iac2 = 0;
649 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
650         thread->debug.iac3 = thread->debug.iac4 = 0;
651 #endif
652         thread->debug.dac1 = thread->debug.dac2 = 0;
653 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
654         thread->debug.dvc1 = thread->debug.dvc2 = 0;
655 #endif
656         thread->debug.dbcr0 = 0;
657 #ifdef CONFIG_BOOKE
658         /*
659          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
660          */
661         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
662                         DBCR1_IAC3US | DBCR1_IAC4US;
663         /*
664          * Force Data Address Compare User/Supervisor bits to be User-only
665          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
666          */
667         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
668 #else
669         thread->debug.dbcr1 = 0;
670 #endif
671 }
672
673 static void prime_debug_regs(struct debug_reg *debug)
674 {
675         /*
676          * We could have inherited MSR_DE from userspace, since
677          * it doesn't get cleared on exception entry.  Make sure
678          * MSR_DE is clear before we enable any debug events.
679          */
680         mtmsr(mfmsr() & ~MSR_DE);
681
682         mtspr(SPRN_IAC1, debug->iac1);
683         mtspr(SPRN_IAC2, debug->iac2);
684 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
685         mtspr(SPRN_IAC3, debug->iac3);
686         mtspr(SPRN_IAC4, debug->iac4);
687 #endif
688         mtspr(SPRN_DAC1, debug->dac1);
689         mtspr(SPRN_DAC2, debug->dac2);
690 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
691         mtspr(SPRN_DVC1, debug->dvc1);
692         mtspr(SPRN_DVC2, debug->dvc2);
693 #endif
694         mtspr(SPRN_DBCR0, debug->dbcr0);
695         mtspr(SPRN_DBCR1, debug->dbcr1);
696 #ifdef CONFIG_BOOKE
697         mtspr(SPRN_DBCR2, debug->dbcr2);
698 #endif
699 }
700 /*
701  * Unless neither the old or new thread are making use of the
702  * debug registers, set the debug registers from the values
703  * stored in the new thread.
704  */
705 void switch_booke_debug_regs(struct debug_reg *new_debug)
706 {
707         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
708                 || (new_debug->dbcr0 & DBCR0_IDM))
709                         prime_debug_regs(new_debug);
710 }
711 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
712 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
713 #ifndef CONFIG_HAVE_HW_BREAKPOINT
714 static void set_debug_reg_defaults(struct thread_struct *thread)
715 {
716         thread->hw_brk.address = 0;
717         thread->hw_brk.type = 0;
718         set_breakpoint(&thread->hw_brk);
719 }
720 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
721 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
722
723 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
724 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
725 {
726         mtspr(SPRN_DAC1, dabr);
727 #ifdef CONFIG_PPC_47x
728         isync();
729 #endif
730         return 0;
731 }
732 #elif defined(CONFIG_PPC_BOOK3S)
733 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
734 {
735         mtspr(SPRN_DABR, dabr);
736         if (cpu_has_feature(CPU_FTR_DABRX))
737                 mtspr(SPRN_DABRX, dabrx);
738         return 0;
739 }
740 #elif defined(CONFIG_PPC_8xx)
741 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
742 {
743         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
744         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
745         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
746
747         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
748                 lctrl1 |= 0xa0000;
749         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
750                 lctrl1 |= 0xf0000;
751         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
752                 lctrl2 = 0;
753
754         mtspr(SPRN_LCTRL2, 0);
755         mtspr(SPRN_CMPE, addr);
756         mtspr(SPRN_CMPF, addr + 4);
757         mtspr(SPRN_LCTRL1, lctrl1);
758         mtspr(SPRN_LCTRL2, lctrl2);
759
760         return 0;
761 }
762 #else
763 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
764 {
765         return -EINVAL;
766 }
767 #endif
768
769 static inline int set_dabr(struct arch_hw_breakpoint *brk)
770 {
771         unsigned long dabr, dabrx;
772
773         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
774         dabrx = ((brk->type >> 3) & 0x7);
775
776         if (ppc_md.set_dabr)
777                 return ppc_md.set_dabr(dabr, dabrx);
778
779         return __set_dabr(dabr, dabrx);
780 }
781
782 static inline int set_dawr(struct arch_hw_breakpoint *brk)
783 {
784         unsigned long dawr, dawrx, mrd;
785
786         dawr = brk->address;
787
788         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
789                                    << (63 - 58); //* read/write bits */
790         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
791                                    << (63 - 59); //* translate */
792         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
793                                    >> 3; //* PRIM bits */
794         /* dawr length is stored in field MDR bits 48:53.  Matches range in
795            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
796            0b111111=64DW.
797            brk->len is in bytes.
798            This aligns up to double word size, shifts and does the bias.
799         */
800         mrd = ((brk->len + 7) >> 3) - 1;
801         dawrx |= (mrd & 0x3f) << (63 - 53);
802
803         if (ppc_md.set_dawr)
804                 return ppc_md.set_dawr(dawr, dawrx);
805         mtspr(SPRN_DAWR, dawr);
806         mtspr(SPRN_DAWRX, dawrx);
807         return 0;
808 }
809
810 void __set_breakpoint(struct arch_hw_breakpoint *brk)
811 {
812         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
813
814         if (cpu_has_feature(CPU_FTR_DAWR))
815                 set_dawr(brk);
816         else
817                 set_dabr(brk);
818 }
819
820 void set_breakpoint(struct arch_hw_breakpoint *brk)
821 {
822         preempt_disable();
823         __set_breakpoint(brk);
824         preempt_enable();
825 }
826
827 #ifdef CONFIG_PPC64
828 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
829 #endif
830
831 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
832                               struct arch_hw_breakpoint *b)
833 {
834         if (a->address != b->address)
835                 return false;
836         if (a->type != b->type)
837                 return false;
838         if (a->len != b->len)
839                 return false;
840         return true;
841 }
842
843 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
844
845 static inline bool tm_enabled(struct task_struct *tsk)
846 {
847         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
848 }
849
850 static void tm_reclaim_thread(struct thread_struct *thr,
851                               struct thread_info *ti, uint8_t cause)
852 {
853         /*
854          * Use the current MSR TM suspended bit to track if we have
855          * checkpointed state outstanding.
856          * On signal delivery, we'd normally reclaim the checkpointed
857          * state to obtain stack pointer (see:get_tm_stackpointer()).
858          * This will then directly return to userspace without going
859          * through __switch_to(). However, if the stack frame is bad,
860          * we need to exit this thread which calls __switch_to() which
861          * will again attempt to reclaim the already saved tm state.
862          * Hence we need to check that we've not already reclaimed
863          * this state.
864          * We do this using the current MSR, rather tracking it in
865          * some specific thread_struct bit, as it has the additional
866          * benefit of checking for a potential TM bad thing exception.
867          */
868         if (!MSR_TM_SUSPENDED(mfmsr()))
869                 return;
870
871         /*
872          * If we are in a transaction and FP is off then we can't have
873          * used FP inside that transaction. Hence the checkpointed
874          * state is the same as the live state. We need to copy the
875          * live state to the checkpointed state so that when the
876          * transaction is restored, the checkpointed state is correct
877          * and the aborted transaction sees the correct state. We use
878          * ckpt_regs.msr here as that's what tm_reclaim will use to
879          * determine if it's going to write the checkpointed state or
880          * not. So either this will write the checkpointed registers,
881          * or reclaim will. Similarly for VMX.
882          */
883         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
884                 memcpy(&thr->ckfp_state, &thr->fp_state,
885                        sizeof(struct thread_fp_state));
886         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
887                 memcpy(&thr->ckvr_state, &thr->vr_state,
888                        sizeof(struct thread_vr_state));
889
890         giveup_all(container_of(thr, struct task_struct, thread));
891
892         tm_reclaim(thr, thr->ckpt_regs.msr, cause);
893 }
894
895 void tm_reclaim_current(uint8_t cause)
896 {
897         tm_enable();
898         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
899 }
900
901 static inline void tm_reclaim_task(struct task_struct *tsk)
902 {
903         /* We have to work out if we're switching from/to a task that's in the
904          * middle of a transaction.
905          *
906          * In switching we need to maintain a 2nd register state as
907          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
908          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
909          * ckvr_state
910          *
911          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
912          */
913         struct thread_struct *thr = &tsk->thread;
914
915         if (!thr->regs)
916                 return;
917
918         if (!MSR_TM_ACTIVE(thr->regs->msr))
919                 goto out_and_saveregs;
920
921         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
922                  "ccr=%lx, msr=%lx, trap=%lx)\n",
923                  tsk->pid, thr->regs->nip,
924                  thr->regs->ccr, thr->regs->msr,
925                  thr->regs->trap);
926
927         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
928
929         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
930                  tsk->pid);
931
932 out_and_saveregs:
933         /* Always save the regs here, even if a transaction's not active.
934          * This context-switches a thread's TM info SPRs.  We do it here to
935          * be consistent with the restore path (in recheckpoint) which
936          * cannot happen later in _switch().
937          */
938         tm_save_sprs(thr);
939 }
940
941 extern void __tm_recheckpoint(struct thread_struct *thread,
942                               unsigned long orig_msr);
943
944 void tm_recheckpoint(struct thread_struct *thread,
945                      unsigned long orig_msr)
946 {
947         unsigned long flags;
948
949         if (!(thread->regs->msr & MSR_TM))
950                 return;
951
952         /* We really can't be interrupted here as the TEXASR registers can't
953          * change and later in the trecheckpoint code, we have a userspace R1.
954          * So let's hard disable over this region.
955          */
956         local_irq_save(flags);
957         hard_irq_disable();
958
959         /* The TM SPRs are restored here, so that TEXASR.FS can be set
960          * before the trecheckpoint and no explosion occurs.
961          */
962         tm_restore_sprs(thread);
963
964         __tm_recheckpoint(thread, orig_msr);
965
966         local_irq_restore(flags);
967 }
968
969 static inline void tm_recheckpoint_new_task(struct task_struct *new)
970 {
971         unsigned long msr;
972
973         if (!cpu_has_feature(CPU_FTR_TM))
974                 return;
975
976         /* Recheckpoint the registers of the thread we're about to switch to.
977          *
978          * If the task was using FP, we non-lazily reload both the original and
979          * the speculative FP register states.  This is because the kernel
980          * doesn't see if/when a TM rollback occurs, so if we take an FP
981          * unavailable later, we are unable to determine which set of FP regs
982          * need to be restored.
983          */
984         if (!tm_enabled(new))
985                 return;
986
987         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
988                 tm_restore_sprs(&new->thread);
989                 return;
990         }
991         msr = new->thread.ckpt_regs.msr;
992         /* Recheckpoint to restore original checkpointed register state. */
993         TM_DEBUG("*** tm_recheckpoint of pid %d "
994                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
995                  new->pid, new->thread.regs->msr, msr);
996
997         tm_recheckpoint(&new->thread, msr);
998
999         /*
1000          * The checkpointed state has been restored but the live state has
1001          * not, ensure all the math functionality is turned off to trigger
1002          * restore_math() to reload.
1003          */
1004         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1005
1006         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1007                  "(kernel msr 0x%lx)\n",
1008                  new->pid, mfmsr());
1009 }
1010
1011 static inline void __switch_to_tm(struct task_struct *prev,
1012                 struct task_struct *new)
1013 {
1014         if (cpu_has_feature(CPU_FTR_TM)) {
1015                 if (tm_enabled(prev) || tm_enabled(new))
1016                         tm_enable();
1017
1018                 if (tm_enabled(prev)) {
1019                         prev->thread.load_tm++;
1020                         tm_reclaim_task(prev);
1021                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1022                                 prev->thread.regs->msr &= ~MSR_TM;
1023                 }
1024
1025                 tm_recheckpoint_new_task(new);
1026         }
1027 }
1028
1029 /*
1030  * This is called if we are on the way out to userspace and the
1031  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1032  * FP and/or vector state and does so if necessary.
1033  * If userspace is inside a transaction (whether active or
1034  * suspended) and FP/VMX/VSX instructions have ever been enabled
1035  * inside that transaction, then we have to keep them enabled
1036  * and keep the FP/VMX/VSX state loaded while ever the transaction
1037  * continues.  The reason is that if we didn't, and subsequently
1038  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1039  * we don't know whether it's the same transaction, and thus we
1040  * don't know which of the checkpointed state and the transactional
1041  * state to use.
1042  */
1043 void restore_tm_state(struct pt_regs *regs)
1044 {
1045         unsigned long msr_diff;
1046
1047         /*
1048          * This is the only moment we should clear TIF_RESTORE_TM as
1049          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1050          * again, anything else could lead to an incorrect ckpt_msr being
1051          * saved and therefore incorrect signal contexts.
1052          */
1053         clear_thread_flag(TIF_RESTORE_TM);
1054         if (!MSR_TM_ACTIVE(regs->msr))
1055                 return;
1056
1057         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1058         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1059
1060         /* Ensure that restore_math() will restore */
1061         if (msr_diff & MSR_FP)
1062                 current->thread.load_fp = 1;
1063 #ifdef CONFIG_ALTIVEC
1064         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1065                 current->thread.load_vec = 1;
1066 #endif
1067         restore_math(regs);
1068
1069         regs->msr |= msr_diff;
1070 }
1071
1072 #else
1073 #define tm_recheckpoint_new_task(new)
1074 #define __switch_to_tm(prev, new)
1075 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1076
1077 static inline void save_sprs(struct thread_struct *t)
1078 {
1079 #ifdef CONFIG_ALTIVEC
1080         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1081                 t->vrsave = mfspr(SPRN_VRSAVE);
1082 #endif
1083 #ifdef CONFIG_PPC_BOOK3S_64
1084         if (cpu_has_feature(CPU_FTR_DSCR))
1085                 t->dscr = mfspr(SPRN_DSCR);
1086
1087         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1088                 t->bescr = mfspr(SPRN_BESCR);
1089                 t->ebbhr = mfspr(SPRN_EBBHR);
1090                 t->ebbrr = mfspr(SPRN_EBBRR);
1091
1092                 t->fscr = mfspr(SPRN_FSCR);
1093
1094                 /*
1095                  * Note that the TAR is not available for use in the kernel.
1096                  * (To provide this, the TAR should be backed up/restored on
1097                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1098                  * this should be in pt_regs anyway (for debug).)
1099                  */
1100                 t->tar = mfspr(SPRN_TAR);
1101         }
1102 #endif
1103 }
1104
1105 static inline void restore_sprs(struct thread_struct *old_thread,
1106                                 struct thread_struct *new_thread)
1107 {
1108 #ifdef CONFIG_ALTIVEC
1109         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1110             old_thread->vrsave != new_thread->vrsave)
1111                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1112 #endif
1113 #ifdef CONFIG_PPC_BOOK3S_64
1114         if (cpu_has_feature(CPU_FTR_DSCR)) {
1115                 u64 dscr = get_paca()->dscr_default;
1116                 if (new_thread->dscr_inherit)
1117                         dscr = new_thread->dscr;
1118
1119                 if (old_thread->dscr != dscr)
1120                         mtspr(SPRN_DSCR, dscr);
1121         }
1122
1123         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1124                 if (old_thread->bescr != new_thread->bescr)
1125                         mtspr(SPRN_BESCR, new_thread->bescr);
1126                 if (old_thread->ebbhr != new_thread->ebbhr)
1127                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1128                 if (old_thread->ebbrr != new_thread->ebbrr)
1129                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1130
1131                 if (old_thread->fscr != new_thread->fscr)
1132                         mtspr(SPRN_FSCR, new_thread->fscr);
1133
1134                 if (old_thread->tar != new_thread->tar)
1135                         mtspr(SPRN_TAR, new_thread->tar);
1136         }
1137 #endif
1138 }
1139
1140 #ifdef CONFIG_PPC_BOOK3S_64
1141 #define CP_SIZE 128
1142 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1143 #endif
1144
1145 struct task_struct *__switch_to(struct task_struct *prev,
1146         struct task_struct *new)
1147 {
1148         struct thread_struct *new_thread, *old_thread;
1149         struct task_struct *last;
1150 #ifdef CONFIG_PPC_BOOK3S_64
1151         struct ppc64_tlb_batch *batch;
1152 #endif
1153
1154         new_thread = &new->thread;
1155         old_thread = &current->thread;
1156
1157         WARN_ON(!irqs_disabled());
1158
1159 #ifdef CONFIG_PPC64
1160         /*
1161          * Collect processor utilization data per process
1162          */
1163         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1164                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1165                 long unsigned start_tb, current_tb;
1166                 start_tb = old_thread->start_tb;
1167                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1168                 old_thread->accum_tb += (current_tb - start_tb);
1169                 new_thread->start_tb = current_tb;
1170         }
1171 #endif /* CONFIG_PPC64 */
1172
1173 #ifdef CONFIG_PPC_STD_MMU_64
1174         batch = this_cpu_ptr(&ppc64_tlb_batch);
1175         if (batch->active) {
1176                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1177                 if (batch->index)
1178                         __flush_tlb_pending(batch);
1179                 batch->active = 0;
1180         }
1181 #endif /* CONFIG_PPC_STD_MMU_64 */
1182
1183 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1184         switch_booke_debug_regs(&new->thread.debug);
1185 #else
1186 /*
1187  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1188  * schedule DABR
1189  */
1190 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1191         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1192                 __set_breakpoint(&new->thread.hw_brk);
1193 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1194 #endif
1195
1196         /*
1197          * We need to save SPRs before treclaim/trecheckpoint as these will
1198          * change a number of them.
1199          */
1200         save_sprs(&prev->thread);
1201
1202         /* Save FPU, Altivec, VSX and SPE state */
1203         giveup_all(prev);
1204
1205         __switch_to_tm(prev, new);
1206
1207         if (!radix_enabled()) {
1208                 /*
1209                  * We can't take a PMU exception inside _switch() since there
1210                  * is a window where the kernel stack SLB and the kernel stack
1211                  * are out of sync. Hard disable here.
1212                  */
1213                 hard_irq_disable();
1214         }
1215
1216         /*
1217          * Call restore_sprs() before calling _switch(). If we move it after
1218          * _switch() then we miss out on calling it for new tasks. The reason
1219          * for this is we manually create a stack frame for new tasks that
1220          * directly returns through ret_from_fork() or
1221          * ret_from_kernel_thread(). See copy_thread() for details.
1222          */
1223         restore_sprs(old_thread, new_thread);
1224
1225         last = _switch(old_thread, new_thread);
1226
1227 #ifdef CONFIG_PPC_STD_MMU_64
1228         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1229                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1230                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1231                 batch->active = 1;
1232         }
1233
1234         if (current_thread_info()->task->thread.regs) {
1235                 restore_math(current_thread_info()->task->thread.regs);
1236
1237                 /*
1238                  * The copy-paste buffer can only store into foreign real
1239                  * addresses, so unprivileged processes can not see the
1240                  * data or use it in any way unless they have foreign real
1241                  * mappings. We don't have a VAS driver that allocates those
1242                  * yet, so no cpabort is required.
1243                  */
1244                 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1245                         /*
1246                          * DD1 allows paste into normal system memory, so we
1247                          * do an unpaired copy here to clear the buffer and
1248                          * prevent a covert channel being set up.
1249                          *
1250                          * cpabort is not used because it is quite expensive.
1251                          */
1252                         asm volatile(PPC_COPY(%0, %1)
1253                                         : : "r"(dummy_copy_buffer), "r"(0));
1254                 }
1255         }
1256 #endif /* CONFIG_PPC_STD_MMU_64 */
1257
1258         return last;
1259 }
1260
1261 static int instructions_to_print = 16;
1262
1263 static void show_instructions(struct pt_regs *regs)
1264 {
1265         int i;
1266         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1267                         sizeof(int));
1268
1269         printk("Instruction dump:");
1270
1271         for (i = 0; i < instructions_to_print; i++) {
1272                 int instr;
1273
1274                 if (!(i % 8))
1275                         pr_cont("\n");
1276
1277 #if !defined(CONFIG_BOOKE)
1278                 /* If executing with the IMMU off, adjust pc rather
1279                  * than print XXXXXXXX.
1280                  */
1281                 if (!(regs->msr & MSR_IR))
1282                         pc = (unsigned long)phys_to_virt(pc);
1283 #endif
1284
1285                 if (!__kernel_text_address(pc) ||
1286                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1287                         pr_cont("XXXXXXXX ");
1288                 } else {
1289                         if (regs->nip == pc)
1290                                 pr_cont("<%08x> ", instr);
1291                         else
1292                                 pr_cont("%08x ", instr);
1293                 }
1294
1295                 pc += sizeof(int);
1296         }
1297
1298         pr_cont("\n");
1299 }
1300
1301 struct regbit {
1302         unsigned long bit;
1303         const char *name;
1304 };
1305
1306 static struct regbit msr_bits[] = {
1307 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1308         {MSR_SF,        "SF"},
1309         {MSR_HV,        "HV"},
1310 #endif
1311         {MSR_VEC,       "VEC"},
1312         {MSR_VSX,       "VSX"},
1313 #ifdef CONFIG_BOOKE
1314         {MSR_CE,        "CE"},
1315 #endif
1316         {MSR_EE,        "EE"},
1317         {MSR_PR,        "PR"},
1318         {MSR_FP,        "FP"},
1319         {MSR_ME,        "ME"},
1320 #ifdef CONFIG_BOOKE
1321         {MSR_DE,        "DE"},
1322 #else
1323         {MSR_SE,        "SE"},
1324         {MSR_BE,        "BE"},
1325 #endif
1326         {MSR_IR,        "IR"},
1327         {MSR_DR,        "DR"},
1328         {MSR_PMM,       "PMM"},
1329 #ifndef CONFIG_BOOKE
1330         {MSR_RI,        "RI"},
1331         {MSR_LE,        "LE"},
1332 #endif
1333         {0,             NULL}
1334 };
1335
1336 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1337 {
1338         const char *s = "";
1339
1340         for (; bits->bit; ++bits)
1341                 if (val & bits->bit) {
1342                         pr_cont("%s%s", s, bits->name);
1343                         s = sep;
1344                 }
1345 }
1346
1347 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1348 static struct regbit msr_tm_bits[] = {
1349         {MSR_TS_T,      "T"},
1350         {MSR_TS_S,      "S"},
1351         {MSR_TM,        "E"},
1352         {0,             NULL}
1353 };
1354
1355 static void print_tm_bits(unsigned long val)
1356 {
1357 /*
1358  * This only prints something if at least one of the TM bit is set.
1359  * Inside the TM[], the output means:
1360  *   E: Enabled         (bit 32)
1361  *   S: Suspended       (bit 33)
1362  *   T: Transactional   (bit 34)
1363  */
1364         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1365                 pr_cont(",TM[");
1366                 print_bits(val, msr_tm_bits, "");
1367                 pr_cont("]");
1368         }
1369 }
1370 #else
1371 static void print_tm_bits(unsigned long val) {}
1372 #endif
1373
1374 static void print_msr_bits(unsigned long val)
1375 {
1376         pr_cont("<");
1377         print_bits(val, msr_bits, ",");
1378         print_tm_bits(val);
1379         pr_cont(">");
1380 }
1381
1382 #ifdef CONFIG_PPC64
1383 #define REG             "%016lx"
1384 #define REGS_PER_LINE   4
1385 #define LAST_VOLATILE   13
1386 #else
1387 #define REG             "%08lx"
1388 #define REGS_PER_LINE   8
1389 #define LAST_VOLATILE   12
1390 #endif
1391
1392 void show_regs(struct pt_regs * regs)
1393 {
1394         int i, trap;
1395
1396         show_regs_print_info(KERN_DEFAULT);
1397
1398         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1399                regs->nip, regs->link, regs->ctr);
1400         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1401                regs, regs->trap, print_tainted(), init_utsname()->release);
1402         printk("MSR: "REG" ", regs->msr);
1403         print_msr_bits(regs->msr);
1404         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1405         trap = TRAP(regs);
1406         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1407                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1408         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1409 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1410                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1411 #else
1412                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1413 #endif
1414 #ifdef CONFIG_PPC64
1415         pr_cont("SOFTE: %ld ", regs->softe);
1416 #endif
1417 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1418         if (MSR_TM_ACTIVE(regs->msr))
1419                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1420 #endif
1421
1422         for (i = 0;  i < 32;  i++) {
1423                 if ((i % REGS_PER_LINE) == 0)
1424                         pr_cont("\nGPR%02d: ", i);
1425                 pr_cont(REG " ", regs->gpr[i]);
1426                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1427                         break;
1428         }
1429         pr_cont("\n");
1430 #ifdef CONFIG_KALLSYMS
1431         /*
1432          * Lookup NIP late so we have the best change of getting the
1433          * above info out without failing
1434          */
1435         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1436         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1437 #endif
1438         show_stack(current, (unsigned long *) regs->gpr[1]);
1439         if (!user_mode(regs))
1440                 show_instructions(regs);
1441 }
1442
1443 void flush_thread(void)
1444 {
1445 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1446         flush_ptrace_hw_breakpoint(current);
1447 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1448         set_debug_reg_defaults(&current->thread);
1449 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1450 }
1451
1452 void
1453 release_thread(struct task_struct *t)
1454 {
1455 }
1456
1457 /*
1458  * this gets called so that we can store coprocessor state into memory and
1459  * copy the current task into the new thread.
1460  */
1461 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1462 {
1463         flush_all_to_thread(src);
1464         /*
1465          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1466          * flush but it removes the checkpointed state from the current CPU and
1467          * transitions the CPU out of TM mode.  Hence we need to call
1468          * tm_recheckpoint_new_task() (on the same task) to restore the
1469          * checkpointed state back and the TM mode.
1470          *
1471          * Can't pass dst because it isn't ready. Doesn't matter, passing
1472          * dst is only important for __switch_to()
1473          */
1474         __switch_to_tm(src, src);
1475
1476         *dst = *src;
1477
1478         clear_task_ebb(dst);
1479
1480         return 0;
1481 }
1482
1483 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1484 {
1485 #ifdef CONFIG_PPC_STD_MMU_64
1486         unsigned long sp_vsid;
1487         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1488
1489         if (radix_enabled())
1490                 return;
1491
1492         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1493                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1494                         << SLB_VSID_SHIFT_1T;
1495         else
1496                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1497                         << SLB_VSID_SHIFT;
1498         sp_vsid |= SLB_VSID_KERNEL | llp;
1499         p->thread.ksp_vsid = sp_vsid;
1500 #endif
1501 }
1502
1503 /*
1504  * Copy a thread..
1505  */
1506
1507 /*
1508  * Copy architecture-specific thread state
1509  */
1510 int copy_thread(unsigned long clone_flags, unsigned long usp,
1511                 unsigned long kthread_arg, struct task_struct *p)
1512 {
1513         struct pt_regs *childregs, *kregs;
1514         extern void ret_from_fork(void);
1515         extern void ret_from_kernel_thread(void);
1516         void (*f)(void);
1517         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1518         struct thread_info *ti = task_thread_info(p);
1519
1520         klp_init_thread_info(ti);
1521
1522         /* Copy registers */
1523         sp -= sizeof(struct pt_regs);
1524         childregs = (struct pt_regs *) sp;
1525         if (unlikely(p->flags & PF_KTHREAD)) {
1526                 /* kernel thread */
1527                 memset(childregs, 0, sizeof(struct pt_regs));
1528                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1529                 /* function */
1530                 if (usp)
1531                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1532 #ifdef CONFIG_PPC64
1533                 clear_tsk_thread_flag(p, TIF_32BIT);
1534                 childregs->softe = 1;
1535 #endif
1536                 childregs->gpr[15] = kthread_arg;
1537                 p->thread.regs = NULL;  /* no user register state */
1538                 ti->flags |= _TIF_RESTOREALL;
1539                 f = ret_from_kernel_thread;
1540         } else {
1541                 /* user thread */
1542                 struct pt_regs *regs = current_pt_regs();
1543                 CHECK_FULL_REGS(regs);
1544                 *childregs = *regs;
1545                 if (usp)
1546                         childregs->gpr[1] = usp;
1547                 p->thread.regs = childregs;
1548                 childregs->gpr[3] = 0;  /* Result from fork() */
1549                 if (clone_flags & CLONE_SETTLS) {
1550 #ifdef CONFIG_PPC64
1551                         if (!is_32bit_task())
1552                                 childregs->gpr[13] = childregs->gpr[6];
1553                         else
1554 #endif
1555                                 childregs->gpr[2] = childregs->gpr[6];
1556                 }
1557
1558                 f = ret_from_fork;
1559         }
1560         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1561         sp -= STACK_FRAME_OVERHEAD;
1562
1563         /*
1564          * The way this works is that at some point in the future
1565          * some task will call _switch to switch to the new task.
1566          * That will pop off the stack frame created below and start
1567          * the new task running at ret_from_fork.  The new task will
1568          * do some house keeping and then return from the fork or clone
1569          * system call, using the stack frame created above.
1570          */
1571         ((unsigned long *)sp)[0] = 0;
1572         sp -= sizeof(struct pt_regs);
1573         kregs = (struct pt_regs *) sp;
1574         sp -= STACK_FRAME_OVERHEAD;
1575         p->thread.ksp = sp;
1576 #ifdef CONFIG_PPC32
1577         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1578                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1579 #endif
1580 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1581         p->thread.ptrace_bps[0] = NULL;
1582 #endif
1583
1584         p->thread.fp_save_area = NULL;
1585 #ifdef CONFIG_ALTIVEC
1586         p->thread.vr_save_area = NULL;
1587 #endif
1588
1589         setup_ksp_vsid(p, sp);
1590
1591 #ifdef CONFIG_PPC64 
1592         if (cpu_has_feature(CPU_FTR_DSCR)) {
1593                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1594                 p->thread.dscr = mfspr(SPRN_DSCR);
1595         }
1596         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1597                 p->thread.ppr = INIT_PPR;
1598 #endif
1599         kregs->nip = ppc_function_entry(f);
1600         return 0;
1601 }
1602
1603 /*
1604  * Set up a thread for executing a new program
1605  */
1606 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1607 {
1608 #ifdef CONFIG_PPC64
1609         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1610 #endif
1611
1612         /*
1613          * If we exec out of a kernel thread then thread.regs will not be
1614          * set.  Do it now.
1615          */
1616         if (!current->thread.regs) {
1617                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1618                 current->thread.regs = regs - 1;
1619         }
1620
1621 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1622         /*
1623          * Clear any transactional state, we're exec()ing. The cause is
1624          * not important as there will never be a recheckpoint so it's not
1625          * user visible.
1626          */
1627         if (MSR_TM_SUSPENDED(mfmsr()))
1628                 tm_reclaim_current(0);
1629 #endif
1630
1631         memset(regs->gpr, 0, sizeof(regs->gpr));
1632         regs->ctr = 0;
1633         regs->link = 0;
1634         regs->xer = 0;
1635         regs->ccr = 0;
1636         regs->gpr[1] = sp;
1637
1638         /*
1639          * We have just cleared all the nonvolatile GPRs, so make
1640          * FULL_REGS(regs) return true.  This is necessary to allow
1641          * ptrace to examine the thread immediately after exec.
1642          */
1643         regs->trap &= ~1UL;
1644
1645 #ifdef CONFIG_PPC32
1646         regs->mq = 0;
1647         regs->nip = start;
1648         regs->msr = MSR_USER;
1649 #else
1650         if (!is_32bit_task()) {
1651                 unsigned long entry;
1652
1653                 if (is_elf2_task()) {
1654                         /* Look ma, no function descriptors! */
1655                         entry = start;
1656
1657                         /*
1658                          * Ulrich says:
1659                          *   The latest iteration of the ABI requires that when
1660                          *   calling a function (at its global entry point),
1661                          *   the caller must ensure r12 holds the entry point
1662                          *   address (so that the function can quickly
1663                          *   establish addressability).
1664                          */
1665                         regs->gpr[12] = start;
1666                         /* Make sure that's restored on entry to userspace. */
1667                         set_thread_flag(TIF_RESTOREALL);
1668                 } else {
1669                         unsigned long toc;
1670
1671                         /* start is a relocated pointer to the function
1672                          * descriptor for the elf _start routine.  The first
1673                          * entry in the function descriptor is the entry
1674                          * address of _start and the second entry is the TOC
1675                          * value we need to use.
1676                          */
1677                         __get_user(entry, (unsigned long __user *)start);
1678                         __get_user(toc, (unsigned long __user *)start+1);
1679
1680                         /* Check whether the e_entry function descriptor entries
1681                          * need to be relocated before we can use them.
1682                          */
1683                         if (load_addr != 0) {
1684                                 entry += load_addr;
1685                                 toc   += load_addr;
1686                         }
1687                         regs->gpr[2] = toc;
1688                 }
1689                 regs->nip = entry;
1690                 regs->msr = MSR_USER64;
1691         } else {
1692                 regs->nip = start;
1693                 regs->gpr[2] = 0;
1694                 regs->msr = MSR_USER32;
1695         }
1696 #endif
1697 #ifdef CONFIG_VSX
1698         current->thread.used_vsr = 0;
1699 #endif
1700         current->thread.load_fp = 0;
1701         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1702         current->thread.fp_save_area = NULL;
1703 #ifdef CONFIG_ALTIVEC
1704         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1705         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1706         current->thread.vr_save_area = NULL;
1707         current->thread.vrsave = 0;
1708         current->thread.used_vr = 0;
1709         current->thread.load_vec = 0;
1710 #endif /* CONFIG_ALTIVEC */
1711 #ifdef CONFIG_SPE
1712         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1713         current->thread.acc = 0;
1714         current->thread.spefscr = 0;
1715         current->thread.used_spe = 0;
1716 #endif /* CONFIG_SPE */
1717 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1718         current->thread.tm_tfhar = 0;
1719         current->thread.tm_texasr = 0;
1720         current->thread.tm_tfiar = 0;
1721         current->thread.load_tm = 0;
1722 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1723 }
1724 EXPORT_SYMBOL(start_thread);
1725
1726 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1727                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1728
1729 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1730 {
1731         struct pt_regs *regs = tsk->thread.regs;
1732
1733         /* This is a bit hairy.  If we are an SPE enabled  processor
1734          * (have embedded fp) we store the IEEE exception enable flags in
1735          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1736          * mode (asyn, precise, disabled) for 'Classic' FP. */
1737         if (val & PR_FP_EXC_SW_ENABLE) {
1738 #ifdef CONFIG_SPE
1739                 if (cpu_has_feature(CPU_FTR_SPE)) {
1740                         /*
1741                          * When the sticky exception bits are set
1742                          * directly by userspace, it must call prctl
1743                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1744                          * in the existing prctl settings) or
1745                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1746                          * the bits being set).  <fenv.h> functions
1747                          * saving and restoring the whole
1748                          * floating-point environment need to do so
1749                          * anyway to restore the prctl settings from
1750                          * the saved environment.
1751                          */
1752                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1753                         tsk->thread.fpexc_mode = val &
1754                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1755                         return 0;
1756                 } else {
1757                         return -EINVAL;
1758                 }
1759 #else
1760                 return -EINVAL;
1761 #endif
1762         }
1763
1764         /* on a CONFIG_SPE this does not hurt us.  The bits that
1765          * __pack_fe01 use do not overlap with bits used for
1766          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1767          * on CONFIG_SPE implementations are reserved so writing to
1768          * them does not change anything */
1769         if (val > PR_FP_EXC_PRECISE)
1770                 return -EINVAL;
1771         tsk->thread.fpexc_mode = __pack_fe01(val);
1772         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1773                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1774                         | tsk->thread.fpexc_mode;
1775         return 0;
1776 }
1777
1778 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1779 {
1780         unsigned int val;
1781
1782         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1783 #ifdef CONFIG_SPE
1784                 if (cpu_has_feature(CPU_FTR_SPE)) {
1785                         /*
1786                          * When the sticky exception bits are set
1787                          * directly by userspace, it must call prctl
1788                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1789                          * in the existing prctl settings) or
1790                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1791                          * the bits being set).  <fenv.h> functions
1792                          * saving and restoring the whole
1793                          * floating-point environment need to do so
1794                          * anyway to restore the prctl settings from
1795                          * the saved environment.
1796                          */
1797                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1798                         val = tsk->thread.fpexc_mode;
1799                 } else
1800                         return -EINVAL;
1801 #else
1802                 return -EINVAL;
1803 #endif
1804         else
1805                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1806         return put_user(val, (unsigned int __user *) adr);
1807 }
1808
1809 int set_endian(struct task_struct *tsk, unsigned int val)
1810 {
1811         struct pt_regs *regs = tsk->thread.regs;
1812
1813         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1814             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1815                 return -EINVAL;
1816
1817         if (regs == NULL)
1818                 return -EINVAL;
1819
1820         if (val == PR_ENDIAN_BIG)
1821                 regs->msr &= ~MSR_LE;
1822         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1823                 regs->msr |= MSR_LE;
1824         else
1825                 return -EINVAL;
1826
1827         return 0;
1828 }
1829
1830 int get_endian(struct task_struct *tsk, unsigned long adr)
1831 {
1832         struct pt_regs *regs = tsk->thread.regs;
1833         unsigned int val;
1834
1835         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1836             !cpu_has_feature(CPU_FTR_REAL_LE))
1837                 return -EINVAL;
1838
1839         if (regs == NULL)
1840                 return -EINVAL;
1841
1842         if (regs->msr & MSR_LE) {
1843                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1844                         val = PR_ENDIAN_LITTLE;
1845                 else
1846                         val = PR_ENDIAN_PPC_LITTLE;
1847         } else
1848                 val = PR_ENDIAN_BIG;
1849
1850         return put_user(val, (unsigned int __user *)adr);
1851 }
1852
1853 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1854 {
1855         tsk->thread.align_ctl = val;
1856         return 0;
1857 }
1858
1859 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1860 {
1861         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1862 }
1863
1864 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1865                                   unsigned long nbytes)
1866 {
1867         unsigned long stack_page;
1868         unsigned long cpu = task_cpu(p);
1869
1870         /*
1871          * Avoid crashing if the stack has overflowed and corrupted
1872          * task_cpu(p), which is in the thread_info struct.
1873          */
1874         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1875                 stack_page = (unsigned long) hardirq_ctx[cpu];
1876                 if (sp >= stack_page + sizeof(struct thread_struct)
1877                     && sp <= stack_page + THREAD_SIZE - nbytes)
1878                         return 1;
1879
1880                 stack_page = (unsigned long) softirq_ctx[cpu];
1881                 if (sp >= stack_page + sizeof(struct thread_struct)
1882                     && sp <= stack_page + THREAD_SIZE - nbytes)
1883                         return 1;
1884         }
1885         return 0;
1886 }
1887
1888 int validate_sp(unsigned long sp, struct task_struct *p,
1889                        unsigned long nbytes)
1890 {
1891         unsigned long stack_page = (unsigned long)task_stack_page(p);
1892
1893         if (sp >= stack_page + sizeof(struct thread_struct)
1894             && sp <= stack_page + THREAD_SIZE - nbytes)
1895                 return 1;
1896
1897         return valid_irq_stack(sp, p, nbytes);
1898 }
1899
1900 EXPORT_SYMBOL(validate_sp);
1901
1902 unsigned long get_wchan(struct task_struct *p)
1903 {
1904         unsigned long ip, sp;
1905         int count = 0;
1906
1907         if (!p || p == current || p->state == TASK_RUNNING)
1908                 return 0;
1909
1910         sp = p->thread.ksp;
1911         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1912                 return 0;
1913
1914         do {
1915                 sp = *(unsigned long *)sp;
1916                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1917                         return 0;
1918                 if (count > 0) {
1919                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1920                         if (!in_sched_functions(ip))
1921                                 return ip;
1922                 }
1923         } while (count++ < 16);
1924         return 0;
1925 }
1926
1927 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1928
1929 void show_stack(struct task_struct *tsk, unsigned long *stack)
1930 {
1931         unsigned long sp, ip, lr, newsp;
1932         int count = 0;
1933         int firstframe = 1;
1934 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1935         int curr_frame = current->curr_ret_stack;
1936         extern void return_to_handler(void);
1937         unsigned long rth = (unsigned long)return_to_handler;
1938 #endif
1939
1940         sp = (unsigned long) stack;
1941         if (tsk == NULL)
1942                 tsk = current;
1943         if (sp == 0) {
1944                 if (tsk == current)
1945                         sp = current_stack_pointer();
1946                 else
1947                         sp = tsk->thread.ksp;
1948         }
1949
1950         lr = 0;
1951         printk("Call Trace:\n");
1952         do {
1953                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1954                         return;
1955
1956                 stack = (unsigned long *) sp;
1957                 newsp = stack[0];
1958                 ip = stack[STACK_FRAME_LR_SAVE];
1959                 if (!firstframe || ip != lr) {
1960                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1961 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1962                         if ((ip == rth) && curr_frame >= 0) {
1963                                 pr_cont(" (%pS)",
1964                                        (void *)current->ret_stack[curr_frame].ret);
1965                                 curr_frame--;
1966                         }
1967 #endif
1968                         if (firstframe)
1969                                 pr_cont(" (unreliable)");
1970                         pr_cont("\n");
1971                 }
1972                 firstframe = 0;
1973
1974                 /*
1975                  * See if this is an exception frame.
1976                  * We look for the "regshere" marker in the current frame.
1977                  */
1978                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1979                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1980                         struct pt_regs *regs = (struct pt_regs *)
1981                                 (sp + STACK_FRAME_OVERHEAD);
1982                         lr = regs->link;
1983                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1984                                regs->trap, (void *)regs->nip, (void *)lr);
1985                         firstframe = 1;
1986                 }
1987
1988                 sp = newsp;
1989         } while (count++ < kstack_depth_to_print);
1990 }
1991
1992 #ifdef CONFIG_PPC64
1993 /* Called with hard IRQs off */
1994 void notrace __ppc64_runlatch_on(void)
1995 {
1996         struct thread_info *ti = current_thread_info();
1997         unsigned long ctrl;
1998
1999         ctrl = mfspr(SPRN_CTRLF);
2000         ctrl |= CTRL_RUNLATCH;
2001         mtspr(SPRN_CTRLT, ctrl);
2002
2003         ti->local_flags |= _TLF_RUNLATCH;
2004 }
2005
2006 /* Called with hard IRQs off */
2007 void notrace __ppc64_runlatch_off(void)
2008 {
2009         struct thread_info *ti = current_thread_info();
2010         unsigned long ctrl;
2011
2012         ti->local_flags &= ~_TLF_RUNLATCH;
2013
2014         ctrl = mfspr(SPRN_CTRLF);
2015         ctrl &= ~CTRL_RUNLATCH;
2016         mtspr(SPRN_CTRLT, ctrl);
2017 }
2018 #endif /* CONFIG_PPC64 */
2019
2020 unsigned long arch_align_stack(unsigned long sp)
2021 {
2022         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2023                 sp -= get_random_int() & ~PAGE_MASK;
2024         return sp & ~0xf;
2025 }
2026
2027 static inline unsigned long brk_rnd(void)
2028 {
2029         unsigned long rnd = 0;
2030
2031         /* 8MB for 32bit, 1GB for 64bit */
2032         if (is_32bit_task())
2033                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2034         else
2035                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2036
2037         return rnd << PAGE_SHIFT;
2038 }
2039
2040 unsigned long arch_randomize_brk(struct mm_struct *mm)
2041 {
2042         unsigned long base = mm->brk;
2043         unsigned long ret;
2044
2045 #ifdef CONFIG_PPC_STD_MMU_64
2046         /*
2047          * If we are using 1TB segments and we are allowed to randomise
2048          * the heap, we can put it above 1TB so it is backed by a 1TB
2049          * segment. Otherwise the heap will be in the bottom 1TB
2050          * which always uses 256MB segments and this may result in a
2051          * performance penalty. We don't need to worry about radix. For
2052          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2053          */
2054         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2055                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2056 #endif
2057
2058         ret = PAGE_ALIGN(base + brk_rnd());
2059
2060         if (ret < mm->brk)
2061                 return mm->brk;
2062
2063         return ret;
2064 }
2065