]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kernel/ptrace.c
Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[karo-tx-linux.git] / arch / powerpc / kernel / ptrace.c
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/m68k/kernel/ptrace.c"
6  *  Copyright (C) 1994 by Hamish Macdonald
7  *  Taken from linux/kernel/ptrace.c and modified for M680x0.
8  *  linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9  *
10  * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11  * and Paul Mackerras (paulus@samba.org).
12  *
13  * This file is subject to the terms and conditions of the GNU General
14  * Public License.  See the file README.legal in the main directory of
15  * this archive for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
36
37 #include <linux/uaccess.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/switch_to.h>
41 #include <asm/tm.h>
42 #include <asm/asm-prototypes.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 /*
48  * The parameter save area on the stack is used to store arguments being passed
49  * to callee function and is located at fixed offset from stack pointer.
50  */
51 #ifdef CONFIG_PPC32
52 #define PARAMETER_SAVE_AREA_OFFSET      24  /* bytes */
53 #else /* CONFIG_PPC32 */
54 #define PARAMETER_SAVE_AREA_OFFSET      48  /* bytes */
55 #endif
56
57 struct pt_regs_offset {
58         const char *name;
59         int offset;
60 };
61
62 #define STR(s)  #s                      /* convert to string */
63 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
64 #define GPR_OFFSET_NAME(num)    \
65         {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
66         {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
67 #define REG_OFFSET_END {.name = NULL, .offset = 0}
68
69 #define TVSO(f) (offsetof(struct thread_vr_state, f))
70 #define TFSO(f) (offsetof(struct thread_fp_state, f))
71 #define TSO(f)  (offsetof(struct thread_struct, f))
72
73 static const struct pt_regs_offset regoffset_table[] = {
74         GPR_OFFSET_NAME(0),
75         GPR_OFFSET_NAME(1),
76         GPR_OFFSET_NAME(2),
77         GPR_OFFSET_NAME(3),
78         GPR_OFFSET_NAME(4),
79         GPR_OFFSET_NAME(5),
80         GPR_OFFSET_NAME(6),
81         GPR_OFFSET_NAME(7),
82         GPR_OFFSET_NAME(8),
83         GPR_OFFSET_NAME(9),
84         GPR_OFFSET_NAME(10),
85         GPR_OFFSET_NAME(11),
86         GPR_OFFSET_NAME(12),
87         GPR_OFFSET_NAME(13),
88         GPR_OFFSET_NAME(14),
89         GPR_OFFSET_NAME(15),
90         GPR_OFFSET_NAME(16),
91         GPR_OFFSET_NAME(17),
92         GPR_OFFSET_NAME(18),
93         GPR_OFFSET_NAME(19),
94         GPR_OFFSET_NAME(20),
95         GPR_OFFSET_NAME(21),
96         GPR_OFFSET_NAME(22),
97         GPR_OFFSET_NAME(23),
98         GPR_OFFSET_NAME(24),
99         GPR_OFFSET_NAME(25),
100         GPR_OFFSET_NAME(26),
101         GPR_OFFSET_NAME(27),
102         GPR_OFFSET_NAME(28),
103         GPR_OFFSET_NAME(29),
104         GPR_OFFSET_NAME(30),
105         GPR_OFFSET_NAME(31),
106         REG_OFFSET_NAME(nip),
107         REG_OFFSET_NAME(msr),
108         REG_OFFSET_NAME(ctr),
109         REG_OFFSET_NAME(link),
110         REG_OFFSET_NAME(xer),
111         REG_OFFSET_NAME(ccr),
112 #ifdef CONFIG_PPC64
113         REG_OFFSET_NAME(softe),
114 #else
115         REG_OFFSET_NAME(mq),
116 #endif
117         REG_OFFSET_NAME(trap),
118         REG_OFFSET_NAME(dar),
119         REG_OFFSET_NAME(dsisr),
120         REG_OFFSET_END,
121 };
122
123 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
124 static void flush_tmregs_to_thread(struct task_struct *tsk)
125 {
126         /*
127          * If task is not current, it will have been flushed already to
128          * it's thread_struct during __switch_to().
129          *
130          * A reclaim flushes ALL the state or if not in TM save TM SPRs
131          * in the appropriate thread structures from live.
132          */
133
134         if (tsk != current)
135                 return;
136
137         if (MSR_TM_SUSPENDED(mfmsr())) {
138                 tm_reclaim_current(TM_CAUSE_SIGNAL);
139         } else {
140                 tm_enable();
141                 tm_save_sprs(&(tsk->thread));
142         }
143 }
144 #else
145 static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
146 #endif
147
148 /**
149  * regs_query_register_offset() - query register offset from its name
150  * @name:       the name of a register
151  *
152  * regs_query_register_offset() returns the offset of a register in struct
153  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
154  */
155 int regs_query_register_offset(const char *name)
156 {
157         const struct pt_regs_offset *roff;
158         for (roff = regoffset_table; roff->name != NULL; roff++)
159                 if (!strcmp(roff->name, name))
160                         return roff->offset;
161         return -EINVAL;
162 }
163
164 /**
165  * regs_query_register_name() - query register name from its offset
166  * @offset:     the offset of a register in struct pt_regs.
167  *
168  * regs_query_register_name() returns the name of a register from its
169  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
170  */
171 const char *regs_query_register_name(unsigned int offset)
172 {
173         const struct pt_regs_offset *roff;
174         for (roff = regoffset_table; roff->name != NULL; roff++)
175                 if (roff->offset == offset)
176                         return roff->name;
177         return NULL;
178 }
179
180 /*
181  * does not yet catch signals sent when the child dies.
182  * in exit.c or in signal.c.
183  */
184
185 /*
186  * Set of msr bits that gdb can change on behalf of a process.
187  */
188 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
189 #define MSR_DEBUGCHANGE 0
190 #else
191 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
192 #endif
193
194 /*
195  * Max register writeable via put_reg
196  */
197 #ifdef CONFIG_PPC32
198 #define PT_MAX_PUT_REG  PT_MQ
199 #else
200 #define PT_MAX_PUT_REG  PT_CCR
201 #endif
202
203 static unsigned long get_user_msr(struct task_struct *task)
204 {
205         return task->thread.regs->msr | task->thread.fpexc_mode;
206 }
207
208 static int set_user_msr(struct task_struct *task, unsigned long msr)
209 {
210         task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
211         task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
212         return 0;
213 }
214
215 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
216 static unsigned long get_user_ckpt_msr(struct task_struct *task)
217 {
218         return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
219 }
220
221 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
222 {
223         task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
224         task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
225         return 0;
226 }
227
228 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
229 {
230         task->thread.ckpt_regs.trap = trap & 0xfff0;
231         return 0;
232 }
233 #endif
234
235 #ifdef CONFIG_PPC64
236 static int get_user_dscr(struct task_struct *task, unsigned long *data)
237 {
238         *data = task->thread.dscr;
239         return 0;
240 }
241
242 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
243 {
244         task->thread.dscr = dscr;
245         task->thread.dscr_inherit = 1;
246         return 0;
247 }
248 #else
249 static int get_user_dscr(struct task_struct *task, unsigned long *data)
250 {
251         return -EIO;
252 }
253
254 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
255 {
256         return -EIO;
257 }
258 #endif
259
260 /*
261  * We prevent mucking around with the reserved area of trap
262  * which are used internally by the kernel.
263  */
264 static int set_user_trap(struct task_struct *task, unsigned long trap)
265 {
266         task->thread.regs->trap = trap & 0xfff0;
267         return 0;
268 }
269
270 /*
271  * Get contents of register REGNO in task TASK.
272  */
273 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
274 {
275         if ((task->thread.regs == NULL) || !data)
276                 return -EIO;
277
278         if (regno == PT_MSR) {
279                 *data = get_user_msr(task);
280                 return 0;
281         }
282
283         if (regno == PT_DSCR)
284                 return get_user_dscr(task, data);
285
286         if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
287                 *data = ((unsigned long *)task->thread.regs)[regno];
288                 return 0;
289         }
290
291         return -EIO;
292 }
293
294 /*
295  * Write contents of register REGNO in task TASK.
296  */
297 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
298 {
299         if (task->thread.regs == NULL)
300                 return -EIO;
301
302         if (regno == PT_MSR)
303                 return set_user_msr(task, data);
304         if (regno == PT_TRAP)
305                 return set_user_trap(task, data);
306         if (regno == PT_DSCR)
307                 return set_user_dscr(task, data);
308
309         if (regno <= PT_MAX_PUT_REG) {
310                 ((unsigned long *)task->thread.regs)[regno] = data;
311                 return 0;
312         }
313         return -EIO;
314 }
315
316 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
317                    unsigned int pos, unsigned int count,
318                    void *kbuf, void __user *ubuf)
319 {
320         int i, ret;
321
322         if (target->thread.regs == NULL)
323                 return -EIO;
324
325         if (!FULL_REGS(target->thread.regs)) {
326                 /* We have a partial register set.  Fill 14-31 with bogus values */
327                 for (i = 14; i < 32; i++)
328                         target->thread.regs->gpr[i] = NV_REG_POISON;
329         }
330
331         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
332                                   target->thread.regs,
333                                   0, offsetof(struct pt_regs, msr));
334         if (!ret) {
335                 unsigned long msr = get_user_msr(target);
336                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
337                                           offsetof(struct pt_regs, msr),
338                                           offsetof(struct pt_regs, msr) +
339                                           sizeof(msr));
340         }
341
342         BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
343                      offsetof(struct pt_regs, msr) + sizeof(long));
344
345         if (!ret)
346                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
347                                           &target->thread.regs->orig_gpr3,
348                                           offsetof(struct pt_regs, orig_gpr3),
349                                           sizeof(struct pt_regs));
350         if (!ret)
351                 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
352                                                sizeof(struct pt_regs), -1);
353
354         return ret;
355 }
356
357 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
358                    unsigned int pos, unsigned int count,
359                    const void *kbuf, const void __user *ubuf)
360 {
361         unsigned long reg;
362         int ret;
363
364         if (target->thread.regs == NULL)
365                 return -EIO;
366
367         CHECK_FULL_REGS(target->thread.regs);
368
369         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
370                                  target->thread.regs,
371                                  0, PT_MSR * sizeof(reg));
372
373         if (!ret && count > 0) {
374                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
375                                          PT_MSR * sizeof(reg),
376                                          (PT_MSR + 1) * sizeof(reg));
377                 if (!ret)
378                         ret = set_user_msr(target, reg);
379         }
380
381         BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
382                      offsetof(struct pt_regs, msr) + sizeof(long));
383
384         if (!ret)
385                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
386                                          &target->thread.regs->orig_gpr3,
387                                          PT_ORIG_R3 * sizeof(reg),
388                                          (PT_MAX_PUT_REG + 1) * sizeof(reg));
389
390         if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
391                 ret = user_regset_copyin_ignore(
392                         &pos, &count, &kbuf, &ubuf,
393                         (PT_MAX_PUT_REG + 1) * sizeof(reg),
394                         PT_TRAP * sizeof(reg));
395
396         if (!ret && count > 0) {
397                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
398                                          PT_TRAP * sizeof(reg),
399                                          (PT_TRAP + 1) * sizeof(reg));
400                 if (!ret)
401                         ret = set_user_trap(target, reg);
402         }
403
404         if (!ret)
405                 ret = user_regset_copyin_ignore(
406                         &pos, &count, &kbuf, &ubuf,
407                         (PT_TRAP + 1) * sizeof(reg), -1);
408
409         return ret;
410 }
411
412 /*
413  * Regardless of transactions, 'fp_state' holds the current running
414  * value of all FPR registers and 'ckfp_state' holds the last checkpointed
415  * value of all FPR registers for the current transaction.
416  *
417  * Userspace interface buffer layout:
418  *
419  * struct data {
420  *      u64     fpr[32];
421  *      u64     fpscr;
422  * };
423  */
424 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
425                    unsigned int pos, unsigned int count,
426                    void *kbuf, void __user *ubuf)
427 {
428 #ifdef CONFIG_VSX
429         u64 buf[33];
430         int i;
431
432         flush_fp_to_thread(target);
433
434         /* copy to local buffer then write that out */
435         for (i = 0; i < 32 ; i++)
436                 buf[i] = target->thread.TS_FPR(i);
437         buf[32] = target->thread.fp_state.fpscr;
438         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
439 #else
440         BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
441                      offsetof(struct thread_fp_state, fpr[32]));
442
443         flush_fp_to_thread(target);
444
445         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
446                                    &target->thread.fp_state, 0, -1);
447 #endif
448 }
449
450 /*
451  * Regardless of transactions, 'fp_state' holds the current running
452  * value of all FPR registers and 'ckfp_state' holds the last checkpointed
453  * value of all FPR registers for the current transaction.
454  *
455  * Userspace interface buffer layout:
456  *
457  * struct data {
458  *      u64     fpr[32];
459  *      u64     fpscr;
460  * };
461  *
462  */
463 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
464                    unsigned int pos, unsigned int count,
465                    const void *kbuf, const void __user *ubuf)
466 {
467 #ifdef CONFIG_VSX
468         u64 buf[33];
469         int i;
470
471         flush_fp_to_thread(target);
472
473         for (i = 0; i < 32 ; i++)
474                 buf[i] = target->thread.TS_FPR(i);
475         buf[32] = target->thread.fp_state.fpscr;
476
477         /* copy to local buffer then write that out */
478         i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
479         if (i)
480                 return i;
481
482         for (i = 0; i < 32 ; i++)
483                 target->thread.TS_FPR(i) = buf[i];
484         target->thread.fp_state.fpscr = buf[32];
485         return 0;
486 #else
487         BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
488                      offsetof(struct thread_fp_state, fpr[32]));
489
490         flush_fp_to_thread(target);
491
492         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
493                                   &target->thread.fp_state, 0, -1);
494 #endif
495 }
496
497 #ifdef CONFIG_ALTIVEC
498 /*
499  * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
500  * The transfer totals 34 quadword.  Quadwords 0-31 contain the
501  * corresponding vector registers.  Quadword 32 contains the vscr as the
502  * last word (offset 12) within that quadword.  Quadword 33 contains the
503  * vrsave as the first word (offset 0) within the quadword.
504  *
505  * This definition of the VMX state is compatible with the current PPC32
506  * ptrace interface.  This allows signal handling and ptrace to use the
507  * same structures.  This also simplifies the implementation of a bi-arch
508  * (combined (32- and 64-bit) gdb.
509  */
510
511 static int vr_active(struct task_struct *target,
512                      const struct user_regset *regset)
513 {
514         flush_altivec_to_thread(target);
515         return target->thread.used_vr ? regset->n : 0;
516 }
517
518 /*
519  * Regardless of transactions, 'vr_state' holds the current running
520  * value of all the VMX registers and 'ckvr_state' holds the last
521  * checkpointed value of all the VMX registers for the current
522  * transaction to fall back on in case it aborts.
523  *
524  * Userspace interface buffer layout:
525  *
526  * struct data {
527  *      vector128       vr[32];
528  *      vector128       vscr;
529  *      vector128       vrsave;
530  * };
531  */
532 static int vr_get(struct task_struct *target, const struct user_regset *regset,
533                   unsigned int pos, unsigned int count,
534                   void *kbuf, void __user *ubuf)
535 {
536         int ret;
537
538         flush_altivec_to_thread(target);
539
540         BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
541                      offsetof(struct thread_vr_state, vr[32]));
542
543         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
544                                   &target->thread.vr_state, 0,
545                                   33 * sizeof(vector128));
546         if (!ret) {
547                 /*
548                  * Copy out only the low-order word of vrsave.
549                  */
550                 union {
551                         elf_vrreg_t reg;
552                         u32 word;
553                 } vrsave;
554                 memset(&vrsave, 0, sizeof(vrsave));
555
556                 vrsave.word = target->thread.vrsave;
557
558                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
559                                           33 * sizeof(vector128), -1);
560         }
561
562         return ret;
563 }
564
565 /*
566  * Regardless of transactions, 'vr_state' holds the current running
567  * value of all the VMX registers and 'ckvr_state' holds the last
568  * checkpointed value of all the VMX registers for the current
569  * transaction to fall back on in case it aborts.
570  *
571  * Userspace interface buffer layout:
572  *
573  * struct data {
574  *      vector128       vr[32];
575  *      vector128       vscr;
576  *      vector128       vrsave;
577  * };
578  */
579 static int vr_set(struct task_struct *target, const struct user_regset *regset,
580                   unsigned int pos, unsigned int count,
581                   const void *kbuf, const void __user *ubuf)
582 {
583         int ret;
584
585         flush_altivec_to_thread(target);
586
587         BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
588                      offsetof(struct thread_vr_state, vr[32]));
589
590         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
591                                  &target->thread.vr_state, 0,
592                                  33 * sizeof(vector128));
593         if (!ret && count > 0) {
594                 /*
595                  * We use only the first word of vrsave.
596                  */
597                 union {
598                         elf_vrreg_t reg;
599                         u32 word;
600                 } vrsave;
601                 memset(&vrsave, 0, sizeof(vrsave));
602
603                 vrsave.word = target->thread.vrsave;
604
605                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
606                                          33 * sizeof(vector128), -1);
607                 if (!ret)
608                         target->thread.vrsave = vrsave.word;
609         }
610
611         return ret;
612 }
613 #endif /* CONFIG_ALTIVEC */
614
615 #ifdef CONFIG_VSX
616 /*
617  * Currently to set and and get all the vsx state, you need to call
618  * the fp and VMX calls as well.  This only get/sets the lower 32
619  * 128bit VSX registers.
620  */
621
622 static int vsr_active(struct task_struct *target,
623                       const struct user_regset *regset)
624 {
625         flush_vsx_to_thread(target);
626         return target->thread.used_vsr ? regset->n : 0;
627 }
628
629 /*
630  * Regardless of transactions, 'fp_state' holds the current running
631  * value of all FPR registers and 'ckfp_state' holds the last
632  * checkpointed value of all FPR registers for the current
633  * transaction.
634  *
635  * Userspace interface buffer layout:
636  *
637  * struct data {
638  *      u64     vsx[32];
639  * };
640  */
641 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
642                    unsigned int pos, unsigned int count,
643                    void *kbuf, void __user *ubuf)
644 {
645         u64 buf[32];
646         int ret, i;
647
648         flush_tmregs_to_thread(target);
649         flush_fp_to_thread(target);
650         flush_altivec_to_thread(target);
651         flush_vsx_to_thread(target);
652
653         for (i = 0; i < 32 ; i++)
654                 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
655
656         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
657                                   buf, 0, 32 * sizeof(double));
658
659         return ret;
660 }
661
662 /*
663  * Regardless of transactions, 'fp_state' holds the current running
664  * value of all FPR registers and 'ckfp_state' holds the last
665  * checkpointed value of all FPR registers for the current
666  * transaction.
667  *
668  * Userspace interface buffer layout:
669  *
670  * struct data {
671  *      u64     vsx[32];
672  * };
673  */
674 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
675                    unsigned int pos, unsigned int count,
676                    const void *kbuf, const void __user *ubuf)
677 {
678         u64 buf[32];
679         int ret,i;
680
681         flush_tmregs_to_thread(target);
682         flush_fp_to_thread(target);
683         flush_altivec_to_thread(target);
684         flush_vsx_to_thread(target);
685
686         for (i = 0; i < 32 ; i++)
687                 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
688
689         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
690                                  buf, 0, 32 * sizeof(double));
691         if (!ret)
692                 for (i = 0; i < 32 ; i++)
693                         target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
694
695         return ret;
696 }
697 #endif /* CONFIG_VSX */
698
699 #ifdef CONFIG_SPE
700
701 /*
702  * For get_evrregs/set_evrregs functions 'data' has the following layout:
703  *
704  * struct {
705  *   u32 evr[32];
706  *   u64 acc;
707  *   u32 spefscr;
708  * }
709  */
710
711 static int evr_active(struct task_struct *target,
712                       const struct user_regset *regset)
713 {
714         flush_spe_to_thread(target);
715         return target->thread.used_spe ? regset->n : 0;
716 }
717
718 static int evr_get(struct task_struct *target, const struct user_regset *regset,
719                    unsigned int pos, unsigned int count,
720                    void *kbuf, void __user *ubuf)
721 {
722         int ret;
723
724         flush_spe_to_thread(target);
725
726         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
727                                   &target->thread.evr,
728                                   0, sizeof(target->thread.evr));
729
730         BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
731                      offsetof(struct thread_struct, spefscr));
732
733         if (!ret)
734                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
735                                           &target->thread.acc,
736                                           sizeof(target->thread.evr), -1);
737
738         return ret;
739 }
740
741 static int evr_set(struct task_struct *target, const struct user_regset *regset,
742                    unsigned int pos, unsigned int count,
743                    const void *kbuf, const void __user *ubuf)
744 {
745         int ret;
746
747         flush_spe_to_thread(target);
748
749         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
750                                  &target->thread.evr,
751                                  0, sizeof(target->thread.evr));
752
753         BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
754                      offsetof(struct thread_struct, spefscr));
755
756         if (!ret)
757                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
758                                          &target->thread.acc,
759                                          sizeof(target->thread.evr), -1);
760
761         return ret;
762 }
763 #endif /* CONFIG_SPE */
764
765 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
766 /**
767  * tm_cgpr_active - get active number of registers in CGPR
768  * @target:     The target task.
769  * @regset:     The user regset structure.
770  *
771  * This function checks for the active number of available
772  * regisers in transaction checkpointed GPR category.
773  */
774 static int tm_cgpr_active(struct task_struct *target,
775                           const struct user_regset *regset)
776 {
777         if (!cpu_has_feature(CPU_FTR_TM))
778                 return -ENODEV;
779
780         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
781                 return 0;
782
783         return regset->n;
784 }
785
786 /**
787  * tm_cgpr_get - get CGPR registers
788  * @target:     The target task.
789  * @regset:     The user regset structure.
790  * @pos:        The buffer position.
791  * @count:      Number of bytes to copy.
792  * @kbuf:       Kernel buffer to copy from.
793  * @ubuf:       User buffer to copy into.
794  *
795  * This function gets transaction checkpointed GPR registers.
796  *
797  * When the transaction is active, 'ckpt_regs' holds all the checkpointed
798  * GPR register values for the current transaction to fall back on if it
799  * aborts in between. This function gets those checkpointed GPR registers.
800  * The userspace interface buffer layout is as follows.
801  *
802  * struct data {
803  *      struct pt_regs ckpt_regs;
804  * };
805  */
806 static int tm_cgpr_get(struct task_struct *target,
807                         const struct user_regset *regset,
808                         unsigned int pos, unsigned int count,
809                         void *kbuf, void __user *ubuf)
810 {
811         int ret;
812
813         if (!cpu_has_feature(CPU_FTR_TM))
814                 return -ENODEV;
815
816         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
817                 return -ENODATA;
818
819         flush_tmregs_to_thread(target);
820         flush_fp_to_thread(target);
821         flush_altivec_to_thread(target);
822
823         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
824                                   &target->thread.ckpt_regs,
825                                   0, offsetof(struct pt_regs, msr));
826         if (!ret) {
827                 unsigned long msr = get_user_ckpt_msr(target);
828
829                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
830                                           offsetof(struct pt_regs, msr),
831                                           offsetof(struct pt_regs, msr) +
832                                           sizeof(msr));
833         }
834
835         BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
836                      offsetof(struct pt_regs, msr) + sizeof(long));
837
838         if (!ret)
839                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
840                                           &target->thread.ckpt_regs.orig_gpr3,
841                                           offsetof(struct pt_regs, orig_gpr3),
842                                           sizeof(struct pt_regs));
843         if (!ret)
844                 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
845                                                sizeof(struct pt_regs), -1);
846
847         return ret;
848 }
849
850 /*
851  * tm_cgpr_set - set the CGPR registers
852  * @target:     The target task.
853  * @regset:     The user regset structure.
854  * @pos:        The buffer position.
855  * @count:      Number of bytes to copy.
856  * @kbuf:       Kernel buffer to copy into.
857  * @ubuf:       User buffer to copy from.
858  *
859  * This function sets in transaction checkpointed GPR registers.
860  *
861  * When the transaction is active, 'ckpt_regs' holds the checkpointed
862  * GPR register values for the current transaction to fall back on if it
863  * aborts in between. This function sets those checkpointed GPR registers.
864  * The userspace interface buffer layout is as follows.
865  *
866  * struct data {
867  *      struct pt_regs ckpt_regs;
868  * };
869  */
870 static int tm_cgpr_set(struct task_struct *target,
871                         const struct user_regset *regset,
872                         unsigned int pos, unsigned int count,
873                         const void *kbuf, const void __user *ubuf)
874 {
875         unsigned long reg;
876         int ret;
877
878         if (!cpu_has_feature(CPU_FTR_TM))
879                 return -ENODEV;
880
881         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
882                 return -ENODATA;
883
884         flush_tmregs_to_thread(target);
885         flush_fp_to_thread(target);
886         flush_altivec_to_thread(target);
887
888         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
889                                  &target->thread.ckpt_regs,
890                                  0, PT_MSR * sizeof(reg));
891
892         if (!ret && count > 0) {
893                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
894                                          PT_MSR * sizeof(reg),
895                                          (PT_MSR + 1) * sizeof(reg));
896                 if (!ret)
897                         ret = set_user_ckpt_msr(target, reg);
898         }
899
900         BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
901                      offsetof(struct pt_regs, msr) + sizeof(long));
902
903         if (!ret)
904                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
905                                          &target->thread.ckpt_regs.orig_gpr3,
906                                          PT_ORIG_R3 * sizeof(reg),
907                                          (PT_MAX_PUT_REG + 1) * sizeof(reg));
908
909         if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
910                 ret = user_regset_copyin_ignore(
911                         &pos, &count, &kbuf, &ubuf,
912                         (PT_MAX_PUT_REG + 1) * sizeof(reg),
913                         PT_TRAP * sizeof(reg));
914
915         if (!ret && count > 0) {
916                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
917                                          PT_TRAP * sizeof(reg),
918                                          (PT_TRAP + 1) * sizeof(reg));
919                 if (!ret)
920                         ret = set_user_ckpt_trap(target, reg);
921         }
922
923         if (!ret)
924                 ret = user_regset_copyin_ignore(
925                         &pos, &count, &kbuf, &ubuf,
926                         (PT_TRAP + 1) * sizeof(reg), -1);
927
928         return ret;
929 }
930
931 /**
932  * tm_cfpr_active - get active number of registers in CFPR
933  * @target:     The target task.
934  * @regset:     The user regset structure.
935  *
936  * This function checks for the active number of available
937  * regisers in transaction checkpointed FPR category.
938  */
939 static int tm_cfpr_active(struct task_struct *target,
940                                 const struct user_regset *regset)
941 {
942         if (!cpu_has_feature(CPU_FTR_TM))
943                 return -ENODEV;
944
945         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
946                 return 0;
947
948         return regset->n;
949 }
950
951 /**
952  * tm_cfpr_get - get CFPR registers
953  * @target:     The target task.
954  * @regset:     The user regset structure.
955  * @pos:        The buffer position.
956  * @count:      Number of bytes to copy.
957  * @kbuf:       Kernel buffer to copy from.
958  * @ubuf:       User buffer to copy into.
959  *
960  * This function gets in transaction checkpointed FPR registers.
961  *
962  * When the transaction is active 'ckfp_state' holds the checkpointed
963  * values for the current transaction to fall back on if it aborts
964  * in between. This function gets those checkpointed FPR registers.
965  * The userspace interface buffer layout is as follows.
966  *
967  * struct data {
968  *      u64     fpr[32];
969  *      u64     fpscr;
970  *};
971  */
972 static int tm_cfpr_get(struct task_struct *target,
973                         const struct user_regset *regset,
974                         unsigned int pos, unsigned int count,
975                         void *kbuf, void __user *ubuf)
976 {
977         u64 buf[33];
978         int i;
979
980         if (!cpu_has_feature(CPU_FTR_TM))
981                 return -ENODEV;
982
983         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
984                 return -ENODATA;
985
986         flush_tmregs_to_thread(target);
987         flush_fp_to_thread(target);
988         flush_altivec_to_thread(target);
989
990         /* copy to local buffer then write that out */
991         for (i = 0; i < 32 ; i++)
992                 buf[i] = target->thread.TS_CKFPR(i);
993         buf[32] = target->thread.ckfp_state.fpscr;
994         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
995 }
996
997 /**
998  * tm_cfpr_set - set CFPR registers
999  * @target:     The target task.
1000  * @regset:     The user regset structure.
1001  * @pos:        The buffer position.
1002  * @count:      Number of bytes to copy.
1003  * @kbuf:       Kernel buffer to copy into.
1004  * @ubuf:       User buffer to copy from.
1005  *
1006  * This function sets in transaction checkpointed FPR registers.
1007  *
1008  * When the transaction is active 'ckfp_state' holds the checkpointed
1009  * FPR register values for the current transaction to fall back on
1010  * if it aborts in between. This function sets these checkpointed
1011  * FPR registers. The userspace interface buffer layout is as follows.
1012  *
1013  * struct data {
1014  *      u64     fpr[32];
1015  *      u64     fpscr;
1016  *};
1017  */
1018 static int tm_cfpr_set(struct task_struct *target,
1019                         const struct user_regset *regset,
1020                         unsigned int pos, unsigned int count,
1021                         const void *kbuf, const void __user *ubuf)
1022 {
1023         u64 buf[33];
1024         int i;
1025
1026         if (!cpu_has_feature(CPU_FTR_TM))
1027                 return -ENODEV;
1028
1029         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1030                 return -ENODATA;
1031
1032         flush_tmregs_to_thread(target);
1033         flush_fp_to_thread(target);
1034         flush_altivec_to_thread(target);
1035
1036         for (i = 0; i < 32; i++)
1037                 buf[i] = target->thread.TS_CKFPR(i);
1038         buf[32] = target->thread.ckfp_state.fpscr;
1039
1040         /* copy to local buffer then write that out */
1041         i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1042         if (i)
1043                 return i;
1044         for (i = 0; i < 32 ; i++)
1045                 target->thread.TS_CKFPR(i) = buf[i];
1046         target->thread.ckfp_state.fpscr = buf[32];
1047         return 0;
1048 }
1049
1050 /**
1051  * tm_cvmx_active - get active number of registers in CVMX
1052  * @target:     The target task.
1053  * @regset:     The user regset structure.
1054  *
1055  * This function checks for the active number of available
1056  * regisers in checkpointed VMX category.
1057  */
1058 static int tm_cvmx_active(struct task_struct *target,
1059                                 const struct user_regset *regset)
1060 {
1061         if (!cpu_has_feature(CPU_FTR_TM))
1062                 return -ENODEV;
1063
1064         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1065                 return 0;
1066
1067         return regset->n;
1068 }
1069
1070 /**
1071  * tm_cvmx_get - get CMVX registers
1072  * @target:     The target task.
1073  * @regset:     The user regset structure.
1074  * @pos:        The buffer position.
1075  * @count:      Number of bytes to copy.
1076  * @kbuf:       Kernel buffer to copy from.
1077  * @ubuf:       User buffer to copy into.
1078  *
1079  * This function gets in transaction checkpointed VMX registers.
1080  *
1081  * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1082  * the checkpointed values for the current transaction to fall
1083  * back on if it aborts in between. The userspace interface buffer
1084  * layout is as follows.
1085  *
1086  * struct data {
1087  *      vector128       vr[32];
1088  *      vector128       vscr;
1089  *      vector128       vrsave;
1090  *};
1091  */
1092 static int tm_cvmx_get(struct task_struct *target,
1093                         const struct user_regset *regset,
1094                         unsigned int pos, unsigned int count,
1095                         void *kbuf, void __user *ubuf)
1096 {
1097         int ret;
1098
1099         BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1100
1101         if (!cpu_has_feature(CPU_FTR_TM))
1102                 return -ENODEV;
1103
1104         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1105                 return -ENODATA;
1106
1107         /* Flush the state */
1108         flush_tmregs_to_thread(target);
1109         flush_fp_to_thread(target);
1110         flush_altivec_to_thread(target);
1111
1112         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1113                                         &target->thread.ckvr_state, 0,
1114                                         33 * sizeof(vector128));
1115         if (!ret) {
1116                 /*
1117                  * Copy out only the low-order word of vrsave.
1118                  */
1119                 union {
1120                         elf_vrreg_t reg;
1121                         u32 word;
1122                 } vrsave;
1123                 memset(&vrsave, 0, sizeof(vrsave));
1124                 vrsave.word = target->thread.ckvrsave;
1125                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1126                                                 33 * sizeof(vector128), -1);
1127         }
1128
1129         return ret;
1130 }
1131
1132 /**
1133  * tm_cvmx_set - set CMVX registers
1134  * @target:     The target task.
1135  * @regset:     The user regset structure.
1136  * @pos:        The buffer position.
1137  * @count:      Number of bytes to copy.
1138  * @kbuf:       Kernel buffer to copy into.
1139  * @ubuf:       User buffer to copy from.
1140  *
1141  * This function sets in transaction checkpointed VMX registers.
1142  *
1143  * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1144  * the checkpointed values for the current transaction to fall
1145  * back on if it aborts in between. The userspace interface buffer
1146  * layout is as follows.
1147  *
1148  * struct data {
1149  *      vector128       vr[32];
1150  *      vector128       vscr;
1151  *      vector128       vrsave;
1152  *};
1153  */
1154 static int tm_cvmx_set(struct task_struct *target,
1155                         const struct user_regset *regset,
1156                         unsigned int pos, unsigned int count,
1157                         const void *kbuf, const void __user *ubuf)
1158 {
1159         int ret;
1160
1161         BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1162
1163         if (!cpu_has_feature(CPU_FTR_TM))
1164                 return -ENODEV;
1165
1166         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1167                 return -ENODATA;
1168
1169         flush_tmregs_to_thread(target);
1170         flush_fp_to_thread(target);
1171         flush_altivec_to_thread(target);
1172
1173         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1174                                         &target->thread.ckvr_state, 0,
1175                                         33 * sizeof(vector128));
1176         if (!ret && count > 0) {
1177                 /*
1178                  * We use only the low-order word of vrsave.
1179                  */
1180                 union {
1181                         elf_vrreg_t reg;
1182                         u32 word;
1183                 } vrsave;
1184                 memset(&vrsave, 0, sizeof(vrsave));
1185                 vrsave.word = target->thread.ckvrsave;
1186                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1187                                                 33 * sizeof(vector128), -1);
1188                 if (!ret)
1189                         target->thread.ckvrsave = vrsave.word;
1190         }
1191
1192         return ret;
1193 }
1194
1195 /**
1196  * tm_cvsx_active - get active number of registers in CVSX
1197  * @target:     The target task.
1198  * @regset:     The user regset structure.
1199  *
1200  * This function checks for the active number of available
1201  * regisers in transaction checkpointed VSX category.
1202  */
1203 static int tm_cvsx_active(struct task_struct *target,
1204                                 const struct user_regset *regset)
1205 {
1206         if (!cpu_has_feature(CPU_FTR_TM))
1207                 return -ENODEV;
1208
1209         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1210                 return 0;
1211
1212         flush_vsx_to_thread(target);
1213         return target->thread.used_vsr ? regset->n : 0;
1214 }
1215
1216 /**
1217  * tm_cvsx_get - get CVSX registers
1218  * @target:     The target task.
1219  * @regset:     The user regset structure.
1220  * @pos:        The buffer position.
1221  * @count:      Number of bytes to copy.
1222  * @kbuf:       Kernel buffer to copy from.
1223  * @ubuf:       User buffer to copy into.
1224  *
1225  * This function gets in transaction checkpointed VSX registers.
1226  *
1227  * When the transaction is active 'ckfp_state' holds the checkpointed
1228  * values for the current transaction to fall back on if it aborts
1229  * in between. This function gets those checkpointed VSX registers.
1230  * The userspace interface buffer layout is as follows.
1231  *
1232  * struct data {
1233  *      u64     vsx[32];
1234  *};
1235  */
1236 static int tm_cvsx_get(struct task_struct *target,
1237                         const struct user_regset *regset,
1238                         unsigned int pos, unsigned int count,
1239                         void *kbuf, void __user *ubuf)
1240 {
1241         u64 buf[32];
1242         int ret, i;
1243
1244         if (!cpu_has_feature(CPU_FTR_TM))
1245                 return -ENODEV;
1246
1247         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1248                 return -ENODATA;
1249
1250         /* Flush the state */
1251         flush_tmregs_to_thread(target);
1252         flush_fp_to_thread(target);
1253         flush_altivec_to_thread(target);
1254         flush_vsx_to_thread(target);
1255
1256         for (i = 0; i < 32 ; i++)
1257                 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1258         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1259                                   buf, 0, 32 * sizeof(double));
1260
1261         return ret;
1262 }
1263
1264 /**
1265  * tm_cvsx_set - set CFPR registers
1266  * @target:     The target task.
1267  * @regset:     The user regset structure.
1268  * @pos:        The buffer position.
1269  * @count:      Number of bytes to copy.
1270  * @kbuf:       Kernel buffer to copy into.
1271  * @ubuf:       User buffer to copy from.
1272  *
1273  * This function sets in transaction checkpointed VSX registers.
1274  *
1275  * When the transaction is active 'ckfp_state' holds the checkpointed
1276  * VSX register values for the current transaction to fall back on
1277  * if it aborts in between. This function sets these checkpointed
1278  * FPR registers. The userspace interface buffer layout is as follows.
1279  *
1280  * struct data {
1281  *      u64     vsx[32];
1282  *};
1283  */
1284 static int tm_cvsx_set(struct task_struct *target,
1285                         const struct user_regset *regset,
1286                         unsigned int pos, unsigned int count,
1287                         const void *kbuf, const void __user *ubuf)
1288 {
1289         u64 buf[32];
1290         int ret, i;
1291
1292         if (!cpu_has_feature(CPU_FTR_TM))
1293                 return -ENODEV;
1294
1295         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1296                 return -ENODATA;
1297
1298         /* Flush the state */
1299         flush_tmregs_to_thread(target);
1300         flush_fp_to_thread(target);
1301         flush_altivec_to_thread(target);
1302         flush_vsx_to_thread(target);
1303
1304         for (i = 0; i < 32 ; i++)
1305                 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1306
1307         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1308                                  buf, 0, 32 * sizeof(double));
1309         if (!ret)
1310                 for (i = 0; i < 32 ; i++)
1311                         target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1312
1313         return ret;
1314 }
1315
1316 /**
1317  * tm_spr_active - get active number of registers in TM SPR
1318  * @target:     The target task.
1319  * @regset:     The user regset structure.
1320  *
1321  * This function checks the active number of available
1322  * regisers in the transactional memory SPR category.
1323  */
1324 static int tm_spr_active(struct task_struct *target,
1325                          const struct user_regset *regset)
1326 {
1327         if (!cpu_has_feature(CPU_FTR_TM))
1328                 return -ENODEV;
1329
1330         return regset->n;
1331 }
1332
1333 /**
1334  * tm_spr_get - get the TM related SPR registers
1335  * @target:     The target task.
1336  * @regset:     The user regset structure.
1337  * @pos:        The buffer position.
1338  * @count:      Number of bytes to copy.
1339  * @kbuf:       Kernel buffer to copy from.
1340  * @ubuf:       User buffer to copy into.
1341  *
1342  * This function gets transactional memory related SPR registers.
1343  * The userspace interface buffer layout is as follows.
1344  *
1345  * struct {
1346  *      u64             tm_tfhar;
1347  *      u64             tm_texasr;
1348  *      u64             tm_tfiar;
1349  * };
1350  */
1351 static int tm_spr_get(struct task_struct *target,
1352                       const struct user_regset *regset,
1353                       unsigned int pos, unsigned int count,
1354                       void *kbuf, void __user *ubuf)
1355 {
1356         int ret;
1357
1358         /* Build tests */
1359         BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1360         BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1361         BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1362
1363         if (!cpu_has_feature(CPU_FTR_TM))
1364                 return -ENODEV;
1365
1366         /* Flush the states */
1367         flush_tmregs_to_thread(target);
1368         flush_fp_to_thread(target);
1369         flush_altivec_to_thread(target);
1370
1371         /* TFHAR register */
1372         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1373                                 &target->thread.tm_tfhar, 0, sizeof(u64));
1374
1375         /* TEXASR register */
1376         if (!ret)
1377                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1378                                 &target->thread.tm_texasr, sizeof(u64),
1379                                 2 * sizeof(u64));
1380
1381         /* TFIAR register */
1382         if (!ret)
1383                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1384                                 &target->thread.tm_tfiar,
1385                                 2 * sizeof(u64), 3 * sizeof(u64));
1386         return ret;
1387 }
1388
1389 /**
1390  * tm_spr_set - set the TM related SPR registers
1391  * @target:     The target task.
1392  * @regset:     The user regset structure.
1393  * @pos:        The buffer position.
1394  * @count:      Number of bytes to copy.
1395  * @kbuf:       Kernel buffer to copy into.
1396  * @ubuf:       User buffer to copy from.
1397  *
1398  * This function sets transactional memory related SPR registers.
1399  * The userspace interface buffer layout is as follows.
1400  *
1401  * struct {
1402  *      u64             tm_tfhar;
1403  *      u64             tm_texasr;
1404  *      u64             tm_tfiar;
1405  * };
1406  */
1407 static int tm_spr_set(struct task_struct *target,
1408                       const struct user_regset *regset,
1409                       unsigned int pos, unsigned int count,
1410                       const void *kbuf, const void __user *ubuf)
1411 {
1412         int ret;
1413
1414         /* Build tests */
1415         BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1416         BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1417         BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1418
1419         if (!cpu_has_feature(CPU_FTR_TM))
1420                 return -ENODEV;
1421
1422         /* Flush the states */
1423         flush_tmregs_to_thread(target);
1424         flush_fp_to_thread(target);
1425         flush_altivec_to_thread(target);
1426
1427         /* TFHAR register */
1428         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1429                                 &target->thread.tm_tfhar, 0, sizeof(u64));
1430
1431         /* TEXASR register */
1432         if (!ret)
1433                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1434                                 &target->thread.tm_texasr, sizeof(u64),
1435                                 2 * sizeof(u64));
1436
1437         /* TFIAR register */
1438         if (!ret)
1439                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1440                                 &target->thread.tm_tfiar,
1441                                  2 * sizeof(u64), 3 * sizeof(u64));
1442         return ret;
1443 }
1444
1445 static int tm_tar_active(struct task_struct *target,
1446                          const struct user_regset *regset)
1447 {
1448         if (!cpu_has_feature(CPU_FTR_TM))
1449                 return -ENODEV;
1450
1451         if (MSR_TM_ACTIVE(target->thread.regs->msr))
1452                 return regset->n;
1453
1454         return 0;
1455 }
1456
1457 static int tm_tar_get(struct task_struct *target,
1458                       const struct user_regset *regset,
1459                       unsigned int pos, unsigned int count,
1460                       void *kbuf, void __user *ubuf)
1461 {
1462         int ret;
1463
1464         if (!cpu_has_feature(CPU_FTR_TM))
1465                 return -ENODEV;
1466
1467         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1468                 return -ENODATA;
1469
1470         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1471                                 &target->thread.tm_tar, 0, sizeof(u64));
1472         return ret;
1473 }
1474
1475 static int tm_tar_set(struct task_struct *target,
1476                       const struct user_regset *regset,
1477                       unsigned int pos, unsigned int count,
1478                       const void *kbuf, const void __user *ubuf)
1479 {
1480         int ret;
1481
1482         if (!cpu_has_feature(CPU_FTR_TM))
1483                 return -ENODEV;
1484
1485         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1486                 return -ENODATA;
1487
1488         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1489                                 &target->thread.tm_tar, 0, sizeof(u64));
1490         return ret;
1491 }
1492
1493 static int tm_ppr_active(struct task_struct *target,
1494                          const struct user_regset *regset)
1495 {
1496         if (!cpu_has_feature(CPU_FTR_TM))
1497                 return -ENODEV;
1498
1499         if (MSR_TM_ACTIVE(target->thread.regs->msr))
1500                 return regset->n;
1501
1502         return 0;
1503 }
1504
1505
1506 static int tm_ppr_get(struct task_struct *target,
1507                       const struct user_regset *regset,
1508                       unsigned int pos, unsigned int count,
1509                       void *kbuf, void __user *ubuf)
1510 {
1511         int ret;
1512
1513         if (!cpu_has_feature(CPU_FTR_TM))
1514                 return -ENODEV;
1515
1516         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1517                 return -ENODATA;
1518
1519         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1520                                 &target->thread.tm_ppr, 0, sizeof(u64));
1521         return ret;
1522 }
1523
1524 static int tm_ppr_set(struct task_struct *target,
1525                       const struct user_regset *regset,
1526                       unsigned int pos, unsigned int count,
1527                       const void *kbuf, const void __user *ubuf)
1528 {
1529         int ret;
1530
1531         if (!cpu_has_feature(CPU_FTR_TM))
1532                 return -ENODEV;
1533
1534         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1535                 return -ENODATA;
1536
1537         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1538                                 &target->thread.tm_ppr, 0, sizeof(u64));
1539         return ret;
1540 }
1541
1542 static int tm_dscr_active(struct task_struct *target,
1543                          const struct user_regset *regset)
1544 {
1545         if (!cpu_has_feature(CPU_FTR_TM))
1546                 return -ENODEV;
1547
1548         if (MSR_TM_ACTIVE(target->thread.regs->msr))
1549                 return regset->n;
1550
1551         return 0;
1552 }
1553
1554 static int tm_dscr_get(struct task_struct *target,
1555                       const struct user_regset *regset,
1556                       unsigned int pos, unsigned int count,
1557                       void *kbuf, void __user *ubuf)
1558 {
1559         int ret;
1560
1561         if (!cpu_has_feature(CPU_FTR_TM))
1562                 return -ENODEV;
1563
1564         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1565                 return -ENODATA;
1566
1567         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1568                                 &target->thread.tm_dscr, 0, sizeof(u64));
1569         return ret;
1570 }
1571
1572 static int tm_dscr_set(struct task_struct *target,
1573                       const struct user_regset *regset,
1574                       unsigned int pos, unsigned int count,
1575                       const void *kbuf, const void __user *ubuf)
1576 {
1577         int ret;
1578
1579         if (!cpu_has_feature(CPU_FTR_TM))
1580                 return -ENODEV;
1581
1582         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1583                 return -ENODATA;
1584
1585         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1586                                 &target->thread.tm_dscr, 0, sizeof(u64));
1587         return ret;
1588 }
1589 #endif  /* CONFIG_PPC_TRANSACTIONAL_MEM */
1590
1591 #ifdef CONFIG_PPC64
1592 static int ppr_get(struct task_struct *target,
1593                       const struct user_regset *regset,
1594                       unsigned int pos, unsigned int count,
1595                       void *kbuf, void __user *ubuf)
1596 {
1597         int ret;
1598
1599         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1600                                 &target->thread.ppr, 0, sizeof(u64));
1601         return ret;
1602 }
1603
1604 static int ppr_set(struct task_struct *target,
1605                       const struct user_regset *regset,
1606                       unsigned int pos, unsigned int count,
1607                       const void *kbuf, const void __user *ubuf)
1608 {
1609         int ret;
1610
1611         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1612                                 &target->thread.ppr, 0, sizeof(u64));
1613         return ret;
1614 }
1615
1616 static int dscr_get(struct task_struct *target,
1617                       const struct user_regset *regset,
1618                       unsigned int pos, unsigned int count,
1619                       void *kbuf, void __user *ubuf)
1620 {
1621         int ret;
1622
1623         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1624                                 &target->thread.dscr, 0, sizeof(u64));
1625         return ret;
1626 }
1627 static int dscr_set(struct task_struct *target,
1628                       const struct user_regset *regset,
1629                       unsigned int pos, unsigned int count,
1630                       const void *kbuf, const void __user *ubuf)
1631 {
1632         int ret;
1633
1634         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1635                                 &target->thread.dscr, 0, sizeof(u64));
1636         return ret;
1637 }
1638 #endif
1639 #ifdef CONFIG_PPC_BOOK3S_64
1640 static int tar_get(struct task_struct *target,
1641                       const struct user_regset *regset,
1642                       unsigned int pos, unsigned int count,
1643                       void *kbuf, void __user *ubuf)
1644 {
1645         int ret;
1646
1647         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1648                                 &target->thread.tar, 0, sizeof(u64));
1649         return ret;
1650 }
1651 static int tar_set(struct task_struct *target,
1652                       const struct user_regset *regset,
1653                       unsigned int pos, unsigned int count,
1654                       const void *kbuf, const void __user *ubuf)
1655 {
1656         int ret;
1657
1658         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1659                                 &target->thread.tar, 0, sizeof(u64));
1660         return ret;
1661 }
1662
1663 static int ebb_active(struct task_struct *target,
1664                          const struct user_regset *regset)
1665 {
1666         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1667                 return -ENODEV;
1668
1669         if (target->thread.used_ebb)
1670                 return regset->n;
1671
1672         return 0;
1673 }
1674
1675 static int ebb_get(struct task_struct *target,
1676                       const struct user_regset *regset,
1677                       unsigned int pos, unsigned int count,
1678                       void *kbuf, void __user *ubuf)
1679 {
1680         /* Build tests */
1681         BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1682         BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1683
1684         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1685                 return -ENODEV;
1686
1687         if (!target->thread.used_ebb)
1688                 return -ENODATA;
1689
1690         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1691                         &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1692 }
1693
1694 static int ebb_set(struct task_struct *target,
1695                       const struct user_regset *regset,
1696                       unsigned int pos, unsigned int count,
1697                       const void *kbuf, const void __user *ubuf)
1698 {
1699         int ret = 0;
1700
1701         /* Build tests */
1702         BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1703         BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1704
1705         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1706                 return -ENODEV;
1707
1708         if (target->thread.used_ebb)
1709                 return -ENODATA;
1710
1711         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1712                         &target->thread.ebbrr, 0, sizeof(unsigned long));
1713
1714         if (!ret)
1715                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1716                         &target->thread.ebbhr, sizeof(unsigned long),
1717                         2 * sizeof(unsigned long));
1718
1719         if (!ret)
1720                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1721                         &target->thread.bescr,
1722                         2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1723
1724         return ret;
1725 }
1726 static int pmu_active(struct task_struct *target,
1727                          const struct user_regset *regset)
1728 {
1729         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1730                 return -ENODEV;
1731
1732         return regset->n;
1733 }
1734
1735 static int pmu_get(struct task_struct *target,
1736                       const struct user_regset *regset,
1737                       unsigned int pos, unsigned int count,
1738                       void *kbuf, void __user *ubuf)
1739 {
1740         /* Build tests */
1741         BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1742         BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1743         BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1744         BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1745
1746         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1747                 return -ENODEV;
1748
1749         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1750                         &target->thread.siar, 0,
1751                         5 * sizeof(unsigned long));
1752 }
1753
1754 static int pmu_set(struct task_struct *target,
1755                       const struct user_regset *regset,
1756                       unsigned int pos, unsigned int count,
1757                       const void *kbuf, const void __user *ubuf)
1758 {
1759         int ret = 0;
1760
1761         /* Build tests */
1762         BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1763         BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1764         BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1765         BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1766
1767         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1768                 return -ENODEV;
1769
1770         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1771                         &target->thread.siar, 0,
1772                         sizeof(unsigned long));
1773
1774         if (!ret)
1775                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1776                         &target->thread.sdar, sizeof(unsigned long),
1777                         2 * sizeof(unsigned long));
1778
1779         if (!ret)
1780                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1781                         &target->thread.sier, 2 * sizeof(unsigned long),
1782                         3 * sizeof(unsigned long));
1783
1784         if (!ret)
1785                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1786                         &target->thread.mmcr2, 3 * sizeof(unsigned long),
1787                         4 * sizeof(unsigned long));
1788
1789         if (!ret)
1790                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1791                         &target->thread.mmcr0, 4 * sizeof(unsigned long),
1792                         5 * sizeof(unsigned long));
1793         return ret;
1794 }
1795 #endif
1796 /*
1797  * These are our native regset flavors.
1798  */
1799 enum powerpc_regset {
1800         REGSET_GPR,
1801         REGSET_FPR,
1802 #ifdef CONFIG_ALTIVEC
1803         REGSET_VMX,
1804 #endif
1805 #ifdef CONFIG_VSX
1806         REGSET_VSX,
1807 #endif
1808 #ifdef CONFIG_SPE
1809         REGSET_SPE,
1810 #endif
1811 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1812         REGSET_TM_CGPR,         /* TM checkpointed GPR registers */
1813         REGSET_TM_CFPR,         /* TM checkpointed FPR registers */
1814         REGSET_TM_CVMX,         /* TM checkpointed VMX registers */
1815         REGSET_TM_CVSX,         /* TM checkpointed VSX registers */
1816         REGSET_TM_SPR,          /* TM specific SPR registers */
1817         REGSET_TM_CTAR,         /* TM checkpointed TAR register */
1818         REGSET_TM_CPPR,         /* TM checkpointed PPR register */
1819         REGSET_TM_CDSCR,        /* TM checkpointed DSCR register */
1820 #endif
1821 #ifdef CONFIG_PPC64
1822         REGSET_PPR,             /* PPR register */
1823         REGSET_DSCR,            /* DSCR register */
1824 #endif
1825 #ifdef CONFIG_PPC_BOOK3S_64
1826         REGSET_TAR,             /* TAR register */
1827         REGSET_EBB,             /* EBB registers */
1828         REGSET_PMR,             /* Performance Monitor Registers */
1829 #endif
1830 };
1831
1832 static const struct user_regset native_regsets[] = {
1833         [REGSET_GPR] = {
1834                 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1835                 .size = sizeof(long), .align = sizeof(long),
1836                 .get = gpr_get, .set = gpr_set
1837         },
1838         [REGSET_FPR] = {
1839                 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1840                 .size = sizeof(double), .align = sizeof(double),
1841                 .get = fpr_get, .set = fpr_set
1842         },
1843 #ifdef CONFIG_ALTIVEC
1844         [REGSET_VMX] = {
1845                 .core_note_type = NT_PPC_VMX, .n = 34,
1846                 .size = sizeof(vector128), .align = sizeof(vector128),
1847                 .active = vr_active, .get = vr_get, .set = vr_set
1848         },
1849 #endif
1850 #ifdef CONFIG_VSX
1851         [REGSET_VSX] = {
1852                 .core_note_type = NT_PPC_VSX, .n = 32,
1853                 .size = sizeof(double), .align = sizeof(double),
1854                 .active = vsr_active, .get = vsr_get, .set = vsr_set
1855         },
1856 #endif
1857 #ifdef CONFIG_SPE
1858         [REGSET_SPE] = {
1859                 .core_note_type = NT_PPC_SPE, .n = 35,
1860                 .size = sizeof(u32), .align = sizeof(u32),
1861                 .active = evr_active, .get = evr_get, .set = evr_set
1862         },
1863 #endif
1864 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1865         [REGSET_TM_CGPR] = {
1866                 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1867                 .size = sizeof(long), .align = sizeof(long),
1868                 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1869         },
1870         [REGSET_TM_CFPR] = {
1871                 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1872                 .size = sizeof(double), .align = sizeof(double),
1873                 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1874         },
1875         [REGSET_TM_CVMX] = {
1876                 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1877                 .size = sizeof(vector128), .align = sizeof(vector128),
1878                 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1879         },
1880         [REGSET_TM_CVSX] = {
1881                 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1882                 .size = sizeof(double), .align = sizeof(double),
1883                 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1884         },
1885         [REGSET_TM_SPR] = {
1886                 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1887                 .size = sizeof(u64), .align = sizeof(u64),
1888                 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1889         },
1890         [REGSET_TM_CTAR] = {
1891                 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1892                 .size = sizeof(u64), .align = sizeof(u64),
1893                 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1894         },
1895         [REGSET_TM_CPPR] = {
1896                 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1897                 .size = sizeof(u64), .align = sizeof(u64),
1898                 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1899         },
1900         [REGSET_TM_CDSCR] = {
1901                 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1902                 .size = sizeof(u64), .align = sizeof(u64),
1903                 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1904         },
1905 #endif
1906 #ifdef CONFIG_PPC64
1907         [REGSET_PPR] = {
1908                 .core_note_type = NT_PPC_PPR, .n = 1,
1909                 .size = sizeof(u64), .align = sizeof(u64),
1910                 .get = ppr_get, .set = ppr_set
1911         },
1912         [REGSET_DSCR] = {
1913                 .core_note_type = NT_PPC_DSCR, .n = 1,
1914                 .size = sizeof(u64), .align = sizeof(u64),
1915                 .get = dscr_get, .set = dscr_set
1916         },
1917 #endif
1918 #ifdef CONFIG_PPC_BOOK3S_64
1919         [REGSET_TAR] = {
1920                 .core_note_type = NT_PPC_TAR, .n = 1,
1921                 .size = sizeof(u64), .align = sizeof(u64),
1922                 .get = tar_get, .set = tar_set
1923         },
1924         [REGSET_EBB] = {
1925                 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1926                 .size = sizeof(u64), .align = sizeof(u64),
1927                 .active = ebb_active, .get = ebb_get, .set = ebb_set
1928         },
1929         [REGSET_PMR] = {
1930                 .core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1931                 .size = sizeof(u64), .align = sizeof(u64),
1932                 .active = pmu_active, .get = pmu_get, .set = pmu_set
1933         },
1934 #endif
1935 };
1936
1937 static const struct user_regset_view user_ppc_native_view = {
1938         .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
1939         .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1940 };
1941
1942 #ifdef CONFIG_PPC64
1943 #include <linux/compat.h>
1944
1945 static int gpr32_get_common(struct task_struct *target,
1946                      const struct user_regset *regset,
1947                      unsigned int pos, unsigned int count,
1948                             void *kbuf, void __user *ubuf,
1949                             unsigned long *regs)
1950 {
1951         compat_ulong_t *k = kbuf;
1952         compat_ulong_t __user *u = ubuf;
1953         compat_ulong_t reg;
1954
1955         pos /= sizeof(reg);
1956         count /= sizeof(reg);
1957
1958         if (kbuf)
1959                 for (; count > 0 && pos < PT_MSR; --count)
1960                         *k++ = regs[pos++];
1961         else
1962                 for (; count > 0 && pos < PT_MSR; --count)
1963                         if (__put_user((compat_ulong_t) regs[pos++], u++))
1964                                 return -EFAULT;
1965
1966         if (count > 0 && pos == PT_MSR) {
1967                 reg = get_user_msr(target);
1968                 if (kbuf)
1969                         *k++ = reg;
1970                 else if (__put_user(reg, u++))
1971                         return -EFAULT;
1972                 ++pos;
1973                 --count;
1974         }
1975
1976         if (kbuf)
1977                 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1978                         *k++ = regs[pos++];
1979         else
1980                 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1981                         if (__put_user((compat_ulong_t) regs[pos++], u++))
1982                                 return -EFAULT;
1983
1984         kbuf = k;
1985         ubuf = u;
1986         pos *= sizeof(reg);
1987         count *= sizeof(reg);
1988         return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
1989                                         PT_REGS_COUNT * sizeof(reg), -1);
1990 }
1991
1992 static int gpr32_set_common(struct task_struct *target,
1993                      const struct user_regset *regset,
1994                      unsigned int pos, unsigned int count,
1995                      const void *kbuf, const void __user *ubuf,
1996                      unsigned long *regs)
1997 {
1998         const compat_ulong_t *k = kbuf;
1999         const compat_ulong_t __user *u = ubuf;
2000         compat_ulong_t reg;
2001
2002         pos /= sizeof(reg);
2003         count /= sizeof(reg);
2004
2005         if (kbuf)
2006                 for (; count > 0 && pos < PT_MSR; --count)
2007                         regs[pos++] = *k++;
2008         else
2009                 for (; count > 0 && pos < PT_MSR; --count) {
2010                         if (__get_user(reg, u++))
2011                                 return -EFAULT;
2012                         regs[pos++] = reg;
2013                 }
2014
2015
2016         if (count > 0 && pos == PT_MSR) {
2017                 if (kbuf)
2018                         reg = *k++;
2019                 else if (__get_user(reg, u++))
2020                         return -EFAULT;
2021                 set_user_msr(target, reg);
2022                 ++pos;
2023                 --count;
2024         }
2025
2026         if (kbuf) {
2027                 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2028                         regs[pos++] = *k++;
2029                 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2030                         ++k;
2031         } else {
2032                 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2033                         if (__get_user(reg, u++))
2034                                 return -EFAULT;
2035                         regs[pos++] = reg;
2036                 }
2037                 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2038                         if (__get_user(reg, u++))
2039                                 return -EFAULT;
2040         }
2041
2042         if (count > 0 && pos == PT_TRAP) {
2043                 if (kbuf)
2044                         reg = *k++;
2045                 else if (__get_user(reg, u++))
2046                         return -EFAULT;
2047                 set_user_trap(target, reg);
2048                 ++pos;
2049                 --count;
2050         }
2051
2052         kbuf = k;
2053         ubuf = u;
2054         pos *= sizeof(reg);
2055         count *= sizeof(reg);
2056         return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2057                                          (PT_TRAP + 1) * sizeof(reg), -1);
2058 }
2059
2060 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2061 static int tm_cgpr32_get(struct task_struct *target,
2062                      const struct user_regset *regset,
2063                      unsigned int pos, unsigned int count,
2064                      void *kbuf, void __user *ubuf)
2065 {
2066         return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2067                         &target->thread.ckpt_regs.gpr[0]);
2068 }
2069
2070 static int tm_cgpr32_set(struct task_struct *target,
2071                      const struct user_regset *regset,
2072                      unsigned int pos, unsigned int count,
2073                      const void *kbuf, const void __user *ubuf)
2074 {
2075         return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2076                         &target->thread.ckpt_regs.gpr[0]);
2077 }
2078 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2079
2080 static int gpr32_get(struct task_struct *target,
2081                      const struct user_regset *regset,
2082                      unsigned int pos, unsigned int count,
2083                      void *kbuf, void __user *ubuf)
2084 {
2085         int i;
2086
2087         if (target->thread.regs == NULL)
2088                 return -EIO;
2089
2090         if (!FULL_REGS(target->thread.regs)) {
2091                 /*
2092                  * We have a partial register set.
2093                  * Fill 14-31 with bogus values.
2094                  */
2095                 for (i = 14; i < 32; i++)
2096                         target->thread.regs->gpr[i] = NV_REG_POISON;
2097         }
2098         return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2099                         &target->thread.regs->gpr[0]);
2100 }
2101
2102 static int gpr32_set(struct task_struct *target,
2103                      const struct user_regset *regset,
2104                      unsigned int pos, unsigned int count,
2105                      const void *kbuf, const void __user *ubuf)
2106 {
2107         if (target->thread.regs == NULL)
2108                 return -EIO;
2109
2110         CHECK_FULL_REGS(target->thread.regs);
2111         return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2112                         &target->thread.regs->gpr[0]);
2113 }
2114
2115 /*
2116  * These are the regset flavors matching the CONFIG_PPC32 native set.
2117  */
2118 static const struct user_regset compat_regsets[] = {
2119         [REGSET_GPR] = {
2120                 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2121                 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2122                 .get = gpr32_get, .set = gpr32_set
2123         },
2124         [REGSET_FPR] = {
2125                 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2126                 .size = sizeof(double), .align = sizeof(double),
2127                 .get = fpr_get, .set = fpr_set
2128         },
2129 #ifdef CONFIG_ALTIVEC
2130         [REGSET_VMX] = {
2131                 .core_note_type = NT_PPC_VMX, .n = 34,
2132                 .size = sizeof(vector128), .align = sizeof(vector128),
2133                 .active = vr_active, .get = vr_get, .set = vr_set
2134         },
2135 #endif
2136 #ifdef CONFIG_SPE
2137         [REGSET_SPE] = {
2138                 .core_note_type = NT_PPC_SPE, .n = 35,
2139                 .size = sizeof(u32), .align = sizeof(u32),
2140                 .active = evr_active, .get = evr_get, .set = evr_set
2141         },
2142 #endif
2143 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2144         [REGSET_TM_CGPR] = {
2145                 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2146                 .size = sizeof(long), .align = sizeof(long),
2147                 .active = tm_cgpr_active,
2148                 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2149         },
2150         [REGSET_TM_CFPR] = {
2151                 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2152                 .size = sizeof(double), .align = sizeof(double),
2153                 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2154         },
2155         [REGSET_TM_CVMX] = {
2156                 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2157                 .size = sizeof(vector128), .align = sizeof(vector128),
2158                 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2159         },
2160         [REGSET_TM_CVSX] = {
2161                 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2162                 .size = sizeof(double), .align = sizeof(double),
2163                 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2164         },
2165         [REGSET_TM_SPR] = {
2166                 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2167                 .size = sizeof(u64), .align = sizeof(u64),
2168                 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2169         },
2170         [REGSET_TM_CTAR] = {
2171                 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2172                 .size = sizeof(u64), .align = sizeof(u64),
2173                 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2174         },
2175         [REGSET_TM_CPPR] = {
2176                 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2177                 .size = sizeof(u64), .align = sizeof(u64),
2178                 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2179         },
2180         [REGSET_TM_CDSCR] = {
2181                 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2182                 .size = sizeof(u64), .align = sizeof(u64),
2183                 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2184         },
2185 #endif
2186 #ifdef CONFIG_PPC64
2187         [REGSET_PPR] = {
2188                 .core_note_type = NT_PPC_PPR, .n = 1,
2189                 .size = sizeof(u64), .align = sizeof(u64),
2190                 .get = ppr_get, .set = ppr_set
2191         },
2192         [REGSET_DSCR] = {
2193                 .core_note_type = NT_PPC_DSCR, .n = 1,
2194                 .size = sizeof(u64), .align = sizeof(u64),
2195                 .get = dscr_get, .set = dscr_set
2196         },
2197 #endif
2198 #ifdef CONFIG_PPC_BOOK3S_64
2199         [REGSET_TAR] = {
2200                 .core_note_type = NT_PPC_TAR, .n = 1,
2201                 .size = sizeof(u64), .align = sizeof(u64),
2202                 .get = tar_get, .set = tar_set
2203         },
2204         [REGSET_EBB] = {
2205                 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2206                 .size = sizeof(u64), .align = sizeof(u64),
2207                 .active = ebb_active, .get = ebb_get, .set = ebb_set
2208         },
2209 #endif
2210 };
2211
2212 static const struct user_regset_view user_ppc_compat_view = {
2213         .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2214         .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2215 };
2216 #endif  /* CONFIG_PPC64 */
2217
2218 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2219 {
2220 #ifdef CONFIG_PPC64
2221         if (test_tsk_thread_flag(task, TIF_32BIT))
2222                 return &user_ppc_compat_view;
2223 #endif
2224         return &user_ppc_native_view;
2225 }
2226
2227
2228 void user_enable_single_step(struct task_struct *task)
2229 {
2230         struct pt_regs *regs = task->thread.regs;
2231
2232         if (regs != NULL) {
2233 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2234                 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2235                 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2236                 regs->msr |= MSR_DE;
2237 #else
2238                 regs->msr &= ~MSR_BE;
2239                 regs->msr |= MSR_SE;
2240 #endif
2241         }
2242         set_tsk_thread_flag(task, TIF_SINGLESTEP);
2243 }
2244
2245 void user_enable_block_step(struct task_struct *task)
2246 {
2247         struct pt_regs *regs = task->thread.regs;
2248
2249         if (regs != NULL) {
2250 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2251                 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2252                 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2253                 regs->msr |= MSR_DE;
2254 #else
2255                 regs->msr &= ~MSR_SE;
2256                 regs->msr |= MSR_BE;
2257 #endif
2258         }
2259         set_tsk_thread_flag(task, TIF_SINGLESTEP);
2260 }
2261
2262 void user_disable_single_step(struct task_struct *task)
2263 {
2264         struct pt_regs *regs = task->thread.regs;
2265
2266         if (regs != NULL) {
2267 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2268                 /*
2269                  * The logic to disable single stepping should be as
2270                  * simple as turning off the Instruction Complete flag.
2271                  * And, after doing so, if all debug flags are off, turn
2272                  * off DBCR0(IDM) and MSR(DE) .... Torez
2273                  */
2274                 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2275                 /*
2276                  * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2277                  */
2278                 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2279                                         task->thread.debug.dbcr1)) {
2280                         /*
2281                          * All debug events were off.....
2282                          */
2283                         task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2284                         regs->msr &= ~MSR_DE;
2285                 }
2286 #else
2287                 regs->msr &= ~(MSR_SE | MSR_BE);
2288 #endif
2289         }
2290         clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2291 }
2292
2293 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2294 void ptrace_triggered(struct perf_event *bp,
2295                       struct perf_sample_data *data, struct pt_regs *regs)
2296 {
2297         struct perf_event_attr attr;
2298
2299         /*
2300          * Disable the breakpoint request here since ptrace has defined a
2301          * one-shot behaviour for breakpoint exceptions in PPC64.
2302          * The SIGTRAP signal is generated automatically for us in do_dabr().
2303          * We don't have to do anything about that here
2304          */
2305         attr = bp->attr;
2306         attr.disabled = true;
2307         modify_user_hw_breakpoint(bp, &attr);
2308 }
2309 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2310
2311 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2312                                unsigned long data)
2313 {
2314 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2315         int ret;
2316         struct thread_struct *thread = &(task->thread);
2317         struct perf_event *bp;
2318         struct perf_event_attr attr;
2319 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2320 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2321         struct arch_hw_breakpoint hw_brk;
2322 #endif
2323
2324         /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2325          *  For embedded processors we support one DAC and no IAC's at the
2326          *  moment.
2327          */
2328         if (addr > 0)
2329                 return -EINVAL;
2330
2331         /* The bottom 3 bits in dabr are flags */
2332         if ((data & ~0x7UL) >= TASK_SIZE)
2333                 return -EIO;
2334
2335 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2336         /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2337          *  It was assumed, on previous implementations, that 3 bits were
2338          *  passed together with the data address, fitting the design of the
2339          *  DABR register, as follows:
2340          *
2341          *  bit 0: Read flag
2342          *  bit 1: Write flag
2343          *  bit 2: Breakpoint translation
2344          *
2345          *  Thus, we use them here as so.
2346          */
2347
2348         /* Ensure breakpoint translation bit is set */
2349         if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2350                 return -EIO;
2351         hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2352         hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2353         hw_brk.len = 8;
2354 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2355         bp = thread->ptrace_bps[0];
2356         if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2357                 if (bp) {
2358                         unregister_hw_breakpoint(bp);
2359                         thread->ptrace_bps[0] = NULL;
2360                 }
2361                 return 0;
2362         }
2363         if (bp) {
2364                 attr = bp->attr;
2365                 attr.bp_addr = hw_brk.address;
2366                 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2367
2368                 /* Enable breakpoint */
2369                 attr.disabled = false;
2370
2371                 ret =  modify_user_hw_breakpoint(bp, &attr);
2372                 if (ret) {
2373                         return ret;
2374                 }
2375                 thread->ptrace_bps[0] = bp;
2376                 thread->hw_brk = hw_brk;
2377                 return 0;
2378         }
2379
2380         /* Create a new breakpoint request if one doesn't exist already */
2381         hw_breakpoint_init(&attr);
2382         attr.bp_addr = hw_brk.address;
2383         arch_bp_generic_fields(hw_brk.type,
2384                                &attr.bp_type);
2385
2386         thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2387                                                ptrace_triggered, NULL, task);
2388         if (IS_ERR(bp)) {
2389                 thread->ptrace_bps[0] = NULL;
2390                 return PTR_ERR(bp);
2391         }
2392
2393 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2394         task->thread.hw_brk = hw_brk;
2395 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2396         /* As described above, it was assumed 3 bits were passed with the data
2397          *  address, but we will assume only the mode bits will be passed
2398          *  as to not cause alignment restrictions for DAC-based processors.
2399          */
2400
2401         /* DAC's hold the whole address without any mode flags */
2402         task->thread.debug.dac1 = data & ~0x3UL;
2403
2404         if (task->thread.debug.dac1 == 0) {
2405                 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2406                 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2407                                         task->thread.debug.dbcr1)) {
2408                         task->thread.regs->msr &= ~MSR_DE;
2409                         task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2410                 }
2411                 return 0;
2412         }
2413
2414         /* Read or Write bits must be set */
2415
2416         if (!(data & 0x3UL))
2417                 return -EINVAL;
2418
2419         /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2420            register */
2421         task->thread.debug.dbcr0 |= DBCR0_IDM;
2422
2423         /* Check for write and read flags and set DBCR0
2424            accordingly */
2425         dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2426         if (data & 0x1UL)
2427                 dbcr_dac(task) |= DBCR_DAC1R;
2428         if (data & 0x2UL)
2429                 dbcr_dac(task) |= DBCR_DAC1W;
2430         task->thread.regs->msr |= MSR_DE;
2431 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2432         return 0;
2433 }
2434
2435 /*
2436  * Called by kernel/ptrace.c when detaching..
2437  *
2438  * Make sure single step bits etc are not set.
2439  */
2440 void ptrace_disable(struct task_struct *child)
2441 {
2442         /* make sure the single step bit is not set. */
2443         user_disable_single_step(child);
2444 }
2445
2446 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2447 static long set_instruction_bp(struct task_struct *child,
2448                               struct ppc_hw_breakpoint *bp_info)
2449 {
2450         int slot;
2451         int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2452         int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2453         int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2454         int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2455
2456         if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2457                 slot2_in_use = 1;
2458         if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2459                 slot4_in_use = 1;
2460
2461         if (bp_info->addr >= TASK_SIZE)
2462                 return -EIO;
2463
2464         if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2465
2466                 /* Make sure range is valid. */
2467                 if (bp_info->addr2 >= TASK_SIZE)
2468                         return -EIO;
2469
2470                 /* We need a pair of IAC regsisters */
2471                 if ((!slot1_in_use) && (!slot2_in_use)) {
2472                         slot = 1;
2473                         child->thread.debug.iac1 = bp_info->addr;
2474                         child->thread.debug.iac2 = bp_info->addr2;
2475                         child->thread.debug.dbcr0 |= DBCR0_IAC1;
2476                         if (bp_info->addr_mode ==
2477                                         PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2478                                 dbcr_iac_range(child) |= DBCR_IAC12X;
2479                         else
2480                                 dbcr_iac_range(child) |= DBCR_IAC12I;
2481 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2482                 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2483                         slot = 3;
2484                         child->thread.debug.iac3 = bp_info->addr;
2485                         child->thread.debug.iac4 = bp_info->addr2;
2486                         child->thread.debug.dbcr0 |= DBCR0_IAC3;
2487                         if (bp_info->addr_mode ==
2488                                         PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2489                                 dbcr_iac_range(child) |= DBCR_IAC34X;
2490                         else
2491                                 dbcr_iac_range(child) |= DBCR_IAC34I;
2492 #endif
2493                 } else
2494                         return -ENOSPC;
2495         } else {
2496                 /* We only need one.  If possible leave a pair free in
2497                  * case a range is needed later
2498                  */
2499                 if (!slot1_in_use) {
2500                         /*
2501                          * Don't use iac1 if iac1-iac2 are free and either
2502                          * iac3 or iac4 (but not both) are free
2503                          */
2504                         if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2505                                 slot = 1;
2506                                 child->thread.debug.iac1 = bp_info->addr;
2507                                 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2508                                 goto out;
2509                         }
2510                 }
2511                 if (!slot2_in_use) {
2512                         slot = 2;
2513                         child->thread.debug.iac2 = bp_info->addr;
2514                         child->thread.debug.dbcr0 |= DBCR0_IAC2;
2515 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2516                 } else if (!slot3_in_use) {
2517                         slot = 3;
2518                         child->thread.debug.iac3 = bp_info->addr;
2519                         child->thread.debug.dbcr0 |= DBCR0_IAC3;
2520                 } else if (!slot4_in_use) {
2521                         slot = 4;
2522                         child->thread.debug.iac4 = bp_info->addr;
2523                         child->thread.debug.dbcr0 |= DBCR0_IAC4;
2524 #endif
2525                 } else
2526                         return -ENOSPC;
2527         }
2528 out:
2529         child->thread.debug.dbcr0 |= DBCR0_IDM;
2530         child->thread.regs->msr |= MSR_DE;
2531
2532         return slot;
2533 }
2534
2535 static int del_instruction_bp(struct task_struct *child, int slot)
2536 {
2537         switch (slot) {
2538         case 1:
2539                 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2540                         return -ENOENT;
2541
2542                 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2543                         /* address range - clear slots 1 & 2 */
2544                         child->thread.debug.iac2 = 0;
2545                         dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2546                 }
2547                 child->thread.debug.iac1 = 0;
2548                 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2549                 break;
2550         case 2:
2551                 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2552                         return -ENOENT;
2553
2554                 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2555                         /* used in a range */
2556                         return -EINVAL;
2557                 child->thread.debug.iac2 = 0;
2558                 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2559                 break;
2560 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2561         case 3:
2562                 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2563                         return -ENOENT;
2564
2565                 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2566                         /* address range - clear slots 3 & 4 */
2567                         child->thread.debug.iac4 = 0;
2568                         dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2569                 }
2570                 child->thread.debug.iac3 = 0;
2571                 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2572                 break;
2573         case 4:
2574                 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2575                         return -ENOENT;
2576
2577                 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2578                         /* Used in a range */
2579                         return -EINVAL;
2580                 child->thread.debug.iac4 = 0;
2581                 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2582                 break;
2583 #endif
2584         default:
2585                 return -EINVAL;
2586         }
2587         return 0;
2588 }
2589
2590 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2591 {
2592         int byte_enable =
2593                 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2594                 & 0xf;
2595         int condition_mode =
2596                 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2597         int slot;
2598
2599         if (byte_enable && (condition_mode == 0))
2600                 return -EINVAL;
2601
2602         if (bp_info->addr >= TASK_SIZE)
2603                 return -EIO;
2604
2605         if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2606                 slot = 1;
2607                 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2608                         dbcr_dac(child) |= DBCR_DAC1R;
2609                 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2610                         dbcr_dac(child) |= DBCR_DAC1W;
2611                 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2612 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2613                 if (byte_enable) {
2614                         child->thread.debug.dvc1 =
2615                                 (unsigned long)bp_info->condition_value;
2616                         child->thread.debug.dbcr2 |=
2617                                 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2618                                  (condition_mode << DBCR2_DVC1M_SHIFT));
2619                 }
2620 #endif
2621 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2622         } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2623                 /* Both dac1 and dac2 are part of a range */
2624                 return -ENOSPC;
2625 #endif
2626         } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2627                 slot = 2;
2628                 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2629                         dbcr_dac(child) |= DBCR_DAC2R;
2630                 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2631                         dbcr_dac(child) |= DBCR_DAC2W;
2632                 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2633 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2634                 if (byte_enable) {
2635                         child->thread.debug.dvc2 =
2636                                 (unsigned long)bp_info->condition_value;
2637                         child->thread.debug.dbcr2 |=
2638                                 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2639                                  (condition_mode << DBCR2_DVC2M_SHIFT));
2640                 }
2641 #endif
2642         } else
2643                 return -ENOSPC;
2644         child->thread.debug.dbcr0 |= DBCR0_IDM;
2645         child->thread.regs->msr |= MSR_DE;
2646
2647         return slot + 4;
2648 }
2649
2650 static int del_dac(struct task_struct *child, int slot)
2651 {
2652         if (slot == 1) {
2653                 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2654                         return -ENOENT;
2655
2656                 child->thread.debug.dac1 = 0;
2657                 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2658 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2659                 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2660                         child->thread.debug.dac2 = 0;
2661                         child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2662                 }
2663                 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2664 #endif
2665 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2666                 child->thread.debug.dvc1 = 0;
2667 #endif
2668         } else if (slot == 2) {
2669                 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2670                         return -ENOENT;
2671
2672 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2673                 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2674                         /* Part of a range */
2675                         return -EINVAL;
2676                 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2677 #endif
2678 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2679                 child->thread.debug.dvc2 = 0;
2680 #endif
2681                 child->thread.debug.dac2 = 0;
2682                 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2683         } else
2684                 return -EINVAL;
2685
2686         return 0;
2687 }
2688 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2689
2690 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2691 static int set_dac_range(struct task_struct *child,
2692                          struct ppc_hw_breakpoint *bp_info)
2693 {
2694         int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2695
2696         /* We don't allow range watchpoints to be used with DVC */
2697         if (bp_info->condition_mode)
2698                 return -EINVAL;
2699
2700         /*
2701          * Best effort to verify the address range.  The user/supervisor bits
2702          * prevent trapping in kernel space, but let's fail on an obvious bad
2703          * range.  The simple test on the mask is not fool-proof, and any
2704          * exclusive range will spill over into kernel space.
2705          */
2706         if (bp_info->addr >= TASK_SIZE)
2707                 return -EIO;
2708         if (mode == PPC_BREAKPOINT_MODE_MASK) {
2709                 /*
2710                  * dac2 is a bitmask.  Don't allow a mask that makes a
2711                  * kernel space address from a valid dac1 value
2712                  */
2713                 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2714                         return -EIO;
2715         } else {
2716                 /*
2717                  * For range breakpoints, addr2 must also be a valid address
2718                  */
2719                 if (bp_info->addr2 >= TASK_SIZE)
2720                         return -EIO;
2721         }
2722
2723         if (child->thread.debug.dbcr0 &
2724             (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2725                 return -ENOSPC;
2726
2727         if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2728                 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2729         if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2730                 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2731         child->thread.debug.dac1 = bp_info->addr;
2732         child->thread.debug.dac2 = bp_info->addr2;
2733         if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2734                 child->thread.debug.dbcr2  |= DBCR2_DAC12M;
2735         else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2736                 child->thread.debug.dbcr2  |= DBCR2_DAC12MX;
2737         else    /* PPC_BREAKPOINT_MODE_MASK */
2738                 child->thread.debug.dbcr2  |= DBCR2_DAC12MM;
2739         child->thread.regs->msr |= MSR_DE;
2740
2741         return 5;
2742 }
2743 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2744
2745 static long ppc_set_hwdebug(struct task_struct *child,
2746                      struct ppc_hw_breakpoint *bp_info)
2747 {
2748 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2749         int len = 0;
2750         struct thread_struct *thread = &(child->thread);
2751         struct perf_event *bp;
2752         struct perf_event_attr attr;
2753 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2754 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2755         struct arch_hw_breakpoint brk;
2756 #endif
2757
2758         if (bp_info->version != 1)
2759                 return -ENOTSUPP;
2760 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2761         /*
2762          * Check for invalid flags and combinations
2763          */
2764         if ((bp_info->trigger_type == 0) ||
2765             (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2766                                        PPC_BREAKPOINT_TRIGGER_RW)) ||
2767             (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2768             (bp_info->condition_mode &
2769              ~(PPC_BREAKPOINT_CONDITION_MODE |
2770                PPC_BREAKPOINT_CONDITION_BE_ALL)))
2771                 return -EINVAL;
2772 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2773         if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2774                 return -EINVAL;
2775 #endif
2776
2777         if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2778                 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2779                     (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2780                         return -EINVAL;
2781                 return set_instruction_bp(child, bp_info);
2782         }
2783         if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2784                 return set_dac(child, bp_info);
2785
2786 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2787         return set_dac_range(child, bp_info);
2788 #else
2789         return -EINVAL;
2790 #endif
2791 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2792         /*
2793          * We only support one data breakpoint
2794          */
2795         if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2796             (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2797             bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2798                 return -EINVAL;
2799
2800         if ((unsigned long)bp_info->addr >= TASK_SIZE)
2801                 return -EIO;
2802
2803         brk.address = bp_info->addr & ~7UL;
2804         brk.type = HW_BRK_TYPE_TRANSLATE;
2805         brk.len = 8;
2806         if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2807                 brk.type |= HW_BRK_TYPE_READ;
2808         if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2809                 brk.type |= HW_BRK_TYPE_WRITE;
2810 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2811         /*
2812          * Check if the request is for 'range' breakpoints. We can
2813          * support it if range < 8 bytes.
2814          */
2815         if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2816                 len = bp_info->addr2 - bp_info->addr;
2817         else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2818                 len = 1;
2819         else
2820                 return -EINVAL;
2821         bp = thread->ptrace_bps[0];
2822         if (bp)
2823                 return -ENOSPC;
2824
2825         /* Create a new breakpoint request if one doesn't exist already */
2826         hw_breakpoint_init(&attr);
2827         attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2828         attr.bp_len = len;
2829         arch_bp_generic_fields(brk.type, &attr.bp_type);
2830
2831         thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2832                                                ptrace_triggered, NULL, child);
2833         if (IS_ERR(bp)) {
2834                 thread->ptrace_bps[0] = NULL;
2835                 return PTR_ERR(bp);
2836         }
2837
2838         return 1;
2839 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2840
2841         if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2842                 return -EINVAL;
2843
2844         if (child->thread.hw_brk.address)
2845                 return -ENOSPC;
2846
2847         child->thread.hw_brk = brk;
2848
2849         return 1;
2850 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2851 }
2852
2853 static long ppc_del_hwdebug(struct task_struct *child, long data)
2854 {
2855 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2856         int ret = 0;
2857         struct thread_struct *thread = &(child->thread);
2858         struct perf_event *bp;
2859 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2860 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2861         int rc;
2862
2863         if (data <= 4)
2864                 rc = del_instruction_bp(child, (int)data);
2865         else
2866                 rc = del_dac(child, (int)data - 4);
2867
2868         if (!rc) {
2869                 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2870                                         child->thread.debug.dbcr1)) {
2871                         child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2872                         child->thread.regs->msr &= ~MSR_DE;
2873                 }
2874         }
2875         return rc;
2876 #else
2877         if (data != 1)
2878                 return -EINVAL;
2879
2880 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2881         bp = thread->ptrace_bps[0];
2882         if (bp) {
2883                 unregister_hw_breakpoint(bp);
2884                 thread->ptrace_bps[0] = NULL;
2885         } else
2886                 ret = -ENOENT;
2887         return ret;
2888 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2889         if (child->thread.hw_brk.address == 0)
2890                 return -ENOENT;
2891
2892         child->thread.hw_brk.address = 0;
2893         child->thread.hw_brk.type = 0;
2894 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2895
2896         return 0;
2897 #endif
2898 }
2899
2900 long arch_ptrace(struct task_struct *child, long request,
2901                  unsigned long addr, unsigned long data)
2902 {
2903         int ret = -EPERM;
2904         void __user *datavp = (void __user *) data;
2905         unsigned long __user *datalp = datavp;
2906
2907         switch (request) {
2908         /* read the word at location addr in the USER area. */
2909         case PTRACE_PEEKUSR: {
2910                 unsigned long index, tmp;
2911
2912                 ret = -EIO;
2913                 /* convert to index and check */
2914 #ifdef CONFIG_PPC32
2915                 index = addr >> 2;
2916                 if ((addr & 3) || (index > PT_FPSCR)
2917                     || (child->thread.regs == NULL))
2918 #else
2919                 index = addr >> 3;
2920                 if ((addr & 7) || (index > PT_FPSCR))
2921 #endif
2922                         break;
2923
2924                 CHECK_FULL_REGS(child->thread.regs);
2925                 if (index < PT_FPR0) {
2926                         ret = ptrace_get_reg(child, (int) index, &tmp);
2927                         if (ret)
2928                                 break;
2929                 } else {
2930                         unsigned int fpidx = index - PT_FPR0;
2931
2932                         flush_fp_to_thread(child);
2933                         if (fpidx < (PT_FPSCR - PT_FPR0))
2934                                 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
2935                                        sizeof(long));
2936                         else
2937                                 tmp = child->thread.fp_state.fpscr;
2938                 }
2939                 ret = put_user(tmp, datalp);
2940                 break;
2941         }
2942
2943         /* write the word at location addr in the USER area */
2944         case PTRACE_POKEUSR: {
2945                 unsigned long index;
2946
2947                 ret = -EIO;
2948                 /* convert to index and check */
2949 #ifdef CONFIG_PPC32
2950                 index = addr >> 2;
2951                 if ((addr & 3) || (index > PT_FPSCR)
2952                     || (child->thread.regs == NULL))
2953 #else
2954                 index = addr >> 3;
2955                 if ((addr & 7) || (index > PT_FPSCR))
2956 #endif
2957                         break;
2958
2959                 CHECK_FULL_REGS(child->thread.regs);
2960                 if (index < PT_FPR0) {
2961                         ret = ptrace_put_reg(child, index, data);
2962                 } else {
2963                         unsigned int fpidx = index - PT_FPR0;
2964
2965                         flush_fp_to_thread(child);
2966                         if (fpidx < (PT_FPSCR - PT_FPR0))
2967                                 memcpy(&child->thread.TS_FPR(fpidx), &data,
2968                                        sizeof(long));
2969                         else
2970                                 child->thread.fp_state.fpscr = data;
2971                         ret = 0;
2972                 }
2973                 break;
2974         }
2975
2976         case PPC_PTRACE_GETHWDBGINFO: {
2977                 struct ppc_debug_info dbginfo;
2978
2979                 dbginfo.version = 1;
2980 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2981                 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
2982                 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
2983                 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
2984                 dbginfo.data_bp_alignment = 4;
2985                 dbginfo.sizeof_condition = 4;
2986                 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
2987                                    PPC_DEBUG_FEATURE_INSN_BP_MASK;
2988 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2989                 dbginfo.features |=
2990                                    PPC_DEBUG_FEATURE_DATA_BP_RANGE |
2991                                    PPC_DEBUG_FEATURE_DATA_BP_MASK;
2992 #endif
2993 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
2994                 dbginfo.num_instruction_bps = 0;
2995                 dbginfo.num_data_bps = 1;
2996                 dbginfo.num_condition_regs = 0;
2997 #ifdef CONFIG_PPC64
2998                 dbginfo.data_bp_alignment = 8;
2999 #else
3000                 dbginfo.data_bp_alignment = 4;
3001 #endif
3002                 dbginfo.sizeof_condition = 0;
3003 #ifdef CONFIG_HAVE_HW_BREAKPOINT
3004                 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
3005                 if (cpu_has_feature(CPU_FTR_DAWR))
3006                         dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
3007 #else
3008                 dbginfo.features = 0;
3009 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3010 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3011
3012                 if (!access_ok(VERIFY_WRITE, datavp,
3013                                sizeof(struct ppc_debug_info)))
3014                         return -EFAULT;
3015                 ret = __copy_to_user(datavp, &dbginfo,
3016                                      sizeof(struct ppc_debug_info)) ?
3017                       -EFAULT : 0;
3018                 break;
3019         }
3020
3021         case PPC_PTRACE_SETHWDEBUG: {
3022                 struct ppc_hw_breakpoint bp_info;
3023
3024                 if (!access_ok(VERIFY_READ, datavp,
3025                                sizeof(struct ppc_hw_breakpoint)))
3026                         return -EFAULT;
3027                 ret = __copy_from_user(&bp_info, datavp,
3028                                        sizeof(struct ppc_hw_breakpoint)) ?
3029                       -EFAULT : 0;
3030                 if (!ret)
3031                         ret = ppc_set_hwdebug(child, &bp_info);
3032                 break;
3033         }
3034
3035         case PPC_PTRACE_DELHWDEBUG: {
3036                 ret = ppc_del_hwdebug(child, data);
3037                 break;
3038         }
3039
3040         case PTRACE_GET_DEBUGREG: {
3041 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3042                 unsigned long dabr_fake;
3043 #endif
3044                 ret = -EINVAL;
3045                 /* We only support one DABR and no IABRS at the moment */
3046                 if (addr > 0)
3047                         break;
3048 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3049                 ret = put_user(child->thread.debug.dac1, datalp);
3050 #else
3051                 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3052                              (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3053                 ret = put_user(dabr_fake, datalp);
3054 #endif
3055                 break;
3056         }
3057
3058         case PTRACE_SET_DEBUGREG:
3059                 ret = ptrace_set_debugreg(child, addr, data);
3060                 break;
3061
3062 #ifdef CONFIG_PPC64
3063         case PTRACE_GETREGS64:
3064 #endif
3065         case PTRACE_GETREGS:    /* Get all pt_regs from the child. */
3066                 return copy_regset_to_user(child, &user_ppc_native_view,
3067                                            REGSET_GPR,
3068                                            0, sizeof(struct pt_regs),
3069                                            datavp);
3070
3071 #ifdef CONFIG_PPC64
3072         case PTRACE_SETREGS64:
3073 #endif
3074         case PTRACE_SETREGS:    /* Set all gp regs in the child. */
3075                 return copy_regset_from_user(child, &user_ppc_native_view,
3076                                              REGSET_GPR,
3077                                              0, sizeof(struct pt_regs),
3078                                              datavp);
3079
3080         case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3081                 return copy_regset_to_user(child, &user_ppc_native_view,
3082                                            REGSET_FPR,
3083                                            0, sizeof(elf_fpregset_t),
3084                                            datavp);
3085
3086         case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3087                 return copy_regset_from_user(child, &user_ppc_native_view,
3088                                              REGSET_FPR,
3089                                              0, sizeof(elf_fpregset_t),
3090                                              datavp);
3091
3092 #ifdef CONFIG_ALTIVEC
3093         case PTRACE_GETVRREGS:
3094                 return copy_regset_to_user(child, &user_ppc_native_view,
3095                                            REGSET_VMX,
3096                                            0, (33 * sizeof(vector128) +
3097                                                sizeof(u32)),
3098                                            datavp);
3099
3100         case PTRACE_SETVRREGS:
3101                 return copy_regset_from_user(child, &user_ppc_native_view,
3102                                              REGSET_VMX,
3103                                              0, (33 * sizeof(vector128) +
3104                                                  sizeof(u32)),
3105                                              datavp);
3106 #endif
3107 #ifdef CONFIG_VSX
3108         case PTRACE_GETVSRREGS:
3109                 return copy_regset_to_user(child, &user_ppc_native_view,
3110                                            REGSET_VSX,
3111                                            0, 32 * sizeof(double),
3112                                            datavp);
3113
3114         case PTRACE_SETVSRREGS:
3115                 return copy_regset_from_user(child, &user_ppc_native_view,
3116                                              REGSET_VSX,
3117                                              0, 32 * sizeof(double),
3118                                              datavp);
3119 #endif
3120 #ifdef CONFIG_SPE
3121         case PTRACE_GETEVRREGS:
3122                 /* Get the child spe register state. */
3123                 return copy_regset_to_user(child, &user_ppc_native_view,
3124                                            REGSET_SPE, 0, 35 * sizeof(u32),
3125                                            datavp);
3126
3127         case PTRACE_SETEVRREGS:
3128                 /* Set the child spe register state. */
3129                 return copy_regset_from_user(child, &user_ppc_native_view,
3130                                              REGSET_SPE, 0, 35 * sizeof(u32),
3131                                              datavp);
3132 #endif
3133
3134         default:
3135                 ret = ptrace_request(child, request, addr, data);
3136                 break;
3137         }
3138         return ret;
3139 }
3140
3141 #ifdef CONFIG_SECCOMP
3142 static int do_seccomp(struct pt_regs *regs)
3143 {
3144         if (!test_thread_flag(TIF_SECCOMP))
3145                 return 0;
3146
3147         /*
3148          * The ABI we present to seccomp tracers is that r3 contains
3149          * the syscall return value and orig_gpr3 contains the first
3150          * syscall parameter. This is different to the ptrace ABI where
3151          * both r3 and orig_gpr3 contain the first syscall parameter.
3152          */
3153         regs->gpr[3] = -ENOSYS;
3154
3155         /*
3156          * We use the __ version here because we have already checked
3157          * TIF_SECCOMP. If this fails, there is nothing left to do, we
3158          * have already loaded -ENOSYS into r3, or seccomp has put
3159          * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3160          */
3161         if (__secure_computing(NULL))
3162                 return -1;
3163
3164         /*
3165          * The syscall was allowed by seccomp, restore the register
3166          * state to what audit expects.
3167          * Note that we use orig_gpr3, which means a seccomp tracer can
3168          * modify the first syscall parameter (in orig_gpr3) and also
3169          * allow the syscall to proceed.
3170          */
3171         regs->gpr[3] = regs->orig_gpr3;
3172
3173         return 0;
3174 }
3175 #else
3176 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3177 #endif /* CONFIG_SECCOMP */
3178
3179 /**
3180  * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3181  * @regs: the pt_regs of the task to trace (current)
3182  *
3183  * Performs various types of tracing on syscall entry. This includes seccomp,
3184  * ptrace, syscall tracepoints and audit.
3185  *
3186  * The pt_regs are potentially visible to userspace via ptrace, so their
3187  * contents is ABI.
3188  *
3189  * One or more of the tracers may modify the contents of pt_regs, in particular
3190  * to modify arguments or even the syscall number itself.
3191  *
3192  * It's also possible that a tracer can choose to reject the system call. In
3193  * that case this function will return an illegal syscall number, and will put
3194  * an appropriate return value in regs->r3.
3195  *
3196  * Return: the (possibly changed) syscall number.
3197  */
3198 long do_syscall_trace_enter(struct pt_regs *regs)
3199 {
3200         user_exit();
3201
3202         /*
3203          * The tracer may decide to abort the syscall, if so tracehook
3204          * will return !0. Note that the tracer may also just change
3205          * regs->gpr[0] to an invalid syscall number, that is handled
3206          * below on the exit path.
3207          */
3208         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3209             tracehook_report_syscall_entry(regs))
3210                 goto skip;
3211
3212         /* Run seccomp after ptrace; allow it to set gpr[3]. */
3213         if (do_seccomp(regs))
3214                 return -1;
3215
3216         /* Avoid trace and audit when syscall is invalid. */
3217         if (regs->gpr[0] >= NR_syscalls)
3218                 goto skip;
3219
3220         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3221                 trace_sys_enter(regs, regs->gpr[0]);
3222
3223 #ifdef CONFIG_PPC64
3224         if (!is_32bit_task())
3225                 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3226                                     regs->gpr[5], regs->gpr[6]);
3227         else
3228 #endif
3229                 audit_syscall_entry(regs->gpr[0],
3230                                     regs->gpr[3] & 0xffffffff,
3231                                     regs->gpr[4] & 0xffffffff,
3232                                     regs->gpr[5] & 0xffffffff,
3233                                     regs->gpr[6] & 0xffffffff);
3234
3235         /* Return the possibly modified but valid syscall number */
3236         return regs->gpr[0];
3237
3238 skip:
3239         /*
3240          * If we are aborting explicitly, or if the syscall number is
3241          * now invalid, set the return value to -ENOSYS.
3242          */
3243         regs->gpr[3] = -ENOSYS;
3244         return -1;
3245 }
3246
3247 void do_syscall_trace_leave(struct pt_regs *regs)
3248 {
3249         int step;
3250
3251         audit_syscall_exit(regs);
3252
3253         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3254                 trace_sys_exit(regs, regs->result);
3255
3256         step = test_thread_flag(TIF_SINGLESTEP);
3257         if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3258                 tracehook_report_syscall_exit(regs, step);
3259
3260         user_enter();
3261 }