]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge tag 'driver-core-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/delay.h>
28 #include <linux/export.h>
29 #include <linux/fs.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/spinlock.h>
34 #include <linux/page-flags.h>
35 #include <linux/srcu.h>
36 #include <linux/miscdevice.h>
37 #include <linux/debugfs.h>
38 #include <linux/gfp.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/hugetlb.h>
42 #include <linux/kvm_irqfd.h>
43 #include <linux/irqbypass.h>
44 #include <linux/module.h>
45 #include <linux/compiler.h>
46 #include <linux/of.h>
47
48 #include <asm/reg.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/disassemble.h>
51 #include <asm/cputable.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54 #include <linux/uaccess.h>
55 #include <asm/io.h>
56 #include <asm/kvm_ppc.h>
57 #include <asm/kvm_book3s.h>
58 #include <asm/mmu_context.h>
59 #include <asm/lppaca.h>
60 #include <asm/processor.h>
61 #include <asm/cputhreads.h>
62 #include <asm/page.h>
63 #include <asm/hvcall.h>
64 #include <asm/switch_to.h>
65 #include <asm/smp.h>
66 #include <asm/dbell.h>
67 #include <asm/hmi.h>
68 #include <asm/pnv-pci.h>
69 #include <asm/mmu.h>
70 #include <asm/opal.h>
71 #include <asm/xics.h>
72 #include <asm/xive.h>
73
74 #include "book3s.h"
75
76 #define CREATE_TRACE_POINTS
77 #include "trace_hv.h"
78
79 /* #define EXIT_DEBUG */
80 /* #define EXIT_DEBUG_SIMPLE */
81 /* #define EXIT_DEBUG_INT */
82
83 /* Used to indicate that a guest page fault needs to be handled */
84 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
85 /* Used to indicate that a guest passthrough interrupt needs to be handled */
86 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
87
88 /* Used as a "null" value for timebase values */
89 #define TB_NIL  (~(u64)0)
90
91 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
92
93 static int dynamic_mt_modes = 6;
94 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
95 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
96 static int target_smt_mode;
97 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
99
100 #ifdef CONFIG_KVM_XICS
101 static struct kernel_param_ops module_param_ops = {
102         .set = param_set_int,
103         .get = param_get_int,
104 };
105
106 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
107                                                         S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
109
110 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
111                                                         S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
113 #endif
114
115 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
116 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
117
118 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
119                 int *ip)
120 {
121         int i = *ip;
122         struct kvm_vcpu *vcpu;
123
124         while (++i < MAX_SMT_THREADS) {
125                 vcpu = READ_ONCE(vc->runnable_threads[i]);
126                 if (vcpu) {
127                         *ip = i;
128                         return vcpu;
129                 }
130         }
131         return NULL;
132 }
133
134 /* Used to traverse the list of runnable threads for a given vcore */
135 #define for_each_runnable_thread(i, vcpu, vc) \
136         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
137
138 static bool kvmppc_ipi_thread(int cpu)
139 {
140         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
141
142         /* On POWER9 we can use msgsnd to IPI any cpu */
143         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
144                 msg |= get_hard_smp_processor_id(cpu);
145                 smp_mb();
146                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
147                 return true;
148         }
149
150         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
151         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
152                 preempt_disable();
153                 if (cpu_first_thread_sibling(cpu) ==
154                     cpu_first_thread_sibling(smp_processor_id())) {
155                         msg |= cpu_thread_in_core(cpu);
156                         smp_mb();
157                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
158                         preempt_enable();
159                         return true;
160                 }
161                 preempt_enable();
162         }
163
164 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
165         if (cpu >= 0 && cpu < nr_cpu_ids) {
166                 if (paca[cpu].kvm_hstate.xics_phys) {
167                         xics_wake_cpu(cpu);
168                         return true;
169                 }
170                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
171                 return true;
172         }
173 #endif
174
175         return false;
176 }
177
178 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
179 {
180         int cpu;
181         struct swait_queue_head *wqp;
182
183         wqp = kvm_arch_vcpu_wq(vcpu);
184         if (swait_active(wqp)) {
185                 swake_up(wqp);
186                 ++vcpu->stat.halt_wakeup;
187         }
188
189         cpu = READ_ONCE(vcpu->arch.thread_cpu);
190         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
191                 return;
192
193         /* CPU points to the first thread of the core */
194         cpu = vcpu->cpu;
195         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
196                 smp_send_reschedule(cpu);
197 }
198
199 /*
200  * We use the vcpu_load/put functions to measure stolen time.
201  * Stolen time is counted as time when either the vcpu is able to
202  * run as part of a virtual core, but the task running the vcore
203  * is preempted or sleeping, or when the vcpu needs something done
204  * in the kernel by the task running the vcpu, but that task is
205  * preempted or sleeping.  Those two things have to be counted
206  * separately, since one of the vcpu tasks will take on the job
207  * of running the core, and the other vcpu tasks in the vcore will
208  * sleep waiting for it to do that, but that sleep shouldn't count
209  * as stolen time.
210  *
211  * Hence we accumulate stolen time when the vcpu can run as part of
212  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
213  * needs its task to do other things in the kernel (for example,
214  * service a page fault) in busy_stolen.  We don't accumulate
215  * stolen time for a vcore when it is inactive, or for a vcpu
216  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
217  * a misnomer; it means that the vcpu task is not executing in
218  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
219  * the kernel.  We don't have any way of dividing up that time
220  * between time that the vcpu is genuinely stopped, time that
221  * the task is actively working on behalf of the vcpu, and time
222  * that the task is preempted, so we don't count any of it as
223  * stolen.
224  *
225  * Updates to busy_stolen are protected by arch.tbacct_lock;
226  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
227  * lock.  The stolen times are measured in units of timebase ticks.
228  * (Note that the != TB_NIL checks below are purely defensive;
229  * they should never fail.)
230  */
231
232 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
233 {
234         unsigned long flags;
235
236         spin_lock_irqsave(&vc->stoltb_lock, flags);
237         vc->preempt_tb = mftb();
238         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
239 }
240
241 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
242 {
243         unsigned long flags;
244
245         spin_lock_irqsave(&vc->stoltb_lock, flags);
246         if (vc->preempt_tb != TB_NIL) {
247                 vc->stolen_tb += mftb() - vc->preempt_tb;
248                 vc->preempt_tb = TB_NIL;
249         }
250         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
251 }
252
253 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
254 {
255         struct kvmppc_vcore *vc = vcpu->arch.vcore;
256         unsigned long flags;
257
258         /*
259          * We can test vc->runner without taking the vcore lock,
260          * because only this task ever sets vc->runner to this
261          * vcpu, and once it is set to this vcpu, only this task
262          * ever sets it to NULL.
263          */
264         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
265                 kvmppc_core_end_stolen(vc);
266
267         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
268         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
269             vcpu->arch.busy_preempt != TB_NIL) {
270                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
271                 vcpu->arch.busy_preempt = TB_NIL;
272         }
273         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
274 }
275
276 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
277 {
278         struct kvmppc_vcore *vc = vcpu->arch.vcore;
279         unsigned long flags;
280
281         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
282                 kvmppc_core_start_stolen(vc);
283
284         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
285         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
286                 vcpu->arch.busy_preempt = mftb();
287         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
288 }
289
290 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
291 {
292         /*
293          * Check for illegal transactional state bit combination
294          * and if we find it, force the TS field to a safe state.
295          */
296         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
297                 msr &= ~MSR_TS_MASK;
298         vcpu->arch.shregs.msr = msr;
299         kvmppc_end_cede(vcpu);
300 }
301
302 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
303 {
304         vcpu->arch.pvr = pvr;
305 }
306
307 /* Dummy value used in computing PCR value below */
308 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
309
310 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
311 {
312         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
313         struct kvmppc_vcore *vc = vcpu->arch.vcore;
314
315         /* We can (emulate) our own architecture version and anything older */
316         if (cpu_has_feature(CPU_FTR_ARCH_300))
317                 host_pcr_bit = PCR_ARCH_300;
318         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
319                 host_pcr_bit = PCR_ARCH_207;
320         else if (cpu_has_feature(CPU_FTR_ARCH_206))
321                 host_pcr_bit = PCR_ARCH_206;
322         else
323                 host_pcr_bit = PCR_ARCH_205;
324
325         /* Determine lowest PCR bit needed to run guest in given PVR level */
326         guest_pcr_bit = host_pcr_bit;
327         if (arch_compat) {
328                 switch (arch_compat) {
329                 case PVR_ARCH_205:
330                         guest_pcr_bit = PCR_ARCH_205;
331                         break;
332                 case PVR_ARCH_206:
333                 case PVR_ARCH_206p:
334                         guest_pcr_bit = PCR_ARCH_206;
335                         break;
336                 case PVR_ARCH_207:
337                         guest_pcr_bit = PCR_ARCH_207;
338                         break;
339                 case PVR_ARCH_300:
340                         guest_pcr_bit = PCR_ARCH_300;
341                         break;
342                 default:
343                         return -EINVAL;
344                 }
345         }
346
347         /* Check requested PCR bits don't exceed our capabilities */
348         if (guest_pcr_bit > host_pcr_bit)
349                 return -EINVAL;
350
351         spin_lock(&vc->lock);
352         vc->arch_compat = arch_compat;
353         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
354         vc->pcr = host_pcr_bit - guest_pcr_bit;
355         spin_unlock(&vc->lock);
356
357         return 0;
358 }
359
360 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
361 {
362         int r;
363
364         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
365         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
366                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
367         for (r = 0; r < 16; ++r)
368                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
369                        r, kvmppc_get_gpr(vcpu, r),
370                        r+16, kvmppc_get_gpr(vcpu, r+16));
371         pr_err("ctr = %.16lx  lr  = %.16lx\n",
372                vcpu->arch.ctr, vcpu->arch.lr);
373         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
374                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
375         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
376                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
377         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
378                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
379         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
380                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
381         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
382         pr_err("fault dar = %.16lx dsisr = %.8x\n",
383                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
384         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
385         for (r = 0; r < vcpu->arch.slb_max; ++r)
386                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
387                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
388         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
389                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
390                vcpu->arch.last_inst);
391 }
392
393 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
394 {
395         struct kvm_vcpu *ret;
396
397         mutex_lock(&kvm->lock);
398         ret = kvm_get_vcpu_by_id(kvm, id);
399         mutex_unlock(&kvm->lock);
400         return ret;
401 }
402
403 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
404 {
405         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
406         vpa->yield_count = cpu_to_be32(1);
407 }
408
409 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
410                    unsigned long addr, unsigned long len)
411 {
412         /* check address is cacheline aligned */
413         if (addr & (L1_CACHE_BYTES - 1))
414                 return -EINVAL;
415         spin_lock(&vcpu->arch.vpa_update_lock);
416         if (v->next_gpa != addr || v->len != len) {
417                 v->next_gpa = addr;
418                 v->len = addr ? len : 0;
419                 v->update_pending = 1;
420         }
421         spin_unlock(&vcpu->arch.vpa_update_lock);
422         return 0;
423 }
424
425 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
426 struct reg_vpa {
427         u32 dummy;
428         union {
429                 __be16 hword;
430                 __be32 word;
431         } length;
432 };
433
434 static int vpa_is_registered(struct kvmppc_vpa *vpap)
435 {
436         if (vpap->update_pending)
437                 return vpap->next_gpa != 0;
438         return vpap->pinned_addr != NULL;
439 }
440
441 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
442                                        unsigned long flags,
443                                        unsigned long vcpuid, unsigned long vpa)
444 {
445         struct kvm *kvm = vcpu->kvm;
446         unsigned long len, nb;
447         void *va;
448         struct kvm_vcpu *tvcpu;
449         int err;
450         int subfunc;
451         struct kvmppc_vpa *vpap;
452
453         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
454         if (!tvcpu)
455                 return H_PARAMETER;
456
457         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
458         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
459             subfunc == H_VPA_REG_SLB) {
460                 /* Registering new area - address must be cache-line aligned */
461                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
462                         return H_PARAMETER;
463
464                 /* convert logical addr to kernel addr and read length */
465                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
466                 if (va == NULL)
467                         return H_PARAMETER;
468                 if (subfunc == H_VPA_REG_VPA)
469                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
470                 else
471                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
472                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
473
474                 /* Check length */
475                 if (len > nb || len < sizeof(struct reg_vpa))
476                         return H_PARAMETER;
477         } else {
478                 vpa = 0;
479                 len = 0;
480         }
481
482         err = H_PARAMETER;
483         vpap = NULL;
484         spin_lock(&tvcpu->arch.vpa_update_lock);
485
486         switch (subfunc) {
487         case H_VPA_REG_VPA:             /* register VPA */
488                 if (len < sizeof(struct lppaca))
489                         break;
490                 vpap = &tvcpu->arch.vpa;
491                 err = 0;
492                 break;
493
494         case H_VPA_REG_DTL:             /* register DTL */
495                 if (len < sizeof(struct dtl_entry))
496                         break;
497                 len -= len % sizeof(struct dtl_entry);
498
499                 /* Check that they have previously registered a VPA */
500                 err = H_RESOURCE;
501                 if (!vpa_is_registered(&tvcpu->arch.vpa))
502                         break;
503
504                 vpap = &tvcpu->arch.dtl;
505                 err = 0;
506                 break;
507
508         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
509                 /* Check that they have previously registered a VPA */
510                 err = H_RESOURCE;
511                 if (!vpa_is_registered(&tvcpu->arch.vpa))
512                         break;
513
514                 vpap = &tvcpu->arch.slb_shadow;
515                 err = 0;
516                 break;
517
518         case H_VPA_DEREG_VPA:           /* deregister VPA */
519                 /* Check they don't still have a DTL or SLB buf registered */
520                 err = H_RESOURCE;
521                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
522                     vpa_is_registered(&tvcpu->arch.slb_shadow))
523                         break;
524
525                 vpap = &tvcpu->arch.vpa;
526                 err = 0;
527                 break;
528
529         case H_VPA_DEREG_DTL:           /* deregister DTL */
530                 vpap = &tvcpu->arch.dtl;
531                 err = 0;
532                 break;
533
534         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
535                 vpap = &tvcpu->arch.slb_shadow;
536                 err = 0;
537                 break;
538         }
539
540         if (vpap) {
541                 vpap->next_gpa = vpa;
542                 vpap->len = len;
543                 vpap->update_pending = 1;
544         }
545
546         spin_unlock(&tvcpu->arch.vpa_update_lock);
547
548         return err;
549 }
550
551 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
552 {
553         struct kvm *kvm = vcpu->kvm;
554         void *va;
555         unsigned long nb;
556         unsigned long gpa;
557
558         /*
559          * We need to pin the page pointed to by vpap->next_gpa,
560          * but we can't call kvmppc_pin_guest_page under the lock
561          * as it does get_user_pages() and down_read().  So we
562          * have to drop the lock, pin the page, then get the lock
563          * again and check that a new area didn't get registered
564          * in the meantime.
565          */
566         for (;;) {
567                 gpa = vpap->next_gpa;
568                 spin_unlock(&vcpu->arch.vpa_update_lock);
569                 va = NULL;
570                 nb = 0;
571                 if (gpa)
572                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
573                 spin_lock(&vcpu->arch.vpa_update_lock);
574                 if (gpa == vpap->next_gpa)
575                         break;
576                 /* sigh... unpin that one and try again */
577                 if (va)
578                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
579         }
580
581         vpap->update_pending = 0;
582         if (va && nb < vpap->len) {
583                 /*
584                  * If it's now too short, it must be that userspace
585                  * has changed the mappings underlying guest memory,
586                  * so unregister the region.
587                  */
588                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
589                 va = NULL;
590         }
591         if (vpap->pinned_addr)
592                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
593                                         vpap->dirty);
594         vpap->gpa = gpa;
595         vpap->pinned_addr = va;
596         vpap->dirty = false;
597         if (va)
598                 vpap->pinned_end = va + vpap->len;
599 }
600
601 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
602 {
603         if (!(vcpu->arch.vpa.update_pending ||
604               vcpu->arch.slb_shadow.update_pending ||
605               vcpu->arch.dtl.update_pending))
606                 return;
607
608         spin_lock(&vcpu->arch.vpa_update_lock);
609         if (vcpu->arch.vpa.update_pending) {
610                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
611                 if (vcpu->arch.vpa.pinned_addr)
612                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
613         }
614         if (vcpu->arch.dtl.update_pending) {
615                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
616                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
617                 vcpu->arch.dtl_index = 0;
618         }
619         if (vcpu->arch.slb_shadow.update_pending)
620                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
621         spin_unlock(&vcpu->arch.vpa_update_lock);
622 }
623
624 /*
625  * Return the accumulated stolen time for the vcore up until `now'.
626  * The caller should hold the vcore lock.
627  */
628 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
629 {
630         u64 p;
631         unsigned long flags;
632
633         spin_lock_irqsave(&vc->stoltb_lock, flags);
634         p = vc->stolen_tb;
635         if (vc->vcore_state != VCORE_INACTIVE &&
636             vc->preempt_tb != TB_NIL)
637                 p += now - vc->preempt_tb;
638         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
639         return p;
640 }
641
642 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
643                                     struct kvmppc_vcore *vc)
644 {
645         struct dtl_entry *dt;
646         struct lppaca *vpa;
647         unsigned long stolen;
648         unsigned long core_stolen;
649         u64 now;
650         unsigned long flags;
651
652         dt = vcpu->arch.dtl_ptr;
653         vpa = vcpu->arch.vpa.pinned_addr;
654         now = mftb();
655         core_stolen = vcore_stolen_time(vc, now);
656         stolen = core_stolen - vcpu->arch.stolen_logged;
657         vcpu->arch.stolen_logged = core_stolen;
658         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
659         stolen += vcpu->arch.busy_stolen;
660         vcpu->arch.busy_stolen = 0;
661         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
662         if (!dt || !vpa)
663                 return;
664         memset(dt, 0, sizeof(struct dtl_entry));
665         dt->dispatch_reason = 7;
666         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
667         dt->timebase = cpu_to_be64(now + vc->tb_offset);
668         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
669         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
670         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
671         ++dt;
672         if (dt == vcpu->arch.dtl.pinned_end)
673                 dt = vcpu->arch.dtl.pinned_addr;
674         vcpu->arch.dtl_ptr = dt;
675         /* order writing *dt vs. writing vpa->dtl_idx */
676         smp_wmb();
677         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
678         vcpu->arch.dtl.dirty = true;
679 }
680
681 /* See if there is a doorbell interrupt pending for a vcpu */
682 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
683 {
684         int thr;
685         struct kvmppc_vcore *vc;
686
687         if (vcpu->arch.doorbell_request)
688                 return true;
689         /*
690          * Ensure that the read of vcore->dpdes comes after the read
691          * of vcpu->doorbell_request.  This barrier matches the
692          * lwsync in book3s_hv_rmhandlers.S just before the
693          * fast_guest_return label.
694          */
695         smp_rmb();
696         vc = vcpu->arch.vcore;
697         thr = vcpu->vcpu_id - vc->first_vcpuid;
698         return !!(vc->dpdes & (1 << thr));
699 }
700
701 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
702 {
703         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
704                 return true;
705         if ((!vcpu->arch.vcore->arch_compat) &&
706             cpu_has_feature(CPU_FTR_ARCH_207S))
707                 return true;
708         return false;
709 }
710
711 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
712                              unsigned long resource, unsigned long value1,
713                              unsigned long value2)
714 {
715         switch (resource) {
716         case H_SET_MODE_RESOURCE_SET_CIABR:
717                 if (!kvmppc_power8_compatible(vcpu))
718                         return H_P2;
719                 if (value2)
720                         return H_P4;
721                 if (mflags)
722                         return H_UNSUPPORTED_FLAG_START;
723                 /* Guests can't breakpoint the hypervisor */
724                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
725                         return H_P3;
726                 vcpu->arch.ciabr  = value1;
727                 return H_SUCCESS;
728         case H_SET_MODE_RESOURCE_SET_DAWR:
729                 if (!kvmppc_power8_compatible(vcpu))
730                         return H_P2;
731                 if (mflags)
732                         return H_UNSUPPORTED_FLAG_START;
733                 if (value2 & DABRX_HYP)
734                         return H_P4;
735                 vcpu->arch.dawr  = value1;
736                 vcpu->arch.dawrx = value2;
737                 return H_SUCCESS;
738         default:
739                 return H_TOO_HARD;
740         }
741 }
742
743 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
744 {
745         struct kvmppc_vcore *vcore = target->arch.vcore;
746
747         /*
748          * We expect to have been called by the real mode handler
749          * (kvmppc_rm_h_confer()) which would have directly returned
750          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
751          * have useful work to do and should not confer) so we don't
752          * recheck that here.
753          */
754
755         spin_lock(&vcore->lock);
756         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
757             vcore->vcore_state != VCORE_INACTIVE &&
758             vcore->runner)
759                 target = vcore->runner;
760         spin_unlock(&vcore->lock);
761
762         return kvm_vcpu_yield_to(target);
763 }
764
765 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
766 {
767         int yield_count = 0;
768         struct lppaca *lppaca;
769
770         spin_lock(&vcpu->arch.vpa_update_lock);
771         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
772         if (lppaca)
773                 yield_count = be32_to_cpu(lppaca->yield_count);
774         spin_unlock(&vcpu->arch.vpa_update_lock);
775         return yield_count;
776 }
777
778 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
779 {
780         unsigned long req = kvmppc_get_gpr(vcpu, 3);
781         unsigned long target, ret = H_SUCCESS;
782         int yield_count;
783         struct kvm_vcpu *tvcpu;
784         int idx, rc;
785
786         if (req <= MAX_HCALL_OPCODE &&
787             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
788                 return RESUME_HOST;
789
790         switch (req) {
791         case H_CEDE:
792                 break;
793         case H_PROD:
794                 target = kvmppc_get_gpr(vcpu, 4);
795                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
796                 if (!tvcpu) {
797                         ret = H_PARAMETER;
798                         break;
799                 }
800                 tvcpu->arch.prodded = 1;
801                 smp_mb();
802                 if (tvcpu->arch.ceded)
803                         kvmppc_fast_vcpu_kick_hv(tvcpu);
804                 break;
805         case H_CONFER:
806                 target = kvmppc_get_gpr(vcpu, 4);
807                 if (target == -1)
808                         break;
809                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
810                 if (!tvcpu) {
811                         ret = H_PARAMETER;
812                         break;
813                 }
814                 yield_count = kvmppc_get_gpr(vcpu, 5);
815                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
816                         break;
817                 kvm_arch_vcpu_yield_to(tvcpu);
818                 break;
819         case H_REGISTER_VPA:
820                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
821                                         kvmppc_get_gpr(vcpu, 5),
822                                         kvmppc_get_gpr(vcpu, 6));
823                 break;
824         case H_RTAS:
825                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
826                         return RESUME_HOST;
827
828                 idx = srcu_read_lock(&vcpu->kvm->srcu);
829                 rc = kvmppc_rtas_hcall(vcpu);
830                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
831
832                 if (rc == -ENOENT)
833                         return RESUME_HOST;
834                 else if (rc == 0)
835                         break;
836
837                 /* Send the error out to userspace via KVM_RUN */
838                 return rc;
839         case H_LOGICAL_CI_LOAD:
840                 ret = kvmppc_h_logical_ci_load(vcpu);
841                 if (ret == H_TOO_HARD)
842                         return RESUME_HOST;
843                 break;
844         case H_LOGICAL_CI_STORE:
845                 ret = kvmppc_h_logical_ci_store(vcpu);
846                 if (ret == H_TOO_HARD)
847                         return RESUME_HOST;
848                 break;
849         case H_SET_MODE:
850                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
851                                         kvmppc_get_gpr(vcpu, 5),
852                                         kvmppc_get_gpr(vcpu, 6),
853                                         kvmppc_get_gpr(vcpu, 7));
854                 if (ret == H_TOO_HARD)
855                         return RESUME_HOST;
856                 break;
857         case H_XIRR:
858         case H_CPPR:
859         case H_EOI:
860         case H_IPI:
861         case H_IPOLL:
862         case H_XIRR_X:
863                 if (kvmppc_xics_enabled(vcpu)) {
864                         if (xive_enabled()) {
865                                 ret = H_NOT_AVAILABLE;
866                                 return RESUME_GUEST;
867                         }
868                         ret = kvmppc_xics_hcall(vcpu, req);
869                         break;
870                 }
871                 return RESUME_HOST;
872         case H_PUT_TCE:
873                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
874                                                 kvmppc_get_gpr(vcpu, 5),
875                                                 kvmppc_get_gpr(vcpu, 6));
876                 if (ret == H_TOO_HARD)
877                         return RESUME_HOST;
878                 break;
879         case H_PUT_TCE_INDIRECT:
880                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
881                                                 kvmppc_get_gpr(vcpu, 5),
882                                                 kvmppc_get_gpr(vcpu, 6),
883                                                 kvmppc_get_gpr(vcpu, 7));
884                 if (ret == H_TOO_HARD)
885                         return RESUME_HOST;
886                 break;
887         case H_STUFF_TCE:
888                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
889                                                 kvmppc_get_gpr(vcpu, 5),
890                                                 kvmppc_get_gpr(vcpu, 6),
891                                                 kvmppc_get_gpr(vcpu, 7));
892                 if (ret == H_TOO_HARD)
893                         return RESUME_HOST;
894                 break;
895         default:
896                 return RESUME_HOST;
897         }
898         kvmppc_set_gpr(vcpu, 3, ret);
899         vcpu->arch.hcall_needed = 0;
900         return RESUME_GUEST;
901 }
902
903 static int kvmppc_hcall_impl_hv(unsigned long cmd)
904 {
905         switch (cmd) {
906         case H_CEDE:
907         case H_PROD:
908         case H_CONFER:
909         case H_REGISTER_VPA:
910         case H_SET_MODE:
911         case H_LOGICAL_CI_LOAD:
912         case H_LOGICAL_CI_STORE:
913 #ifdef CONFIG_KVM_XICS
914         case H_XIRR:
915         case H_CPPR:
916         case H_EOI:
917         case H_IPI:
918         case H_IPOLL:
919         case H_XIRR_X:
920 #endif
921                 return 1;
922         }
923
924         /* See if it's in the real-mode table */
925         return kvmppc_hcall_impl_hv_realmode(cmd);
926 }
927
928 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
929                                         struct kvm_vcpu *vcpu)
930 {
931         u32 last_inst;
932
933         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
934                                         EMULATE_DONE) {
935                 /*
936                  * Fetch failed, so return to guest and
937                  * try executing it again.
938                  */
939                 return RESUME_GUEST;
940         }
941
942         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
943                 run->exit_reason = KVM_EXIT_DEBUG;
944                 run->debug.arch.address = kvmppc_get_pc(vcpu);
945                 return RESUME_HOST;
946         } else {
947                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
948                 return RESUME_GUEST;
949         }
950 }
951
952 static void do_nothing(void *x)
953 {
954 }
955
956 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
957 {
958         int thr, cpu, pcpu, nthreads;
959         struct kvm_vcpu *v;
960         unsigned long dpdes;
961
962         nthreads = vcpu->kvm->arch.emul_smt_mode;
963         dpdes = 0;
964         cpu = vcpu->vcpu_id & ~(nthreads - 1);
965         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
966                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
967                 if (!v)
968                         continue;
969                 /*
970                  * If the vcpu is currently running on a physical cpu thread,
971                  * interrupt it in order to pull it out of the guest briefly,
972                  * which will update its vcore->dpdes value.
973                  */
974                 pcpu = READ_ONCE(v->cpu);
975                 if (pcpu >= 0)
976                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
977                 if (kvmppc_doorbell_pending(v))
978                         dpdes |= 1 << thr;
979         }
980         return dpdes;
981 }
982
983 /*
984  * On POWER9, emulate doorbell-related instructions in order to
985  * give the guest the illusion of running on a multi-threaded core.
986  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
987  * and mfspr DPDES.
988  */
989 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
990 {
991         u32 inst, rb, thr;
992         unsigned long arg;
993         struct kvm *kvm = vcpu->kvm;
994         struct kvm_vcpu *tvcpu;
995
996         if (!cpu_has_feature(CPU_FTR_ARCH_300))
997                 return EMULATE_FAIL;
998         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
999                 return RESUME_GUEST;
1000         if (get_op(inst) != 31)
1001                 return EMULATE_FAIL;
1002         rb = get_rb(inst);
1003         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1004         switch (get_xop(inst)) {
1005         case OP_31_XOP_MSGSNDP:
1006                 arg = kvmppc_get_gpr(vcpu, rb);
1007                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1008                         break;
1009                 arg &= 0x3f;
1010                 if (arg >= kvm->arch.emul_smt_mode)
1011                         break;
1012                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1013                 if (!tvcpu)
1014                         break;
1015                 if (!tvcpu->arch.doorbell_request) {
1016                         tvcpu->arch.doorbell_request = 1;
1017                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1018                 }
1019                 break;
1020         case OP_31_XOP_MSGCLRP:
1021                 arg = kvmppc_get_gpr(vcpu, rb);
1022                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1023                         break;
1024                 vcpu->arch.vcore->dpdes = 0;
1025                 vcpu->arch.doorbell_request = 0;
1026                 break;
1027         case OP_31_XOP_MFSPR:
1028                 switch (get_sprn(inst)) {
1029                 case SPRN_TIR:
1030                         arg = thr;
1031                         break;
1032                 case SPRN_DPDES:
1033                         arg = kvmppc_read_dpdes(vcpu);
1034                         break;
1035                 default:
1036                         return EMULATE_FAIL;
1037                 }
1038                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1039                 break;
1040         default:
1041                 return EMULATE_FAIL;
1042         }
1043         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1044         return RESUME_GUEST;
1045 }
1046
1047 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1048                                  struct task_struct *tsk)
1049 {
1050         int r = RESUME_HOST;
1051
1052         vcpu->stat.sum_exits++;
1053
1054         /*
1055          * This can happen if an interrupt occurs in the last stages
1056          * of guest entry or the first stages of guest exit (i.e. after
1057          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1058          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1059          * That can happen due to a bug, or due to a machine check
1060          * occurring at just the wrong time.
1061          */
1062         if (vcpu->arch.shregs.msr & MSR_HV) {
1063                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1064                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1065                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1066                         vcpu->arch.shregs.msr);
1067                 kvmppc_dump_regs(vcpu);
1068                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1069                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1070                 return RESUME_HOST;
1071         }
1072         run->exit_reason = KVM_EXIT_UNKNOWN;
1073         run->ready_for_interrupt_injection = 1;
1074         switch (vcpu->arch.trap) {
1075         /* We're good on these - the host merely wanted to get our attention */
1076         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1077                 vcpu->stat.dec_exits++;
1078                 r = RESUME_GUEST;
1079                 break;
1080         case BOOK3S_INTERRUPT_EXTERNAL:
1081         case BOOK3S_INTERRUPT_H_DOORBELL:
1082         case BOOK3S_INTERRUPT_H_VIRT:
1083                 vcpu->stat.ext_intr_exits++;
1084                 r = RESUME_GUEST;
1085                 break;
1086         /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
1087         case BOOK3S_INTERRUPT_HMI:
1088         case BOOK3S_INTERRUPT_PERFMON:
1089                 r = RESUME_GUEST;
1090                 break;
1091         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1092                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1093                 run->exit_reason = KVM_EXIT_NMI;
1094                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1095                 /* Clear out the old NMI status from run->flags */
1096                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1097                 /* Now set the NMI status */
1098                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1099                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1100                 else
1101                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1102
1103                 r = RESUME_HOST;
1104                 /* Print the MCE event to host console. */
1105                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1106                 break;
1107         case BOOK3S_INTERRUPT_PROGRAM:
1108         {
1109                 ulong flags;
1110                 /*
1111                  * Normally program interrupts are delivered directly
1112                  * to the guest by the hardware, but we can get here
1113                  * as a result of a hypervisor emulation interrupt
1114                  * (e40) getting turned into a 700 by BML RTAS.
1115                  */
1116                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1117                 kvmppc_core_queue_program(vcpu, flags);
1118                 r = RESUME_GUEST;
1119                 break;
1120         }
1121         case BOOK3S_INTERRUPT_SYSCALL:
1122         {
1123                 /* hcall - punt to userspace */
1124                 int i;
1125
1126                 /* hypercall with MSR_PR has already been handled in rmode,
1127                  * and never reaches here.
1128                  */
1129
1130                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1131                 for (i = 0; i < 9; ++i)
1132                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1133                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1134                 vcpu->arch.hcall_needed = 1;
1135                 r = RESUME_HOST;
1136                 break;
1137         }
1138         /*
1139          * We get these next two if the guest accesses a page which it thinks
1140          * it has mapped but which is not actually present, either because
1141          * it is for an emulated I/O device or because the corresonding
1142          * host page has been paged out.  Any other HDSI/HISI interrupts
1143          * have been handled already.
1144          */
1145         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1146                 r = RESUME_PAGE_FAULT;
1147                 break;
1148         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1149                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1150                 vcpu->arch.fault_dsisr = 0;
1151                 r = RESUME_PAGE_FAULT;
1152                 break;
1153         /*
1154          * This occurs if the guest executes an illegal instruction.
1155          * If the guest debug is disabled, generate a program interrupt
1156          * to the guest. If guest debug is enabled, we need to check
1157          * whether the instruction is a software breakpoint instruction.
1158          * Accordingly return to Guest or Host.
1159          */
1160         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1161                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1162                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1163                                 swab32(vcpu->arch.emul_inst) :
1164                                 vcpu->arch.emul_inst;
1165                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1166                         r = kvmppc_emulate_debug_inst(run, vcpu);
1167                 } else {
1168                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1169                         r = RESUME_GUEST;
1170                 }
1171                 break;
1172         /*
1173          * This occurs if the guest (kernel or userspace), does something that
1174          * is prohibited by HFSCR.
1175          * On POWER9, this could be a doorbell instruction that we need
1176          * to emulate.
1177          * Otherwise, we just generate a program interrupt to the guest.
1178          */
1179         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1180                 r = EMULATE_FAIL;
1181                 if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
1182                         r = kvmppc_emulate_doorbell_instr(vcpu);
1183                 if (r == EMULATE_FAIL) {
1184                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1185                         r = RESUME_GUEST;
1186                 }
1187                 break;
1188         case BOOK3S_INTERRUPT_HV_RM_HARD:
1189                 r = RESUME_PASSTHROUGH;
1190                 break;
1191         default:
1192                 kvmppc_dump_regs(vcpu);
1193                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1194                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1195                         vcpu->arch.shregs.msr);
1196                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1197                 r = RESUME_HOST;
1198                 break;
1199         }
1200
1201         return r;
1202 }
1203
1204 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1205                                             struct kvm_sregs *sregs)
1206 {
1207         int i;
1208
1209         memset(sregs, 0, sizeof(struct kvm_sregs));
1210         sregs->pvr = vcpu->arch.pvr;
1211         for (i = 0; i < vcpu->arch.slb_max; i++) {
1212                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1213                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1214         }
1215
1216         return 0;
1217 }
1218
1219 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1220                                             struct kvm_sregs *sregs)
1221 {
1222         int i, j;
1223
1224         /* Only accept the same PVR as the host's, since we can't spoof it */
1225         if (sregs->pvr != vcpu->arch.pvr)
1226                 return -EINVAL;
1227
1228         j = 0;
1229         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1230                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1231                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1232                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1233                         ++j;
1234                 }
1235         }
1236         vcpu->arch.slb_max = j;
1237
1238         return 0;
1239 }
1240
1241 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1242                 bool preserve_top32)
1243 {
1244         struct kvm *kvm = vcpu->kvm;
1245         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1246         u64 mask;
1247
1248         mutex_lock(&kvm->lock);
1249         spin_lock(&vc->lock);
1250         /*
1251          * If ILE (interrupt little-endian) has changed, update the
1252          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1253          */
1254         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1255                 struct kvm_vcpu *vcpu;
1256                 int i;
1257
1258                 kvm_for_each_vcpu(i, vcpu, kvm) {
1259                         if (vcpu->arch.vcore != vc)
1260                                 continue;
1261                         if (new_lpcr & LPCR_ILE)
1262                                 vcpu->arch.intr_msr |= MSR_LE;
1263                         else
1264                                 vcpu->arch.intr_msr &= ~MSR_LE;
1265                 }
1266         }
1267
1268         /*
1269          * Userspace can only modify DPFD (default prefetch depth),
1270          * ILE (interrupt little-endian) and TC (translation control).
1271          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1272          */
1273         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1274         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1275                 mask |= LPCR_AIL;
1276         /*
1277          * On POWER9, allow userspace to enable large decrementer for the
1278          * guest, whether or not the host has it enabled.
1279          */
1280         if (cpu_has_feature(CPU_FTR_ARCH_300))
1281                 mask |= LPCR_LD;
1282
1283         /* Broken 32-bit version of LPCR must not clear top bits */
1284         if (preserve_top32)
1285                 mask &= 0xFFFFFFFF;
1286         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1287         spin_unlock(&vc->lock);
1288         mutex_unlock(&kvm->lock);
1289 }
1290
1291 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1292                                  union kvmppc_one_reg *val)
1293 {
1294         int r = 0;
1295         long int i;
1296
1297         switch (id) {
1298         case KVM_REG_PPC_DEBUG_INST:
1299                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1300                 break;
1301         case KVM_REG_PPC_HIOR:
1302                 *val = get_reg_val(id, 0);
1303                 break;
1304         case KVM_REG_PPC_DABR:
1305                 *val = get_reg_val(id, vcpu->arch.dabr);
1306                 break;
1307         case KVM_REG_PPC_DABRX:
1308                 *val = get_reg_val(id, vcpu->arch.dabrx);
1309                 break;
1310         case KVM_REG_PPC_DSCR:
1311                 *val = get_reg_val(id, vcpu->arch.dscr);
1312                 break;
1313         case KVM_REG_PPC_PURR:
1314                 *val = get_reg_val(id, vcpu->arch.purr);
1315                 break;
1316         case KVM_REG_PPC_SPURR:
1317                 *val = get_reg_val(id, vcpu->arch.spurr);
1318                 break;
1319         case KVM_REG_PPC_AMR:
1320                 *val = get_reg_val(id, vcpu->arch.amr);
1321                 break;
1322         case KVM_REG_PPC_UAMOR:
1323                 *val = get_reg_val(id, vcpu->arch.uamor);
1324                 break;
1325         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1326                 i = id - KVM_REG_PPC_MMCR0;
1327                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1328                 break;
1329         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1330                 i = id - KVM_REG_PPC_PMC1;
1331                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1332                 break;
1333         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1334                 i = id - KVM_REG_PPC_SPMC1;
1335                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1336                 break;
1337         case KVM_REG_PPC_SIAR:
1338                 *val = get_reg_val(id, vcpu->arch.siar);
1339                 break;
1340         case KVM_REG_PPC_SDAR:
1341                 *val = get_reg_val(id, vcpu->arch.sdar);
1342                 break;
1343         case KVM_REG_PPC_SIER:
1344                 *val = get_reg_val(id, vcpu->arch.sier);
1345                 break;
1346         case KVM_REG_PPC_IAMR:
1347                 *val = get_reg_val(id, vcpu->arch.iamr);
1348                 break;
1349         case KVM_REG_PPC_PSPB:
1350                 *val = get_reg_val(id, vcpu->arch.pspb);
1351                 break;
1352         case KVM_REG_PPC_DPDES:
1353                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1354                 break;
1355         case KVM_REG_PPC_VTB:
1356                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1357                 break;
1358         case KVM_REG_PPC_DAWR:
1359                 *val = get_reg_val(id, vcpu->arch.dawr);
1360                 break;
1361         case KVM_REG_PPC_DAWRX:
1362                 *val = get_reg_val(id, vcpu->arch.dawrx);
1363                 break;
1364         case KVM_REG_PPC_CIABR:
1365                 *val = get_reg_val(id, vcpu->arch.ciabr);
1366                 break;
1367         case KVM_REG_PPC_CSIGR:
1368                 *val = get_reg_val(id, vcpu->arch.csigr);
1369                 break;
1370         case KVM_REG_PPC_TACR:
1371                 *val = get_reg_val(id, vcpu->arch.tacr);
1372                 break;
1373         case KVM_REG_PPC_TCSCR:
1374                 *val = get_reg_val(id, vcpu->arch.tcscr);
1375                 break;
1376         case KVM_REG_PPC_PID:
1377                 *val = get_reg_val(id, vcpu->arch.pid);
1378                 break;
1379         case KVM_REG_PPC_ACOP:
1380                 *val = get_reg_val(id, vcpu->arch.acop);
1381                 break;
1382         case KVM_REG_PPC_WORT:
1383                 *val = get_reg_val(id, vcpu->arch.wort);
1384                 break;
1385         case KVM_REG_PPC_TIDR:
1386                 *val = get_reg_val(id, vcpu->arch.tid);
1387                 break;
1388         case KVM_REG_PPC_PSSCR:
1389                 *val = get_reg_val(id, vcpu->arch.psscr);
1390                 break;
1391         case KVM_REG_PPC_VPA_ADDR:
1392                 spin_lock(&vcpu->arch.vpa_update_lock);
1393                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1394                 spin_unlock(&vcpu->arch.vpa_update_lock);
1395                 break;
1396         case KVM_REG_PPC_VPA_SLB:
1397                 spin_lock(&vcpu->arch.vpa_update_lock);
1398                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1399                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1400                 spin_unlock(&vcpu->arch.vpa_update_lock);
1401                 break;
1402         case KVM_REG_PPC_VPA_DTL:
1403                 spin_lock(&vcpu->arch.vpa_update_lock);
1404                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1405                 val->vpaval.length = vcpu->arch.dtl.len;
1406                 spin_unlock(&vcpu->arch.vpa_update_lock);
1407                 break;
1408         case KVM_REG_PPC_TB_OFFSET:
1409                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1410                 break;
1411         case KVM_REG_PPC_LPCR:
1412         case KVM_REG_PPC_LPCR_64:
1413                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1414                 break;
1415         case KVM_REG_PPC_PPR:
1416                 *val = get_reg_val(id, vcpu->arch.ppr);
1417                 break;
1418 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1419         case KVM_REG_PPC_TFHAR:
1420                 *val = get_reg_val(id, vcpu->arch.tfhar);
1421                 break;
1422         case KVM_REG_PPC_TFIAR:
1423                 *val = get_reg_val(id, vcpu->arch.tfiar);
1424                 break;
1425         case KVM_REG_PPC_TEXASR:
1426                 *val = get_reg_val(id, vcpu->arch.texasr);
1427                 break;
1428         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1429                 i = id - KVM_REG_PPC_TM_GPR0;
1430                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1431                 break;
1432         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1433         {
1434                 int j;
1435                 i = id - KVM_REG_PPC_TM_VSR0;
1436                 if (i < 32)
1437                         for (j = 0; j < TS_FPRWIDTH; j++)
1438                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1439                 else {
1440                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1441                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1442                         else
1443                                 r = -ENXIO;
1444                 }
1445                 break;
1446         }
1447         case KVM_REG_PPC_TM_CR:
1448                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1449                 break;
1450         case KVM_REG_PPC_TM_XER:
1451                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1452                 break;
1453         case KVM_REG_PPC_TM_LR:
1454                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1455                 break;
1456         case KVM_REG_PPC_TM_CTR:
1457                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1458                 break;
1459         case KVM_REG_PPC_TM_FPSCR:
1460                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1461                 break;
1462         case KVM_REG_PPC_TM_AMR:
1463                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1464                 break;
1465         case KVM_REG_PPC_TM_PPR:
1466                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1467                 break;
1468         case KVM_REG_PPC_TM_VRSAVE:
1469                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1470                 break;
1471         case KVM_REG_PPC_TM_VSCR:
1472                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1473                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1474                 else
1475                         r = -ENXIO;
1476                 break;
1477         case KVM_REG_PPC_TM_DSCR:
1478                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1479                 break;
1480         case KVM_REG_PPC_TM_TAR:
1481                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1482                 break;
1483 #endif
1484         case KVM_REG_PPC_ARCH_COMPAT:
1485                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1486                 break;
1487         default:
1488                 r = -EINVAL;
1489                 break;
1490         }
1491
1492         return r;
1493 }
1494
1495 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1496                                  union kvmppc_one_reg *val)
1497 {
1498         int r = 0;
1499         long int i;
1500         unsigned long addr, len;
1501
1502         switch (id) {
1503         case KVM_REG_PPC_HIOR:
1504                 /* Only allow this to be set to zero */
1505                 if (set_reg_val(id, *val))
1506                         r = -EINVAL;
1507                 break;
1508         case KVM_REG_PPC_DABR:
1509                 vcpu->arch.dabr = set_reg_val(id, *val);
1510                 break;
1511         case KVM_REG_PPC_DABRX:
1512                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1513                 break;
1514         case KVM_REG_PPC_DSCR:
1515                 vcpu->arch.dscr = set_reg_val(id, *val);
1516                 break;
1517         case KVM_REG_PPC_PURR:
1518                 vcpu->arch.purr = set_reg_val(id, *val);
1519                 break;
1520         case KVM_REG_PPC_SPURR:
1521                 vcpu->arch.spurr = set_reg_val(id, *val);
1522                 break;
1523         case KVM_REG_PPC_AMR:
1524                 vcpu->arch.amr = set_reg_val(id, *val);
1525                 break;
1526         case KVM_REG_PPC_UAMOR:
1527                 vcpu->arch.uamor = set_reg_val(id, *val);
1528                 break;
1529         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1530                 i = id - KVM_REG_PPC_MMCR0;
1531                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1532                 break;
1533         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1534                 i = id - KVM_REG_PPC_PMC1;
1535                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1536                 break;
1537         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1538                 i = id - KVM_REG_PPC_SPMC1;
1539                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1540                 break;
1541         case KVM_REG_PPC_SIAR:
1542                 vcpu->arch.siar = set_reg_val(id, *val);
1543                 break;
1544         case KVM_REG_PPC_SDAR:
1545                 vcpu->arch.sdar = set_reg_val(id, *val);
1546                 break;
1547         case KVM_REG_PPC_SIER:
1548                 vcpu->arch.sier = set_reg_val(id, *val);
1549                 break;
1550         case KVM_REG_PPC_IAMR:
1551                 vcpu->arch.iamr = set_reg_val(id, *val);
1552                 break;
1553         case KVM_REG_PPC_PSPB:
1554                 vcpu->arch.pspb = set_reg_val(id, *val);
1555                 break;
1556         case KVM_REG_PPC_DPDES:
1557                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1558                 break;
1559         case KVM_REG_PPC_VTB:
1560                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1561                 break;
1562         case KVM_REG_PPC_DAWR:
1563                 vcpu->arch.dawr = set_reg_val(id, *val);
1564                 break;
1565         case KVM_REG_PPC_DAWRX:
1566                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1567                 break;
1568         case KVM_REG_PPC_CIABR:
1569                 vcpu->arch.ciabr = set_reg_val(id, *val);
1570                 /* Don't allow setting breakpoints in hypervisor code */
1571                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1572                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1573                 break;
1574         case KVM_REG_PPC_CSIGR:
1575                 vcpu->arch.csigr = set_reg_val(id, *val);
1576                 break;
1577         case KVM_REG_PPC_TACR:
1578                 vcpu->arch.tacr = set_reg_val(id, *val);
1579                 break;
1580         case KVM_REG_PPC_TCSCR:
1581                 vcpu->arch.tcscr = set_reg_val(id, *val);
1582                 break;
1583         case KVM_REG_PPC_PID:
1584                 vcpu->arch.pid = set_reg_val(id, *val);
1585                 break;
1586         case KVM_REG_PPC_ACOP:
1587                 vcpu->arch.acop = set_reg_val(id, *val);
1588                 break;
1589         case KVM_REG_PPC_WORT:
1590                 vcpu->arch.wort = set_reg_val(id, *val);
1591                 break;
1592         case KVM_REG_PPC_TIDR:
1593                 vcpu->arch.tid = set_reg_val(id, *val);
1594                 break;
1595         case KVM_REG_PPC_PSSCR:
1596                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1597                 break;
1598         case KVM_REG_PPC_VPA_ADDR:
1599                 addr = set_reg_val(id, *val);
1600                 r = -EINVAL;
1601                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1602                               vcpu->arch.dtl.next_gpa))
1603                         break;
1604                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1605                 break;
1606         case KVM_REG_PPC_VPA_SLB:
1607                 addr = val->vpaval.addr;
1608                 len = val->vpaval.length;
1609                 r = -EINVAL;
1610                 if (addr && !vcpu->arch.vpa.next_gpa)
1611                         break;
1612                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1613                 break;
1614         case KVM_REG_PPC_VPA_DTL:
1615                 addr = val->vpaval.addr;
1616                 len = val->vpaval.length;
1617                 r = -EINVAL;
1618                 if (addr && (len < sizeof(struct dtl_entry) ||
1619                              !vcpu->arch.vpa.next_gpa))
1620                         break;
1621                 len -= len % sizeof(struct dtl_entry);
1622                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1623                 break;
1624         case KVM_REG_PPC_TB_OFFSET:
1625                 /*
1626                  * POWER9 DD1 has an erratum where writing TBU40 causes
1627                  * the timebase to lose ticks.  So we don't let the
1628                  * timebase offset be changed on P9 DD1.  (It is
1629                  * initialized to zero.)
1630                  */
1631                 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1632                         break;
1633                 /* round up to multiple of 2^24 */
1634                 vcpu->arch.vcore->tb_offset =
1635                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1636                 break;
1637         case KVM_REG_PPC_LPCR:
1638                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1639                 break;
1640         case KVM_REG_PPC_LPCR_64:
1641                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1642                 break;
1643         case KVM_REG_PPC_PPR:
1644                 vcpu->arch.ppr = set_reg_val(id, *val);
1645                 break;
1646 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1647         case KVM_REG_PPC_TFHAR:
1648                 vcpu->arch.tfhar = set_reg_val(id, *val);
1649                 break;
1650         case KVM_REG_PPC_TFIAR:
1651                 vcpu->arch.tfiar = set_reg_val(id, *val);
1652                 break;
1653         case KVM_REG_PPC_TEXASR:
1654                 vcpu->arch.texasr = set_reg_val(id, *val);
1655                 break;
1656         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1657                 i = id - KVM_REG_PPC_TM_GPR0;
1658                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1659                 break;
1660         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1661         {
1662                 int j;
1663                 i = id - KVM_REG_PPC_TM_VSR0;
1664                 if (i < 32)
1665                         for (j = 0; j < TS_FPRWIDTH; j++)
1666                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1667                 else
1668                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1669                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1670                         else
1671                                 r = -ENXIO;
1672                 break;
1673         }
1674         case KVM_REG_PPC_TM_CR:
1675                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1676                 break;
1677         case KVM_REG_PPC_TM_XER:
1678                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1679                 break;
1680         case KVM_REG_PPC_TM_LR:
1681                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1682                 break;
1683         case KVM_REG_PPC_TM_CTR:
1684                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1685                 break;
1686         case KVM_REG_PPC_TM_FPSCR:
1687                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1688                 break;
1689         case KVM_REG_PPC_TM_AMR:
1690                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1691                 break;
1692         case KVM_REG_PPC_TM_PPR:
1693                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1694                 break;
1695         case KVM_REG_PPC_TM_VRSAVE:
1696                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1697                 break;
1698         case KVM_REG_PPC_TM_VSCR:
1699                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1700                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1701                 else
1702                         r = - ENXIO;
1703                 break;
1704         case KVM_REG_PPC_TM_DSCR:
1705                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1706                 break;
1707         case KVM_REG_PPC_TM_TAR:
1708                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1709                 break;
1710 #endif
1711         case KVM_REG_PPC_ARCH_COMPAT:
1712                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1713                 break;
1714         default:
1715                 r = -EINVAL;
1716                 break;
1717         }
1718
1719         return r;
1720 }
1721
1722 /*
1723  * On POWER9, threads are independent and can be in different partitions.
1724  * Therefore we consider each thread to be a subcore.
1725  * There is a restriction that all threads have to be in the same
1726  * MMU mode (radix or HPT), unfortunately, but since we only support
1727  * HPT guests on a HPT host so far, that isn't an impediment yet.
1728  */
1729 static int threads_per_vcore(void)
1730 {
1731         if (cpu_has_feature(CPU_FTR_ARCH_300))
1732                 return 1;
1733         return threads_per_subcore;
1734 }
1735
1736 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1737 {
1738         struct kvmppc_vcore *vcore;
1739
1740         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1741
1742         if (vcore == NULL)
1743                 return NULL;
1744
1745         spin_lock_init(&vcore->lock);
1746         spin_lock_init(&vcore->stoltb_lock);
1747         init_swait_queue_head(&vcore->wq);
1748         vcore->preempt_tb = TB_NIL;
1749         vcore->lpcr = kvm->arch.lpcr;
1750         vcore->first_vcpuid = core * kvm->arch.smt_mode;
1751         vcore->kvm = kvm;
1752         INIT_LIST_HEAD(&vcore->preempt_list);
1753
1754         return vcore;
1755 }
1756
1757 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1758 static struct debugfs_timings_element {
1759         const char *name;
1760         size_t offset;
1761 } timings[] = {
1762         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1763         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1764         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1765         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1766         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1767 };
1768
1769 #define N_TIMINGS       (sizeof(timings) / sizeof(timings[0]))
1770
1771 struct debugfs_timings_state {
1772         struct kvm_vcpu *vcpu;
1773         unsigned int    buflen;
1774         char            buf[N_TIMINGS * 100];
1775 };
1776
1777 static int debugfs_timings_open(struct inode *inode, struct file *file)
1778 {
1779         struct kvm_vcpu *vcpu = inode->i_private;
1780         struct debugfs_timings_state *p;
1781
1782         p = kzalloc(sizeof(*p), GFP_KERNEL);
1783         if (!p)
1784                 return -ENOMEM;
1785
1786         kvm_get_kvm(vcpu->kvm);
1787         p->vcpu = vcpu;
1788         file->private_data = p;
1789
1790         return nonseekable_open(inode, file);
1791 }
1792
1793 static int debugfs_timings_release(struct inode *inode, struct file *file)
1794 {
1795         struct debugfs_timings_state *p = file->private_data;
1796
1797         kvm_put_kvm(p->vcpu->kvm);
1798         kfree(p);
1799         return 0;
1800 }
1801
1802 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1803                                     size_t len, loff_t *ppos)
1804 {
1805         struct debugfs_timings_state *p = file->private_data;
1806         struct kvm_vcpu *vcpu = p->vcpu;
1807         char *s, *buf_end;
1808         struct kvmhv_tb_accumulator tb;
1809         u64 count;
1810         loff_t pos;
1811         ssize_t n;
1812         int i, loops;
1813         bool ok;
1814
1815         if (!p->buflen) {
1816                 s = p->buf;
1817                 buf_end = s + sizeof(p->buf);
1818                 for (i = 0; i < N_TIMINGS; ++i) {
1819                         struct kvmhv_tb_accumulator *acc;
1820
1821                         acc = (struct kvmhv_tb_accumulator *)
1822                                 ((unsigned long)vcpu + timings[i].offset);
1823                         ok = false;
1824                         for (loops = 0; loops < 1000; ++loops) {
1825                                 count = acc->seqcount;
1826                                 if (!(count & 1)) {
1827                                         smp_rmb();
1828                                         tb = *acc;
1829                                         smp_rmb();
1830                                         if (count == acc->seqcount) {
1831                                                 ok = true;
1832                                                 break;
1833                                         }
1834                                 }
1835                                 udelay(1);
1836                         }
1837                         if (!ok)
1838                                 snprintf(s, buf_end - s, "%s: stuck\n",
1839                                         timings[i].name);
1840                         else
1841                                 snprintf(s, buf_end - s,
1842                                         "%s: %llu %llu %llu %llu\n",
1843                                         timings[i].name, count / 2,
1844                                         tb_to_ns(tb.tb_total),
1845                                         tb_to_ns(tb.tb_min),
1846                                         tb_to_ns(tb.tb_max));
1847                         s += strlen(s);
1848                 }
1849                 p->buflen = s - p->buf;
1850         }
1851
1852         pos = *ppos;
1853         if (pos >= p->buflen)
1854                 return 0;
1855         if (len > p->buflen - pos)
1856                 len = p->buflen - pos;
1857         n = copy_to_user(buf, p->buf + pos, len);
1858         if (n) {
1859                 if (n == len)
1860                         return -EFAULT;
1861                 len -= n;
1862         }
1863         *ppos = pos + len;
1864         return len;
1865 }
1866
1867 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1868                                      size_t len, loff_t *ppos)
1869 {
1870         return -EACCES;
1871 }
1872
1873 static const struct file_operations debugfs_timings_ops = {
1874         .owner   = THIS_MODULE,
1875         .open    = debugfs_timings_open,
1876         .release = debugfs_timings_release,
1877         .read    = debugfs_timings_read,
1878         .write   = debugfs_timings_write,
1879         .llseek  = generic_file_llseek,
1880 };
1881
1882 /* Create a debugfs directory for the vcpu */
1883 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1884 {
1885         char buf[16];
1886         struct kvm *kvm = vcpu->kvm;
1887
1888         snprintf(buf, sizeof(buf), "vcpu%u", id);
1889         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1890                 return;
1891         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1892         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1893                 return;
1894         vcpu->arch.debugfs_timings =
1895                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1896                                     vcpu, &debugfs_timings_ops);
1897 }
1898
1899 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1900 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1901 {
1902 }
1903 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1904
1905 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1906                                                    unsigned int id)
1907 {
1908         struct kvm_vcpu *vcpu;
1909         int err;
1910         int core;
1911         struct kvmppc_vcore *vcore;
1912
1913         err = -ENOMEM;
1914         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1915         if (!vcpu)
1916                 goto out;
1917
1918         err = kvm_vcpu_init(vcpu, kvm, id);
1919         if (err)
1920                 goto free_vcpu;
1921
1922         vcpu->arch.shared = &vcpu->arch.shregs;
1923 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1924         /*
1925          * The shared struct is never shared on HV,
1926          * so we can always use host endianness
1927          */
1928 #ifdef __BIG_ENDIAN__
1929         vcpu->arch.shared_big_endian = true;
1930 #else
1931         vcpu->arch.shared_big_endian = false;
1932 #endif
1933 #endif
1934         vcpu->arch.mmcr[0] = MMCR0_FC;
1935         vcpu->arch.ctrl = CTRL_RUNLATCH;
1936         /* default to host PVR, since we can't spoof it */
1937         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1938         spin_lock_init(&vcpu->arch.vpa_update_lock);
1939         spin_lock_init(&vcpu->arch.tbacct_lock);
1940         vcpu->arch.busy_preempt = TB_NIL;
1941         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1942
1943         /*
1944          * Set the default HFSCR for the guest from the host value.
1945          * This value is only used on POWER9.
1946          * On POWER9 DD1, TM doesn't work, so we make sure to
1947          * prevent the guest from using it.
1948          * On POWER9, we want to virtualize the doorbell facility, so we
1949          * turn off the HFSCR bit, which causes those instructions to trap.
1950          */
1951         vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1952         if (!cpu_has_feature(CPU_FTR_TM))
1953                 vcpu->arch.hfscr &= ~HFSCR_TM;
1954         if (cpu_has_feature(CPU_FTR_ARCH_300))
1955                 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1956
1957         kvmppc_mmu_book3s_hv_init(vcpu);
1958
1959         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1960
1961         init_waitqueue_head(&vcpu->arch.cpu_run);
1962
1963         mutex_lock(&kvm->lock);
1964         vcore = NULL;
1965         err = -EINVAL;
1966         core = id / kvm->arch.smt_mode;
1967         if (core < KVM_MAX_VCORES) {
1968                 vcore = kvm->arch.vcores[core];
1969                 if (!vcore) {
1970                         err = -ENOMEM;
1971                         vcore = kvmppc_vcore_create(kvm, core);
1972                         kvm->arch.vcores[core] = vcore;
1973                         kvm->arch.online_vcores++;
1974                 }
1975         }
1976         mutex_unlock(&kvm->lock);
1977
1978         if (!vcore)
1979                 goto free_vcpu;
1980
1981         spin_lock(&vcore->lock);
1982         ++vcore->num_threads;
1983         spin_unlock(&vcore->lock);
1984         vcpu->arch.vcore = vcore;
1985         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1986         vcpu->arch.thread_cpu = -1;
1987         vcpu->arch.prev_cpu = -1;
1988
1989         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1990         kvmppc_sanity_check(vcpu);
1991
1992         debugfs_vcpu_init(vcpu, id);
1993
1994         return vcpu;
1995
1996 free_vcpu:
1997         kmem_cache_free(kvm_vcpu_cache, vcpu);
1998 out:
1999         return ERR_PTR(err);
2000 }
2001
2002 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2003                               unsigned long flags)
2004 {
2005         int err;
2006         int esmt = 0;
2007
2008         if (flags)
2009                 return -EINVAL;
2010         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2011                 return -EINVAL;
2012         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2013                 /*
2014                  * On POWER8 (or POWER7), the threading mode is "strict",
2015                  * so we pack smt_mode vcpus per vcore.
2016                  */
2017                 if (smt_mode > threads_per_subcore)
2018                         return -EINVAL;
2019         } else {
2020                 /*
2021                  * On POWER9, the threading mode is "loose",
2022                  * so each vcpu gets its own vcore.
2023                  */
2024                 esmt = smt_mode;
2025                 smt_mode = 1;
2026         }
2027         mutex_lock(&kvm->lock);
2028         err = -EBUSY;
2029         if (!kvm->arch.online_vcores) {
2030                 kvm->arch.smt_mode = smt_mode;
2031                 kvm->arch.emul_smt_mode = esmt;
2032                 err = 0;
2033         }
2034         mutex_unlock(&kvm->lock);
2035
2036         return err;
2037 }
2038
2039 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2040 {
2041         if (vpa->pinned_addr)
2042                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2043                                         vpa->dirty);
2044 }
2045
2046 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2047 {
2048         spin_lock(&vcpu->arch.vpa_update_lock);
2049         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2050         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2051         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2052         spin_unlock(&vcpu->arch.vpa_update_lock);
2053         kvm_vcpu_uninit(vcpu);
2054         kmem_cache_free(kvm_vcpu_cache, vcpu);
2055 }
2056
2057 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2058 {
2059         /* Indicate we want to get back into the guest */
2060         return 1;
2061 }
2062
2063 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2064 {
2065         unsigned long dec_nsec, now;
2066
2067         now = get_tb();
2068         if (now > vcpu->arch.dec_expires) {
2069                 /* decrementer has already gone negative */
2070                 kvmppc_core_queue_dec(vcpu);
2071                 kvmppc_core_prepare_to_enter(vcpu);
2072                 return;
2073         }
2074         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2075                    / tb_ticks_per_sec;
2076         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2077         vcpu->arch.timer_running = 1;
2078 }
2079
2080 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2081 {
2082         vcpu->arch.ceded = 0;
2083         if (vcpu->arch.timer_running) {
2084                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2085                 vcpu->arch.timer_running = 0;
2086         }
2087 }
2088
2089 extern int __kvmppc_vcore_entry(void);
2090
2091 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2092                                    struct kvm_vcpu *vcpu)
2093 {
2094         u64 now;
2095
2096         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2097                 return;
2098         spin_lock_irq(&vcpu->arch.tbacct_lock);
2099         now = mftb();
2100         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2101                 vcpu->arch.stolen_logged;
2102         vcpu->arch.busy_preempt = now;
2103         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2104         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2105         --vc->n_runnable;
2106         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2107 }
2108
2109 static int kvmppc_grab_hwthread(int cpu)
2110 {
2111         struct paca_struct *tpaca;
2112         long timeout = 10000;
2113
2114         tpaca = &paca[cpu];
2115
2116         /* Ensure the thread won't go into the kernel if it wakes */
2117         tpaca->kvm_hstate.kvm_vcpu = NULL;
2118         tpaca->kvm_hstate.kvm_vcore = NULL;
2119         tpaca->kvm_hstate.napping = 0;
2120         smp_wmb();
2121         tpaca->kvm_hstate.hwthread_req = 1;
2122
2123         /*
2124          * If the thread is already executing in the kernel (e.g. handling
2125          * a stray interrupt), wait for it to get back to nap mode.
2126          * The smp_mb() is to ensure that our setting of hwthread_req
2127          * is visible before we look at hwthread_state, so if this
2128          * races with the code at system_reset_pSeries and the thread
2129          * misses our setting of hwthread_req, we are sure to see its
2130          * setting of hwthread_state, and vice versa.
2131          */
2132         smp_mb();
2133         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2134                 if (--timeout <= 0) {
2135                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2136                         return -EBUSY;
2137                 }
2138                 udelay(1);
2139         }
2140         return 0;
2141 }
2142
2143 static void kvmppc_release_hwthread(int cpu)
2144 {
2145         struct paca_struct *tpaca;
2146
2147         tpaca = &paca[cpu];
2148         tpaca->kvm_hstate.hwthread_req = 0;
2149         tpaca->kvm_hstate.kvm_vcpu = NULL;
2150         tpaca->kvm_hstate.kvm_vcore = NULL;
2151         tpaca->kvm_hstate.kvm_split_mode = NULL;
2152 }
2153
2154 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2155 {
2156         int i;
2157
2158         cpu = cpu_first_thread_sibling(cpu);
2159         cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2160         /*
2161          * Make sure setting of bit in need_tlb_flush precedes
2162          * testing of cpu_in_guest bits.  The matching barrier on
2163          * the other side is the first smp_mb() in kvmppc_run_core().
2164          */
2165         smp_mb();
2166         for (i = 0; i < threads_per_core; ++i)
2167                 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2168                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2169 }
2170
2171 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2172 {
2173         struct kvm *kvm = vcpu->kvm;
2174
2175         /*
2176          * With radix, the guest can do TLB invalidations itself,
2177          * and it could choose to use the local form (tlbiel) if
2178          * it is invalidating a translation that has only ever been
2179          * used on one vcpu.  However, that doesn't mean it has
2180          * only ever been used on one physical cpu, since vcpus
2181          * can move around between pcpus.  To cope with this, when
2182          * a vcpu moves from one pcpu to another, we need to tell
2183          * any vcpus running on the same core as this vcpu previously
2184          * ran to flush the TLB.  The TLB is shared between threads,
2185          * so we use a single bit in .need_tlb_flush for all 4 threads.
2186          */
2187         if (vcpu->arch.prev_cpu != pcpu) {
2188                 if (vcpu->arch.prev_cpu >= 0 &&
2189                     cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2190                     cpu_first_thread_sibling(pcpu))
2191                         radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2192                 vcpu->arch.prev_cpu = pcpu;
2193         }
2194 }
2195
2196 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2197 {
2198         int cpu;
2199         struct paca_struct *tpaca;
2200         struct kvm *kvm = vc->kvm;
2201
2202         cpu = vc->pcpu;
2203         if (vcpu) {
2204                 if (vcpu->arch.timer_running) {
2205                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2206                         vcpu->arch.timer_running = 0;
2207                 }
2208                 cpu += vcpu->arch.ptid;
2209                 vcpu->cpu = vc->pcpu;
2210                 vcpu->arch.thread_cpu = cpu;
2211                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2212         }
2213         tpaca = &paca[cpu];
2214         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2215         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2216         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2217         smp_wmb();
2218         tpaca->kvm_hstate.kvm_vcore = vc;
2219         if (cpu != smp_processor_id())
2220                 kvmppc_ipi_thread(cpu);
2221 }
2222
2223 static void kvmppc_wait_for_nap(void)
2224 {
2225         int cpu = smp_processor_id();
2226         int i, loops;
2227         int n_threads = threads_per_vcore();
2228
2229         if (n_threads <= 1)
2230                 return;
2231         for (loops = 0; loops < 1000000; ++loops) {
2232                 /*
2233                  * Check if all threads are finished.
2234                  * We set the vcore pointer when starting a thread
2235                  * and the thread clears it when finished, so we look
2236                  * for any threads that still have a non-NULL vcore ptr.
2237                  */
2238                 for (i = 1; i < n_threads; ++i)
2239                         if (paca[cpu + i].kvm_hstate.kvm_vcore)
2240                                 break;
2241                 if (i == n_threads) {
2242                         HMT_medium();
2243                         return;
2244                 }
2245                 HMT_low();
2246         }
2247         HMT_medium();
2248         for (i = 1; i < n_threads; ++i)
2249                 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2250                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2251 }
2252
2253 /*
2254  * Check that we are on thread 0 and that any other threads in
2255  * this core are off-line.  Then grab the threads so they can't
2256  * enter the kernel.
2257  */
2258 static int on_primary_thread(void)
2259 {
2260         int cpu = smp_processor_id();
2261         int thr;
2262
2263         /* Are we on a primary subcore? */
2264         if (cpu_thread_in_subcore(cpu))
2265                 return 0;
2266
2267         thr = 0;
2268         while (++thr < threads_per_subcore)
2269                 if (cpu_online(cpu + thr))
2270                         return 0;
2271
2272         /* Grab all hw threads so they can't go into the kernel */
2273         for (thr = 1; thr < threads_per_subcore; ++thr) {
2274                 if (kvmppc_grab_hwthread(cpu + thr)) {
2275                         /* Couldn't grab one; let the others go */
2276                         do {
2277                                 kvmppc_release_hwthread(cpu + thr);
2278                         } while (--thr > 0);
2279                         return 0;
2280                 }
2281         }
2282         return 1;
2283 }
2284
2285 /*
2286  * A list of virtual cores for each physical CPU.
2287  * These are vcores that could run but their runner VCPU tasks are
2288  * (or may be) preempted.
2289  */
2290 struct preempted_vcore_list {
2291         struct list_head        list;
2292         spinlock_t              lock;
2293 };
2294
2295 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2296
2297 static void init_vcore_lists(void)
2298 {
2299         int cpu;
2300
2301         for_each_possible_cpu(cpu) {
2302                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2303                 spin_lock_init(&lp->lock);
2304                 INIT_LIST_HEAD(&lp->list);
2305         }
2306 }
2307
2308 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2309 {
2310         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2311
2312         vc->vcore_state = VCORE_PREEMPT;
2313         vc->pcpu = smp_processor_id();
2314         if (vc->num_threads < threads_per_vcore()) {
2315                 spin_lock(&lp->lock);
2316                 list_add_tail(&vc->preempt_list, &lp->list);
2317                 spin_unlock(&lp->lock);
2318         }
2319
2320         /* Start accumulating stolen time */
2321         kvmppc_core_start_stolen(vc);
2322 }
2323
2324 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2325 {
2326         struct preempted_vcore_list *lp;
2327
2328         kvmppc_core_end_stolen(vc);
2329         if (!list_empty(&vc->preempt_list)) {
2330                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2331                 spin_lock(&lp->lock);
2332                 list_del_init(&vc->preempt_list);
2333                 spin_unlock(&lp->lock);
2334         }
2335         vc->vcore_state = VCORE_INACTIVE;
2336 }
2337
2338 /*
2339  * This stores information about the virtual cores currently
2340  * assigned to a physical core.
2341  */
2342 struct core_info {
2343         int             n_subcores;
2344         int             max_subcore_threads;
2345         int             total_threads;
2346         int             subcore_threads[MAX_SUBCORES];
2347         struct kvmppc_vcore *vc[MAX_SUBCORES];
2348 };
2349
2350 /*
2351  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2352  * respectively in 2-way micro-threading (split-core) mode.
2353  */
2354 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2355
2356 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2357 {
2358         memset(cip, 0, sizeof(*cip));
2359         cip->n_subcores = 1;
2360         cip->max_subcore_threads = vc->num_threads;
2361         cip->total_threads = vc->num_threads;
2362         cip->subcore_threads[0] = vc->num_threads;
2363         cip->vc[0] = vc;
2364 }
2365
2366 static bool subcore_config_ok(int n_subcores, int n_threads)
2367 {
2368         /* Can only dynamically split if unsplit to begin with */
2369         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2370                 return false;
2371         if (n_subcores > MAX_SUBCORES)
2372                 return false;
2373         if (n_subcores > 1) {
2374                 if (!(dynamic_mt_modes & 2))
2375                         n_subcores = 4;
2376                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2377                         return false;
2378         }
2379
2380         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2381 }
2382
2383 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2384 {
2385         vc->entry_exit_map = 0;
2386         vc->in_guest = 0;
2387         vc->napping_threads = 0;
2388         vc->conferring_threads = 0;
2389 }
2390
2391 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2392 {
2393         int n_threads = vc->num_threads;
2394         int sub;
2395
2396         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2397                 return false;
2398
2399         if (n_threads < cip->max_subcore_threads)
2400                 n_threads = cip->max_subcore_threads;
2401         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2402                 return false;
2403         cip->max_subcore_threads = n_threads;
2404
2405         sub = cip->n_subcores;
2406         ++cip->n_subcores;
2407         cip->total_threads += vc->num_threads;
2408         cip->subcore_threads[sub] = vc->num_threads;
2409         cip->vc[sub] = vc;
2410         init_vcore_to_run(vc);
2411         list_del_init(&vc->preempt_list);
2412
2413         return true;
2414 }
2415
2416 /*
2417  * Work out whether it is possible to piggyback the execution of
2418  * vcore *pvc onto the execution of the other vcores described in *cip.
2419  */
2420 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2421                           int target_threads)
2422 {
2423         if (cip->total_threads + pvc->num_threads > target_threads)
2424                 return false;
2425
2426         return can_dynamic_split(pvc, cip);
2427 }
2428
2429 static void prepare_threads(struct kvmppc_vcore *vc)
2430 {
2431         int i;
2432         struct kvm_vcpu *vcpu;
2433
2434         for_each_runnable_thread(i, vcpu, vc) {
2435                 if (signal_pending(vcpu->arch.run_task))
2436                         vcpu->arch.ret = -EINTR;
2437                 else if (vcpu->arch.vpa.update_pending ||
2438                          vcpu->arch.slb_shadow.update_pending ||
2439                          vcpu->arch.dtl.update_pending)
2440                         vcpu->arch.ret = RESUME_GUEST;
2441                 else
2442                         continue;
2443                 kvmppc_remove_runnable(vc, vcpu);
2444                 wake_up(&vcpu->arch.cpu_run);
2445         }
2446 }
2447
2448 static void collect_piggybacks(struct core_info *cip, int target_threads)
2449 {
2450         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2451         struct kvmppc_vcore *pvc, *vcnext;
2452
2453         spin_lock(&lp->lock);
2454         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2455                 if (!spin_trylock(&pvc->lock))
2456                         continue;
2457                 prepare_threads(pvc);
2458                 if (!pvc->n_runnable) {
2459                         list_del_init(&pvc->preempt_list);
2460                         if (pvc->runner == NULL) {
2461                                 pvc->vcore_state = VCORE_INACTIVE;
2462                                 kvmppc_core_end_stolen(pvc);
2463                         }
2464                         spin_unlock(&pvc->lock);
2465                         continue;
2466                 }
2467                 if (!can_piggyback(pvc, cip, target_threads)) {
2468                         spin_unlock(&pvc->lock);
2469                         continue;
2470                 }
2471                 kvmppc_core_end_stolen(pvc);
2472                 pvc->vcore_state = VCORE_PIGGYBACK;
2473                 if (cip->total_threads >= target_threads)
2474                         break;
2475         }
2476         spin_unlock(&lp->lock);
2477 }
2478
2479 static bool recheck_signals(struct core_info *cip)
2480 {
2481         int sub, i;
2482         struct kvm_vcpu *vcpu;
2483
2484         for (sub = 0; sub < cip->n_subcores; ++sub)
2485                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2486                         if (signal_pending(vcpu->arch.run_task))
2487                                 return true;
2488         return false;
2489 }
2490
2491 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2492 {
2493         int still_running = 0, i;
2494         u64 now;
2495         long ret;
2496         struct kvm_vcpu *vcpu;
2497
2498         spin_lock(&vc->lock);
2499         now = get_tb();
2500         for_each_runnable_thread(i, vcpu, vc) {
2501                 /* cancel pending dec exception if dec is positive */
2502                 if (now < vcpu->arch.dec_expires &&
2503                     kvmppc_core_pending_dec(vcpu))
2504                         kvmppc_core_dequeue_dec(vcpu);
2505
2506                 trace_kvm_guest_exit(vcpu);
2507
2508                 ret = RESUME_GUEST;
2509                 if (vcpu->arch.trap)
2510                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2511                                                     vcpu->arch.run_task);
2512
2513                 vcpu->arch.ret = ret;
2514                 vcpu->arch.trap = 0;
2515
2516                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2517                         if (vcpu->arch.pending_exceptions)
2518                                 kvmppc_core_prepare_to_enter(vcpu);
2519                         if (vcpu->arch.ceded)
2520                                 kvmppc_set_timer(vcpu);
2521                         else
2522                                 ++still_running;
2523                 } else {
2524                         kvmppc_remove_runnable(vc, vcpu);
2525                         wake_up(&vcpu->arch.cpu_run);
2526                 }
2527         }
2528         if (!is_master) {
2529                 if (still_running > 0) {
2530                         kvmppc_vcore_preempt(vc);
2531                 } else if (vc->runner) {
2532                         vc->vcore_state = VCORE_PREEMPT;
2533                         kvmppc_core_start_stolen(vc);
2534                 } else {
2535                         vc->vcore_state = VCORE_INACTIVE;
2536                 }
2537                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2538                         /* make sure there's a candidate runner awake */
2539                         i = -1;
2540                         vcpu = next_runnable_thread(vc, &i);
2541                         wake_up(&vcpu->arch.cpu_run);
2542                 }
2543         }
2544         spin_unlock(&vc->lock);
2545 }
2546
2547 /*
2548  * Clear core from the list of active host cores as we are about to
2549  * enter the guest. Only do this if it is the primary thread of the
2550  * core (not if a subcore) that is entering the guest.
2551  */
2552 static inline int kvmppc_clear_host_core(unsigned int cpu)
2553 {
2554         int core;
2555
2556         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2557                 return 0;
2558         /*
2559          * Memory barrier can be omitted here as we will do a smp_wmb()
2560          * later in kvmppc_start_thread and we need ensure that state is
2561          * visible to other CPUs only after we enter guest.
2562          */
2563         core = cpu >> threads_shift;
2564         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2565         return 0;
2566 }
2567
2568 /*
2569  * Advertise this core as an active host core since we exited the guest
2570  * Only need to do this if it is the primary thread of the core that is
2571  * exiting.
2572  */
2573 static inline int kvmppc_set_host_core(unsigned int cpu)
2574 {
2575         int core;
2576
2577         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2578                 return 0;
2579
2580         /*
2581          * Memory barrier can be omitted here because we do a spin_unlock
2582          * immediately after this which provides the memory barrier.
2583          */
2584         core = cpu >> threads_shift;
2585         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2586         return 0;
2587 }
2588
2589 static void set_irq_happened(int trap)
2590 {
2591         switch (trap) {
2592         case BOOK3S_INTERRUPT_EXTERNAL:
2593                 local_paca->irq_happened |= PACA_IRQ_EE;
2594                 break;
2595         case BOOK3S_INTERRUPT_H_DOORBELL:
2596                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2597                 break;
2598         case BOOK3S_INTERRUPT_HMI:
2599                 local_paca->irq_happened |= PACA_IRQ_HMI;
2600                 break;
2601         }
2602 }
2603
2604 /*
2605  * Run a set of guest threads on a physical core.
2606  * Called with vc->lock held.
2607  */
2608 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2609 {
2610         struct kvm_vcpu *vcpu;
2611         int i;
2612         int srcu_idx;
2613         struct core_info core_info;
2614         struct kvmppc_vcore *pvc;
2615         struct kvm_split_mode split_info, *sip;
2616         int split, subcore_size, active;
2617         int sub;
2618         bool thr0_done;
2619         unsigned long cmd_bit, stat_bit;
2620         int pcpu, thr;
2621         int target_threads;
2622         int controlled_threads;
2623         int trap;
2624
2625         /*
2626          * Remove from the list any threads that have a signal pending
2627          * or need a VPA update done
2628          */
2629         prepare_threads(vc);
2630
2631         /* if the runner is no longer runnable, let the caller pick a new one */
2632         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2633                 return;
2634
2635         /*
2636          * Initialize *vc.
2637          */
2638         init_vcore_to_run(vc);
2639         vc->preempt_tb = TB_NIL;
2640
2641         /*
2642          * Number of threads that we will be controlling: the same as
2643          * the number of threads per subcore, except on POWER9,
2644          * where it's 1 because the threads are (mostly) independent.
2645          */
2646         controlled_threads = threads_per_vcore();
2647
2648         /*
2649          * Make sure we are running on primary threads, and that secondary
2650          * threads are offline.  Also check if the number of threads in this
2651          * guest are greater than the current system threads per guest.
2652          */
2653         if ((controlled_threads > 1) &&
2654             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2655                 for_each_runnable_thread(i, vcpu, vc) {
2656                         vcpu->arch.ret = -EBUSY;
2657                         kvmppc_remove_runnable(vc, vcpu);
2658                         wake_up(&vcpu->arch.cpu_run);
2659                 }
2660                 goto out;
2661         }
2662
2663         /*
2664          * See if we could run any other vcores on the physical core
2665          * along with this one.
2666          */
2667         init_core_info(&core_info, vc);
2668         pcpu = smp_processor_id();
2669         target_threads = controlled_threads;
2670         if (target_smt_mode && target_smt_mode < target_threads)
2671                 target_threads = target_smt_mode;
2672         if (vc->num_threads < target_threads)
2673                 collect_piggybacks(&core_info, target_threads);
2674
2675         /*
2676          * On radix, arrange for TLB flushing if necessary.
2677          * This has to be done before disabling interrupts since
2678          * it uses smp_call_function().
2679          */
2680         pcpu = smp_processor_id();
2681         if (kvm_is_radix(vc->kvm)) {
2682                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2683                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2684                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2685         }
2686
2687         /*
2688          * Hard-disable interrupts, and check resched flag and signals.
2689          * If we need to reschedule or deliver a signal, clean up
2690          * and return without going into the guest(s).
2691          */
2692         local_irq_disable();
2693         hard_irq_disable();
2694         if (lazy_irq_pending() || need_resched() ||
2695             recheck_signals(&core_info)) {
2696                 local_irq_enable();
2697                 vc->vcore_state = VCORE_INACTIVE;
2698                 /* Unlock all except the primary vcore */
2699                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2700                         pvc = core_info.vc[sub];
2701                         /* Put back on to the preempted vcores list */
2702                         kvmppc_vcore_preempt(pvc);
2703                         spin_unlock(&pvc->lock);
2704                 }
2705                 for (i = 0; i < controlled_threads; ++i)
2706                         kvmppc_release_hwthread(pcpu + i);
2707                 return;
2708         }
2709
2710         kvmppc_clear_host_core(pcpu);
2711
2712         /* Decide on micro-threading (split-core) mode */
2713         subcore_size = threads_per_subcore;
2714         cmd_bit = stat_bit = 0;
2715         split = core_info.n_subcores;
2716         sip = NULL;
2717         if (split > 1) {
2718                 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2719                 if (split == 2 && (dynamic_mt_modes & 2)) {
2720                         cmd_bit = HID0_POWER8_1TO2LPAR;
2721                         stat_bit = HID0_POWER8_2LPARMODE;
2722                 } else {
2723                         split = 4;
2724                         cmd_bit = HID0_POWER8_1TO4LPAR;
2725                         stat_bit = HID0_POWER8_4LPARMODE;
2726                 }
2727                 subcore_size = MAX_SMT_THREADS / split;
2728                 sip = &split_info;
2729                 memset(&split_info, 0, sizeof(split_info));
2730                 split_info.rpr = mfspr(SPRN_RPR);
2731                 split_info.pmmar = mfspr(SPRN_PMMAR);
2732                 split_info.ldbar = mfspr(SPRN_LDBAR);
2733                 split_info.subcore_size = subcore_size;
2734                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2735                         split_info.vc[sub] = core_info.vc[sub];
2736                 /* order writes to split_info before kvm_split_mode pointer */
2737                 smp_wmb();
2738         }
2739         for (thr = 0; thr < controlled_threads; ++thr)
2740                 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2741
2742         /* Initiate micro-threading (split-core) if required */
2743         if (cmd_bit) {
2744                 unsigned long hid0 = mfspr(SPRN_HID0);
2745
2746                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2747                 mb();
2748                 mtspr(SPRN_HID0, hid0);
2749                 isync();
2750                 for (;;) {
2751                         hid0 = mfspr(SPRN_HID0);
2752                         if (hid0 & stat_bit)
2753                                 break;
2754                         cpu_relax();
2755                 }
2756         }
2757
2758         /* Start all the threads */
2759         active = 0;
2760         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2761                 thr = subcore_thread_map[sub];
2762                 thr0_done = false;
2763                 active |= 1 << thr;
2764                 pvc = core_info.vc[sub];
2765                 pvc->pcpu = pcpu + thr;
2766                 for_each_runnable_thread(i, vcpu, pvc) {
2767                         kvmppc_start_thread(vcpu, pvc);
2768                         kvmppc_create_dtl_entry(vcpu, pvc);
2769                         trace_kvm_guest_enter(vcpu);
2770                         if (!vcpu->arch.ptid)
2771                                 thr0_done = true;
2772                         active |= 1 << (thr + vcpu->arch.ptid);
2773                 }
2774                 /*
2775                  * We need to start the first thread of each subcore
2776                  * even if it doesn't have a vcpu.
2777                  */
2778                 if (!thr0_done)
2779                         kvmppc_start_thread(NULL, pvc);
2780                 thr += pvc->num_threads;
2781         }
2782
2783         /*
2784          * Ensure that split_info.do_nap is set after setting
2785          * the vcore pointer in the PACA of the secondaries.
2786          */
2787         smp_mb();
2788         if (cmd_bit)
2789                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2790
2791         /*
2792          * When doing micro-threading, poke the inactive threads as well.
2793          * This gets them to the nap instruction after kvm_do_nap,
2794          * which reduces the time taken to unsplit later.
2795          */
2796         if (split > 1)
2797                 for (thr = 1; thr < threads_per_subcore; ++thr)
2798                         if (!(active & (1 << thr)))
2799                                 kvmppc_ipi_thread(pcpu + thr);
2800
2801         vc->vcore_state = VCORE_RUNNING;
2802         preempt_disable();
2803
2804         trace_kvmppc_run_core(vc, 0);
2805
2806         for (sub = 0; sub < core_info.n_subcores; ++sub)
2807                 spin_unlock(&core_info.vc[sub]->lock);
2808
2809         /*
2810          * Interrupts will be enabled once we get into the guest,
2811          * so tell lockdep that we're about to enable interrupts.
2812          */
2813         trace_hardirqs_on();
2814
2815         guest_enter();
2816
2817         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2818
2819         trap = __kvmppc_vcore_entry();
2820
2821         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2822
2823         guest_exit();
2824
2825         trace_hardirqs_off();
2826         set_irq_happened(trap);
2827
2828         spin_lock(&vc->lock);
2829         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2830         vc->vcore_state = VCORE_EXITING;
2831
2832         /* wait for secondary threads to finish writing their state to memory */
2833         kvmppc_wait_for_nap();
2834
2835         /* Return to whole-core mode if we split the core earlier */
2836         if (split > 1) {
2837                 unsigned long hid0 = mfspr(SPRN_HID0);
2838                 unsigned long loops = 0;
2839
2840                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2841                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2842                 mb();
2843                 mtspr(SPRN_HID0, hid0);
2844                 isync();
2845                 for (;;) {
2846                         hid0 = mfspr(SPRN_HID0);
2847                         if (!(hid0 & stat_bit))
2848                                 break;
2849                         cpu_relax();
2850                         ++loops;
2851                 }
2852                 split_info.do_nap = 0;
2853         }
2854
2855         kvmppc_set_host_core(pcpu);
2856
2857         local_irq_enable();
2858
2859         /* Let secondaries go back to the offline loop */
2860         for (i = 0; i < controlled_threads; ++i) {
2861                 kvmppc_release_hwthread(pcpu + i);
2862                 if (sip && sip->napped[i])
2863                         kvmppc_ipi_thread(pcpu + i);
2864                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2865         }
2866
2867         spin_unlock(&vc->lock);
2868
2869         /* make sure updates to secondary vcpu structs are visible now */
2870         smp_mb();
2871
2872         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2873                 pvc = core_info.vc[sub];
2874                 post_guest_process(pvc, pvc == vc);
2875         }
2876
2877         spin_lock(&vc->lock);
2878         preempt_enable();
2879
2880  out:
2881         vc->vcore_state = VCORE_INACTIVE;
2882         trace_kvmppc_run_core(vc, 1);
2883 }
2884
2885 /*
2886  * Wait for some other vcpu thread to execute us, and
2887  * wake us up when we need to handle something in the host.
2888  */
2889 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2890                                  struct kvm_vcpu *vcpu, int wait_state)
2891 {
2892         DEFINE_WAIT(wait);
2893
2894         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2895         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2896                 spin_unlock(&vc->lock);
2897                 schedule();
2898                 spin_lock(&vc->lock);
2899         }
2900         finish_wait(&vcpu->arch.cpu_run, &wait);
2901 }
2902
2903 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2904 {
2905         /* 10us base */
2906         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2907                 vc->halt_poll_ns = 10000;
2908         else
2909                 vc->halt_poll_ns *= halt_poll_ns_grow;
2910 }
2911
2912 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2913 {
2914         if (halt_poll_ns_shrink == 0)
2915                 vc->halt_poll_ns = 0;
2916         else
2917                 vc->halt_poll_ns /= halt_poll_ns_shrink;
2918 }
2919
2920 #ifdef CONFIG_KVM_XICS
2921 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2922 {
2923         if (!xive_enabled())
2924                 return false;
2925         return vcpu->arch.xive_saved_state.pipr <
2926                 vcpu->arch.xive_saved_state.cppr;
2927 }
2928 #else
2929 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2930 {
2931         return false;
2932 }
2933 #endif /* CONFIG_KVM_XICS */
2934
2935 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
2936 {
2937         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
2938             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
2939                 return true;
2940
2941         return false;
2942 }
2943
2944 /*
2945  * Check to see if any of the runnable vcpus on the vcore have pending
2946  * exceptions or are no longer ceded
2947  */
2948 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2949 {
2950         struct kvm_vcpu *vcpu;
2951         int i;
2952
2953         for_each_runnable_thread(i, vcpu, vc) {
2954                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
2955                         return 1;
2956         }
2957
2958         return 0;
2959 }
2960
2961 /*
2962  * All the vcpus in this vcore are idle, so wait for a decrementer
2963  * or external interrupt to one of the vcpus.  vc->lock is held.
2964  */
2965 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2966 {
2967         ktime_t cur, start_poll, start_wait;
2968         int do_sleep = 1;
2969         u64 block_ns;
2970         DECLARE_SWAITQUEUE(wait);
2971
2972         /* Poll for pending exceptions and ceded state */
2973         cur = start_poll = ktime_get();
2974         if (vc->halt_poll_ns) {
2975                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2976                 ++vc->runner->stat.halt_attempted_poll;
2977
2978                 vc->vcore_state = VCORE_POLLING;
2979                 spin_unlock(&vc->lock);
2980
2981                 do {
2982                         if (kvmppc_vcore_check_block(vc)) {
2983                                 do_sleep = 0;
2984                                 break;
2985                         }
2986                         cur = ktime_get();
2987                 } while (single_task_running() && ktime_before(cur, stop));
2988
2989                 spin_lock(&vc->lock);
2990                 vc->vcore_state = VCORE_INACTIVE;
2991
2992                 if (!do_sleep) {
2993                         ++vc->runner->stat.halt_successful_poll;
2994                         goto out;
2995                 }
2996         }
2997
2998         prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2999
3000         if (kvmppc_vcore_check_block(vc)) {
3001                 finish_swait(&vc->wq, &wait);
3002                 do_sleep = 0;
3003                 /* If we polled, count this as a successful poll */
3004                 if (vc->halt_poll_ns)
3005                         ++vc->runner->stat.halt_successful_poll;
3006                 goto out;
3007         }
3008
3009         start_wait = ktime_get();
3010
3011         vc->vcore_state = VCORE_SLEEPING;
3012         trace_kvmppc_vcore_blocked(vc, 0);
3013         spin_unlock(&vc->lock);
3014         schedule();
3015         finish_swait(&vc->wq, &wait);
3016         spin_lock(&vc->lock);
3017         vc->vcore_state = VCORE_INACTIVE;
3018         trace_kvmppc_vcore_blocked(vc, 1);
3019         ++vc->runner->stat.halt_successful_wait;
3020
3021         cur = ktime_get();
3022
3023 out:
3024         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3025
3026         /* Attribute wait time */
3027         if (do_sleep) {
3028                 vc->runner->stat.halt_wait_ns +=
3029                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3030                 /* Attribute failed poll time */
3031                 if (vc->halt_poll_ns)
3032                         vc->runner->stat.halt_poll_fail_ns +=
3033                                 ktime_to_ns(start_wait) -
3034                                 ktime_to_ns(start_poll);
3035         } else {
3036                 /* Attribute successful poll time */
3037                 if (vc->halt_poll_ns)
3038                         vc->runner->stat.halt_poll_success_ns +=
3039                                 ktime_to_ns(cur) -
3040                                 ktime_to_ns(start_poll);
3041         }
3042
3043         /* Adjust poll time */
3044         if (halt_poll_ns) {
3045                 if (block_ns <= vc->halt_poll_ns)
3046                         ;
3047                 /* We slept and blocked for longer than the max halt time */
3048                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3049                         shrink_halt_poll_ns(vc);
3050                 /* We slept and our poll time is too small */
3051                 else if (vc->halt_poll_ns < halt_poll_ns &&
3052                                 block_ns < halt_poll_ns)
3053                         grow_halt_poll_ns(vc);
3054                 if (vc->halt_poll_ns > halt_poll_ns)
3055                         vc->halt_poll_ns = halt_poll_ns;
3056         } else
3057                 vc->halt_poll_ns = 0;
3058
3059         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3060 }
3061
3062 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3063 {
3064         int n_ceded, i;
3065         struct kvmppc_vcore *vc;
3066         struct kvm_vcpu *v;
3067
3068         trace_kvmppc_run_vcpu_enter(vcpu);
3069
3070         kvm_run->exit_reason = 0;
3071         vcpu->arch.ret = RESUME_GUEST;
3072         vcpu->arch.trap = 0;
3073         kvmppc_update_vpas(vcpu);
3074
3075         /*
3076          * Synchronize with other threads in this virtual core
3077          */
3078         vc = vcpu->arch.vcore;
3079         spin_lock(&vc->lock);
3080         vcpu->arch.ceded = 0;
3081         vcpu->arch.run_task = current;
3082         vcpu->arch.kvm_run = kvm_run;
3083         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3084         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3085         vcpu->arch.busy_preempt = TB_NIL;
3086         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3087         ++vc->n_runnable;
3088
3089         /*
3090          * This happens the first time this is called for a vcpu.
3091          * If the vcore is already running, we may be able to start
3092          * this thread straight away and have it join in.
3093          */
3094         if (!signal_pending(current)) {
3095                 if (vc->vcore_state == VCORE_PIGGYBACK) {
3096                         if (spin_trylock(&vc->lock)) {
3097                                 if (vc->vcore_state == VCORE_RUNNING &&
3098                                     !VCORE_IS_EXITING(vc)) {
3099                                         kvmppc_create_dtl_entry(vcpu, vc);
3100                                         kvmppc_start_thread(vcpu, vc);
3101                                         trace_kvm_guest_enter(vcpu);
3102                                 }
3103                                 spin_unlock(&vc->lock);
3104                         }
3105                 } else if (vc->vcore_state == VCORE_RUNNING &&
3106                            !VCORE_IS_EXITING(vc)) {
3107                         kvmppc_create_dtl_entry(vcpu, vc);
3108                         kvmppc_start_thread(vcpu, vc);
3109                         trace_kvm_guest_enter(vcpu);
3110                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3111                         swake_up(&vc->wq);
3112                 }
3113
3114         }
3115
3116         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3117                !signal_pending(current)) {
3118                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3119                         kvmppc_vcore_end_preempt(vc);
3120
3121                 if (vc->vcore_state != VCORE_INACTIVE) {
3122                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3123                         continue;
3124                 }
3125                 for_each_runnable_thread(i, v, vc) {
3126                         kvmppc_core_prepare_to_enter(v);
3127                         if (signal_pending(v->arch.run_task)) {
3128                                 kvmppc_remove_runnable(vc, v);
3129                                 v->stat.signal_exits++;
3130                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3131                                 v->arch.ret = -EINTR;
3132                                 wake_up(&v->arch.cpu_run);
3133                         }
3134                 }
3135                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3136                         break;
3137                 n_ceded = 0;
3138                 for_each_runnable_thread(i, v, vc) {
3139                         if (!kvmppc_vcpu_woken(v))
3140                                 n_ceded += v->arch.ceded;
3141                         else
3142                                 v->arch.ceded = 0;
3143                 }
3144                 vc->runner = vcpu;
3145                 if (n_ceded == vc->n_runnable) {
3146                         kvmppc_vcore_blocked(vc);
3147                 } else if (need_resched()) {
3148                         kvmppc_vcore_preempt(vc);
3149                         /* Let something else run */
3150                         cond_resched_lock(&vc->lock);
3151                         if (vc->vcore_state == VCORE_PREEMPT)
3152                                 kvmppc_vcore_end_preempt(vc);
3153                 } else {
3154                         kvmppc_run_core(vc);
3155                 }
3156                 vc->runner = NULL;
3157         }
3158
3159         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3160                (vc->vcore_state == VCORE_RUNNING ||
3161                 vc->vcore_state == VCORE_EXITING ||
3162                 vc->vcore_state == VCORE_PIGGYBACK))
3163                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3164
3165         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3166                 kvmppc_vcore_end_preempt(vc);
3167
3168         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3169                 kvmppc_remove_runnable(vc, vcpu);
3170                 vcpu->stat.signal_exits++;
3171                 kvm_run->exit_reason = KVM_EXIT_INTR;
3172                 vcpu->arch.ret = -EINTR;
3173         }
3174
3175         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3176                 /* Wake up some vcpu to run the core */
3177                 i = -1;
3178                 v = next_runnable_thread(vc, &i);
3179                 wake_up(&v->arch.cpu_run);
3180         }
3181
3182         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3183         spin_unlock(&vc->lock);
3184         return vcpu->arch.ret;
3185 }
3186
3187 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3188 {
3189         int r;
3190         int srcu_idx;
3191         unsigned long ebb_regs[3] = {}; /* shut up GCC */
3192         unsigned long user_tar = 0;
3193         unsigned int user_vrsave;
3194
3195         if (!vcpu->arch.sane) {
3196                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3197                 return -EINVAL;
3198         }
3199
3200         /*
3201          * Don't allow entry with a suspended transaction, because
3202          * the guest entry/exit code will lose it.
3203          * If the guest has TM enabled, save away their TM-related SPRs
3204          * (they will get restored by the TM unavailable interrupt).
3205          */
3206 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3207         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3208             (current->thread.regs->msr & MSR_TM)) {
3209                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3210                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3211                         run->fail_entry.hardware_entry_failure_reason = 0;
3212                         return -EINVAL;
3213                 }
3214                 /* Enable TM so we can read the TM SPRs */
3215                 mtmsr(mfmsr() | MSR_TM);
3216                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3217                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3218                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3219                 current->thread.regs->msr &= ~MSR_TM;
3220         }
3221 #endif
3222
3223         kvmppc_core_prepare_to_enter(vcpu);
3224
3225         /* No need to go into the guest when all we'll do is come back out */
3226         if (signal_pending(current)) {
3227                 run->exit_reason = KVM_EXIT_INTR;
3228                 return -EINTR;
3229         }
3230
3231         atomic_inc(&vcpu->kvm->arch.vcpus_running);
3232         /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
3233         smp_mb();
3234
3235         /* On the first time here, set up HTAB and VRMA */
3236         if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) {
3237                 r = kvmppc_hv_setup_htab_rma(vcpu);
3238                 if (r)
3239                         goto out;
3240         }
3241
3242         flush_all_to_thread(current);
3243
3244         /* Save userspace EBB and other register values */
3245         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3246                 ebb_regs[0] = mfspr(SPRN_EBBHR);
3247                 ebb_regs[1] = mfspr(SPRN_EBBRR);
3248                 ebb_regs[2] = mfspr(SPRN_BESCR);
3249                 user_tar = mfspr(SPRN_TAR);
3250         }
3251         user_vrsave = mfspr(SPRN_VRSAVE);
3252
3253         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3254         vcpu->arch.pgdir = current->mm->pgd;
3255         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3256
3257         do {
3258                 r = kvmppc_run_vcpu(run, vcpu);
3259
3260                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3261                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3262                         trace_kvm_hcall_enter(vcpu);
3263                         r = kvmppc_pseries_do_hcall(vcpu);
3264                         trace_kvm_hcall_exit(vcpu, r);
3265                         kvmppc_core_prepare_to_enter(vcpu);
3266                 } else if (r == RESUME_PAGE_FAULT) {
3267                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3268                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
3269                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3270                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3271                 } else if (r == RESUME_PASSTHROUGH) {
3272                         if (WARN_ON(xive_enabled()))
3273                                 r = H_SUCCESS;
3274                         else
3275                                 r = kvmppc_xics_rm_complete(vcpu, 0);
3276                 }
3277         } while (is_kvmppc_resume_guest(r));
3278
3279         /* Restore userspace EBB and other register values */
3280         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3281                 mtspr(SPRN_EBBHR, ebb_regs[0]);
3282                 mtspr(SPRN_EBBRR, ebb_regs[1]);
3283                 mtspr(SPRN_BESCR, ebb_regs[2]);
3284                 mtspr(SPRN_TAR, user_tar);
3285                 mtspr(SPRN_FSCR, current->thread.fscr);
3286         }
3287         mtspr(SPRN_VRSAVE, user_vrsave);
3288
3289  out:
3290         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3291         atomic_dec(&vcpu->kvm->arch.vcpus_running);
3292         return r;
3293 }
3294
3295 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3296                                      int linux_psize)
3297 {
3298         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
3299
3300         if (!def->shift)
3301                 return;
3302         (*sps)->page_shift = def->shift;
3303         (*sps)->slb_enc = def->sllp;
3304         (*sps)->enc[0].page_shift = def->shift;
3305         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
3306         /*
3307          * Add 16MB MPSS support if host supports it
3308          */
3309         if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
3310                 (*sps)->enc[1].page_shift = 24;
3311                 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
3312         }
3313         (*sps)++;
3314 }
3315
3316 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3317                                          struct kvm_ppc_smmu_info *info)
3318 {
3319         struct kvm_ppc_one_seg_page_size *sps;
3320
3321         /*
3322          * Since we don't yet support HPT guests on a radix host,
3323          * return an error if the host uses radix.
3324          */
3325         if (radix_enabled())
3326                 return -EINVAL;
3327
3328         info->flags = KVM_PPC_PAGE_SIZES_REAL;
3329         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
3330                 info->flags |= KVM_PPC_1T_SEGMENTS;
3331         info->slb_size = mmu_slb_size;
3332
3333         /* We only support these sizes for now, and no muti-size segments */
3334         sps = &info->sps[0];
3335         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3336         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3337         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3338
3339         return 0;
3340 }
3341
3342 /*
3343  * Get (and clear) the dirty memory log for a memory slot.
3344  */
3345 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3346                                          struct kvm_dirty_log *log)
3347 {
3348         struct kvm_memslots *slots;
3349         struct kvm_memory_slot *memslot;
3350         int i, r;
3351         unsigned long n;
3352         unsigned long *buf;
3353         struct kvm_vcpu *vcpu;
3354
3355         mutex_lock(&kvm->slots_lock);
3356
3357         r = -EINVAL;
3358         if (log->slot >= KVM_USER_MEM_SLOTS)
3359                 goto out;
3360
3361         slots = kvm_memslots(kvm);
3362         memslot = id_to_memslot(slots, log->slot);
3363         r = -ENOENT;
3364         if (!memslot->dirty_bitmap)
3365                 goto out;
3366
3367         /*
3368          * Use second half of bitmap area because radix accumulates
3369          * bits in the first half.
3370          */
3371         n = kvm_dirty_bitmap_bytes(memslot);
3372         buf = memslot->dirty_bitmap + n / sizeof(long);
3373         memset(buf, 0, n);
3374
3375         if (kvm_is_radix(kvm))
3376                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3377         else
3378                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3379         if (r)
3380                 goto out;
3381
3382         /* Harvest dirty bits from VPA and DTL updates */
3383         /* Note: we never modify the SLB shadow buffer areas */
3384         kvm_for_each_vcpu(i, vcpu, kvm) {
3385                 spin_lock(&vcpu->arch.vpa_update_lock);
3386                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3387                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3388                 spin_unlock(&vcpu->arch.vpa_update_lock);
3389         }
3390
3391         r = -EFAULT;
3392         if (copy_to_user(log->dirty_bitmap, buf, n))
3393                 goto out;
3394
3395         r = 0;
3396 out:
3397         mutex_unlock(&kvm->slots_lock);
3398         return r;
3399 }
3400
3401 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3402                                         struct kvm_memory_slot *dont)
3403 {
3404         if (!dont || free->arch.rmap != dont->arch.rmap) {
3405                 vfree(free->arch.rmap);
3406                 free->arch.rmap = NULL;
3407         }
3408 }
3409
3410 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3411                                          unsigned long npages)
3412 {
3413         /*
3414          * For now, if radix_enabled() then we only support radix guests,
3415          * and in that case we don't need the rmap array.
3416          */
3417         if (radix_enabled()) {
3418                 slot->arch.rmap = NULL;
3419                 return 0;
3420         }
3421
3422         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3423         if (!slot->arch.rmap)
3424                 return -ENOMEM;
3425
3426         return 0;
3427 }
3428
3429 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3430                                         struct kvm_memory_slot *memslot,
3431                                         const struct kvm_userspace_memory_region *mem)
3432 {
3433         return 0;
3434 }
3435
3436 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3437                                 const struct kvm_userspace_memory_region *mem,
3438                                 const struct kvm_memory_slot *old,
3439                                 const struct kvm_memory_slot *new)
3440 {
3441         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3442         struct kvm_memslots *slots;
3443         struct kvm_memory_slot *memslot;
3444
3445         /*
3446          * If we are making a new memslot, it might make
3447          * some address that was previously cached as emulated
3448          * MMIO be no longer emulated MMIO, so invalidate
3449          * all the caches of emulated MMIO translations.
3450          */
3451         if (npages)
3452                 atomic64_inc(&kvm->arch.mmio_update);
3453
3454         if (npages && old->npages && !kvm_is_radix(kvm)) {
3455                 /*
3456                  * If modifying a memslot, reset all the rmap dirty bits.
3457                  * If this is a new memslot, we don't need to do anything
3458                  * since the rmap array starts out as all zeroes,
3459                  * i.e. no pages are dirty.
3460                  */
3461                 slots = kvm_memslots(kvm);
3462                 memslot = id_to_memslot(slots, mem->slot);
3463                 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3464         }
3465 }
3466
3467 /*
3468  * Update LPCR values in kvm->arch and in vcores.
3469  * Caller must hold kvm->lock.
3470  */
3471 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3472 {
3473         long int i;
3474         u32 cores_done = 0;
3475
3476         if ((kvm->arch.lpcr & mask) == lpcr)
3477                 return;
3478
3479         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3480
3481         for (i = 0; i < KVM_MAX_VCORES; ++i) {
3482                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3483                 if (!vc)
3484                         continue;
3485                 spin_lock(&vc->lock);
3486                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3487                 spin_unlock(&vc->lock);
3488                 if (++cores_done >= kvm->arch.online_vcores)
3489                         break;
3490         }
3491 }
3492
3493 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3494 {
3495         return;
3496 }
3497
3498 static void kvmppc_setup_partition_table(struct kvm *kvm)
3499 {
3500         unsigned long dw0, dw1;
3501
3502         if (!kvm_is_radix(kvm)) {
3503                 /* PS field - page size for VRMA */
3504                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3505                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3506                 /* HTABSIZE and HTABORG fields */
3507                 dw0 |= kvm->arch.sdr1;
3508
3509                 /* Second dword as set by userspace */
3510                 dw1 = kvm->arch.process_table;
3511         } else {
3512                 dw0 = PATB_HR | radix__get_tree_size() |
3513                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3514                 dw1 = PATB_GR | kvm->arch.process_table;
3515         }
3516
3517         mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3518 }
3519
3520 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3521 {
3522         int err = 0;
3523         struct kvm *kvm = vcpu->kvm;
3524         unsigned long hva;
3525         struct kvm_memory_slot *memslot;
3526         struct vm_area_struct *vma;
3527         unsigned long lpcr = 0, senc;
3528         unsigned long psize, porder;
3529         int srcu_idx;
3530
3531         mutex_lock(&kvm->lock);
3532         if (kvm->arch.hpte_setup_done)
3533                 goto out;       /* another vcpu beat us to it */
3534
3535         /* Allocate hashed page table (if not done already) and reset it */
3536         if (!kvm->arch.hpt.virt) {
3537                 int order = KVM_DEFAULT_HPT_ORDER;
3538                 struct kvm_hpt_info info;
3539
3540                 err = kvmppc_allocate_hpt(&info, order);
3541                 /* If we get here, it means userspace didn't specify a
3542                  * size explicitly.  So, try successively smaller
3543                  * sizes if the default failed. */
3544                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3545                         err  = kvmppc_allocate_hpt(&info, order);
3546
3547                 if (err < 0) {
3548                         pr_err("KVM: Couldn't alloc HPT\n");
3549                         goto out;
3550                 }
3551
3552                 kvmppc_set_hpt(kvm, &info);
3553         }
3554
3555         /* Look up the memslot for guest physical address 0 */
3556         srcu_idx = srcu_read_lock(&kvm->srcu);
3557         memslot = gfn_to_memslot(kvm, 0);
3558
3559         /* We must have some memory at 0 by now */
3560         err = -EINVAL;
3561         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3562                 goto out_srcu;
3563
3564         /* Look up the VMA for the start of this memory slot */
3565         hva = memslot->userspace_addr;
3566         down_read(&current->mm->mmap_sem);
3567         vma = find_vma(current->mm, hva);
3568         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3569                 goto up_out;
3570
3571         psize = vma_kernel_pagesize(vma);
3572         porder = __ilog2(psize);
3573
3574         up_read(&current->mm->mmap_sem);
3575
3576         /* We can handle 4k, 64k or 16M pages in the VRMA */
3577         err = -EINVAL;
3578         if (!(psize == 0x1000 || psize == 0x10000 ||
3579               psize == 0x1000000))
3580                 goto out_srcu;
3581
3582         senc = slb_pgsize_encoding(psize);
3583         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3584                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3585         /* Create HPTEs in the hash page table for the VRMA */
3586         kvmppc_map_vrma(vcpu, memslot, porder);
3587
3588         /* Update VRMASD field in the LPCR */
3589         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3590                 /* the -4 is to account for senc values starting at 0x10 */
3591                 lpcr = senc << (LPCR_VRMASD_SH - 4);
3592                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3593         } else {
3594                 kvmppc_setup_partition_table(kvm);
3595         }
3596
3597         /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3598         smp_wmb();
3599         kvm->arch.hpte_setup_done = 1;
3600         err = 0;
3601  out_srcu:
3602         srcu_read_unlock(&kvm->srcu, srcu_idx);
3603  out:
3604         mutex_unlock(&kvm->lock);
3605         return err;
3606
3607  up_out:
3608         up_read(&current->mm->mmap_sem);
3609         goto out_srcu;
3610 }
3611
3612 #ifdef CONFIG_KVM_XICS
3613 /*
3614  * Allocate a per-core structure for managing state about which cores are
3615  * running in the host versus the guest and for exchanging data between
3616  * real mode KVM and CPU running in the host.
3617  * This is only done for the first VM.
3618  * The allocated structure stays even if all VMs have stopped.
3619  * It is only freed when the kvm-hv module is unloaded.
3620  * It's OK for this routine to fail, we just don't support host
3621  * core operations like redirecting H_IPI wakeups.
3622  */
3623 void kvmppc_alloc_host_rm_ops(void)
3624 {
3625         struct kvmppc_host_rm_ops *ops;
3626         unsigned long l_ops;
3627         int cpu, core;
3628         int size;
3629
3630         /* Not the first time here ? */
3631         if (kvmppc_host_rm_ops_hv != NULL)
3632                 return;
3633
3634         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3635         if (!ops)
3636                 return;
3637
3638         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3639         ops->rm_core = kzalloc(size, GFP_KERNEL);
3640
3641         if (!ops->rm_core) {
3642                 kfree(ops);
3643                 return;
3644         }
3645
3646         cpus_read_lock();
3647
3648         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3649                 if (!cpu_online(cpu))
3650                         continue;
3651
3652                 core = cpu >> threads_shift;
3653                 ops->rm_core[core].rm_state.in_host = 1;
3654         }
3655
3656         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3657
3658         /*
3659          * Make the contents of the kvmppc_host_rm_ops structure visible
3660          * to other CPUs before we assign it to the global variable.
3661          * Do an atomic assignment (no locks used here), but if someone
3662          * beats us to it, just free our copy and return.
3663          */
3664         smp_wmb();
3665         l_ops = (unsigned long) ops;
3666
3667         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3668                 cpus_read_unlock();
3669                 kfree(ops->rm_core);
3670                 kfree(ops);
3671                 return;
3672         }
3673
3674         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3675                                              "ppc/kvm_book3s:prepare",
3676                                              kvmppc_set_host_core,
3677                                              kvmppc_clear_host_core);
3678         cpus_read_unlock();
3679 }
3680
3681 void kvmppc_free_host_rm_ops(void)
3682 {
3683         if (kvmppc_host_rm_ops_hv) {
3684                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3685                 kfree(kvmppc_host_rm_ops_hv->rm_core);
3686                 kfree(kvmppc_host_rm_ops_hv);
3687                 kvmppc_host_rm_ops_hv = NULL;
3688         }
3689 }
3690 #endif
3691
3692 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3693 {
3694         unsigned long lpcr, lpid;
3695         char buf[32];
3696         int ret;
3697
3698         /* Allocate the guest's logical partition ID */
3699
3700         lpid = kvmppc_alloc_lpid();
3701         if ((long)lpid < 0)
3702                 return -ENOMEM;
3703         kvm->arch.lpid = lpid;
3704
3705         kvmppc_alloc_host_rm_ops();
3706
3707         /*
3708          * Since we don't flush the TLB when tearing down a VM,
3709          * and this lpid might have previously been used,
3710          * make sure we flush on each core before running the new VM.
3711          * On POWER9, the tlbie in mmu_partition_table_set_entry()
3712          * does this flush for us.
3713          */
3714         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3715                 cpumask_setall(&kvm->arch.need_tlb_flush);
3716
3717         /* Start out with the default set of hcalls enabled */
3718         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3719                sizeof(kvm->arch.enabled_hcalls));
3720
3721         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3722                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3723
3724         /* Init LPCR for virtual RMA mode */
3725         kvm->arch.host_lpid = mfspr(SPRN_LPID);
3726         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3727         lpcr &= LPCR_PECE | LPCR_LPES;
3728         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3729                 LPCR_VPM0 | LPCR_VPM1;
3730         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3731                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3732         /* On POWER8 turn on online bit to enable PURR/SPURR */
3733         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3734                 lpcr |= LPCR_ONL;
3735         /*
3736          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3737          * Set HVICE bit to enable hypervisor virtualization interrupts.
3738          * Set HEIC to prevent OS interrupts to go to hypervisor (should
3739          * be unnecessary but better safe than sorry in case we re-enable
3740          * EE in HV mode with this LPCR still set)
3741          */
3742         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3743                 lpcr &= ~LPCR_VPM0;
3744                 lpcr |= LPCR_HVICE | LPCR_HEIC;
3745
3746                 /*
3747                  * If xive is enabled, we route 0x500 interrupts directly
3748                  * to the guest.
3749                  */
3750                 if (xive_enabled())
3751                         lpcr |= LPCR_LPES;
3752         }
3753
3754         /*
3755          * For now, if the host uses radix, the guest must be radix.
3756          */
3757         if (radix_enabled()) {
3758                 kvm->arch.radix = 1;
3759                 lpcr &= ~LPCR_VPM1;
3760                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3761                 ret = kvmppc_init_vm_radix(kvm);
3762                 if (ret) {
3763                         kvmppc_free_lpid(kvm->arch.lpid);
3764                         return ret;
3765                 }
3766                 kvmppc_setup_partition_table(kvm);
3767         }
3768
3769         kvm->arch.lpcr = lpcr;
3770
3771         /* Initialization for future HPT resizes */
3772         kvm->arch.resize_hpt = NULL;
3773
3774         /*
3775          * Work out how many sets the TLB has, for the use of
3776          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3777          */
3778         if (kvm_is_radix(kvm))
3779                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
3780         else if (cpu_has_feature(CPU_FTR_ARCH_300))
3781                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
3782         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3783                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
3784         else
3785                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
3786
3787         /*
3788          * Track that we now have a HV mode VM active. This blocks secondary
3789          * CPU threads from coming online.
3790          * On POWER9, we only need to do this for HPT guests on a radix
3791          * host, which is not yet supported.
3792          */
3793         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3794                 kvm_hv_vm_activated();
3795
3796         /*
3797          * Initialize smt_mode depending on processor.
3798          * POWER8 and earlier have to use "strict" threading, where
3799          * all vCPUs in a vcore have to run on the same (sub)core,
3800          * whereas on POWER9 the threads can each run a different
3801          * guest.
3802          */
3803         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3804                 kvm->arch.smt_mode = threads_per_subcore;
3805         else
3806                 kvm->arch.smt_mode = 1;
3807         kvm->arch.emul_smt_mode = 1;
3808
3809         /*
3810          * Create a debugfs directory for the VM
3811          */
3812         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3813         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3814         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3815                 kvmppc_mmu_debugfs_init(kvm);
3816
3817         return 0;
3818 }
3819
3820 static void kvmppc_free_vcores(struct kvm *kvm)
3821 {
3822         long int i;
3823
3824         for (i = 0; i < KVM_MAX_VCORES; ++i)
3825                 kfree(kvm->arch.vcores[i]);
3826         kvm->arch.online_vcores = 0;
3827 }
3828
3829 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3830 {
3831         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3832
3833         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3834                 kvm_hv_vm_deactivated();
3835
3836         kvmppc_free_vcores(kvm);
3837
3838         kvmppc_free_lpid(kvm->arch.lpid);
3839
3840         if (kvm_is_radix(kvm))
3841                 kvmppc_free_radix(kvm);
3842         else
3843                 kvmppc_free_hpt(&kvm->arch.hpt);
3844
3845         kvmppc_free_pimap(kvm);
3846 }
3847
3848 /* We don't need to emulate any privileged instructions or dcbz */
3849 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3850                                      unsigned int inst, int *advance)
3851 {
3852         return EMULATE_FAIL;
3853 }
3854
3855 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3856                                         ulong spr_val)
3857 {
3858         return EMULATE_FAIL;
3859 }
3860
3861 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3862                                         ulong *spr_val)
3863 {
3864         return EMULATE_FAIL;
3865 }
3866
3867 static int kvmppc_core_check_processor_compat_hv(void)
3868 {
3869         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3870             !cpu_has_feature(CPU_FTR_ARCH_206))
3871                 return -EIO;
3872
3873         return 0;
3874 }
3875
3876 #ifdef CONFIG_KVM_XICS
3877
3878 void kvmppc_free_pimap(struct kvm *kvm)
3879 {
3880         kfree(kvm->arch.pimap);
3881 }
3882
3883 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3884 {
3885         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3886 }
3887
3888 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3889 {
3890         struct irq_desc *desc;
3891         struct kvmppc_irq_map *irq_map;
3892         struct kvmppc_passthru_irqmap *pimap;
3893         struct irq_chip *chip;
3894         int i, rc = 0;
3895
3896         if (!kvm_irq_bypass)
3897                 return 1;
3898
3899         desc = irq_to_desc(host_irq);
3900         if (!desc)
3901                 return -EIO;
3902
3903         mutex_lock(&kvm->lock);
3904
3905         pimap = kvm->arch.pimap;
3906         if (pimap == NULL) {
3907                 /* First call, allocate structure to hold IRQ map */
3908                 pimap = kvmppc_alloc_pimap();
3909                 if (pimap == NULL) {
3910                         mutex_unlock(&kvm->lock);
3911                         return -ENOMEM;
3912                 }
3913                 kvm->arch.pimap = pimap;
3914         }
3915
3916         /*
3917          * For now, we only support interrupts for which the EOI operation
3918          * is an OPAL call followed by a write to XIRR, since that's
3919          * what our real-mode EOI code does, or a XIVE interrupt
3920          */
3921         chip = irq_data_get_irq_chip(&desc->irq_data);
3922         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3923                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3924                         host_irq, guest_gsi);
3925                 mutex_unlock(&kvm->lock);
3926                 return -ENOENT;
3927         }
3928
3929         /*
3930          * See if we already have an entry for this guest IRQ number.
3931          * If it's mapped to a hardware IRQ number, that's an error,
3932          * otherwise re-use this entry.
3933          */
3934         for (i = 0; i < pimap->n_mapped; i++) {
3935                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
3936                         if (pimap->mapped[i].r_hwirq) {
3937                                 mutex_unlock(&kvm->lock);
3938                                 return -EINVAL;
3939                         }
3940                         break;
3941                 }
3942         }
3943
3944         if (i == KVMPPC_PIRQ_MAPPED) {
3945                 mutex_unlock(&kvm->lock);
3946                 return -EAGAIN;         /* table is full */
3947         }
3948
3949         irq_map = &pimap->mapped[i];
3950
3951         irq_map->v_hwirq = guest_gsi;
3952         irq_map->desc = desc;
3953
3954         /*
3955          * Order the above two stores before the next to serialize with
3956          * the KVM real mode handler.
3957          */
3958         smp_wmb();
3959         irq_map->r_hwirq = desc->irq_data.hwirq;
3960
3961         if (i == pimap->n_mapped)
3962                 pimap->n_mapped++;
3963
3964         if (xive_enabled())
3965                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
3966         else
3967                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3968         if (rc)
3969                 irq_map->r_hwirq = 0;
3970
3971         mutex_unlock(&kvm->lock);
3972
3973         return 0;
3974 }
3975
3976 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3977 {
3978         struct irq_desc *desc;
3979         struct kvmppc_passthru_irqmap *pimap;
3980         int i, rc = 0;
3981
3982         if (!kvm_irq_bypass)
3983                 return 0;
3984
3985         desc = irq_to_desc(host_irq);
3986         if (!desc)
3987                 return -EIO;
3988
3989         mutex_lock(&kvm->lock);
3990         if (!kvm->arch.pimap)
3991                 goto unlock;
3992
3993         pimap = kvm->arch.pimap;
3994
3995         for (i = 0; i < pimap->n_mapped; i++) {
3996                 if (guest_gsi == pimap->mapped[i].v_hwirq)
3997                         break;
3998         }
3999
4000         if (i == pimap->n_mapped) {
4001                 mutex_unlock(&kvm->lock);
4002                 return -ENODEV;
4003         }
4004
4005         if (xive_enabled())
4006                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4007         else
4008                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4009
4010         /* invalidate the entry (what do do on error from the above ?) */
4011         pimap->mapped[i].r_hwirq = 0;
4012
4013         /*
4014          * We don't free this structure even when the count goes to
4015          * zero. The structure is freed when we destroy the VM.
4016          */
4017  unlock:
4018         mutex_unlock(&kvm->lock);
4019         return rc;
4020 }
4021
4022 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4023                                              struct irq_bypass_producer *prod)
4024 {
4025         int ret = 0;
4026         struct kvm_kernel_irqfd *irqfd =
4027                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4028
4029         irqfd->producer = prod;
4030
4031         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4032         if (ret)
4033                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4034                         prod->irq, irqfd->gsi, ret);
4035
4036         return ret;
4037 }
4038
4039 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4040                                               struct irq_bypass_producer *prod)
4041 {
4042         int ret;
4043         struct kvm_kernel_irqfd *irqfd =
4044                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4045
4046         irqfd->producer = NULL;
4047
4048         /*
4049          * When producer of consumer is unregistered, we change back to
4050          * default external interrupt handling mode - KVM real mode
4051          * will switch back to host.
4052          */
4053         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4054         if (ret)
4055                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4056                         prod->irq, irqfd->gsi, ret);
4057 }
4058 #endif
4059
4060 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4061                                  unsigned int ioctl, unsigned long arg)
4062 {
4063         struct kvm *kvm __maybe_unused = filp->private_data;
4064         void __user *argp = (void __user *)arg;
4065         long r;
4066
4067         switch (ioctl) {
4068
4069         case KVM_PPC_ALLOCATE_HTAB: {
4070                 u32 htab_order;
4071
4072                 r = -EFAULT;
4073                 if (get_user(htab_order, (u32 __user *)argp))
4074                         break;
4075                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4076                 if (r)
4077                         break;
4078                 r = 0;
4079                 break;
4080         }
4081
4082         case KVM_PPC_GET_HTAB_FD: {
4083                 struct kvm_get_htab_fd ghf;
4084
4085                 r = -EFAULT;
4086                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4087                         break;
4088                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4089                 break;
4090         }
4091
4092         case KVM_PPC_RESIZE_HPT_PREPARE: {
4093                 struct kvm_ppc_resize_hpt rhpt;
4094
4095                 r = -EFAULT;
4096                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4097                         break;
4098
4099                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4100                 break;
4101         }
4102
4103         case KVM_PPC_RESIZE_HPT_COMMIT: {
4104                 struct kvm_ppc_resize_hpt rhpt;
4105
4106                 r = -EFAULT;
4107                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4108                         break;
4109
4110                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4111                 break;
4112         }
4113
4114         default:
4115                 r = -ENOTTY;
4116         }
4117
4118         return r;
4119 }
4120
4121 /*
4122  * List of hcall numbers to enable by default.
4123  * For compatibility with old userspace, we enable by default
4124  * all hcalls that were implemented before the hcall-enabling
4125  * facility was added.  Note this list should not include H_RTAS.
4126  */
4127 static unsigned int default_hcall_list[] = {
4128         H_REMOVE,
4129         H_ENTER,
4130         H_READ,
4131         H_PROTECT,
4132         H_BULK_REMOVE,
4133         H_GET_TCE,
4134         H_PUT_TCE,
4135         H_SET_DABR,
4136         H_SET_XDABR,
4137         H_CEDE,
4138         H_PROD,
4139         H_CONFER,
4140         H_REGISTER_VPA,
4141 #ifdef CONFIG_KVM_XICS
4142         H_EOI,
4143         H_CPPR,
4144         H_IPI,
4145         H_IPOLL,
4146         H_XIRR,
4147         H_XIRR_X,
4148 #endif
4149         0
4150 };
4151
4152 static void init_default_hcalls(void)
4153 {
4154         int i;
4155         unsigned int hcall;
4156
4157         for (i = 0; default_hcall_list[i]; ++i) {
4158                 hcall = default_hcall_list[i];
4159                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4160                 __set_bit(hcall / 4, default_enabled_hcalls);
4161         }
4162 }
4163
4164 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4165 {
4166         unsigned long lpcr;
4167         int radix;
4168
4169         /* If not on a POWER9, reject it */
4170         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4171                 return -ENODEV;
4172
4173         /* If any unknown flags set, reject it */
4174         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4175                 return -EINVAL;
4176
4177         /* We can't change a guest to/from radix yet */
4178         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4179         if (radix != kvm_is_radix(kvm))
4180                 return -EINVAL;
4181
4182         /* GR (guest radix) bit in process_table field must match */
4183         if (!!(cfg->process_table & PATB_GR) != radix)
4184                 return -EINVAL;
4185
4186         /* Process table size field must be reasonable, i.e. <= 24 */
4187         if ((cfg->process_table & PRTS_MASK) > 24)
4188                 return -EINVAL;
4189
4190         kvm->arch.process_table = cfg->process_table;
4191         kvmppc_setup_partition_table(kvm);
4192
4193         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4194         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4195
4196         return 0;
4197 }
4198
4199 static struct kvmppc_ops kvm_ops_hv = {
4200         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4201         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4202         .get_one_reg = kvmppc_get_one_reg_hv,
4203         .set_one_reg = kvmppc_set_one_reg_hv,
4204         .vcpu_load   = kvmppc_core_vcpu_load_hv,
4205         .vcpu_put    = kvmppc_core_vcpu_put_hv,
4206         .set_msr     = kvmppc_set_msr_hv,
4207         .vcpu_run    = kvmppc_vcpu_run_hv,
4208         .vcpu_create = kvmppc_core_vcpu_create_hv,
4209         .vcpu_free   = kvmppc_core_vcpu_free_hv,
4210         .check_requests = kvmppc_core_check_requests_hv,
4211         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4212         .flush_memslot  = kvmppc_core_flush_memslot_hv,
4213         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4214         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4215         .unmap_hva = kvm_unmap_hva_hv,
4216         .unmap_hva_range = kvm_unmap_hva_range_hv,
4217         .age_hva  = kvm_age_hva_hv,
4218         .test_age_hva = kvm_test_age_hva_hv,
4219         .set_spte_hva = kvm_set_spte_hva_hv,
4220         .mmu_destroy  = kvmppc_mmu_destroy_hv,
4221         .free_memslot = kvmppc_core_free_memslot_hv,
4222         .create_memslot = kvmppc_core_create_memslot_hv,
4223         .init_vm =  kvmppc_core_init_vm_hv,
4224         .destroy_vm = kvmppc_core_destroy_vm_hv,
4225         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4226         .emulate_op = kvmppc_core_emulate_op_hv,
4227         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4228         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4229         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4230         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4231         .hcall_implemented = kvmppc_hcall_impl_hv,
4232 #ifdef CONFIG_KVM_XICS
4233         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4234         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4235 #endif
4236         .configure_mmu = kvmhv_configure_mmu,
4237         .get_rmmu_info = kvmhv_get_rmmu_info,
4238         .set_smt_mode = kvmhv_set_smt_mode,
4239 };
4240
4241 static int kvm_init_subcore_bitmap(void)
4242 {
4243         int i, j;
4244         int nr_cores = cpu_nr_cores();
4245         struct sibling_subcore_state *sibling_subcore_state;
4246
4247         for (i = 0; i < nr_cores; i++) {
4248                 int first_cpu = i * threads_per_core;
4249                 int node = cpu_to_node(first_cpu);
4250
4251                 /* Ignore if it is already allocated. */
4252                 if (paca[first_cpu].sibling_subcore_state)
4253                         continue;
4254
4255                 sibling_subcore_state =
4256                         kmalloc_node(sizeof(struct sibling_subcore_state),
4257                                                         GFP_KERNEL, node);
4258                 if (!sibling_subcore_state)
4259                         return -ENOMEM;
4260
4261                 memset(sibling_subcore_state, 0,
4262                                 sizeof(struct sibling_subcore_state));
4263
4264                 for (j = 0; j < threads_per_core; j++) {
4265                         int cpu = first_cpu + j;
4266
4267                         paca[cpu].sibling_subcore_state = sibling_subcore_state;
4268                 }
4269         }
4270         return 0;
4271 }
4272
4273 static int kvmppc_radix_possible(void)
4274 {
4275         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4276 }
4277
4278 static int kvmppc_book3s_init_hv(void)
4279 {
4280         int r;
4281         /*
4282          * FIXME!! Do we need to check on all cpus ?
4283          */
4284         r = kvmppc_core_check_processor_compat_hv();
4285         if (r < 0)
4286                 return -ENODEV;
4287
4288         r = kvm_init_subcore_bitmap();
4289         if (r)
4290                 return r;
4291
4292         /*
4293          * We need a way of accessing the XICS interrupt controller,
4294          * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4295          * indirectly, via OPAL.
4296          */
4297 #ifdef CONFIG_SMP
4298         if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4299                 struct device_node *np;
4300
4301                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4302                 if (!np) {
4303                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4304                         return -ENODEV;
4305                 }
4306         }
4307 #endif
4308
4309         kvm_ops_hv.owner = THIS_MODULE;
4310         kvmppc_hv_ops = &kvm_ops_hv;
4311
4312         init_default_hcalls();
4313
4314         init_vcore_lists();
4315
4316         r = kvmppc_mmu_hv_init();
4317         if (r)
4318                 return r;
4319
4320         if (kvmppc_radix_possible())
4321                 r = kvmppc_radix_init();
4322         return r;
4323 }
4324
4325 static void kvmppc_book3s_exit_hv(void)
4326 {
4327         kvmppc_free_host_rm_ops();
4328         if (kvmppc_radix_possible())
4329                 kvmppc_radix_exit();
4330         kvmppc_hv_ops = NULL;
4331 }
4332
4333 module_init(kvmppc_book3s_init_hv);
4334 module_exit(kvmppc_book3s_exit_hv);
4335 MODULE_LICENSE("GPL");
4336 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4337 MODULE_ALIAS("devname:kvm");
4338