]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
Merge tag 'char-misc-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[karo-tx-linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
28
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
44
45 #include <misc/cxl-base.h>
46
47 #include "powernv.h"
48 #include "pci.h"
49
50 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
51 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
52 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
53
54 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
55 #define POWERNV_IOMMU_MAX_LEVELS        5
56
57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59
60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61                             const char *fmt, ...)
62 {
63         struct va_format vaf;
64         va_list args;
65         char pfix[32];
66
67         va_start(args, fmt);
68
69         vaf.fmt = fmt;
70         vaf.va = &args;
71
72         if (pe->flags & PNV_IODA_PE_DEV)
73                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75                 sprintf(pfix, "%04x:%02x     ",
76                         pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78         else if (pe->flags & PNV_IODA_PE_VF)
79                 sprintf(pfix, "%04x:%02x:%2x.%d",
80                         pci_domain_nr(pe->parent_dev->bus),
81                         (pe->rid & 0xff00) >> 8,
82                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84
85         printk("%spci %s: [PE# %.2x] %pV",
86                level, pfix, pe->pe_number, &vaf);
87
88         va_end(args);
89 }
90
91 static bool pnv_iommu_bypass_disabled __read_mostly;
92
93 static int __init iommu_setup(char *str)
94 {
95         if (!str)
96                 return -EINVAL;
97
98         while (*str) {
99                 if (!strncmp(str, "nobypass", 8)) {
100                         pnv_iommu_bypass_disabled = true;
101                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
102                         break;
103                 }
104                 str += strcspn(str, ",");
105                 if (*str == ',')
106                         str++;
107         }
108
109         return 0;
110 }
111 early_param("iommu", iommu_setup);
112
113 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
114 {
115         /*
116          * WARNING: We cannot rely on the resource flags. The Linux PCI
117          * allocation code sometimes decides to put a 64-bit prefetchable
118          * BAR in the 32-bit window, so we have to compare the addresses.
119          *
120          * For simplicity we only test resource start.
121          */
122         return (r->start >= phb->ioda.m64_base &&
123                 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
124 }
125
126 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
127 {
128         unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
129
130         return (resource_flags & flags) == flags;
131 }
132
133 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
134 {
135         s64 rc;
136
137         phb->ioda.pe_array[pe_no].phb = phb;
138         phb->ioda.pe_array[pe_no].pe_number = pe_no;
139
140         /*
141          * Clear the PE frozen state as it might be put into frozen state
142          * in the last PCI remove path. It's not harmful to do so when the
143          * PE is already in unfrozen state.
144          */
145         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
146                                        OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
147         if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
148                 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
149                         __func__, rc, phb->hose->global_number, pe_no);
150
151         return &phb->ioda.pe_array[pe_no];
152 }
153
154 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
155 {
156         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
157                 pr_warn("%s: Invalid PE %x on PHB#%x\n",
158                         __func__, pe_no, phb->hose->global_number);
159                 return;
160         }
161
162         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
163                 pr_debug("%s: PE %x was reserved on PHB#%x\n",
164                          __func__, pe_no, phb->hose->global_number);
165
166         pnv_ioda_init_pe(phb, pe_no);
167 }
168
169 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
170 {
171         long pe;
172
173         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
174                 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
175                         return pnv_ioda_init_pe(phb, pe);
176         }
177
178         return NULL;
179 }
180
181 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
182 {
183         struct pnv_phb *phb = pe->phb;
184         unsigned int pe_num = pe->pe_number;
185
186         WARN_ON(pe->pdev);
187
188         memset(pe, 0, sizeof(struct pnv_ioda_pe));
189         clear_bit(pe_num, phb->ioda.pe_alloc);
190 }
191
192 /* The default M64 BAR is shared by all PEs */
193 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
194 {
195         const char *desc;
196         struct resource *r;
197         s64 rc;
198
199         /* Configure the default M64 BAR */
200         rc = opal_pci_set_phb_mem_window(phb->opal_id,
201                                          OPAL_M64_WINDOW_TYPE,
202                                          phb->ioda.m64_bar_idx,
203                                          phb->ioda.m64_base,
204                                          0, /* unused */
205                                          phb->ioda.m64_size);
206         if (rc != OPAL_SUCCESS) {
207                 desc = "configuring";
208                 goto fail;
209         }
210
211         /* Enable the default M64 BAR */
212         rc = opal_pci_phb_mmio_enable(phb->opal_id,
213                                       OPAL_M64_WINDOW_TYPE,
214                                       phb->ioda.m64_bar_idx,
215                                       OPAL_ENABLE_M64_SPLIT);
216         if (rc != OPAL_SUCCESS) {
217                 desc = "enabling";
218                 goto fail;
219         }
220
221         /*
222          * Exclude the segments for reserved and root bus PE, which
223          * are first or last two PEs.
224          */
225         r = &phb->hose->mem_resources[1];
226         if (phb->ioda.reserved_pe_idx == 0)
227                 r->start += (2 * phb->ioda.m64_segsize);
228         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
229                 r->end -= (2 * phb->ioda.m64_segsize);
230         else
231                 pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
232                         phb->ioda.reserved_pe_idx);
233
234         return 0;
235
236 fail:
237         pr_warn("  Failure %lld %s M64 BAR#%d\n",
238                 rc, desc, phb->ioda.m64_bar_idx);
239         opal_pci_phb_mmio_enable(phb->opal_id,
240                                  OPAL_M64_WINDOW_TYPE,
241                                  phb->ioda.m64_bar_idx,
242                                  OPAL_DISABLE_M64);
243         return -EIO;
244 }
245
246 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
247                                          unsigned long *pe_bitmap)
248 {
249         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
250         struct pnv_phb *phb = hose->private_data;
251         struct resource *r;
252         resource_size_t base, sgsz, start, end;
253         int segno, i;
254
255         base = phb->ioda.m64_base;
256         sgsz = phb->ioda.m64_segsize;
257         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
258                 r = &pdev->resource[i];
259                 if (!r->parent || !pnv_pci_is_m64(phb, r))
260                         continue;
261
262                 start = _ALIGN_DOWN(r->start - base, sgsz);
263                 end = _ALIGN_UP(r->end - base, sgsz);
264                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
265                         if (pe_bitmap)
266                                 set_bit(segno, pe_bitmap);
267                         else
268                                 pnv_ioda_reserve_pe(phb, segno);
269                 }
270         }
271 }
272
273 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
274 {
275         struct resource *r;
276         int index;
277
278         /*
279          * There are 16 M64 BARs, each of which has 8 segments. So
280          * there are as many M64 segments as the maximum number of
281          * PEs, which is 128.
282          */
283         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
284                 unsigned long base, segsz = phb->ioda.m64_segsize;
285                 int64_t rc;
286
287                 base = phb->ioda.m64_base +
288                        index * PNV_IODA1_M64_SEGS * segsz;
289                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
290                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
291                                 PNV_IODA1_M64_SEGS * segsz);
292                 if (rc != OPAL_SUCCESS) {
293                         pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
294                                 rc, phb->hose->global_number, index);
295                         goto fail;
296                 }
297
298                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
299                                 OPAL_M64_WINDOW_TYPE, index,
300                                 OPAL_ENABLE_M64_SPLIT);
301                 if (rc != OPAL_SUCCESS) {
302                         pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
303                                 rc, phb->hose->global_number, index);
304                         goto fail;
305                 }
306         }
307
308         /*
309          * Exclude the segments for reserved and root bus PE, which
310          * are first or last two PEs.
311          */
312         r = &phb->hose->mem_resources[1];
313         if (phb->ioda.reserved_pe_idx == 0)
314                 r->start += (2 * phb->ioda.m64_segsize);
315         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
316                 r->end -= (2 * phb->ioda.m64_segsize);
317         else
318                 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
319                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
320
321         return 0;
322
323 fail:
324         for ( ; index >= 0; index--)
325                 opal_pci_phb_mmio_enable(phb->opal_id,
326                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
327
328         return -EIO;
329 }
330
331 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
332                                     unsigned long *pe_bitmap,
333                                     bool all)
334 {
335         struct pci_dev *pdev;
336
337         list_for_each_entry(pdev, &bus->devices, bus_list) {
338                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
339
340                 if (all && pdev->subordinate)
341                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
342                                                 pe_bitmap, all);
343         }
344 }
345
346 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
347 {
348         struct pci_controller *hose = pci_bus_to_host(bus);
349         struct pnv_phb *phb = hose->private_data;
350         struct pnv_ioda_pe *master_pe, *pe;
351         unsigned long size, *pe_alloc;
352         int i;
353
354         /* Root bus shouldn't use M64 */
355         if (pci_is_root_bus(bus))
356                 return NULL;
357
358         /* Allocate bitmap */
359         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
360         pe_alloc = kzalloc(size, GFP_KERNEL);
361         if (!pe_alloc) {
362                 pr_warn("%s: Out of memory !\n",
363                         __func__);
364                 return NULL;
365         }
366
367         /* Figure out reserved PE numbers by the PE */
368         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
369
370         /*
371          * the current bus might not own M64 window and that's all
372          * contributed by its child buses. For the case, we needn't
373          * pick M64 dependent PE#.
374          */
375         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
376                 kfree(pe_alloc);
377                 return NULL;
378         }
379
380         /*
381          * Figure out the master PE and put all slave PEs to master
382          * PE's list to form compound PE.
383          */
384         master_pe = NULL;
385         i = -1;
386         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
387                 phb->ioda.total_pe_num) {
388                 pe = &phb->ioda.pe_array[i];
389
390                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
391                 if (!master_pe) {
392                         pe->flags |= PNV_IODA_PE_MASTER;
393                         INIT_LIST_HEAD(&pe->slaves);
394                         master_pe = pe;
395                 } else {
396                         pe->flags |= PNV_IODA_PE_SLAVE;
397                         pe->master = master_pe;
398                         list_add_tail(&pe->list, &master_pe->slaves);
399                 }
400
401                 /*
402                  * P7IOC supports M64DT, which helps mapping M64 segment
403                  * to one particular PE#. However, PHB3 has fixed mapping
404                  * between M64 segment and PE#. In order to have same logic
405                  * for P7IOC and PHB3, we enforce fixed mapping between M64
406                  * segment and PE# on P7IOC.
407                  */
408                 if (phb->type == PNV_PHB_IODA1) {
409                         int64_t rc;
410
411                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
412                                         pe->pe_number, OPAL_M64_WINDOW_TYPE,
413                                         pe->pe_number / PNV_IODA1_M64_SEGS,
414                                         pe->pe_number % PNV_IODA1_M64_SEGS);
415                         if (rc != OPAL_SUCCESS)
416                                 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
417                                         __func__, rc, phb->hose->global_number,
418                                         pe->pe_number);
419                 }
420         }
421
422         kfree(pe_alloc);
423         return master_pe;
424 }
425
426 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
427 {
428         struct pci_controller *hose = phb->hose;
429         struct device_node *dn = hose->dn;
430         struct resource *res;
431         u32 m64_range[2], i;
432         const __be32 *r;
433         u64 pci_addr;
434
435         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
436                 pr_info("  Not support M64 window\n");
437                 return;
438         }
439
440         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
441                 pr_info("  Firmware too old to support M64 window\n");
442                 return;
443         }
444
445         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
446         if (!r) {
447                 pr_info("  No <ibm,opal-m64-window> on %s\n",
448                         dn->full_name);
449                 return;
450         }
451
452         /*
453          * Find the available M64 BAR range and pickup the last one for
454          * covering the whole 64-bits space. We support only one range.
455          */
456         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
457                                        m64_range, 2)) {
458                 /* In absence of the property, assume 0..15 */
459                 m64_range[0] = 0;
460                 m64_range[1] = 16;
461         }
462         /* We only support 64 bits in our allocator */
463         if (m64_range[1] > 63) {
464                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
465                         __func__, m64_range[1], phb->hose->global_number);
466                 m64_range[1] = 63;
467         }
468         /* Empty range, no m64 */
469         if (m64_range[1] <= m64_range[0]) {
470                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
471                         __func__, phb->hose->global_number);
472                 return;
473         }
474
475         /* Configure M64 informations */
476         res = &hose->mem_resources[1];
477         res->name = dn->full_name;
478         res->start = of_translate_address(dn, r + 2);
479         res->end = res->start + of_read_number(r + 4, 2) - 1;
480         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
481         pci_addr = of_read_number(r, 2);
482         hose->mem_offset[1] = res->start - pci_addr;
483
484         phb->ioda.m64_size = resource_size(res);
485         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
486         phb->ioda.m64_base = pci_addr;
487
488         /* This lines up nicely with the display from processing OF ranges */
489         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
490                 res->start, res->end, pci_addr, m64_range[0],
491                 m64_range[0] + m64_range[1] - 1);
492
493         /* Mark all M64 used up by default */
494         phb->ioda.m64_bar_alloc = (unsigned long)-1;
495
496         /* Use last M64 BAR to cover M64 window */
497         m64_range[1]--;
498         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
499
500         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
501
502         /* Mark remaining ones free */
503         for (i = m64_range[0]; i < m64_range[1]; i++)
504                 clear_bit(i, &phb->ioda.m64_bar_alloc);
505
506         /*
507          * Setup init functions for M64 based on IODA version, IODA3 uses
508          * the IODA2 code.
509          */
510         if (phb->type == PNV_PHB_IODA1)
511                 phb->init_m64 = pnv_ioda1_init_m64;
512         else
513                 phb->init_m64 = pnv_ioda2_init_m64;
514         phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
515         phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
516 }
517
518 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
519 {
520         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
521         struct pnv_ioda_pe *slave;
522         s64 rc;
523
524         /* Fetch master PE */
525         if (pe->flags & PNV_IODA_PE_SLAVE) {
526                 pe = pe->master;
527                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
528                         return;
529
530                 pe_no = pe->pe_number;
531         }
532
533         /* Freeze master PE */
534         rc = opal_pci_eeh_freeze_set(phb->opal_id,
535                                      pe_no,
536                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
537         if (rc != OPAL_SUCCESS) {
538                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
539                         __func__, rc, phb->hose->global_number, pe_no);
540                 return;
541         }
542
543         /* Freeze slave PEs */
544         if (!(pe->flags & PNV_IODA_PE_MASTER))
545                 return;
546
547         list_for_each_entry(slave, &pe->slaves, list) {
548                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
549                                              slave->pe_number,
550                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
551                 if (rc != OPAL_SUCCESS)
552                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
553                                 __func__, rc, phb->hose->global_number,
554                                 slave->pe_number);
555         }
556 }
557
558 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
559 {
560         struct pnv_ioda_pe *pe, *slave;
561         s64 rc;
562
563         /* Find master PE */
564         pe = &phb->ioda.pe_array[pe_no];
565         if (pe->flags & PNV_IODA_PE_SLAVE) {
566                 pe = pe->master;
567                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
568                 pe_no = pe->pe_number;
569         }
570
571         /* Clear frozen state for master PE */
572         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
573         if (rc != OPAL_SUCCESS) {
574                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
575                         __func__, rc, opt, phb->hose->global_number, pe_no);
576                 return -EIO;
577         }
578
579         if (!(pe->flags & PNV_IODA_PE_MASTER))
580                 return 0;
581
582         /* Clear frozen state for slave PEs */
583         list_for_each_entry(slave, &pe->slaves, list) {
584                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
585                                              slave->pe_number,
586                                              opt);
587                 if (rc != OPAL_SUCCESS) {
588                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
589                                 __func__, rc, opt, phb->hose->global_number,
590                                 slave->pe_number);
591                         return -EIO;
592                 }
593         }
594
595         return 0;
596 }
597
598 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
599 {
600         struct pnv_ioda_pe *slave, *pe;
601         u8 fstate, state;
602         __be16 pcierr;
603         s64 rc;
604
605         /* Sanity check on PE number */
606         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
607                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
608
609         /*
610          * Fetch the master PE and the PE instance might be
611          * not initialized yet.
612          */
613         pe = &phb->ioda.pe_array[pe_no];
614         if (pe->flags & PNV_IODA_PE_SLAVE) {
615                 pe = pe->master;
616                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
617                 pe_no = pe->pe_number;
618         }
619
620         /* Check the master PE */
621         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
622                                         &state, &pcierr, NULL);
623         if (rc != OPAL_SUCCESS) {
624                 pr_warn("%s: Failure %lld getting "
625                         "PHB#%x-PE#%x state\n",
626                         __func__, rc,
627                         phb->hose->global_number, pe_no);
628                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
629         }
630
631         /* Check the slave PE */
632         if (!(pe->flags & PNV_IODA_PE_MASTER))
633                 return state;
634
635         list_for_each_entry(slave, &pe->slaves, list) {
636                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
637                                                 slave->pe_number,
638                                                 &fstate,
639                                                 &pcierr,
640                                                 NULL);
641                 if (rc != OPAL_SUCCESS) {
642                         pr_warn("%s: Failure %lld getting "
643                                 "PHB#%x-PE#%x state\n",
644                                 __func__, rc,
645                                 phb->hose->global_number, slave->pe_number);
646                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
647                 }
648
649                 /*
650                  * Override the result based on the ascending
651                  * priority.
652                  */
653                 if (fstate > state)
654                         state = fstate;
655         }
656
657         return state;
658 }
659
660 /* Currently those 2 are only used when MSIs are enabled, this will change
661  * but in the meantime, we need to protect them to avoid warnings
662  */
663 #ifdef CONFIG_PCI_MSI
664 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
665 {
666         struct pci_controller *hose = pci_bus_to_host(dev->bus);
667         struct pnv_phb *phb = hose->private_data;
668         struct pci_dn *pdn = pci_get_pdn(dev);
669
670         if (!pdn)
671                 return NULL;
672         if (pdn->pe_number == IODA_INVALID_PE)
673                 return NULL;
674         return &phb->ioda.pe_array[pdn->pe_number];
675 }
676 #endif /* CONFIG_PCI_MSI */
677
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679                                   struct pnv_ioda_pe *parent,
680                                   struct pnv_ioda_pe *child,
681                                   bool is_add)
682 {
683         const char *desc = is_add ? "adding" : "removing";
684         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685                               OPAL_REMOVE_PE_FROM_DOMAIN;
686         struct pnv_ioda_pe *slave;
687         long rc;
688
689         /* Parent PE affects child PE */
690         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691                                 child->pe_number, op);
692         if (rc != OPAL_SUCCESS) {
693                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694                         rc, desc);
695                 return -ENXIO;
696         }
697
698         if (!(child->flags & PNV_IODA_PE_MASTER))
699                 return 0;
700
701         /* Compound case: parent PE affects slave PEs */
702         list_for_each_entry(slave, &child->slaves, list) {
703                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704                                         slave->pe_number, op);
705                 if (rc != OPAL_SUCCESS) {
706                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707                                 rc, desc);
708                         return -ENXIO;
709                 }
710         }
711
712         return 0;
713 }
714
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716                               struct pnv_ioda_pe *pe,
717                               bool is_add)
718 {
719         struct pnv_ioda_pe *slave;
720         struct pci_dev *pdev = NULL;
721         int ret;
722
723         /*
724          * Clear PE frozen state. If it's master PE, we need
725          * clear slave PE frozen state as well.
726          */
727         if (is_add) {
728                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730                 if (pe->flags & PNV_IODA_PE_MASTER) {
731                         list_for_each_entry(slave, &pe->slaves, list)
732                                 opal_pci_eeh_freeze_clear(phb->opal_id,
733                                                           slave->pe_number,
734                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735                 }
736         }
737
738         /*
739          * Associate PE in PELT. We need add the PE into the
740          * corresponding PELT-V as well. Otherwise, the error
741          * originated from the PE might contribute to other
742          * PEs.
743          */
744         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745         if (ret)
746                 return ret;
747
748         /* For compound PEs, any one affects all of them */
749         if (pe->flags & PNV_IODA_PE_MASTER) {
750                 list_for_each_entry(slave, &pe->slaves, list) {
751                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752                         if (ret)
753                                 return ret;
754                 }
755         }
756
757         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758                 pdev = pe->pbus->self;
759         else if (pe->flags & PNV_IODA_PE_DEV)
760                 pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762         else if (pe->flags & PNV_IODA_PE_VF)
763                 pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765         while (pdev) {
766                 struct pci_dn *pdn = pci_get_pdn(pdev);
767                 struct pnv_ioda_pe *parent;
768
769                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770                         parent = &phb->ioda.pe_array[pdn->pe_number];
771                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772                         if (ret)
773                                 return ret;
774                 }
775
776                 pdev = pdev->bus->self;
777         }
778
779         return 0;
780 }
781
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784         struct pci_dev *parent;
785         uint8_t bcomp, dcomp, fcomp;
786         int64_t rc;
787         long rid_end, rid;
788
789         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790         if (pe->pbus) {
791                 int count;
792
793                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795                 parent = pe->pbus->self;
796                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
797                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798                 else
799                         count = 1;
800
801                 switch(count) {
802                 case  1: bcomp = OpalPciBusAll;         break;
803                 case  2: bcomp = OpalPciBus7Bits;       break;
804                 case  4: bcomp = OpalPciBus6Bits;       break;
805                 case  8: bcomp = OpalPciBus5Bits;       break;
806                 case 16: bcomp = OpalPciBus4Bits;       break;
807                 case 32: bcomp = OpalPciBus3Bits;       break;
808                 default:
809                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810                                 count);
811                         /* Do an exact match only */
812                         bcomp = OpalPciBusAll;
813                 }
814                 rid_end = pe->rid + (count << 8);
815         } else {
816 #ifdef CONFIG_PCI_IOV
817                 if (pe->flags & PNV_IODA_PE_VF)
818                         parent = pe->parent_dev;
819                 else
820 #endif
821                         parent = pe->pdev->bus->self;
822                 bcomp = OpalPciBusAll;
823                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825                 rid_end = pe->rid + 1;
826         }
827
828         /* Clear the reverse map */
829         for (rid = pe->rid; rid < rid_end; rid++)
830                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831
832         /* Release from all parents PELT-V */
833         while (parent) {
834                 struct pci_dn *pdn = pci_get_pdn(parent);
835                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838                         /* XXX What to do in case of error ? */
839                 }
840                 parent = parent->bus->self;
841         }
842
843         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845
846         /* Disassociate PE in PELT */
847         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849         if (rc)
850                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
851         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853         if (rc)
854                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855
856         pe->pbus = NULL;
857         pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859         pe->parent_dev = NULL;
860 #endif
861
862         return 0;
863 }
864
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867         struct pci_dev *parent;
868         uint8_t bcomp, dcomp, fcomp;
869         long rc, rid_end, rid;
870
871         /* Bus validation ? */
872         if (pe->pbus) {
873                 int count;
874
875                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877                 parent = pe->pbus->self;
878                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
879                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880                 else
881                         count = 1;
882
883                 switch(count) {
884                 case  1: bcomp = OpalPciBusAll;         break;
885                 case  2: bcomp = OpalPciBus7Bits;       break;
886                 case  4: bcomp = OpalPciBus6Bits;       break;
887                 case  8: bcomp = OpalPciBus5Bits;       break;
888                 case 16: bcomp = OpalPciBus4Bits;       break;
889                 case 32: bcomp = OpalPciBus3Bits;       break;
890                 default:
891                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892                                 count);
893                         /* Do an exact match only */
894                         bcomp = OpalPciBusAll;
895                 }
896                 rid_end = pe->rid + (count << 8);
897         } else {
898 #ifdef CONFIG_PCI_IOV
899                 if (pe->flags & PNV_IODA_PE_VF)
900                         parent = pe->parent_dev;
901                 else
902 #endif /* CONFIG_PCI_IOV */
903                         parent = pe->pdev->bus->self;
904                 bcomp = OpalPciBusAll;
905                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907                 rid_end = pe->rid + 1;
908         }
909
910         /*
911          * Associate PE in PELT. We need add the PE into the
912          * corresponding PELT-V as well. Otherwise, the error
913          * originated from the PE might contribute to other
914          * PEs.
915          */
916         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
918         if (rc) {
919                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920                 return -ENXIO;
921         }
922
923         /*
924          * Configure PELTV. NPUs don't have a PELTV table so skip
925          * configuration on them.
926          */
927         if (phb->type != PNV_PHB_NPU)
928                 pnv_ioda_set_peltv(phb, pe, true);
929
930         /* Setup reverse map */
931         for (rid = pe->rid; rid < rid_end; rid++)
932                 phb->ioda.pe_rmap[rid] = pe->pe_number;
933
934         /* Setup one MVTs on IODA1 */
935         if (phb->type != PNV_PHB_IODA1) {
936                 pe->mve_number = 0;
937                 goto out;
938         }
939
940         pe->mve_number = pe->pe_number;
941         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942         if (rc != OPAL_SUCCESS) {
943                 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944                        rc, pe->mve_number);
945                 pe->mve_number = -1;
946         } else {
947                 rc = opal_pci_set_mve_enable(phb->opal_id,
948                                              pe->mve_number, OPAL_ENABLE_MVE);
949                 if (rc) {
950                         pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951                                rc, pe->mve_number);
952                         pe->mve_number = -1;
953                 }
954         }
955
956 out:
957         return 0;
958 }
959
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963         struct pci_dn *pdn = pci_get_pdn(dev);
964         int i;
965         struct resource *res, res2;
966         resource_size_t size;
967         u16 num_vfs;
968
969         if (!dev->is_physfn)
970                 return -EINVAL;
971
972         /*
973          * "offset" is in VFs.  The M64 windows are sized so that when they
974          * are segmented, each segment is the same size as the IOV BAR.
975          * Each segment is in a separate PE, and the high order bits of the
976          * address are the PE number.  Therefore, each VF's BAR is in a
977          * separate PE, and changing the IOV BAR start address changes the
978          * range of PEs the VFs are in.
979          */
980         num_vfs = pdn->num_vfs;
981         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982                 res = &dev->resource[i + PCI_IOV_RESOURCES];
983                 if (!res->flags || !res->parent)
984                         continue;
985
986                 /*
987                  * The actual IOV BAR range is determined by the start address
988                  * and the actual size for num_vfs VFs BAR.  This check is to
989                  * make sure that after shifting, the range will not overlap
990                  * with another device.
991                  */
992                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993                 res2.flags = res->flags;
994                 res2.start = res->start + (size * offset);
995                 res2.end = res2.start + (size * num_vfs) - 1;
996
997                 if (res2.end > res->end) {
998                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999                                 i, &res2, res, num_vfs, offset);
1000                         return -EBUSY;
1001                 }
1002         }
1003
1004         /*
1005          * After doing so, there would be a "hole" in the /proc/iomem when
1006          * offset is a positive value. It looks like the device return some
1007          * mmio back to the system, which actually no one could use it.
1008          */
1009         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1010                 res = &dev->resource[i + PCI_IOV_RESOURCES];
1011                 if (!res->flags || !res->parent)
1012                         continue;
1013
1014                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1015                 res2 = *res;
1016                 res->start += size * offset;
1017
1018                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1019                          i, &res2, res, (offset > 0) ? "En" : "Dis",
1020                          num_vfs, offset);
1021                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1022         }
1023         return 0;
1024 }
1025 #endif /* CONFIG_PCI_IOV */
1026
1027 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1028 {
1029         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1030         struct pnv_phb *phb = hose->private_data;
1031         struct pci_dn *pdn = pci_get_pdn(dev);
1032         struct pnv_ioda_pe *pe;
1033
1034         if (!pdn) {
1035                 pr_err("%s: Device tree node not associated properly\n",
1036                            pci_name(dev));
1037                 return NULL;
1038         }
1039         if (pdn->pe_number != IODA_INVALID_PE)
1040                 return NULL;
1041
1042         pe = pnv_ioda_alloc_pe(phb);
1043         if (!pe) {
1044                 pr_warning("%s: Not enough PE# available, disabling device\n",
1045                            pci_name(dev));
1046                 return NULL;
1047         }
1048
1049         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1050          * pointer in the PE data structure, both should be destroyed at the
1051          * same time. However, this needs to be looked at more closely again
1052          * once we actually start removing things (Hotplug, SR-IOV, ...)
1053          *
1054          * At some point we want to remove the PDN completely anyways
1055          */
1056         pci_dev_get(dev);
1057         pdn->pcidev = dev;
1058         pdn->pe_number = pe->pe_number;
1059         pe->flags = PNV_IODA_PE_DEV;
1060         pe->pdev = dev;
1061         pe->pbus = NULL;
1062         pe->mve_number = -1;
1063         pe->rid = dev->bus->number << 8 | pdn->devfn;
1064
1065         pe_info(pe, "Associated device to PE\n");
1066
1067         if (pnv_ioda_configure_pe(phb, pe)) {
1068                 /* XXX What do we do here ? */
1069                 pnv_ioda_free_pe(pe);
1070                 pdn->pe_number = IODA_INVALID_PE;
1071                 pe->pdev = NULL;
1072                 pci_dev_put(dev);
1073                 return NULL;
1074         }
1075
1076         /* Put PE to the list */
1077         list_add_tail(&pe->list, &phb->ioda.pe_list);
1078
1079         return pe;
1080 }
1081
1082 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1083 {
1084         struct pci_dev *dev;
1085
1086         list_for_each_entry(dev, &bus->devices, bus_list) {
1087                 struct pci_dn *pdn = pci_get_pdn(dev);
1088
1089                 if (pdn == NULL) {
1090                         pr_warn("%s: No device node associated with device !\n",
1091                                 pci_name(dev));
1092                         continue;
1093                 }
1094
1095                 /*
1096                  * In partial hotplug case, the PCI device might be still
1097                  * associated with the PE and needn't attach it to the PE
1098                  * again.
1099                  */
1100                 if (pdn->pe_number != IODA_INVALID_PE)
1101                         continue;
1102
1103                 pe->device_count++;
1104                 pdn->pcidev = dev;
1105                 pdn->pe_number = pe->pe_number;
1106                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1107                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1108         }
1109 }
1110
1111 /*
1112  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1113  * single PCI bus. Another one that contains the primary PCI bus and its
1114  * subordinate PCI devices and buses. The second type of PE is normally
1115  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1116  */
1117 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1118 {
1119         struct pci_controller *hose = pci_bus_to_host(bus);
1120         struct pnv_phb *phb = hose->private_data;
1121         struct pnv_ioda_pe *pe = NULL;
1122         unsigned int pe_num;
1123
1124         /*
1125          * In partial hotplug case, the PE instance might be still alive.
1126          * We should reuse it instead of allocating a new one.
1127          */
1128         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1129         if (pe_num != IODA_INVALID_PE) {
1130                 pe = &phb->ioda.pe_array[pe_num];
1131                 pnv_ioda_setup_same_PE(bus, pe);
1132                 return NULL;
1133         }
1134
1135         /* PE number for root bus should have been reserved */
1136         if (pci_is_root_bus(bus) &&
1137             phb->ioda.root_pe_idx != IODA_INVALID_PE)
1138                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1139
1140         /* Check if PE is determined by M64 */
1141         if (!pe && phb->pick_m64_pe)
1142                 pe = phb->pick_m64_pe(bus, all);
1143
1144         /* The PE number isn't pinned by M64 */
1145         if (!pe)
1146                 pe = pnv_ioda_alloc_pe(phb);
1147
1148         if (!pe) {
1149                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1150                         __func__, pci_domain_nr(bus), bus->number);
1151                 return NULL;
1152         }
1153
1154         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1155         pe->pbus = bus;
1156         pe->pdev = NULL;
1157         pe->mve_number = -1;
1158         pe->rid = bus->busn_res.start << 8;
1159
1160         if (all)
1161                 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1162                         bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1163         else
1164                 pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1165                         bus->busn_res.start, pe->pe_number);
1166
1167         if (pnv_ioda_configure_pe(phb, pe)) {
1168                 /* XXX What do we do here ? */
1169                 pnv_ioda_free_pe(pe);
1170                 pe->pbus = NULL;
1171                 return NULL;
1172         }
1173
1174         /* Associate it with all child devices */
1175         pnv_ioda_setup_same_PE(bus, pe);
1176
1177         /* Put PE to the list */
1178         list_add_tail(&pe->list, &phb->ioda.pe_list);
1179
1180         return pe;
1181 }
1182
1183 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1184 {
1185         int pe_num, found_pe = false, rc;
1186         long rid;
1187         struct pnv_ioda_pe *pe;
1188         struct pci_dev *gpu_pdev;
1189         struct pci_dn *npu_pdn;
1190         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1191         struct pnv_phb *phb = hose->private_data;
1192
1193         /*
1194          * Due to a hardware errata PE#0 on the NPU is reserved for
1195          * error handling. This means we only have three PEs remaining
1196          * which need to be assigned to four links, implying some
1197          * links must share PEs.
1198          *
1199          * To achieve this we assign PEs such that NPUs linking the
1200          * same GPU get assigned the same PE.
1201          */
1202         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1203         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1204                 pe = &phb->ioda.pe_array[pe_num];
1205                 if (!pe->pdev)
1206                         continue;
1207
1208                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1209                         /*
1210                          * This device has the same peer GPU so should
1211                          * be assigned the same PE as the existing
1212                          * peer NPU.
1213                          */
1214                         dev_info(&npu_pdev->dev,
1215                                 "Associating to existing PE %x\n", pe_num);
1216                         pci_dev_get(npu_pdev);
1217                         npu_pdn = pci_get_pdn(npu_pdev);
1218                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1219                         npu_pdn->pcidev = npu_pdev;
1220                         npu_pdn->pe_number = pe_num;
1221                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1222
1223                         /* Map the PE to this link */
1224                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1225                                         OpalPciBusAll,
1226                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1227                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1228                                         OPAL_MAP_PE);
1229                         WARN_ON(rc != OPAL_SUCCESS);
1230                         found_pe = true;
1231                         break;
1232                 }
1233         }
1234
1235         if (!found_pe)
1236                 /*
1237                  * Could not find an existing PE so allocate a new
1238                  * one.
1239                  */
1240                 return pnv_ioda_setup_dev_PE(npu_pdev);
1241         else
1242                 return pe;
1243 }
1244
1245 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1246 {
1247         struct pci_dev *pdev;
1248
1249         list_for_each_entry(pdev, &bus->devices, bus_list)
1250                 pnv_ioda_setup_npu_PE(pdev);
1251 }
1252
1253 static void pnv_pci_ioda_setup_PEs(void)
1254 {
1255         struct pci_controller *hose, *tmp;
1256         struct pnv_phb *phb;
1257
1258         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1259                 phb = hose->private_data;
1260                 if (phb->type == PNV_PHB_NPU) {
1261                         /* PE#0 is needed for error reporting */
1262                         pnv_ioda_reserve_pe(phb, 0);
1263                         pnv_ioda_setup_npu_PEs(hose->bus);
1264                         if (phb->model == PNV_PHB_MODEL_NPU2)
1265                                 pnv_npu2_init(phb);
1266                 }
1267         }
1268 }
1269
1270 #ifdef CONFIG_PCI_IOV
1271 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1272 {
1273         struct pci_bus        *bus;
1274         struct pci_controller *hose;
1275         struct pnv_phb        *phb;
1276         struct pci_dn         *pdn;
1277         int                    i, j;
1278         int                    m64_bars;
1279
1280         bus = pdev->bus;
1281         hose = pci_bus_to_host(bus);
1282         phb = hose->private_data;
1283         pdn = pci_get_pdn(pdev);
1284
1285         if (pdn->m64_single_mode)
1286                 m64_bars = num_vfs;
1287         else
1288                 m64_bars = 1;
1289
1290         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1291                 for (j = 0; j < m64_bars; j++) {
1292                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1293                                 continue;
1294                         opal_pci_phb_mmio_enable(phb->opal_id,
1295                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1296                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1297                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1298                 }
1299
1300         kfree(pdn->m64_map);
1301         return 0;
1302 }
1303
1304 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1305 {
1306         struct pci_bus        *bus;
1307         struct pci_controller *hose;
1308         struct pnv_phb        *phb;
1309         struct pci_dn         *pdn;
1310         unsigned int           win;
1311         struct resource       *res;
1312         int                    i, j;
1313         int64_t                rc;
1314         int                    total_vfs;
1315         resource_size_t        size, start;
1316         int                    pe_num;
1317         int                    m64_bars;
1318
1319         bus = pdev->bus;
1320         hose = pci_bus_to_host(bus);
1321         phb = hose->private_data;
1322         pdn = pci_get_pdn(pdev);
1323         total_vfs = pci_sriov_get_totalvfs(pdev);
1324
1325         if (pdn->m64_single_mode)
1326                 m64_bars = num_vfs;
1327         else
1328                 m64_bars = 1;
1329
1330         pdn->m64_map = kmalloc_array(m64_bars,
1331                                      sizeof(*pdn->m64_map),
1332                                      GFP_KERNEL);
1333         if (!pdn->m64_map)
1334                 return -ENOMEM;
1335         /* Initialize the m64_map to IODA_INVALID_M64 */
1336         for (i = 0; i < m64_bars ; i++)
1337                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1338                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1339
1340
1341         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1342                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1343                 if (!res->flags || !res->parent)
1344                         continue;
1345
1346                 for (j = 0; j < m64_bars; j++) {
1347                         do {
1348                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1349                                                 phb->ioda.m64_bar_idx + 1, 0);
1350
1351                                 if (win >= phb->ioda.m64_bar_idx + 1)
1352                                         goto m64_failed;
1353                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1354
1355                         pdn->m64_map[j][i] = win;
1356
1357                         if (pdn->m64_single_mode) {
1358                                 size = pci_iov_resource_size(pdev,
1359                                                         PCI_IOV_RESOURCES + i);
1360                                 start = res->start + size * j;
1361                         } else {
1362                                 size = resource_size(res);
1363                                 start = res->start;
1364                         }
1365
1366                         /* Map the M64 here */
1367                         if (pdn->m64_single_mode) {
1368                                 pe_num = pdn->pe_num_map[j];
1369                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1370                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1371                                                 pdn->m64_map[j][i], 0);
1372                         }
1373
1374                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1375                                                  OPAL_M64_WINDOW_TYPE,
1376                                                  pdn->m64_map[j][i],
1377                                                  start,
1378                                                  0, /* unused */
1379                                                  size);
1380
1381
1382                         if (rc != OPAL_SUCCESS) {
1383                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1384                                         win, rc);
1385                                 goto m64_failed;
1386                         }
1387
1388                         if (pdn->m64_single_mode)
1389                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1390                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1391                         else
1392                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1393                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1394
1395                         if (rc != OPAL_SUCCESS) {
1396                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1397                                         win, rc);
1398                                 goto m64_failed;
1399                         }
1400                 }
1401         }
1402         return 0;
1403
1404 m64_failed:
1405         pnv_pci_vf_release_m64(pdev, num_vfs);
1406         return -EBUSY;
1407 }
1408
1409 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1410                 int num);
1411 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1412
1413 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1414 {
1415         struct iommu_table    *tbl;
1416         int64_t               rc;
1417
1418         tbl = pe->table_group.tables[0];
1419         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1420         if (rc)
1421                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1422
1423         pnv_pci_ioda2_set_bypass(pe, false);
1424         if (pe->table_group.group) {
1425                 iommu_group_put(pe->table_group.group);
1426                 BUG_ON(pe->table_group.group);
1427         }
1428         iommu_tce_table_put(tbl);
1429 }
1430
1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1432 {
1433         struct pci_bus        *bus;
1434         struct pci_controller *hose;
1435         struct pnv_phb        *phb;
1436         struct pnv_ioda_pe    *pe, *pe_n;
1437         struct pci_dn         *pdn;
1438
1439         bus = pdev->bus;
1440         hose = pci_bus_to_host(bus);
1441         phb = hose->private_data;
1442         pdn = pci_get_pdn(pdev);
1443
1444         if (!pdev->is_physfn)
1445                 return;
1446
1447         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1448                 if (pe->parent_dev != pdev)
1449                         continue;
1450
1451                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1452
1453                 /* Remove from list */
1454                 mutex_lock(&phb->ioda.pe_list_mutex);
1455                 list_del(&pe->list);
1456                 mutex_unlock(&phb->ioda.pe_list_mutex);
1457
1458                 pnv_ioda_deconfigure_pe(phb, pe);
1459
1460                 pnv_ioda_free_pe(pe);
1461         }
1462 }
1463
1464 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1465 {
1466         struct pci_bus        *bus;
1467         struct pci_controller *hose;
1468         struct pnv_phb        *phb;
1469         struct pnv_ioda_pe    *pe;
1470         struct pci_dn         *pdn;
1471         u16                    num_vfs, i;
1472
1473         bus = pdev->bus;
1474         hose = pci_bus_to_host(bus);
1475         phb = hose->private_data;
1476         pdn = pci_get_pdn(pdev);
1477         num_vfs = pdn->num_vfs;
1478
1479         /* Release VF PEs */
1480         pnv_ioda_release_vf_PE(pdev);
1481
1482         if (phb->type == PNV_PHB_IODA2) {
1483                 if (!pdn->m64_single_mode)
1484                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1485
1486                 /* Release M64 windows */
1487                 pnv_pci_vf_release_m64(pdev, num_vfs);
1488
1489                 /* Release PE numbers */
1490                 if (pdn->m64_single_mode) {
1491                         for (i = 0; i < num_vfs; i++) {
1492                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1493                                         continue;
1494
1495                                 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1496                                 pnv_ioda_free_pe(pe);
1497                         }
1498                 } else
1499                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1500                 /* Releasing pe_num_map */
1501                 kfree(pdn->pe_num_map);
1502         }
1503 }
1504
1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1506                                        struct pnv_ioda_pe *pe);
1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509         struct pci_bus        *bus;
1510         struct pci_controller *hose;
1511         struct pnv_phb        *phb;
1512         struct pnv_ioda_pe    *pe;
1513         int                    pe_num;
1514         u16                    vf_index;
1515         struct pci_dn         *pdn;
1516
1517         bus = pdev->bus;
1518         hose = pci_bus_to_host(bus);
1519         phb = hose->private_data;
1520         pdn = pci_get_pdn(pdev);
1521
1522         if (!pdev->is_physfn)
1523                 return;
1524
1525         /* Reserve PE for each VF */
1526         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1527                 if (pdn->m64_single_mode)
1528                         pe_num = pdn->pe_num_map[vf_index];
1529                 else
1530                         pe_num = *pdn->pe_num_map + vf_index;
1531
1532                 pe = &phb->ioda.pe_array[pe_num];
1533                 pe->pe_number = pe_num;
1534                 pe->phb = phb;
1535                 pe->flags = PNV_IODA_PE_VF;
1536                 pe->pbus = NULL;
1537                 pe->parent_dev = pdev;
1538                 pe->mve_number = -1;
1539                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1540                            pci_iov_virtfn_devfn(pdev, vf_index);
1541
1542                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1543                         hose->global_number, pdev->bus->number,
1544                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1545                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1546
1547                 if (pnv_ioda_configure_pe(phb, pe)) {
1548                         /* XXX What do we do here ? */
1549                         pnv_ioda_free_pe(pe);
1550                         pe->pdev = NULL;
1551                         continue;
1552                 }
1553
1554                 /* Put PE to the list */
1555                 mutex_lock(&phb->ioda.pe_list_mutex);
1556                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1557                 mutex_unlock(&phb->ioda.pe_list_mutex);
1558
1559                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1560         }
1561 }
1562
1563 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1564 {
1565         struct pci_bus        *bus;
1566         struct pci_controller *hose;
1567         struct pnv_phb        *phb;
1568         struct pnv_ioda_pe    *pe;
1569         struct pci_dn         *pdn;
1570         int                    ret;
1571         u16                    i;
1572
1573         bus = pdev->bus;
1574         hose = pci_bus_to_host(bus);
1575         phb = hose->private_data;
1576         pdn = pci_get_pdn(pdev);
1577
1578         if (phb->type == PNV_PHB_IODA2) {
1579                 if (!pdn->vfs_expanded) {
1580                         dev_info(&pdev->dev, "don't support this SRIOV device"
1581                                 " with non 64bit-prefetchable IOV BAR\n");
1582                         return -ENOSPC;
1583                 }
1584
1585                 /*
1586                  * When M64 BARs functions in Single PE mode, the number of VFs
1587                  * could be enabled must be less than the number of M64 BARs.
1588                  */
1589                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1590                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1591                         return -EBUSY;
1592                 }
1593
1594                 /* Allocating pe_num_map */
1595                 if (pdn->m64_single_mode)
1596                         pdn->pe_num_map = kmalloc_array(num_vfs,
1597                                                         sizeof(*pdn->pe_num_map),
1598                                                         GFP_KERNEL);
1599                 else
1600                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1601
1602                 if (!pdn->pe_num_map)
1603                         return -ENOMEM;
1604
1605                 if (pdn->m64_single_mode)
1606                         for (i = 0; i < num_vfs; i++)
1607                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1608
1609                 /* Calculate available PE for required VFs */
1610                 if (pdn->m64_single_mode) {
1611                         for (i = 0; i < num_vfs; i++) {
1612                                 pe = pnv_ioda_alloc_pe(phb);
1613                                 if (!pe) {
1614                                         ret = -EBUSY;
1615                                         goto m64_failed;
1616                                 }
1617
1618                                 pdn->pe_num_map[i] = pe->pe_number;
1619                         }
1620                 } else {
1621                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1622                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1623                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1624                                 0, num_vfs, 0);
1625                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1626                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1627                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1628                                 kfree(pdn->pe_num_map);
1629                                 return -EBUSY;
1630                         }
1631                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1632                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1633                 }
1634                 pdn->num_vfs = num_vfs;
1635
1636                 /* Assign M64 window accordingly */
1637                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1638                 if (ret) {
1639                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1640                         goto m64_failed;
1641                 }
1642
1643                 /*
1644                  * When using one M64 BAR to map one IOV BAR, we need to shift
1645                  * the IOV BAR according to the PE# allocated to the VFs.
1646                  * Otherwise, the PE# for the VF will conflict with others.
1647                  */
1648                 if (!pdn->m64_single_mode) {
1649                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1650                         if (ret)
1651                                 goto m64_failed;
1652                 }
1653         }
1654
1655         /* Setup VF PEs */
1656         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1657
1658         return 0;
1659
1660 m64_failed:
1661         if (pdn->m64_single_mode) {
1662                 for (i = 0; i < num_vfs; i++) {
1663                         if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1664                                 continue;
1665
1666                         pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1667                         pnv_ioda_free_pe(pe);
1668                 }
1669         } else
1670                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1671
1672         /* Releasing pe_num_map */
1673         kfree(pdn->pe_num_map);
1674
1675         return ret;
1676 }
1677
1678 int pcibios_sriov_disable(struct pci_dev *pdev)
1679 {
1680         pnv_pci_sriov_disable(pdev);
1681
1682         /* Release PCI data */
1683         remove_dev_pci_data(pdev);
1684         return 0;
1685 }
1686
1687 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1688 {
1689         /* Allocate PCI data */
1690         add_dev_pci_data(pdev);
1691
1692         return pnv_pci_sriov_enable(pdev, num_vfs);
1693 }
1694 #endif /* CONFIG_PCI_IOV */
1695
1696 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1697 {
1698         struct pci_dn *pdn = pci_get_pdn(pdev);
1699         struct pnv_ioda_pe *pe;
1700
1701         /*
1702          * The function can be called while the PE#
1703          * hasn't been assigned. Do nothing for the
1704          * case.
1705          */
1706         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1707                 return;
1708
1709         pe = &phb->ioda.pe_array[pdn->pe_number];
1710         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1711         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1712         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1713         /*
1714          * Note: iommu_add_device() will fail here as
1715          * for physical PE: the device is already added by now;
1716          * for virtual PE: sysfs entries are not ready yet and
1717          * tce_iommu_bus_notifier will add the device to a group later.
1718          */
1719 }
1720
1721 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1722 {
1723         unsigned short vendor = 0;
1724         struct pci_dev *pdev;
1725
1726         if (pe->device_count == 1)
1727                 return true;
1728
1729         /* pe->pdev should be set if it's a single device, pe->pbus if not */
1730         if (!pe->pbus)
1731                 return true;
1732
1733         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1734                 if (!vendor) {
1735                         vendor = pdev->vendor;
1736                         continue;
1737                 }
1738
1739                 if (pdev->vendor != vendor)
1740                         return false;
1741         }
1742
1743         return true;
1744 }
1745
1746 /*
1747  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1748  *
1749  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1750  * Devices can only access more than that if bit 59 of the PCI address is set
1751  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1752  * Many PCI devices are not capable of addressing that many bits, and as a
1753  * result are limited to the 4GB of virtual memory made available to 32-bit
1754  * devices in TVE#0.
1755  *
1756  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1757  * devices by configuring the virtual memory past the first 4GB inaccessible
1758  * by 64-bit DMAs.  This should only be used by devices that want more than
1759  * 4GB, and only on PEs that have no 32-bit devices.
1760  *
1761  * Currently this will only work on PHB3 (POWER8).
1762  */
1763 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1764 {
1765         u64 window_size, table_size, tce_count, addr;
1766         struct page *table_pages;
1767         u64 tce_order = 28; /* 256MB TCEs */
1768         __be64 *tces;
1769         s64 rc;
1770
1771         /*
1772          * Window size needs to be a power of two, but needs to account for
1773          * shifting memory by the 4GB offset required to skip 32bit space.
1774          */
1775         window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1776         tce_count = window_size >> tce_order;
1777         table_size = tce_count << 3;
1778
1779         if (table_size < PAGE_SIZE)
1780                 table_size = PAGE_SIZE;
1781
1782         table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1783                                        get_order(table_size));
1784         if (!table_pages)
1785                 goto err;
1786
1787         tces = page_address(table_pages);
1788         if (!tces)
1789                 goto err;
1790
1791         memset(tces, 0, table_size);
1792
1793         for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1794                 tces[(addr + (1ULL << 32)) >> tce_order] =
1795                         cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1796         }
1797
1798         rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1799                                         pe->pe_number,
1800                                         /* reconfigure window 0 */
1801                                         (pe->pe_number << 1) + 0,
1802                                         1,
1803                                         __pa(tces),
1804                                         table_size,
1805                                         1 << tce_order);
1806         if (rc == OPAL_SUCCESS) {
1807                 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1808                 return 0;
1809         }
1810 err:
1811         pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1812         return -EIO;
1813 }
1814
1815 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1816 {
1817         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1818         struct pnv_phb *phb = hose->private_data;
1819         struct pci_dn *pdn = pci_get_pdn(pdev);
1820         struct pnv_ioda_pe *pe;
1821         uint64_t top;
1822         bool bypass = false;
1823         s64 rc;
1824
1825         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1826                 return -ENODEV;;
1827
1828         pe = &phb->ioda.pe_array[pdn->pe_number];
1829         if (pe->tce_bypass_enabled) {
1830                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1831                 bypass = (dma_mask >= top);
1832         }
1833
1834         if (bypass) {
1835                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1836                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1837         } else {
1838                 /*
1839                  * If the device can't set the TCE bypass bit but still wants
1840                  * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1841                  * bypass the 32-bit region and be usable for 64-bit DMAs.
1842                  * The device needs to be able to address all of this space.
1843                  */
1844                 if (dma_mask >> 32 &&
1845                     dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1846                     pnv_pci_ioda_pe_single_vendor(pe) &&
1847                     phb->model == PNV_PHB_MODEL_PHB3) {
1848                         /* Configure the bypass mode */
1849                         rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1850                         if (rc)
1851                                 return rc;
1852                         /* 4GB offset bypasses 32-bit space */
1853                         set_dma_offset(&pdev->dev, (1ULL << 32));
1854                         set_dma_ops(&pdev->dev, &dma_direct_ops);
1855                 } else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1856                         /*
1857                          * Fail the request if a DMA mask between 32 and 64 bits
1858                          * was requested but couldn't be fulfilled. Ideally we
1859                          * would do this for 64-bits but historically we have
1860                          * always fallen back to 32-bits.
1861                          */
1862                         return -ENOMEM;
1863                 } else {
1864                         dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1865                         set_dma_ops(&pdev->dev, &dma_iommu_ops);
1866                 }
1867         }
1868         *pdev->dev.dma_mask = dma_mask;
1869
1870         /* Update peer npu devices */
1871         pnv_npu_try_dma_set_bypass(pdev, bypass);
1872
1873         return 0;
1874 }
1875
1876 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1877 {
1878         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1879         struct pnv_phb *phb = hose->private_data;
1880         struct pci_dn *pdn = pci_get_pdn(pdev);
1881         struct pnv_ioda_pe *pe;
1882         u64 end, mask;
1883
1884         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1885                 return 0;
1886
1887         pe = &phb->ioda.pe_array[pdn->pe_number];
1888         if (!pe->tce_bypass_enabled)
1889                 return __dma_get_required_mask(&pdev->dev);
1890
1891
1892         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1893         mask = 1ULL << (fls64(end) - 1);
1894         mask += mask - 1;
1895
1896         return mask;
1897 }
1898
1899 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1900                                    struct pci_bus *bus,
1901                                    bool add_to_group)
1902 {
1903         struct pci_dev *dev;
1904
1905         list_for_each_entry(dev, &bus->devices, bus_list) {
1906                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1907                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1908                 if (add_to_group)
1909                         iommu_add_device(&dev->dev);
1910
1911                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1912                         pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1913                                         add_to_group);
1914         }
1915 }
1916
1917 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1918                                                      bool real_mode)
1919 {
1920         return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1921                 (phb->regs + 0x210);
1922 }
1923
1924 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1925                 unsigned long index, unsigned long npages, bool rm)
1926 {
1927         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1928                         &tbl->it_group_list, struct iommu_table_group_link,
1929                         next);
1930         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1931                         struct pnv_ioda_pe, table_group);
1932         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1933         unsigned long start, end, inc;
1934
1935         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1936         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1937                         npages - 1);
1938
1939         /* p7ioc-style invalidation, 2 TCEs per write */
1940         start |= (1ull << 63);
1941         end |= (1ull << 63);
1942         inc = 16;
1943         end |= inc - 1; /* round up end to be different than start */
1944
1945         mb(); /* Ensure above stores are visible */
1946         while (start <= end) {
1947                 if (rm)
1948                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1949                 else
1950                         __raw_writeq(cpu_to_be64(start), invalidate);
1951                 start += inc;
1952         }
1953
1954         /*
1955          * The iommu layer will do another mb() for us on build()
1956          * and we don't care on free()
1957          */
1958 }
1959
1960 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1961                 long npages, unsigned long uaddr,
1962                 enum dma_data_direction direction,
1963                 unsigned long attrs)
1964 {
1965         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1966                         attrs);
1967
1968         if (!ret)
1969                 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1970
1971         return ret;
1972 }
1973
1974 #ifdef CONFIG_IOMMU_API
1975 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1976                 unsigned long *hpa, enum dma_data_direction *direction)
1977 {
1978         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1979
1980         if (!ret)
1981                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1982
1983         return ret;
1984 }
1985
1986 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
1987                 unsigned long *hpa, enum dma_data_direction *direction)
1988 {
1989         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1990
1991         if (!ret)
1992                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
1993
1994         return ret;
1995 }
1996 #endif
1997
1998 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1999                 long npages)
2000 {
2001         pnv_tce_free(tbl, index, npages);
2002
2003         pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2004 }
2005
2006 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2007         .set = pnv_ioda1_tce_build,
2008 #ifdef CONFIG_IOMMU_API
2009         .exchange = pnv_ioda1_tce_xchg,
2010         .exchange_rm = pnv_ioda1_tce_xchg_rm,
2011 #endif
2012         .clear = pnv_ioda1_tce_free,
2013         .get = pnv_tce_get,
2014 };
2015
2016 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
2017 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
2018 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
2019
2020 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2021 {
2022         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2023         const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2024
2025         mb(); /* Ensure previous TCE table stores are visible */
2026         if (rm)
2027                 __raw_rm_writeq(cpu_to_be64(val), invalidate);
2028         else
2029                 __raw_writeq(cpu_to_be64(val), invalidate);
2030 }
2031
2032 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2033 {
2034         /* 01xb - invalidate TCEs that match the specified PE# */
2035         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2036         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2037
2038         mb(); /* Ensure above stores are visible */
2039         __raw_writeq(cpu_to_be64(val), invalidate);
2040 }
2041
2042 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2043                                         unsigned shift, unsigned long index,
2044                                         unsigned long npages)
2045 {
2046         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2047         unsigned long start, end, inc;
2048
2049         /* We'll invalidate DMA address in PE scope */
2050         start = PHB3_TCE_KILL_INVAL_ONE;
2051         start |= (pe->pe_number & 0xFF);
2052         end = start;
2053
2054         /* Figure out the start, end and step */
2055         start |= (index << shift);
2056         end |= ((index + npages - 1) << shift);
2057         inc = (0x1ull << shift);
2058         mb();
2059
2060         while (start <= end) {
2061                 if (rm)
2062                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
2063                 else
2064                         __raw_writeq(cpu_to_be64(start), invalidate);
2065                 start += inc;
2066         }
2067 }
2068
2069 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2070 {
2071         struct pnv_phb *phb = pe->phb;
2072
2073         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2074                 pnv_pci_phb3_tce_invalidate_pe(pe);
2075         else
2076                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2077                                   pe->pe_number, 0, 0, 0);
2078 }
2079
2080 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2081                 unsigned long index, unsigned long npages, bool rm)
2082 {
2083         struct iommu_table_group_link *tgl;
2084
2085         list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2086                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2087                                 struct pnv_ioda_pe, table_group);
2088                 struct pnv_phb *phb = pe->phb;
2089                 unsigned int shift = tbl->it_page_shift;
2090
2091                 /*
2092                  * NVLink1 can use the TCE kill register directly as
2093                  * it's the same as PHB3. NVLink2 is different and
2094                  * should go via the OPAL call.
2095                  */
2096                 if (phb->model == PNV_PHB_MODEL_NPU) {
2097                         /*
2098                          * The NVLink hardware does not support TCE kill
2099                          * per TCE entry so we have to invalidate
2100                          * the entire cache for it.
2101                          */
2102                         pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2103                         continue;
2104                 }
2105                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2106                         pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2107                                                     index, npages);
2108                 else
2109                         opal_pci_tce_kill(phb->opal_id,
2110                                           OPAL_PCI_TCE_KILL_PAGES,
2111                                           pe->pe_number, 1u << shift,
2112                                           index << shift, npages);
2113         }
2114 }
2115
2116 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2117 {
2118         if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2119                 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2120         else
2121                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2122 }
2123
2124 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2125                 long npages, unsigned long uaddr,
2126                 enum dma_data_direction direction,
2127                 unsigned long attrs)
2128 {
2129         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2130                         attrs);
2131
2132         if (!ret)
2133                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2134
2135         return ret;
2136 }
2137
2138 #ifdef CONFIG_IOMMU_API
2139 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2140                 unsigned long *hpa, enum dma_data_direction *direction)
2141 {
2142         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2143
2144         if (!ret)
2145                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2146
2147         return ret;
2148 }
2149
2150 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2151                 unsigned long *hpa, enum dma_data_direction *direction)
2152 {
2153         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2154
2155         if (!ret)
2156                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2157
2158         return ret;
2159 }
2160 #endif
2161
2162 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2163                 long npages)
2164 {
2165         pnv_tce_free(tbl, index, npages);
2166
2167         pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2168 }
2169
2170 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2171 {
2172         pnv_pci_ioda2_table_free_pages(tbl);
2173 }
2174
2175 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2176         .set = pnv_ioda2_tce_build,
2177 #ifdef CONFIG_IOMMU_API
2178         .exchange = pnv_ioda2_tce_xchg,
2179         .exchange_rm = pnv_ioda2_tce_xchg_rm,
2180 #endif
2181         .clear = pnv_ioda2_tce_free,
2182         .get = pnv_tce_get,
2183         .free = pnv_ioda2_table_free,
2184 };
2185
2186 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2187 {
2188         unsigned int *weight = (unsigned int *)data;
2189
2190         /* This is quite simplistic. The "base" weight of a device
2191          * is 10. 0 means no DMA is to be accounted for it.
2192          */
2193         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2194                 return 0;
2195
2196         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2197             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2198             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2199                 *weight += 3;
2200         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2201                 *weight += 15;
2202         else
2203                 *weight += 10;
2204
2205         return 0;
2206 }
2207
2208 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2209 {
2210         unsigned int weight = 0;
2211
2212         /* SRIOV VF has same DMA32 weight as its PF */
2213 #ifdef CONFIG_PCI_IOV
2214         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2215                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2216                 return weight;
2217         }
2218 #endif
2219
2220         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2221                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2222         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2223                 struct pci_dev *pdev;
2224
2225                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2226                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2227         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2228                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2229         }
2230
2231         return weight;
2232 }
2233
2234 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2235                                        struct pnv_ioda_pe *pe)
2236 {
2237
2238         struct page *tce_mem = NULL;
2239         struct iommu_table *tbl;
2240         unsigned int weight, total_weight = 0;
2241         unsigned int tce32_segsz, base, segs, avail, i;
2242         int64_t rc;
2243         void *addr;
2244
2245         /* XXX FIXME: Handle 64-bit only DMA devices */
2246         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2247         /* XXX FIXME: Allocate multi-level tables on PHB3 */
2248         weight = pnv_pci_ioda_pe_dma_weight(pe);
2249         if (!weight)
2250                 return;
2251
2252         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2253                      &total_weight);
2254         segs = (weight * phb->ioda.dma32_count) / total_weight;
2255         if (!segs)
2256                 segs = 1;
2257
2258         /*
2259          * Allocate contiguous DMA32 segments. We begin with the expected
2260          * number of segments. With one more attempt, the number of DMA32
2261          * segments to be allocated is decreased by one until one segment
2262          * is allocated successfully.
2263          */
2264         do {
2265                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2266                         for (avail = 0, i = base; i < base + segs; i++) {
2267                                 if (phb->ioda.dma32_segmap[i] ==
2268                                     IODA_INVALID_PE)
2269                                         avail++;
2270                         }
2271
2272                         if (avail == segs)
2273                                 goto found;
2274                 }
2275         } while (--segs);
2276
2277         if (!segs) {
2278                 pe_warn(pe, "No available DMA32 segments\n");
2279                 return;
2280         }
2281
2282 found:
2283         tbl = pnv_pci_table_alloc(phb->hose->node);
2284         if (WARN_ON(!tbl))
2285                 return;
2286
2287         iommu_register_group(&pe->table_group, phb->hose->global_number,
2288                         pe->pe_number);
2289         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2290
2291         /* Grab a 32-bit TCE table */
2292         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2293                 weight, total_weight, base, segs);
2294         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2295                 base * PNV_IODA1_DMA32_SEGSIZE,
2296                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2297
2298         /* XXX Currently, we allocate one big contiguous table for the
2299          * TCEs. We only really need one chunk per 256M of TCE space
2300          * (ie per segment) but that's an optimization for later, it
2301          * requires some added smarts with our get/put_tce implementation
2302          *
2303          * Each TCE page is 4KB in size and each TCE entry occupies 8
2304          * bytes
2305          */
2306         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2307         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2308                                    get_order(tce32_segsz * segs));
2309         if (!tce_mem) {
2310                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2311                 goto fail;
2312         }
2313         addr = page_address(tce_mem);
2314         memset(addr, 0, tce32_segsz * segs);
2315
2316         /* Configure HW */
2317         for (i = 0; i < segs; i++) {
2318                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2319                                               pe->pe_number,
2320                                               base + i, 1,
2321                                               __pa(addr) + tce32_segsz * i,
2322                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
2323                 if (rc) {
2324                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2325                                " err %ld\n", rc);
2326                         goto fail;
2327                 }
2328         }
2329
2330         /* Setup DMA32 segment mapping */
2331         for (i = base; i < base + segs; i++)
2332                 phb->ioda.dma32_segmap[i] = pe->pe_number;
2333
2334         /* Setup linux iommu table */
2335         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2336                                   base * PNV_IODA1_DMA32_SEGSIZE,
2337                                   IOMMU_PAGE_SHIFT_4K);
2338
2339         tbl->it_ops = &pnv_ioda1_iommu_ops;
2340         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2341         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2342         iommu_init_table(tbl, phb->hose->node);
2343
2344         if (pe->flags & PNV_IODA_PE_DEV) {
2345                 /*
2346                  * Setting table base here only for carrying iommu_group
2347                  * further down to let iommu_add_device() do the job.
2348                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2349                  */
2350                 set_iommu_table_base(&pe->pdev->dev, tbl);
2351                 iommu_add_device(&pe->pdev->dev);
2352         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2353                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2354
2355         return;
2356  fail:
2357         /* XXX Failure: Try to fallback to 64-bit only ? */
2358         if (tce_mem)
2359                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2360         if (tbl) {
2361                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2362                 iommu_tce_table_put(tbl);
2363         }
2364 }
2365
2366 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2367                 int num, struct iommu_table *tbl)
2368 {
2369         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2370                         table_group);
2371         struct pnv_phb *phb = pe->phb;
2372         int64_t rc;
2373         const unsigned long size = tbl->it_indirect_levels ?
2374                         tbl->it_level_size : tbl->it_size;
2375         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2376         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2377
2378         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2379                         start_addr, start_addr + win_size - 1,
2380                         IOMMU_PAGE_SIZE(tbl));
2381
2382         /*
2383          * Map TCE table through TVT. The TVE index is the PE number
2384          * shifted by 1 bit for 32-bits DMA space.
2385          */
2386         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2387                         pe->pe_number,
2388                         (pe->pe_number << 1) + num,
2389                         tbl->it_indirect_levels + 1,
2390                         __pa(tbl->it_base),
2391                         size << 3,
2392                         IOMMU_PAGE_SIZE(tbl));
2393         if (rc) {
2394                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2395                 return rc;
2396         }
2397
2398         pnv_pci_link_table_and_group(phb->hose->node, num,
2399                         tbl, &pe->table_group);
2400         pnv_pci_ioda2_tce_invalidate_pe(pe);
2401
2402         return 0;
2403 }
2404
2405 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2406 {
2407         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2408         int64_t rc;
2409
2410         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2411         if (enable) {
2412                 phys_addr_t top = memblock_end_of_DRAM();
2413
2414                 top = roundup_pow_of_two(top);
2415                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2416                                                      pe->pe_number,
2417                                                      window_id,
2418                                                      pe->tce_bypass_base,
2419                                                      top);
2420         } else {
2421                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2422                                                      pe->pe_number,
2423                                                      window_id,
2424                                                      pe->tce_bypass_base,
2425                                                      0);
2426         }
2427         if (rc)
2428                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2429         else
2430                 pe->tce_bypass_enabled = enable;
2431 }
2432
2433 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2434                 __u32 page_shift, __u64 window_size, __u32 levels,
2435                 struct iommu_table *tbl);
2436
2437 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2438                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2439                 struct iommu_table **ptbl)
2440 {
2441         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2442                         table_group);
2443         int nid = pe->phb->hose->node;
2444         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2445         long ret;
2446         struct iommu_table *tbl;
2447
2448         tbl = pnv_pci_table_alloc(nid);
2449         if (!tbl)
2450                 return -ENOMEM;
2451
2452         tbl->it_ops = &pnv_ioda2_iommu_ops;
2453
2454         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2455                         bus_offset, page_shift, window_size,
2456                         levels, tbl);
2457         if (ret) {
2458                 iommu_tce_table_put(tbl);
2459                 return ret;
2460         }
2461
2462         *ptbl = tbl;
2463
2464         return 0;
2465 }
2466
2467 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2468 {
2469         struct iommu_table *tbl = NULL;
2470         long rc;
2471
2472         /*
2473          * crashkernel= specifies the kdump kernel's maximum memory at
2474          * some offset and there is no guaranteed the result is a power
2475          * of 2, which will cause errors later.
2476          */
2477         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2478
2479         /*
2480          * In memory constrained environments, e.g. kdump kernel, the
2481          * DMA window can be larger than available memory, which will
2482          * cause errors later.
2483          */
2484         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2485
2486         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2487                         IOMMU_PAGE_SHIFT_4K,
2488                         window_size,
2489                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2490         if (rc) {
2491                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2492                                 rc);
2493                 return rc;
2494         }
2495
2496         iommu_init_table(tbl, pe->phb->hose->node);
2497
2498         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2499         if (rc) {
2500                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2501                                 rc);
2502                 iommu_tce_table_put(tbl);
2503                 return rc;
2504         }
2505
2506         if (!pnv_iommu_bypass_disabled)
2507                 pnv_pci_ioda2_set_bypass(pe, true);
2508
2509         /*
2510          * Setting table base here only for carrying iommu_group
2511          * further down to let iommu_add_device() do the job.
2512          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2513          */
2514         if (pe->flags & PNV_IODA_PE_DEV)
2515                 set_iommu_table_base(&pe->pdev->dev, tbl);
2516
2517         return 0;
2518 }
2519
2520 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2521 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2522                 int num)
2523 {
2524         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2525                         table_group);
2526         struct pnv_phb *phb = pe->phb;
2527         long ret;
2528
2529         pe_info(pe, "Removing DMA window #%d\n", num);
2530
2531         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2532                         (pe->pe_number << 1) + num,
2533                         0/* levels */, 0/* table address */,
2534                         0/* table size */, 0/* page size */);
2535         if (ret)
2536                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2537         else
2538                 pnv_pci_ioda2_tce_invalidate_pe(pe);
2539
2540         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2541
2542         return ret;
2543 }
2544 #endif
2545
2546 #ifdef CONFIG_IOMMU_API
2547 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2548                 __u64 window_size, __u32 levels)
2549 {
2550         unsigned long bytes = 0;
2551         const unsigned window_shift = ilog2(window_size);
2552         unsigned entries_shift = window_shift - page_shift;
2553         unsigned table_shift = entries_shift + 3;
2554         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2555         unsigned long direct_table_size;
2556
2557         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2558                         (window_size > memory_hotplug_max()) ||
2559                         !is_power_of_2(window_size))
2560                 return 0;
2561
2562         /* Calculate a direct table size from window_size and levels */
2563         entries_shift = (entries_shift + levels - 1) / levels;
2564         table_shift = entries_shift + 3;
2565         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2566         direct_table_size =  1UL << table_shift;
2567
2568         for ( ; levels; --levels) {
2569                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2570
2571                 tce_table_size /= direct_table_size;
2572                 tce_table_size <<= 3;
2573                 tce_table_size = max_t(unsigned long,
2574                                 tce_table_size, direct_table_size);
2575         }
2576
2577         return bytes;
2578 }
2579
2580 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2581 {
2582         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2583                                                 table_group);
2584         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2585         struct iommu_table *tbl = pe->table_group.tables[0];
2586
2587         pnv_pci_ioda2_set_bypass(pe, false);
2588         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2589         if (pe->pbus)
2590                 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2591         iommu_tce_table_put(tbl);
2592 }
2593
2594 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2595 {
2596         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2597                                                 table_group);
2598
2599         pnv_pci_ioda2_setup_default_config(pe);
2600         if (pe->pbus)
2601                 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2602 }
2603
2604 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2605         .get_table_size = pnv_pci_ioda2_get_table_size,
2606         .create_table = pnv_pci_ioda2_create_table,
2607         .set_window = pnv_pci_ioda2_set_window,
2608         .unset_window = pnv_pci_ioda2_unset_window,
2609         .take_ownership = pnv_ioda2_take_ownership,
2610         .release_ownership = pnv_ioda2_release_ownership,
2611 };
2612
2613 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2614 {
2615         struct pci_controller *hose;
2616         struct pnv_phb *phb;
2617         struct pnv_ioda_pe **ptmppe = opaque;
2618         struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2619         struct pci_dn *pdn = pci_get_pdn(pdev);
2620
2621         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2622                 return 0;
2623
2624         hose = pci_bus_to_host(pdev->bus);
2625         phb = hose->private_data;
2626         if (phb->type != PNV_PHB_NPU)
2627                 return 0;
2628
2629         *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2630
2631         return 1;
2632 }
2633
2634 /*
2635  * This returns PE of associated NPU.
2636  * This assumes that NPU is in the same IOMMU group with GPU and there is
2637  * no other PEs.
2638  */
2639 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2640                 struct iommu_table_group *table_group)
2641 {
2642         struct pnv_ioda_pe *npe = NULL;
2643         int ret = iommu_group_for_each_dev(table_group->group, &npe,
2644                         gpe_table_group_to_npe_cb);
2645
2646         BUG_ON(!ret || !npe);
2647
2648         return npe;
2649 }
2650
2651 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2652                 int num, struct iommu_table *tbl)
2653 {
2654         long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2655
2656         if (ret)
2657                 return ret;
2658
2659         ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2660         if (ret)
2661                 pnv_pci_ioda2_unset_window(table_group, num);
2662
2663         return ret;
2664 }
2665
2666 static long pnv_pci_ioda2_npu_unset_window(
2667                 struct iommu_table_group *table_group,
2668                 int num)
2669 {
2670         long ret = pnv_pci_ioda2_unset_window(table_group, num);
2671
2672         if (ret)
2673                 return ret;
2674
2675         return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2676 }
2677
2678 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2679 {
2680         /*
2681          * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2682          * the iommu_table if 32bit DMA is enabled.
2683          */
2684         pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2685         pnv_ioda2_take_ownership(table_group);
2686 }
2687
2688 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2689         .get_table_size = pnv_pci_ioda2_get_table_size,
2690         .create_table = pnv_pci_ioda2_create_table,
2691         .set_window = pnv_pci_ioda2_npu_set_window,
2692         .unset_window = pnv_pci_ioda2_npu_unset_window,
2693         .take_ownership = pnv_ioda2_npu_take_ownership,
2694         .release_ownership = pnv_ioda2_release_ownership,
2695 };
2696
2697 static void pnv_pci_ioda_setup_iommu_api(void)
2698 {
2699         struct pci_controller *hose, *tmp;
2700         struct pnv_phb *phb;
2701         struct pnv_ioda_pe *pe, *gpe;
2702
2703         /*
2704          * Now we have all PHBs discovered, time to add NPU devices to
2705          * the corresponding IOMMU groups.
2706          */
2707         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2708                 phb = hose->private_data;
2709
2710                 if (phb->type != PNV_PHB_NPU)
2711                         continue;
2712
2713                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2714                         gpe = pnv_pci_npu_setup_iommu(pe);
2715                         if (gpe)
2716                                 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2717                 }
2718         }
2719 }
2720 #else /* !CONFIG_IOMMU_API */
2721 static void pnv_pci_ioda_setup_iommu_api(void) { };
2722 #endif
2723
2724 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2725                 unsigned levels, unsigned long limit,
2726                 unsigned long *current_offset, unsigned long *total_allocated)
2727 {
2728         struct page *tce_mem = NULL;
2729         __be64 *addr, *tmp;
2730         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2731         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2732         unsigned entries = 1UL << (shift - 3);
2733         long i;
2734
2735         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2736         if (!tce_mem) {
2737                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2738                 return NULL;
2739         }
2740         addr = page_address(tce_mem);
2741         memset(addr, 0, allocated);
2742         *total_allocated += allocated;
2743
2744         --levels;
2745         if (!levels) {
2746                 *current_offset += allocated;
2747                 return addr;
2748         }
2749
2750         for (i = 0; i < entries; ++i) {
2751                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2752                                 levels, limit, current_offset, total_allocated);
2753                 if (!tmp)
2754                         break;
2755
2756                 addr[i] = cpu_to_be64(__pa(tmp) |
2757                                 TCE_PCI_READ | TCE_PCI_WRITE);
2758
2759                 if (*current_offset >= limit)
2760                         break;
2761         }
2762
2763         return addr;
2764 }
2765
2766 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2767                 unsigned long size, unsigned level);
2768
2769 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2770                 __u32 page_shift, __u64 window_size, __u32 levels,
2771                 struct iommu_table *tbl)
2772 {
2773         void *addr;
2774         unsigned long offset = 0, level_shift, total_allocated = 0;
2775         const unsigned window_shift = ilog2(window_size);
2776         unsigned entries_shift = window_shift - page_shift;
2777         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2778         const unsigned long tce_table_size = 1UL << table_shift;
2779
2780         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2781                 return -EINVAL;
2782
2783         if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2784                 return -EINVAL;
2785
2786         /* Adjust direct table size from window_size and levels */
2787         entries_shift = (entries_shift + levels - 1) / levels;
2788         level_shift = entries_shift + 3;
2789         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2790
2791         if ((level_shift - 3) * levels + page_shift >= 60)
2792                 return -EINVAL;
2793
2794         /* Allocate TCE table */
2795         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2796                         levels, tce_table_size, &offset, &total_allocated);
2797
2798         /* addr==NULL means that the first level allocation failed */
2799         if (!addr)
2800                 return -ENOMEM;
2801
2802         /*
2803          * First level was allocated but some lower level failed as
2804          * we did not allocate as much as we wanted,
2805          * release partially allocated table.
2806          */
2807         if (offset < tce_table_size) {
2808                 pnv_pci_ioda2_table_do_free_pages(addr,
2809                                 1ULL << (level_shift - 3), levels - 1);
2810                 return -ENOMEM;
2811         }
2812
2813         /* Setup linux iommu table */
2814         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2815                         page_shift);
2816         tbl->it_level_size = 1ULL << (level_shift - 3);
2817         tbl->it_indirect_levels = levels - 1;
2818         tbl->it_allocated_size = total_allocated;
2819
2820         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2821                         window_size, tce_table_size, bus_offset);
2822
2823         return 0;
2824 }
2825
2826 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2827                 unsigned long size, unsigned level)
2828 {
2829         const unsigned long addr_ul = (unsigned long) addr &
2830                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2831
2832         if (level) {
2833                 long i;
2834                 u64 *tmp = (u64 *) addr_ul;
2835
2836                 for (i = 0; i < size; ++i) {
2837                         unsigned long hpa = be64_to_cpu(tmp[i]);
2838
2839                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2840                                 continue;
2841
2842                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2843                                         level - 1);
2844                 }
2845         }
2846
2847         free_pages(addr_ul, get_order(size << 3));
2848 }
2849
2850 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2851 {
2852         const unsigned long size = tbl->it_indirect_levels ?
2853                         tbl->it_level_size : tbl->it_size;
2854
2855         if (!tbl->it_size)
2856                 return;
2857
2858         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2859                         tbl->it_indirect_levels);
2860 }
2861
2862 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2863                                        struct pnv_ioda_pe *pe)
2864 {
2865         int64_t rc;
2866
2867         if (!pnv_pci_ioda_pe_dma_weight(pe))
2868                 return;
2869
2870         /* TVE #1 is selected by PCI address bit 59 */
2871         pe->tce_bypass_base = 1ull << 59;
2872
2873         iommu_register_group(&pe->table_group, phb->hose->global_number,
2874                         pe->pe_number);
2875
2876         /* The PE will reserve all possible 32-bits space */
2877         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2878                 phb->ioda.m32_pci_base);
2879
2880         /* Setup linux iommu table */
2881         pe->table_group.tce32_start = 0;
2882         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2883         pe->table_group.max_dynamic_windows_supported =
2884                         IOMMU_TABLE_GROUP_MAX_TABLES;
2885         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2886         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2887 #ifdef CONFIG_IOMMU_API
2888         pe->table_group.ops = &pnv_pci_ioda2_ops;
2889 #endif
2890
2891         rc = pnv_pci_ioda2_setup_default_config(pe);
2892         if (rc)
2893                 return;
2894
2895         if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2896                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2897 }
2898
2899 #ifdef CONFIG_PCI_MSI
2900 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2901 {
2902         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2903                                            ioda.irq_chip);
2904
2905         return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2906 }
2907
2908 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2909 {
2910         int64_t rc;
2911         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2912         struct irq_chip *chip = irq_data_get_irq_chip(d);
2913
2914         rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2915         WARN_ON_ONCE(rc);
2916
2917         icp_native_eoi(d);
2918 }
2919
2920
2921 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2922 {
2923         struct irq_data *idata;
2924         struct irq_chip *ichip;
2925
2926         /* The MSI EOI OPAL call is only needed on PHB3 */
2927         if (phb->model != PNV_PHB_MODEL_PHB3)
2928                 return;
2929
2930         if (!phb->ioda.irq_chip_init) {
2931                 /*
2932                  * First time we setup an MSI IRQ, we need to setup the
2933                  * corresponding IRQ chip to route correctly.
2934                  */
2935                 idata = irq_get_irq_data(virq);
2936                 ichip = irq_data_get_irq_chip(idata);
2937                 phb->ioda.irq_chip_init = 1;
2938                 phb->ioda.irq_chip = *ichip;
2939                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2940         }
2941         irq_set_chip(virq, &phb->ioda.irq_chip);
2942 }
2943
2944 /*
2945  * Returns true iff chip is something that we could call
2946  * pnv_opal_pci_msi_eoi for.
2947  */
2948 bool is_pnv_opal_msi(struct irq_chip *chip)
2949 {
2950         return chip->irq_eoi == pnv_ioda2_msi_eoi;
2951 }
2952 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2953
2954 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2955                                   unsigned int hwirq, unsigned int virq,
2956                                   unsigned int is_64, struct msi_msg *msg)
2957 {
2958         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2959         unsigned int xive_num = hwirq - phb->msi_base;
2960         __be32 data;
2961         int rc;
2962
2963         /* No PE assigned ? bail out ... no MSI for you ! */
2964         if (pe == NULL)
2965                 return -ENXIO;
2966
2967         /* Check if we have an MVE */
2968         if (pe->mve_number < 0)
2969                 return -ENXIO;
2970
2971         /* Force 32-bit MSI on some broken devices */
2972         if (dev->no_64bit_msi)
2973                 is_64 = 0;
2974
2975         /* Assign XIVE to PE */
2976         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2977         if (rc) {
2978                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2979                         pci_name(dev), rc, xive_num);
2980                 return -EIO;
2981         }
2982
2983         if (is_64) {
2984                 __be64 addr64;
2985
2986                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2987                                      &addr64, &data);
2988                 if (rc) {
2989                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2990                                 pci_name(dev), rc);
2991                         return -EIO;
2992                 }
2993                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2994                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2995         } else {
2996                 __be32 addr32;
2997
2998                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2999                                      &addr32, &data);
3000                 if (rc) {
3001                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
3002                                 pci_name(dev), rc);
3003                         return -EIO;
3004                 }
3005                 msg->address_hi = 0;
3006                 msg->address_lo = be32_to_cpu(addr32);
3007         }
3008         msg->data = be32_to_cpu(data);
3009
3010         pnv_set_msi_irq_chip(phb, virq);
3011
3012         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
3013                  " address=%x_%08x data=%x PE# %x\n",
3014                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
3015                  msg->address_hi, msg->address_lo, data, pe->pe_number);
3016
3017         return 0;
3018 }
3019
3020 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
3021 {
3022         unsigned int count;
3023         const __be32 *prop = of_get_property(phb->hose->dn,
3024                                              "ibm,opal-msi-ranges", NULL);
3025         if (!prop) {
3026                 /* BML Fallback */
3027                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
3028         }
3029         if (!prop)
3030                 return;
3031
3032         phb->msi_base = be32_to_cpup(prop);
3033         count = be32_to_cpup(prop + 1);
3034         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
3035                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3036                        phb->hose->global_number);
3037                 return;
3038         }
3039
3040         phb->msi_setup = pnv_pci_ioda_msi_setup;
3041         phb->msi32_support = 1;
3042         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3043                 count, phb->msi_base);
3044 }
3045 #else
3046 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3047 #endif /* CONFIG_PCI_MSI */
3048
3049 #ifdef CONFIG_PCI_IOV
3050 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3051 {
3052         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3053         struct pnv_phb *phb = hose->private_data;
3054         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3055         struct resource *res;
3056         int i;
3057         resource_size_t size, total_vf_bar_sz;
3058         struct pci_dn *pdn;
3059         int mul, total_vfs;
3060
3061         if (!pdev->is_physfn || pdev->is_added)
3062                 return;
3063
3064         pdn = pci_get_pdn(pdev);
3065         pdn->vfs_expanded = 0;
3066         pdn->m64_single_mode = false;
3067
3068         total_vfs = pci_sriov_get_totalvfs(pdev);
3069         mul = phb->ioda.total_pe_num;
3070         total_vf_bar_sz = 0;
3071
3072         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3073                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3074                 if (!res->flags || res->parent)
3075                         continue;
3076                 if (!pnv_pci_is_m64_flags(res->flags)) {
3077                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
3078                                         " non M64 VF BAR%d: %pR. \n",
3079                                  i, res);
3080                         goto truncate_iov;
3081                 }
3082
3083                 total_vf_bar_sz += pci_iov_resource_size(pdev,
3084                                 i + PCI_IOV_RESOURCES);
3085
3086                 /*
3087                  * If bigger than quarter of M64 segment size, just round up
3088                  * power of two.
3089                  *
3090                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3091                  * with other devices, IOV BAR size is expanded to be
3092                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3093                  * segment size , the expanded size would equal to half of the
3094                  * whole M64 space size, which will exhaust the M64 Space and
3095                  * limit the system flexibility.  This is a design decision to
3096                  * set the boundary to quarter of the M64 segment size.
3097                  */
3098                 if (total_vf_bar_sz > gate) {
3099                         mul = roundup_pow_of_two(total_vfs);
3100                         dev_info(&pdev->dev,
3101                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3102                                 total_vf_bar_sz, gate, mul);
3103                         pdn->m64_single_mode = true;
3104                         break;
3105                 }
3106         }
3107
3108         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3109                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3110                 if (!res->flags || res->parent)
3111                         continue;
3112
3113                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3114                 /*
3115                  * On PHB3, the minimum size alignment of M64 BAR in single
3116                  * mode is 32MB.
3117                  */
3118                 if (pdn->m64_single_mode && (size < SZ_32M))
3119                         goto truncate_iov;
3120                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3121                 res->end = res->start + size * mul - 1;
3122                 dev_dbg(&pdev->dev, "                       %pR\n", res);
3123                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3124                          i, res, mul);
3125         }
3126         pdn->vfs_expanded = mul;
3127
3128         return;
3129
3130 truncate_iov:
3131         /* To save MMIO space, IOV BAR is truncated. */
3132         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3133                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3134                 res->flags = 0;
3135                 res->end = res->start - 1;
3136         }
3137 }
3138 #endif /* CONFIG_PCI_IOV */
3139
3140 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3141                                   struct resource *res)
3142 {
3143         struct pnv_phb *phb = pe->phb;
3144         struct pci_bus_region region;
3145         int index;
3146         int64_t rc;
3147
3148         if (!res || !res->flags || res->start > res->end)
3149                 return;
3150
3151         if (res->flags & IORESOURCE_IO) {
3152                 region.start = res->start - phb->ioda.io_pci_base;
3153                 region.end   = res->end - phb->ioda.io_pci_base;
3154                 index = region.start / phb->ioda.io_segsize;
3155
3156                 while (index < phb->ioda.total_pe_num &&
3157                        region.start <= region.end) {
3158                         phb->ioda.io_segmap[index] = pe->pe_number;
3159                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3160                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3161                         if (rc != OPAL_SUCCESS) {
3162                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3163                                        __func__, rc, index, pe->pe_number);
3164                                 break;
3165                         }
3166
3167                         region.start += phb->ioda.io_segsize;
3168                         index++;
3169                 }
3170         } else if ((res->flags & IORESOURCE_MEM) &&
3171                    !pnv_pci_is_m64(phb, res)) {
3172                 region.start = res->start -
3173                                phb->hose->mem_offset[0] -
3174                                phb->ioda.m32_pci_base;
3175                 region.end   = res->end -
3176                                phb->hose->mem_offset[0] -
3177                                phb->ioda.m32_pci_base;
3178                 index = region.start / phb->ioda.m32_segsize;
3179
3180                 while (index < phb->ioda.total_pe_num &&
3181                        region.start <= region.end) {
3182                         phb->ioda.m32_segmap[index] = pe->pe_number;
3183                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3184                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3185                         if (rc != OPAL_SUCCESS) {
3186                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3187                                        __func__, rc, index, pe->pe_number);
3188                                 break;
3189                         }
3190
3191                         region.start += phb->ioda.m32_segsize;
3192                         index++;
3193                 }
3194         }
3195 }
3196
3197 /*
3198  * This function is supposed to be called on basis of PE from top
3199  * to bottom style. So the the I/O or MMIO segment assigned to
3200  * parent PE could be overridden by its child PEs if necessary.
3201  */
3202 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3203 {
3204         struct pci_dev *pdev;
3205         int i;
3206
3207         /*
3208          * NOTE: We only care PCI bus based PE for now. For PCI
3209          * device based PE, for example SRIOV sensitive VF should
3210          * be figured out later.
3211          */
3212         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3213
3214         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3215                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3216                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3217
3218                 /*
3219                  * If the PE contains all subordinate PCI buses, the
3220                  * windows of the child bridges should be mapped to
3221                  * the PE as well.
3222                  */
3223                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3224                         continue;
3225                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3226                         pnv_ioda_setup_pe_res(pe,
3227                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3228         }
3229 }
3230
3231 #ifdef CONFIG_DEBUG_FS
3232 static int pnv_pci_diag_data_set(void *data, u64 val)
3233 {
3234         struct pci_controller *hose;
3235         struct pnv_phb *phb;
3236         s64 ret;
3237
3238         if (val != 1ULL)
3239                 return -EINVAL;
3240
3241         hose = (struct pci_controller *)data;
3242         if (!hose || !hose->private_data)
3243                 return -ENODEV;
3244
3245         phb = hose->private_data;
3246
3247         /* Retrieve the diag data from firmware */
3248         ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3249                                           phb->diag_data_size);
3250         if (ret != OPAL_SUCCESS)
3251                 return -EIO;
3252
3253         /* Print the diag data to the kernel log */
3254         pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3255         return 0;
3256 }
3257
3258 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3259                         pnv_pci_diag_data_set, "%llu\n");
3260
3261 #endif /* CONFIG_DEBUG_FS */
3262
3263 static void pnv_pci_ioda_create_dbgfs(void)
3264 {
3265 #ifdef CONFIG_DEBUG_FS
3266         struct pci_controller *hose, *tmp;
3267         struct pnv_phb *phb;
3268         char name[16];
3269
3270         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3271                 phb = hose->private_data;
3272
3273                 /* Notify initialization of PHB done */
3274                 phb->initialized = 1;
3275
3276                 sprintf(name, "PCI%04x", hose->global_number);
3277                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3278                 if (!phb->dbgfs) {
3279                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3280                                 __func__, hose->global_number);
3281                         continue;
3282                 }
3283
3284                 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3285                                     &pnv_pci_diag_data_fops);
3286         }
3287 #endif /* CONFIG_DEBUG_FS */
3288 }
3289
3290 static void pnv_pci_ioda_fixup(void)
3291 {
3292         pnv_pci_ioda_setup_PEs();
3293         pnv_pci_ioda_setup_iommu_api();
3294         pnv_pci_ioda_create_dbgfs();
3295
3296 #ifdef CONFIG_EEH
3297         eeh_init();
3298         eeh_addr_cache_build();
3299 #endif
3300 }
3301
3302 /*
3303  * Returns the alignment for I/O or memory windows for P2P
3304  * bridges. That actually depends on how PEs are segmented.
3305  * For now, we return I/O or M32 segment size for PE sensitive
3306  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3307  * 1MiB for memory) will be returned.
3308  *
3309  * The current PCI bus might be put into one PE, which was
3310  * create against the parent PCI bridge. For that case, we
3311  * needn't enlarge the alignment so that we can save some
3312  * resources.
3313  */
3314 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3315                                                 unsigned long type)
3316 {
3317         struct pci_dev *bridge;
3318         struct pci_controller *hose = pci_bus_to_host(bus);
3319         struct pnv_phb *phb = hose->private_data;
3320         int num_pci_bridges = 0;
3321
3322         bridge = bus->self;
3323         while (bridge) {
3324                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3325                         num_pci_bridges++;
3326                         if (num_pci_bridges >= 2)
3327                                 return 1;
3328                 }
3329
3330                 bridge = bridge->bus->self;
3331         }
3332
3333         /*
3334          * We fall back to M32 if M64 isn't supported. We enforce the M64
3335          * alignment for any 64-bit resource, PCIe doesn't care and
3336          * bridges only do 64-bit prefetchable anyway.
3337          */
3338         if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3339                 return phb->ioda.m64_segsize;
3340         if (type & IORESOURCE_MEM)
3341                 return phb->ioda.m32_segsize;
3342
3343         return phb->ioda.io_segsize;
3344 }
3345
3346 /*
3347  * We are updating root port or the upstream port of the
3348  * bridge behind the root port with PHB's windows in order
3349  * to accommodate the changes on required resources during
3350  * PCI (slot) hotplug, which is connected to either root
3351  * port or the downstream ports of PCIe switch behind the
3352  * root port.
3353  */
3354 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3355                                            unsigned long type)
3356 {
3357         struct pci_controller *hose = pci_bus_to_host(bus);
3358         struct pnv_phb *phb = hose->private_data;
3359         struct pci_dev *bridge = bus->self;
3360         struct resource *r, *w;
3361         bool msi_region = false;
3362         int i;
3363
3364         /* Check if we need apply fixup to the bridge's windows */
3365         if (!pci_is_root_bus(bridge->bus) &&
3366             !pci_is_root_bus(bridge->bus->self->bus))
3367                 return;
3368
3369         /* Fixup the resources */
3370         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3371                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3372                 if (!r->flags || !r->parent)
3373                         continue;
3374
3375                 w = NULL;
3376                 if (r->flags & type & IORESOURCE_IO)
3377                         w = &hose->io_resource;
3378                 else if (pnv_pci_is_m64(phb, r) &&
3379                          (type & IORESOURCE_PREFETCH) &&
3380                          phb->ioda.m64_segsize)
3381                         w = &hose->mem_resources[1];
3382                 else if (r->flags & type & IORESOURCE_MEM) {
3383                         w = &hose->mem_resources[0];
3384                         msi_region = true;
3385                 }
3386
3387                 r->start = w->start;
3388                 r->end = w->end;
3389
3390                 /* The 64KB 32-bits MSI region shouldn't be included in
3391                  * the 32-bits bridge window. Otherwise, we can see strange
3392                  * issues. One of them is EEH error observed on Garrison.
3393                  *
3394                  * Exclude top 1MB region which is the minimal alignment of
3395                  * 32-bits bridge window.
3396                  */
3397                 if (msi_region) {
3398                         r->end += 0x10000;
3399                         r->end -= 0x100000;
3400                 }
3401         }
3402 }
3403
3404 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3405 {
3406         struct pci_controller *hose = pci_bus_to_host(bus);
3407         struct pnv_phb *phb = hose->private_data;
3408         struct pci_dev *bridge = bus->self;
3409         struct pnv_ioda_pe *pe;
3410         bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3411
3412         /* Extend bridge's windows if necessary */
3413         pnv_pci_fixup_bridge_resources(bus, type);
3414
3415         /* The PE for root bus should be realized before any one else */
3416         if (!phb->ioda.root_pe_populated) {
3417                 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3418                 if (pe) {
3419                         phb->ioda.root_pe_idx = pe->pe_number;
3420                         phb->ioda.root_pe_populated = true;
3421                 }
3422         }
3423
3424         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3425         if (list_empty(&bus->devices))
3426                 return;
3427
3428         /* Reserve PEs according to used M64 resources */
3429         if (phb->reserve_m64_pe)
3430                 phb->reserve_m64_pe(bus, NULL, all);
3431
3432         /*
3433          * Assign PE. We might run here because of partial hotplug.
3434          * For the case, we just pick up the existing PE and should
3435          * not allocate resources again.
3436          */
3437         pe = pnv_ioda_setup_bus_PE(bus, all);
3438         if (!pe)
3439                 return;
3440
3441         pnv_ioda_setup_pe_seg(pe);
3442         switch (phb->type) {
3443         case PNV_PHB_IODA1:
3444                 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3445                 break;
3446         case PNV_PHB_IODA2:
3447                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3448                 break;
3449         default:
3450                 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3451                         __func__, phb->hose->global_number, phb->type);
3452         }
3453 }
3454
3455 static resource_size_t pnv_pci_default_alignment(void)
3456 {
3457         return PAGE_SIZE;
3458 }
3459
3460 #ifdef CONFIG_PCI_IOV
3461 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3462                                                       int resno)
3463 {
3464         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3465         struct pnv_phb *phb = hose->private_data;
3466         struct pci_dn *pdn = pci_get_pdn(pdev);
3467         resource_size_t align;
3468
3469         /*
3470          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3471          * SR-IOV. While from hardware perspective, the range mapped by M64
3472          * BAR should be size aligned.
3473          *
3474          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3475          * powernv-specific hardware restriction is gone. But if just use the
3476          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3477          * in one segment of M64 #15, which introduces the PE conflict between
3478          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3479          * m64_segsize.
3480          *
3481          * This function returns the total IOV BAR size if M64 BAR is in
3482          * Shared PE mode or just VF BAR size if not.
3483          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3484          * M64 segment size if IOV BAR size is less.
3485          */
3486         align = pci_iov_resource_size(pdev, resno);
3487         if (!pdn->vfs_expanded)
3488                 return align;
3489         if (pdn->m64_single_mode)
3490                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3491
3492         return pdn->vfs_expanded * align;
3493 }
3494 #endif /* CONFIG_PCI_IOV */
3495
3496 /* Prevent enabling devices for which we couldn't properly
3497  * assign a PE
3498  */
3499 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3500 {
3501         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3502         struct pnv_phb *phb = hose->private_data;
3503         struct pci_dn *pdn;
3504
3505         /* The function is probably called while the PEs have
3506          * not be created yet. For example, resource reassignment
3507          * during PCI probe period. We just skip the check if
3508          * PEs isn't ready.
3509          */
3510         if (!phb->initialized)
3511                 return true;
3512
3513         pdn = pci_get_pdn(dev);
3514         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3515                 return false;
3516
3517         return true;
3518 }
3519
3520 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3521                                        int num)
3522 {
3523         struct pnv_ioda_pe *pe = container_of(table_group,
3524                                               struct pnv_ioda_pe, table_group);
3525         struct pnv_phb *phb = pe->phb;
3526         unsigned int idx;
3527         long rc;
3528
3529         pe_info(pe, "Removing DMA window #%d\n", num);
3530         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3531                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3532                         continue;
3533
3534                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3535                                                 idx, 0, 0ul, 0ul, 0ul);
3536                 if (rc != OPAL_SUCCESS) {
3537                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3538                                 rc, idx);
3539                         return rc;
3540                 }
3541
3542                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3543         }
3544
3545         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3546         return OPAL_SUCCESS;
3547 }
3548
3549 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3550 {
3551         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3552         struct iommu_table *tbl = pe->table_group.tables[0];
3553         int64_t rc;
3554
3555         if (!weight)
3556                 return;
3557
3558         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3559         if (rc != OPAL_SUCCESS)
3560                 return;
3561
3562         pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3563         if (pe->table_group.group) {
3564                 iommu_group_put(pe->table_group.group);
3565                 WARN_ON(pe->table_group.group);
3566         }
3567
3568         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3569         iommu_tce_table_put(tbl);
3570 }
3571
3572 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3573 {
3574         struct iommu_table *tbl = pe->table_group.tables[0];
3575         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3576 #ifdef CONFIG_IOMMU_API
3577         int64_t rc;
3578 #endif
3579
3580         if (!weight)
3581                 return;
3582
3583 #ifdef CONFIG_IOMMU_API
3584         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3585         if (rc)
3586                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3587 #endif
3588
3589         pnv_pci_ioda2_set_bypass(pe, false);
3590         if (pe->table_group.group) {
3591                 iommu_group_put(pe->table_group.group);
3592                 WARN_ON(pe->table_group.group);
3593         }
3594
3595         pnv_pci_ioda2_table_free_pages(tbl);
3596         iommu_tce_table_put(tbl);
3597 }
3598
3599 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3600                                  unsigned short win,
3601                                  unsigned int *map)
3602 {
3603         struct pnv_phb *phb = pe->phb;
3604         int idx;
3605         int64_t rc;
3606
3607         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3608                 if (map[idx] != pe->pe_number)
3609                         continue;
3610
3611                 if (win == OPAL_M64_WINDOW_TYPE)
3612                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3613                                         phb->ioda.reserved_pe_idx, win,
3614                                         idx / PNV_IODA1_M64_SEGS,
3615                                         idx % PNV_IODA1_M64_SEGS);
3616                 else
3617                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3618                                         phb->ioda.reserved_pe_idx, win, 0, idx);
3619
3620                 if (rc != OPAL_SUCCESS)
3621                         pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3622                                 rc, win, idx);
3623
3624                 map[idx] = IODA_INVALID_PE;
3625         }
3626 }
3627
3628 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3629 {
3630         struct pnv_phb *phb = pe->phb;
3631
3632         if (phb->type == PNV_PHB_IODA1) {
3633                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3634                                      phb->ioda.io_segmap);
3635                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3636                                      phb->ioda.m32_segmap);
3637                 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3638                                      phb->ioda.m64_segmap);
3639         } else if (phb->type == PNV_PHB_IODA2) {
3640                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3641                                      phb->ioda.m32_segmap);
3642         }
3643 }
3644
3645 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3646 {
3647         struct pnv_phb *phb = pe->phb;
3648         struct pnv_ioda_pe *slave, *tmp;
3649
3650         list_del(&pe->list);
3651         switch (phb->type) {
3652         case PNV_PHB_IODA1:
3653                 pnv_pci_ioda1_release_pe_dma(pe);
3654                 break;
3655         case PNV_PHB_IODA2:
3656                 pnv_pci_ioda2_release_pe_dma(pe);
3657                 break;
3658         default:
3659                 WARN_ON(1);
3660         }
3661
3662         pnv_ioda_release_pe_seg(pe);
3663         pnv_ioda_deconfigure_pe(pe->phb, pe);
3664
3665         /* Release slave PEs in the compound PE */
3666         if (pe->flags & PNV_IODA_PE_MASTER) {
3667                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3668                         list_del(&slave->list);
3669                         pnv_ioda_free_pe(slave);
3670                 }
3671         }
3672
3673         /*
3674          * The PE for root bus can be removed because of hotplug in EEH
3675          * recovery for fenced PHB error. We need to mark the PE dead so
3676          * that it can be populated again in PCI hot add path. The PE
3677          * shouldn't be destroyed as it's the global reserved resource.
3678          */
3679         if (phb->ioda.root_pe_populated &&
3680             phb->ioda.root_pe_idx == pe->pe_number)
3681                 phb->ioda.root_pe_populated = false;
3682         else
3683                 pnv_ioda_free_pe(pe);
3684 }
3685
3686 static void pnv_pci_release_device(struct pci_dev *pdev)
3687 {
3688         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3689         struct pnv_phb *phb = hose->private_data;
3690         struct pci_dn *pdn = pci_get_pdn(pdev);
3691         struct pnv_ioda_pe *pe;
3692
3693         if (pdev->is_virtfn)
3694                 return;
3695
3696         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3697                 return;
3698
3699         /*
3700          * PCI hotplug can happen as part of EEH error recovery. The @pdn
3701          * isn't removed and added afterwards in this scenario. We should
3702          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3703          * device count is decreased on removing devices while failing to
3704          * be increased on adding devices. It leads to unbalanced PE's device
3705          * count and eventually make normal PCI hotplug path broken.
3706          */
3707         pe = &phb->ioda.pe_array[pdn->pe_number];
3708         pdn->pe_number = IODA_INVALID_PE;
3709
3710         WARN_ON(--pe->device_count < 0);
3711         if (pe->device_count == 0)
3712                 pnv_ioda_release_pe(pe);
3713 }
3714
3715 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3716 {
3717         struct pnv_phb *phb = hose->private_data;
3718
3719         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3720                        OPAL_ASSERT_RESET);
3721 }
3722
3723 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3724         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3725         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3726 #ifdef CONFIG_PCI_MSI
3727         .setup_msi_irqs         = pnv_setup_msi_irqs,
3728         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3729 #endif
3730         .enable_device_hook     = pnv_pci_enable_device_hook,
3731         .release_device         = pnv_pci_release_device,
3732         .window_alignment       = pnv_pci_window_alignment,
3733         .setup_bridge           = pnv_pci_setup_bridge,
3734         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3735         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3736         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3737         .shutdown               = pnv_pci_ioda_shutdown,
3738 };
3739
3740 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3741 {
3742         dev_err_once(&npdev->dev,
3743                         "%s operation unsupported for NVLink devices\n",
3744                         __func__);
3745         return -EPERM;
3746 }
3747
3748 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3749         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3750 #ifdef CONFIG_PCI_MSI
3751         .setup_msi_irqs         = pnv_setup_msi_irqs,
3752         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3753 #endif
3754         .enable_device_hook     = pnv_pci_enable_device_hook,
3755         .window_alignment       = pnv_pci_window_alignment,
3756         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3757         .dma_set_mask           = pnv_npu_dma_set_mask,
3758         .shutdown               = pnv_pci_ioda_shutdown,
3759 };
3760
3761 #ifdef CONFIG_CXL_BASE
3762 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3763         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3764         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3765 #ifdef CONFIG_PCI_MSI
3766         .setup_msi_irqs         = pnv_cxl_cx4_setup_msi_irqs,
3767         .teardown_msi_irqs      = pnv_cxl_cx4_teardown_msi_irqs,
3768 #endif
3769         .enable_device_hook     = pnv_cxl_enable_device_hook,
3770         .disable_device         = pnv_cxl_disable_device,
3771         .release_device         = pnv_pci_release_device,
3772         .window_alignment       = pnv_pci_window_alignment,
3773         .setup_bridge           = pnv_pci_setup_bridge,
3774         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3775         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3776         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3777         .shutdown               = pnv_pci_ioda_shutdown,
3778 };
3779 #endif
3780
3781 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3782                                          u64 hub_id, int ioda_type)
3783 {
3784         struct pci_controller *hose;
3785         struct pnv_phb *phb;
3786         unsigned long size, m64map_off, m32map_off, pemap_off;
3787         unsigned long iomap_off = 0, dma32map_off = 0;
3788         struct resource r;
3789         const __be64 *prop64;
3790         const __be32 *prop32;
3791         int len;
3792         unsigned int segno;
3793         u64 phb_id;
3794         void *aux;
3795         long rc;
3796
3797         if (!of_device_is_available(np))
3798                 return;
3799
3800         pr_info("Initializing %s PHB (%s)\n",
3801                 pnv_phb_names[ioda_type], of_node_full_name(np));
3802
3803         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3804         if (!prop64) {
3805                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3806                 return;
3807         }
3808         phb_id = be64_to_cpup(prop64);
3809         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3810
3811         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3812
3813         /* Allocate PCI controller */
3814         phb->hose = hose = pcibios_alloc_controller(np);
3815         if (!phb->hose) {
3816                 pr_err("  Can't allocate PCI controller for %s\n",
3817                        np->full_name);
3818                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3819                 return;
3820         }
3821
3822         spin_lock_init(&phb->lock);
3823         prop32 = of_get_property(np, "bus-range", &len);
3824         if (prop32 && len == 8) {
3825                 hose->first_busno = be32_to_cpu(prop32[0]);
3826                 hose->last_busno = be32_to_cpu(prop32[1]);
3827         } else {
3828                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3829                 hose->first_busno = 0;
3830                 hose->last_busno = 0xff;
3831         }
3832         hose->private_data = phb;
3833         phb->hub_id = hub_id;
3834         phb->opal_id = phb_id;
3835         phb->type = ioda_type;
3836         mutex_init(&phb->ioda.pe_alloc_mutex);
3837
3838         /* Detect specific models for error handling */
3839         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3840                 phb->model = PNV_PHB_MODEL_P7IOC;
3841         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3842                 phb->model = PNV_PHB_MODEL_PHB3;
3843         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3844                 phb->model = PNV_PHB_MODEL_NPU;
3845         else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3846                 phb->model = PNV_PHB_MODEL_NPU2;
3847         else
3848                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3849
3850         /* Initialize diagnostic data buffer */
3851         prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3852         if (prop32)
3853                 phb->diag_data_size = be32_to_cpup(prop32);
3854         else
3855                 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3856
3857         phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3858
3859         /* Parse 32-bit and IO ranges (if any) */
3860         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3861
3862         /* Get registers */
3863         if (!of_address_to_resource(np, 0, &r)) {
3864                 phb->regs_phys = r.start;
3865                 phb->regs = ioremap(r.start, resource_size(&r));
3866                 if (phb->regs == NULL)
3867                         pr_err("  Failed to map registers !\n");
3868         }
3869
3870         /* Initialize more IODA stuff */
3871         phb->ioda.total_pe_num = 1;
3872         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3873         if (prop32)
3874                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3875         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3876         if (prop32)
3877                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3878
3879         /* Invalidate RID to PE# mapping */
3880         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3881                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3882
3883         /* Parse 64-bit MMIO range */
3884         pnv_ioda_parse_m64_window(phb);
3885
3886         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3887         /* FW Has already off top 64k of M32 space (MSI space) */
3888         phb->ioda.m32_size += 0x10000;
3889
3890         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3891         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3892         phb->ioda.io_size = hose->pci_io_size;
3893         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3894         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3895
3896         /* Calculate how many 32-bit TCE segments we have */
3897         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3898                                 PNV_IODA1_DMA32_SEGSIZE;
3899
3900         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3901         size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3902                         sizeof(unsigned long));
3903         m64map_off = size;
3904         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3905         m32map_off = size;
3906         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3907         if (phb->type == PNV_PHB_IODA1) {
3908                 iomap_off = size;
3909                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3910                 dma32map_off = size;
3911                 size += phb->ioda.dma32_count *
3912                         sizeof(phb->ioda.dma32_segmap[0]);
3913         }
3914         pemap_off = size;
3915         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3916         aux = memblock_virt_alloc(size, 0);
3917         phb->ioda.pe_alloc = aux;
3918         phb->ioda.m64_segmap = aux + m64map_off;
3919         phb->ioda.m32_segmap = aux + m32map_off;
3920         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3921                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3922                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3923         }
3924         if (phb->type == PNV_PHB_IODA1) {
3925                 phb->ioda.io_segmap = aux + iomap_off;
3926                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3927                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3928
3929                 phb->ioda.dma32_segmap = aux + dma32map_off;
3930                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3931                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3932         }
3933         phb->ioda.pe_array = aux + pemap_off;
3934
3935         /*
3936          * Choose PE number for root bus, which shouldn't have
3937          * M64 resources consumed by its child devices. To pick
3938          * the PE number adjacent to the reserved one if possible.
3939          */
3940         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3941         if (phb->ioda.reserved_pe_idx == 0) {
3942                 phb->ioda.root_pe_idx = 1;
3943                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3944         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3945                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3946                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3947         } else {
3948                 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3949         }
3950
3951         INIT_LIST_HEAD(&phb->ioda.pe_list);
3952         mutex_init(&phb->ioda.pe_list_mutex);
3953
3954         /* Calculate how many 32-bit TCE segments we have */
3955         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3956                                 PNV_IODA1_DMA32_SEGSIZE;
3957
3958 #if 0 /* We should really do that ... */
3959         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3960                                          window_type,
3961                                          window_num,
3962                                          starting_real_address,
3963                                          starting_pci_address,
3964                                          segment_size);
3965 #endif
3966
3967         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3968                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3969                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3970         if (phb->ioda.m64_size)
3971                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3972                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3973         if (phb->ioda.io_size)
3974                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3975                         phb->ioda.io_size, phb->ioda.io_segsize);
3976
3977
3978         phb->hose->ops = &pnv_pci_ops;
3979         phb->get_pe_state = pnv_ioda_get_pe_state;
3980         phb->freeze_pe = pnv_ioda_freeze_pe;
3981         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3982
3983         /* Setup MSI support */
3984         pnv_pci_init_ioda_msis(phb);
3985
3986         /*
3987          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3988          * to let the PCI core do resource assignment. It's supposed
3989          * that the PCI core will do correct I/O and MMIO alignment
3990          * for the P2P bridge bars so that each PCI bus (excluding
3991          * the child P2P bridges) can form individual PE.
3992          */
3993         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3994
3995         if (phb->type == PNV_PHB_NPU) {
3996                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3997         } else {
3998                 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3999                 hose->controller_ops = pnv_pci_ioda_controller_ops;
4000         }
4001
4002         ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
4003
4004 #ifdef CONFIG_PCI_IOV
4005         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
4006         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
4007 #endif
4008
4009         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
4010
4011         /* Reset IODA tables to a clean state */
4012         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
4013         if (rc)
4014                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
4015
4016         /*
4017          * If we're running in kdump kernel, the previous kernel never
4018          * shutdown PCI devices correctly. We already got IODA table
4019          * cleaned out. So we have to issue PHB reset to stop all PCI
4020          * transactions from previous kernel.
4021          */
4022         if (is_kdump_kernel()) {
4023                 pr_info("  Issue PHB reset ...\n");
4024                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
4025                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
4026         }
4027
4028         /* Remove M64 resource if we can't configure it successfully */
4029         if (!phb->init_m64 || phb->init_m64(phb))
4030                 hose->mem_resources[1].flags = 0;
4031 }
4032
4033 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4034 {
4035         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4036 }
4037
4038 void __init pnv_pci_init_npu_phb(struct device_node *np)
4039 {
4040         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
4041 }
4042
4043 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4044 {
4045         struct device_node *phbn;
4046         const __be64 *prop64;
4047         u64 hub_id;
4048
4049         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
4050
4051         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4052         if (!prop64) {
4053                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4054                 return;
4055         }
4056         hub_id = be64_to_cpup(prop64);
4057         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4058
4059         /* Count child PHBs */
4060         for_each_child_of_node(np, phbn) {
4061                 /* Look for IODA1 PHBs */
4062                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4063                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4064         }
4065 }