]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
Merge branch 'for-4.13-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[karo-tx-linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
28
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
44
45 #include <misc/cxl-base.h>
46
47 #include "powernv.h"
48 #include "pci.h"
49
50 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
51 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
52 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
53
54 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
55 #define POWERNV_IOMMU_MAX_LEVELS        5
56
57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59
60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61                             const char *fmt, ...)
62 {
63         struct va_format vaf;
64         va_list args;
65         char pfix[32];
66
67         va_start(args, fmt);
68
69         vaf.fmt = fmt;
70         vaf.va = &args;
71
72         if (pe->flags & PNV_IODA_PE_DEV)
73                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75                 sprintf(pfix, "%04x:%02x     ",
76                         pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78         else if (pe->flags & PNV_IODA_PE_VF)
79                 sprintf(pfix, "%04x:%02x:%2x.%d",
80                         pci_domain_nr(pe->parent_dev->bus),
81                         (pe->rid & 0xff00) >> 8,
82                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84
85         printk("%spci %s: [PE# %.2x] %pV",
86                level, pfix, pe->pe_number, &vaf);
87
88         va_end(args);
89 }
90
91 static bool pnv_iommu_bypass_disabled __read_mostly;
92
93 static int __init iommu_setup(char *str)
94 {
95         if (!str)
96                 return -EINVAL;
97
98         while (*str) {
99                 if (!strncmp(str, "nobypass", 8)) {
100                         pnv_iommu_bypass_disabled = true;
101                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
102                         break;
103                 }
104                 str += strcspn(str, ",");
105                 if (*str == ',')
106                         str++;
107         }
108
109         return 0;
110 }
111 early_param("iommu", iommu_setup);
112
113 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
114 {
115         /*
116          * WARNING: We cannot rely on the resource flags. The Linux PCI
117          * allocation code sometimes decides to put a 64-bit prefetchable
118          * BAR in the 32-bit window, so we have to compare the addresses.
119          *
120          * For simplicity we only test resource start.
121          */
122         return (r->start >= phb->ioda.m64_base &&
123                 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
124 }
125
126 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
127 {
128         unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
129
130         return (resource_flags & flags) == flags;
131 }
132
133 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
134 {
135         s64 rc;
136
137         phb->ioda.pe_array[pe_no].phb = phb;
138         phb->ioda.pe_array[pe_no].pe_number = pe_no;
139
140         /*
141          * Clear the PE frozen state as it might be put into frozen state
142          * in the last PCI remove path. It's not harmful to do so when the
143          * PE is already in unfrozen state.
144          */
145         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
146                                        OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
147         if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
148                 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
149                         __func__, rc, phb->hose->global_number, pe_no);
150
151         return &phb->ioda.pe_array[pe_no];
152 }
153
154 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
155 {
156         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
157                 pr_warn("%s: Invalid PE %x on PHB#%x\n",
158                         __func__, pe_no, phb->hose->global_number);
159                 return;
160         }
161
162         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
163                 pr_debug("%s: PE %x was reserved on PHB#%x\n",
164                          __func__, pe_no, phb->hose->global_number);
165
166         pnv_ioda_init_pe(phb, pe_no);
167 }
168
169 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
170 {
171         long pe;
172
173         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
174                 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
175                         return pnv_ioda_init_pe(phb, pe);
176         }
177
178         return NULL;
179 }
180
181 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
182 {
183         struct pnv_phb *phb = pe->phb;
184         unsigned int pe_num = pe->pe_number;
185
186         WARN_ON(pe->pdev);
187
188         memset(pe, 0, sizeof(struct pnv_ioda_pe));
189         clear_bit(pe_num, phb->ioda.pe_alloc);
190 }
191
192 /* The default M64 BAR is shared by all PEs */
193 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
194 {
195         const char *desc;
196         struct resource *r;
197         s64 rc;
198
199         /* Configure the default M64 BAR */
200         rc = opal_pci_set_phb_mem_window(phb->opal_id,
201                                          OPAL_M64_WINDOW_TYPE,
202                                          phb->ioda.m64_bar_idx,
203                                          phb->ioda.m64_base,
204                                          0, /* unused */
205                                          phb->ioda.m64_size);
206         if (rc != OPAL_SUCCESS) {
207                 desc = "configuring";
208                 goto fail;
209         }
210
211         /* Enable the default M64 BAR */
212         rc = opal_pci_phb_mmio_enable(phb->opal_id,
213                                       OPAL_M64_WINDOW_TYPE,
214                                       phb->ioda.m64_bar_idx,
215                                       OPAL_ENABLE_M64_SPLIT);
216         if (rc != OPAL_SUCCESS) {
217                 desc = "enabling";
218                 goto fail;
219         }
220
221         /*
222          * Exclude the segments for reserved and root bus PE, which
223          * are first or last two PEs.
224          */
225         r = &phb->hose->mem_resources[1];
226         if (phb->ioda.reserved_pe_idx == 0)
227                 r->start += (2 * phb->ioda.m64_segsize);
228         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
229                 r->end -= (2 * phb->ioda.m64_segsize);
230         else
231                 pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
232                         phb->ioda.reserved_pe_idx);
233
234         return 0;
235
236 fail:
237         pr_warn("  Failure %lld %s M64 BAR#%d\n",
238                 rc, desc, phb->ioda.m64_bar_idx);
239         opal_pci_phb_mmio_enable(phb->opal_id,
240                                  OPAL_M64_WINDOW_TYPE,
241                                  phb->ioda.m64_bar_idx,
242                                  OPAL_DISABLE_M64);
243         return -EIO;
244 }
245
246 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
247                                          unsigned long *pe_bitmap)
248 {
249         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
250         struct pnv_phb *phb = hose->private_data;
251         struct resource *r;
252         resource_size_t base, sgsz, start, end;
253         int segno, i;
254
255         base = phb->ioda.m64_base;
256         sgsz = phb->ioda.m64_segsize;
257         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
258                 r = &pdev->resource[i];
259                 if (!r->parent || !pnv_pci_is_m64(phb, r))
260                         continue;
261
262                 start = _ALIGN_DOWN(r->start - base, sgsz);
263                 end = _ALIGN_UP(r->end - base, sgsz);
264                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
265                         if (pe_bitmap)
266                                 set_bit(segno, pe_bitmap);
267                         else
268                                 pnv_ioda_reserve_pe(phb, segno);
269                 }
270         }
271 }
272
273 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
274 {
275         struct resource *r;
276         int index;
277
278         /*
279          * There are 16 M64 BARs, each of which has 8 segments. So
280          * there are as many M64 segments as the maximum number of
281          * PEs, which is 128.
282          */
283         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
284                 unsigned long base, segsz = phb->ioda.m64_segsize;
285                 int64_t rc;
286
287                 base = phb->ioda.m64_base +
288                        index * PNV_IODA1_M64_SEGS * segsz;
289                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
290                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
291                                 PNV_IODA1_M64_SEGS * segsz);
292                 if (rc != OPAL_SUCCESS) {
293                         pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
294                                 rc, phb->hose->global_number, index);
295                         goto fail;
296                 }
297
298                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
299                                 OPAL_M64_WINDOW_TYPE, index,
300                                 OPAL_ENABLE_M64_SPLIT);
301                 if (rc != OPAL_SUCCESS) {
302                         pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
303                                 rc, phb->hose->global_number, index);
304                         goto fail;
305                 }
306         }
307
308         /*
309          * Exclude the segments for reserved and root bus PE, which
310          * are first or last two PEs.
311          */
312         r = &phb->hose->mem_resources[1];
313         if (phb->ioda.reserved_pe_idx == 0)
314                 r->start += (2 * phb->ioda.m64_segsize);
315         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
316                 r->end -= (2 * phb->ioda.m64_segsize);
317         else
318                 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
319                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
320
321         return 0;
322
323 fail:
324         for ( ; index >= 0; index--)
325                 opal_pci_phb_mmio_enable(phb->opal_id,
326                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
327
328         return -EIO;
329 }
330
331 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
332                                     unsigned long *pe_bitmap,
333                                     bool all)
334 {
335         struct pci_dev *pdev;
336
337         list_for_each_entry(pdev, &bus->devices, bus_list) {
338                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
339
340                 if (all && pdev->subordinate)
341                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
342                                                 pe_bitmap, all);
343         }
344 }
345
346 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
347 {
348         struct pci_controller *hose = pci_bus_to_host(bus);
349         struct pnv_phb *phb = hose->private_data;
350         struct pnv_ioda_pe *master_pe, *pe;
351         unsigned long size, *pe_alloc;
352         int i;
353
354         /* Root bus shouldn't use M64 */
355         if (pci_is_root_bus(bus))
356                 return NULL;
357
358         /* Allocate bitmap */
359         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
360         pe_alloc = kzalloc(size, GFP_KERNEL);
361         if (!pe_alloc) {
362                 pr_warn("%s: Out of memory !\n",
363                         __func__);
364                 return NULL;
365         }
366
367         /* Figure out reserved PE numbers by the PE */
368         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
369
370         /*
371          * the current bus might not own M64 window and that's all
372          * contributed by its child buses. For the case, we needn't
373          * pick M64 dependent PE#.
374          */
375         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
376                 kfree(pe_alloc);
377                 return NULL;
378         }
379
380         /*
381          * Figure out the master PE and put all slave PEs to master
382          * PE's list to form compound PE.
383          */
384         master_pe = NULL;
385         i = -1;
386         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
387                 phb->ioda.total_pe_num) {
388                 pe = &phb->ioda.pe_array[i];
389
390                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
391                 if (!master_pe) {
392                         pe->flags |= PNV_IODA_PE_MASTER;
393                         INIT_LIST_HEAD(&pe->slaves);
394                         master_pe = pe;
395                 } else {
396                         pe->flags |= PNV_IODA_PE_SLAVE;
397                         pe->master = master_pe;
398                         list_add_tail(&pe->list, &master_pe->slaves);
399                 }
400
401                 /*
402                  * P7IOC supports M64DT, which helps mapping M64 segment
403                  * to one particular PE#. However, PHB3 has fixed mapping
404                  * between M64 segment and PE#. In order to have same logic
405                  * for P7IOC and PHB3, we enforce fixed mapping between M64
406                  * segment and PE# on P7IOC.
407                  */
408                 if (phb->type == PNV_PHB_IODA1) {
409                         int64_t rc;
410
411                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
412                                         pe->pe_number, OPAL_M64_WINDOW_TYPE,
413                                         pe->pe_number / PNV_IODA1_M64_SEGS,
414                                         pe->pe_number % PNV_IODA1_M64_SEGS);
415                         if (rc != OPAL_SUCCESS)
416                                 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
417                                         __func__, rc, phb->hose->global_number,
418                                         pe->pe_number);
419                 }
420         }
421
422         kfree(pe_alloc);
423         return master_pe;
424 }
425
426 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
427 {
428         struct pci_controller *hose = phb->hose;
429         struct device_node *dn = hose->dn;
430         struct resource *res;
431         u32 m64_range[2], i;
432         const __be32 *r;
433         u64 pci_addr;
434
435         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
436                 pr_info("  Not support M64 window\n");
437                 return;
438         }
439
440         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
441                 pr_info("  Firmware too old to support M64 window\n");
442                 return;
443         }
444
445         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
446         if (!r) {
447                 pr_info("  No <ibm,opal-m64-window> on %s\n",
448                         dn->full_name);
449                 return;
450         }
451
452         /*
453          * Find the available M64 BAR range and pickup the last one for
454          * covering the whole 64-bits space. We support only one range.
455          */
456         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
457                                        m64_range, 2)) {
458                 /* In absence of the property, assume 0..15 */
459                 m64_range[0] = 0;
460                 m64_range[1] = 16;
461         }
462         /* We only support 64 bits in our allocator */
463         if (m64_range[1] > 63) {
464                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
465                         __func__, m64_range[1], phb->hose->global_number);
466                 m64_range[1] = 63;
467         }
468         /* Empty range, no m64 */
469         if (m64_range[1] <= m64_range[0]) {
470                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
471                         __func__, phb->hose->global_number);
472                 return;
473         }
474
475         /* Configure M64 informations */
476         res = &hose->mem_resources[1];
477         res->name = dn->full_name;
478         res->start = of_translate_address(dn, r + 2);
479         res->end = res->start + of_read_number(r + 4, 2) - 1;
480         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
481         pci_addr = of_read_number(r, 2);
482         hose->mem_offset[1] = res->start - pci_addr;
483
484         phb->ioda.m64_size = resource_size(res);
485         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
486         phb->ioda.m64_base = pci_addr;
487
488         /* This lines up nicely with the display from processing OF ranges */
489         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
490                 res->start, res->end, pci_addr, m64_range[0],
491                 m64_range[0] + m64_range[1] - 1);
492
493         /* Mark all M64 used up by default */
494         phb->ioda.m64_bar_alloc = (unsigned long)-1;
495
496         /* Use last M64 BAR to cover M64 window */
497         m64_range[1]--;
498         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
499
500         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
501
502         /* Mark remaining ones free */
503         for (i = m64_range[0]; i < m64_range[1]; i++)
504                 clear_bit(i, &phb->ioda.m64_bar_alloc);
505
506         /*
507          * Setup init functions for M64 based on IODA version, IODA3 uses
508          * the IODA2 code.
509          */
510         if (phb->type == PNV_PHB_IODA1)
511                 phb->init_m64 = pnv_ioda1_init_m64;
512         else
513                 phb->init_m64 = pnv_ioda2_init_m64;
514         phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
515         phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
516 }
517
518 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
519 {
520         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
521         struct pnv_ioda_pe *slave;
522         s64 rc;
523
524         /* Fetch master PE */
525         if (pe->flags & PNV_IODA_PE_SLAVE) {
526                 pe = pe->master;
527                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
528                         return;
529
530                 pe_no = pe->pe_number;
531         }
532
533         /* Freeze master PE */
534         rc = opal_pci_eeh_freeze_set(phb->opal_id,
535                                      pe_no,
536                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
537         if (rc != OPAL_SUCCESS) {
538                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
539                         __func__, rc, phb->hose->global_number, pe_no);
540                 return;
541         }
542
543         /* Freeze slave PEs */
544         if (!(pe->flags & PNV_IODA_PE_MASTER))
545                 return;
546
547         list_for_each_entry(slave, &pe->slaves, list) {
548                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
549                                              slave->pe_number,
550                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
551                 if (rc != OPAL_SUCCESS)
552                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
553                                 __func__, rc, phb->hose->global_number,
554                                 slave->pe_number);
555         }
556 }
557
558 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
559 {
560         struct pnv_ioda_pe *pe, *slave;
561         s64 rc;
562
563         /* Find master PE */
564         pe = &phb->ioda.pe_array[pe_no];
565         if (pe->flags & PNV_IODA_PE_SLAVE) {
566                 pe = pe->master;
567                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
568                 pe_no = pe->pe_number;
569         }
570
571         /* Clear frozen state for master PE */
572         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
573         if (rc != OPAL_SUCCESS) {
574                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
575                         __func__, rc, opt, phb->hose->global_number, pe_no);
576                 return -EIO;
577         }
578
579         if (!(pe->flags & PNV_IODA_PE_MASTER))
580                 return 0;
581
582         /* Clear frozen state for slave PEs */
583         list_for_each_entry(slave, &pe->slaves, list) {
584                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
585                                              slave->pe_number,
586                                              opt);
587                 if (rc != OPAL_SUCCESS) {
588                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
589                                 __func__, rc, opt, phb->hose->global_number,
590                                 slave->pe_number);
591                         return -EIO;
592                 }
593         }
594
595         return 0;
596 }
597
598 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
599 {
600         struct pnv_ioda_pe *slave, *pe;
601         u8 fstate, state;
602         __be16 pcierr;
603         s64 rc;
604
605         /* Sanity check on PE number */
606         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
607                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
608
609         /*
610          * Fetch the master PE and the PE instance might be
611          * not initialized yet.
612          */
613         pe = &phb->ioda.pe_array[pe_no];
614         if (pe->flags & PNV_IODA_PE_SLAVE) {
615                 pe = pe->master;
616                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
617                 pe_no = pe->pe_number;
618         }
619
620         /* Check the master PE */
621         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
622                                         &state, &pcierr, NULL);
623         if (rc != OPAL_SUCCESS) {
624                 pr_warn("%s: Failure %lld getting "
625                         "PHB#%x-PE#%x state\n",
626                         __func__, rc,
627                         phb->hose->global_number, pe_no);
628                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
629         }
630
631         /* Check the slave PE */
632         if (!(pe->flags & PNV_IODA_PE_MASTER))
633                 return state;
634
635         list_for_each_entry(slave, &pe->slaves, list) {
636                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
637                                                 slave->pe_number,
638                                                 &fstate,
639                                                 &pcierr,
640                                                 NULL);
641                 if (rc != OPAL_SUCCESS) {
642                         pr_warn("%s: Failure %lld getting "
643                                 "PHB#%x-PE#%x state\n",
644                                 __func__, rc,
645                                 phb->hose->global_number, slave->pe_number);
646                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
647                 }
648
649                 /*
650                  * Override the result based on the ascending
651                  * priority.
652                  */
653                 if (fstate > state)
654                         state = fstate;
655         }
656
657         return state;
658 }
659
660 /* Currently those 2 are only used when MSIs are enabled, this will change
661  * but in the meantime, we need to protect them to avoid warnings
662  */
663 #ifdef CONFIG_PCI_MSI
664 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
665 {
666         struct pci_controller *hose = pci_bus_to_host(dev->bus);
667         struct pnv_phb *phb = hose->private_data;
668         struct pci_dn *pdn = pci_get_pdn(dev);
669
670         if (!pdn)
671                 return NULL;
672         if (pdn->pe_number == IODA_INVALID_PE)
673                 return NULL;
674         return &phb->ioda.pe_array[pdn->pe_number];
675 }
676 #endif /* CONFIG_PCI_MSI */
677
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679                                   struct pnv_ioda_pe *parent,
680                                   struct pnv_ioda_pe *child,
681                                   bool is_add)
682 {
683         const char *desc = is_add ? "adding" : "removing";
684         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685                               OPAL_REMOVE_PE_FROM_DOMAIN;
686         struct pnv_ioda_pe *slave;
687         long rc;
688
689         /* Parent PE affects child PE */
690         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691                                 child->pe_number, op);
692         if (rc != OPAL_SUCCESS) {
693                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694                         rc, desc);
695                 return -ENXIO;
696         }
697
698         if (!(child->flags & PNV_IODA_PE_MASTER))
699                 return 0;
700
701         /* Compound case: parent PE affects slave PEs */
702         list_for_each_entry(slave, &child->slaves, list) {
703                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704                                         slave->pe_number, op);
705                 if (rc != OPAL_SUCCESS) {
706                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707                                 rc, desc);
708                         return -ENXIO;
709                 }
710         }
711
712         return 0;
713 }
714
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716                               struct pnv_ioda_pe *pe,
717                               bool is_add)
718 {
719         struct pnv_ioda_pe *slave;
720         struct pci_dev *pdev = NULL;
721         int ret;
722
723         /*
724          * Clear PE frozen state. If it's master PE, we need
725          * clear slave PE frozen state as well.
726          */
727         if (is_add) {
728                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730                 if (pe->flags & PNV_IODA_PE_MASTER) {
731                         list_for_each_entry(slave, &pe->slaves, list)
732                                 opal_pci_eeh_freeze_clear(phb->opal_id,
733                                                           slave->pe_number,
734                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735                 }
736         }
737
738         /*
739          * Associate PE in PELT. We need add the PE into the
740          * corresponding PELT-V as well. Otherwise, the error
741          * originated from the PE might contribute to other
742          * PEs.
743          */
744         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745         if (ret)
746                 return ret;
747
748         /* For compound PEs, any one affects all of them */
749         if (pe->flags & PNV_IODA_PE_MASTER) {
750                 list_for_each_entry(slave, &pe->slaves, list) {
751                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752                         if (ret)
753                                 return ret;
754                 }
755         }
756
757         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758                 pdev = pe->pbus->self;
759         else if (pe->flags & PNV_IODA_PE_DEV)
760                 pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762         else if (pe->flags & PNV_IODA_PE_VF)
763                 pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765         while (pdev) {
766                 struct pci_dn *pdn = pci_get_pdn(pdev);
767                 struct pnv_ioda_pe *parent;
768
769                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770                         parent = &phb->ioda.pe_array[pdn->pe_number];
771                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772                         if (ret)
773                                 return ret;
774                 }
775
776                 pdev = pdev->bus->self;
777         }
778
779         return 0;
780 }
781
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784         struct pci_dev *parent;
785         uint8_t bcomp, dcomp, fcomp;
786         int64_t rc;
787         long rid_end, rid;
788
789         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790         if (pe->pbus) {
791                 int count;
792
793                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795                 parent = pe->pbus->self;
796                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
797                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798                 else
799                         count = 1;
800
801                 switch(count) {
802                 case  1: bcomp = OpalPciBusAll;         break;
803                 case  2: bcomp = OpalPciBus7Bits;       break;
804                 case  4: bcomp = OpalPciBus6Bits;       break;
805                 case  8: bcomp = OpalPciBus5Bits;       break;
806                 case 16: bcomp = OpalPciBus4Bits;       break;
807                 case 32: bcomp = OpalPciBus3Bits;       break;
808                 default:
809                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810                                 count);
811                         /* Do an exact match only */
812                         bcomp = OpalPciBusAll;
813                 }
814                 rid_end = pe->rid + (count << 8);
815         } else {
816 #ifdef CONFIG_PCI_IOV
817                 if (pe->flags & PNV_IODA_PE_VF)
818                         parent = pe->parent_dev;
819                 else
820 #endif
821                         parent = pe->pdev->bus->self;
822                 bcomp = OpalPciBusAll;
823                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825                 rid_end = pe->rid + 1;
826         }
827
828         /* Clear the reverse map */
829         for (rid = pe->rid; rid < rid_end; rid++)
830                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831
832         /* Release from all parents PELT-V */
833         while (parent) {
834                 struct pci_dn *pdn = pci_get_pdn(parent);
835                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838                         /* XXX What to do in case of error ? */
839                 }
840                 parent = parent->bus->self;
841         }
842
843         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845
846         /* Disassociate PE in PELT */
847         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849         if (rc)
850                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
851         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853         if (rc)
854                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855
856         pe->pbus = NULL;
857         pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859         pe->parent_dev = NULL;
860 #endif
861
862         return 0;
863 }
864
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867         struct pci_dev *parent;
868         uint8_t bcomp, dcomp, fcomp;
869         long rc, rid_end, rid;
870
871         /* Bus validation ? */
872         if (pe->pbus) {
873                 int count;
874
875                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877                 parent = pe->pbus->self;
878                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
879                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880                 else
881                         count = 1;
882
883                 switch(count) {
884                 case  1: bcomp = OpalPciBusAll;         break;
885                 case  2: bcomp = OpalPciBus7Bits;       break;
886                 case  4: bcomp = OpalPciBus6Bits;       break;
887                 case  8: bcomp = OpalPciBus5Bits;       break;
888                 case 16: bcomp = OpalPciBus4Bits;       break;
889                 case 32: bcomp = OpalPciBus3Bits;       break;
890                 default:
891                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892                                 count);
893                         /* Do an exact match only */
894                         bcomp = OpalPciBusAll;
895                 }
896                 rid_end = pe->rid + (count << 8);
897         } else {
898 #ifdef CONFIG_PCI_IOV
899                 if (pe->flags & PNV_IODA_PE_VF)
900                         parent = pe->parent_dev;
901                 else
902 #endif /* CONFIG_PCI_IOV */
903                         parent = pe->pdev->bus->self;
904                 bcomp = OpalPciBusAll;
905                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907                 rid_end = pe->rid + 1;
908         }
909
910         /*
911          * Associate PE in PELT. We need add the PE into the
912          * corresponding PELT-V as well. Otherwise, the error
913          * originated from the PE might contribute to other
914          * PEs.
915          */
916         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
918         if (rc) {
919                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920                 return -ENXIO;
921         }
922
923         /*
924          * Configure PELTV. NPUs don't have a PELTV table so skip
925          * configuration on them.
926          */
927         if (phb->type != PNV_PHB_NPU)
928                 pnv_ioda_set_peltv(phb, pe, true);
929
930         /* Setup reverse map */
931         for (rid = pe->rid; rid < rid_end; rid++)
932                 phb->ioda.pe_rmap[rid] = pe->pe_number;
933
934         /* Setup one MVTs on IODA1 */
935         if (phb->type != PNV_PHB_IODA1) {
936                 pe->mve_number = 0;
937                 goto out;
938         }
939
940         pe->mve_number = pe->pe_number;
941         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942         if (rc != OPAL_SUCCESS) {
943                 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944                        rc, pe->mve_number);
945                 pe->mve_number = -1;
946         } else {
947                 rc = opal_pci_set_mve_enable(phb->opal_id,
948                                              pe->mve_number, OPAL_ENABLE_MVE);
949                 if (rc) {
950                         pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951                                rc, pe->mve_number);
952                         pe->mve_number = -1;
953                 }
954         }
955
956 out:
957         return 0;
958 }
959
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963         struct pci_dn *pdn = pci_get_pdn(dev);
964         int i;
965         struct resource *res, res2;
966         resource_size_t size;
967         u16 num_vfs;
968
969         if (!dev->is_physfn)
970                 return -EINVAL;
971
972         /*
973          * "offset" is in VFs.  The M64 windows are sized so that when they
974          * are segmented, each segment is the same size as the IOV BAR.
975          * Each segment is in a separate PE, and the high order bits of the
976          * address are the PE number.  Therefore, each VF's BAR is in a
977          * separate PE, and changing the IOV BAR start address changes the
978          * range of PEs the VFs are in.
979          */
980         num_vfs = pdn->num_vfs;
981         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982                 res = &dev->resource[i + PCI_IOV_RESOURCES];
983                 if (!res->flags || !res->parent)
984                         continue;
985
986                 /*
987                  * The actual IOV BAR range is determined by the start address
988                  * and the actual size for num_vfs VFs BAR.  This check is to
989                  * make sure that after shifting, the range will not overlap
990                  * with another device.
991                  */
992                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993                 res2.flags = res->flags;
994                 res2.start = res->start + (size * offset);
995                 res2.end = res2.start + (size * num_vfs) - 1;
996
997                 if (res2.end > res->end) {
998                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999                                 i, &res2, res, num_vfs, offset);
1000                         return -EBUSY;
1001                 }
1002         }
1003
1004         /*
1005          * After doing so, there would be a "hole" in the /proc/iomem when
1006          * offset is a positive value. It looks like the device return some
1007          * mmio back to the system, which actually no one could use it.
1008          */
1009         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1010                 res = &dev->resource[i + PCI_IOV_RESOURCES];
1011                 if (!res->flags || !res->parent)
1012                         continue;
1013
1014                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1015                 res2 = *res;
1016                 res->start += size * offset;
1017
1018                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1019                          i, &res2, res, (offset > 0) ? "En" : "Dis",
1020                          num_vfs, offset);
1021                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1022         }
1023         return 0;
1024 }
1025 #endif /* CONFIG_PCI_IOV */
1026
1027 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1028 {
1029         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1030         struct pnv_phb *phb = hose->private_data;
1031         struct pci_dn *pdn = pci_get_pdn(dev);
1032         struct pnv_ioda_pe *pe;
1033
1034         if (!pdn) {
1035                 pr_err("%s: Device tree node not associated properly\n",
1036                            pci_name(dev));
1037                 return NULL;
1038         }
1039         if (pdn->pe_number != IODA_INVALID_PE)
1040                 return NULL;
1041
1042         pe = pnv_ioda_alloc_pe(phb);
1043         if (!pe) {
1044                 pr_warning("%s: Not enough PE# available, disabling device\n",
1045                            pci_name(dev));
1046                 return NULL;
1047         }
1048
1049         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1050          * pointer in the PE data structure, both should be destroyed at the
1051          * same time. However, this needs to be looked at more closely again
1052          * once we actually start removing things (Hotplug, SR-IOV, ...)
1053          *
1054          * At some point we want to remove the PDN completely anyways
1055          */
1056         pci_dev_get(dev);
1057         pdn->pcidev = dev;
1058         pdn->pe_number = pe->pe_number;
1059         pe->flags = PNV_IODA_PE_DEV;
1060         pe->pdev = dev;
1061         pe->pbus = NULL;
1062         pe->mve_number = -1;
1063         pe->rid = dev->bus->number << 8 | pdn->devfn;
1064
1065         pe_info(pe, "Associated device to PE\n");
1066
1067         if (pnv_ioda_configure_pe(phb, pe)) {
1068                 /* XXX What do we do here ? */
1069                 pnv_ioda_free_pe(pe);
1070                 pdn->pe_number = IODA_INVALID_PE;
1071                 pe->pdev = NULL;
1072                 pci_dev_put(dev);
1073                 return NULL;
1074         }
1075
1076         /* Put PE to the list */
1077         list_add_tail(&pe->list, &phb->ioda.pe_list);
1078
1079         return pe;
1080 }
1081
1082 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1083 {
1084         struct pci_dev *dev;
1085
1086         list_for_each_entry(dev, &bus->devices, bus_list) {
1087                 struct pci_dn *pdn = pci_get_pdn(dev);
1088
1089                 if (pdn == NULL) {
1090                         pr_warn("%s: No device node associated with device !\n",
1091                                 pci_name(dev));
1092                         continue;
1093                 }
1094
1095                 /*
1096                  * In partial hotplug case, the PCI device might be still
1097                  * associated with the PE and needn't attach it to the PE
1098                  * again.
1099                  */
1100                 if (pdn->pe_number != IODA_INVALID_PE)
1101                         continue;
1102
1103                 pe->device_count++;
1104                 pdn->pcidev = dev;
1105                 pdn->pe_number = pe->pe_number;
1106                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1107                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1108         }
1109 }
1110
1111 /*
1112  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1113  * single PCI bus. Another one that contains the primary PCI bus and its
1114  * subordinate PCI devices and buses. The second type of PE is normally
1115  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1116  */
1117 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1118 {
1119         struct pci_controller *hose = pci_bus_to_host(bus);
1120         struct pnv_phb *phb = hose->private_data;
1121         struct pnv_ioda_pe *pe = NULL;
1122         unsigned int pe_num;
1123
1124         /*
1125          * In partial hotplug case, the PE instance might be still alive.
1126          * We should reuse it instead of allocating a new one.
1127          */
1128         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1129         if (pe_num != IODA_INVALID_PE) {
1130                 pe = &phb->ioda.pe_array[pe_num];
1131                 pnv_ioda_setup_same_PE(bus, pe);
1132                 return NULL;
1133         }
1134
1135         /* PE number for root bus should have been reserved */
1136         if (pci_is_root_bus(bus) &&
1137             phb->ioda.root_pe_idx != IODA_INVALID_PE)
1138                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1139
1140         /* Check if PE is determined by M64 */
1141         if (!pe && phb->pick_m64_pe)
1142                 pe = phb->pick_m64_pe(bus, all);
1143
1144         /* The PE number isn't pinned by M64 */
1145         if (!pe)
1146                 pe = pnv_ioda_alloc_pe(phb);
1147
1148         if (!pe) {
1149                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1150                         __func__, pci_domain_nr(bus), bus->number);
1151                 return NULL;
1152         }
1153
1154         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1155         pe->pbus = bus;
1156         pe->pdev = NULL;
1157         pe->mve_number = -1;
1158         pe->rid = bus->busn_res.start << 8;
1159
1160         if (all)
1161                 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1162                         bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1163         else
1164                 pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1165                         bus->busn_res.start, pe->pe_number);
1166
1167         if (pnv_ioda_configure_pe(phb, pe)) {
1168                 /* XXX What do we do here ? */
1169                 pnv_ioda_free_pe(pe);
1170                 pe->pbus = NULL;
1171                 return NULL;
1172         }
1173
1174         /* Associate it with all child devices */
1175         pnv_ioda_setup_same_PE(bus, pe);
1176
1177         /* Put PE to the list */
1178         list_add_tail(&pe->list, &phb->ioda.pe_list);
1179
1180         return pe;
1181 }
1182
1183 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1184 {
1185         int pe_num, found_pe = false, rc;
1186         long rid;
1187         struct pnv_ioda_pe *pe;
1188         struct pci_dev *gpu_pdev;
1189         struct pci_dn *npu_pdn;
1190         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1191         struct pnv_phb *phb = hose->private_data;
1192
1193         /*
1194          * Due to a hardware errata PE#0 on the NPU is reserved for
1195          * error handling. This means we only have three PEs remaining
1196          * which need to be assigned to four links, implying some
1197          * links must share PEs.
1198          *
1199          * To achieve this we assign PEs such that NPUs linking the
1200          * same GPU get assigned the same PE.
1201          */
1202         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1203         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1204                 pe = &phb->ioda.pe_array[pe_num];
1205                 if (!pe->pdev)
1206                         continue;
1207
1208                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1209                         /*
1210                          * This device has the same peer GPU so should
1211                          * be assigned the same PE as the existing
1212                          * peer NPU.
1213                          */
1214                         dev_info(&npu_pdev->dev,
1215                                 "Associating to existing PE %x\n", pe_num);
1216                         pci_dev_get(npu_pdev);
1217                         npu_pdn = pci_get_pdn(npu_pdev);
1218                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1219                         npu_pdn->pcidev = npu_pdev;
1220                         npu_pdn->pe_number = pe_num;
1221                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1222
1223                         /* Map the PE to this link */
1224                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1225                                         OpalPciBusAll,
1226                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1227                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1228                                         OPAL_MAP_PE);
1229                         WARN_ON(rc != OPAL_SUCCESS);
1230                         found_pe = true;
1231                         break;
1232                 }
1233         }
1234
1235         if (!found_pe)
1236                 /*
1237                  * Could not find an existing PE so allocate a new
1238                  * one.
1239                  */
1240                 return pnv_ioda_setup_dev_PE(npu_pdev);
1241         else
1242                 return pe;
1243 }
1244
1245 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1246 {
1247         struct pci_dev *pdev;
1248
1249         list_for_each_entry(pdev, &bus->devices, bus_list)
1250                 pnv_ioda_setup_npu_PE(pdev);
1251 }
1252
1253 static void pnv_pci_ioda_setup_PEs(void)
1254 {
1255         struct pci_controller *hose, *tmp;
1256         struct pnv_phb *phb;
1257
1258         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1259                 phb = hose->private_data;
1260                 if (phb->type == PNV_PHB_NPU) {
1261                         /* PE#0 is needed for error reporting */
1262                         pnv_ioda_reserve_pe(phb, 0);
1263                         pnv_ioda_setup_npu_PEs(hose->bus);
1264                         if (phb->model == PNV_PHB_MODEL_NPU2)
1265                                 pnv_npu2_init(phb);
1266                 }
1267         }
1268 }
1269
1270 #ifdef CONFIG_PCI_IOV
1271 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1272 {
1273         struct pci_bus        *bus;
1274         struct pci_controller *hose;
1275         struct pnv_phb        *phb;
1276         struct pci_dn         *pdn;
1277         int                    i, j;
1278         int                    m64_bars;
1279
1280         bus = pdev->bus;
1281         hose = pci_bus_to_host(bus);
1282         phb = hose->private_data;
1283         pdn = pci_get_pdn(pdev);
1284
1285         if (pdn->m64_single_mode)
1286                 m64_bars = num_vfs;
1287         else
1288                 m64_bars = 1;
1289
1290         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1291                 for (j = 0; j < m64_bars; j++) {
1292                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1293                                 continue;
1294                         opal_pci_phb_mmio_enable(phb->opal_id,
1295                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1296                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1297                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1298                 }
1299
1300         kfree(pdn->m64_map);
1301         return 0;
1302 }
1303
1304 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1305 {
1306         struct pci_bus        *bus;
1307         struct pci_controller *hose;
1308         struct pnv_phb        *phb;
1309         struct pci_dn         *pdn;
1310         unsigned int           win;
1311         struct resource       *res;
1312         int                    i, j;
1313         int64_t                rc;
1314         int                    total_vfs;
1315         resource_size_t        size, start;
1316         int                    pe_num;
1317         int                    m64_bars;
1318
1319         bus = pdev->bus;
1320         hose = pci_bus_to_host(bus);
1321         phb = hose->private_data;
1322         pdn = pci_get_pdn(pdev);
1323         total_vfs = pci_sriov_get_totalvfs(pdev);
1324
1325         if (pdn->m64_single_mode)
1326                 m64_bars = num_vfs;
1327         else
1328                 m64_bars = 1;
1329
1330         pdn->m64_map = kmalloc_array(m64_bars,
1331                                      sizeof(*pdn->m64_map),
1332                                      GFP_KERNEL);
1333         if (!pdn->m64_map)
1334                 return -ENOMEM;
1335         /* Initialize the m64_map to IODA_INVALID_M64 */
1336         for (i = 0; i < m64_bars ; i++)
1337                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1338                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1339
1340
1341         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1342                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1343                 if (!res->flags || !res->parent)
1344                         continue;
1345
1346                 for (j = 0; j < m64_bars; j++) {
1347                         do {
1348                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1349                                                 phb->ioda.m64_bar_idx + 1, 0);
1350
1351                                 if (win >= phb->ioda.m64_bar_idx + 1)
1352                                         goto m64_failed;
1353                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1354
1355                         pdn->m64_map[j][i] = win;
1356
1357                         if (pdn->m64_single_mode) {
1358                                 size = pci_iov_resource_size(pdev,
1359                                                         PCI_IOV_RESOURCES + i);
1360                                 start = res->start + size * j;
1361                         } else {
1362                                 size = resource_size(res);
1363                                 start = res->start;
1364                         }
1365
1366                         /* Map the M64 here */
1367                         if (pdn->m64_single_mode) {
1368                                 pe_num = pdn->pe_num_map[j];
1369                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1370                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1371                                                 pdn->m64_map[j][i], 0);
1372                         }
1373
1374                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1375                                                  OPAL_M64_WINDOW_TYPE,
1376                                                  pdn->m64_map[j][i],
1377                                                  start,
1378                                                  0, /* unused */
1379                                                  size);
1380
1381
1382                         if (rc != OPAL_SUCCESS) {
1383                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1384                                         win, rc);
1385                                 goto m64_failed;
1386                         }
1387
1388                         if (pdn->m64_single_mode)
1389                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1390                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1391                         else
1392                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1393                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1394
1395                         if (rc != OPAL_SUCCESS) {
1396                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1397                                         win, rc);
1398                                 goto m64_failed;
1399                         }
1400                 }
1401         }
1402         return 0;
1403
1404 m64_failed:
1405         pnv_pci_vf_release_m64(pdev, num_vfs);
1406         return -EBUSY;
1407 }
1408
1409 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1410                 int num);
1411 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1412
1413 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1414 {
1415         struct iommu_table    *tbl;
1416         int64_t               rc;
1417
1418         tbl = pe->table_group.tables[0];
1419         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1420         if (rc)
1421                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1422
1423         pnv_pci_ioda2_set_bypass(pe, false);
1424         if (pe->table_group.group) {
1425                 iommu_group_put(pe->table_group.group);
1426                 BUG_ON(pe->table_group.group);
1427         }
1428         iommu_tce_table_put(tbl);
1429 }
1430
1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1432 {
1433         struct pci_bus        *bus;
1434         struct pci_controller *hose;
1435         struct pnv_phb        *phb;
1436         struct pnv_ioda_pe    *pe, *pe_n;
1437         struct pci_dn         *pdn;
1438
1439         bus = pdev->bus;
1440         hose = pci_bus_to_host(bus);
1441         phb = hose->private_data;
1442         pdn = pci_get_pdn(pdev);
1443
1444         if (!pdev->is_physfn)
1445                 return;
1446
1447         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1448                 if (pe->parent_dev != pdev)
1449                         continue;
1450
1451                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1452
1453                 /* Remove from list */
1454                 mutex_lock(&phb->ioda.pe_list_mutex);
1455                 list_del(&pe->list);
1456                 mutex_unlock(&phb->ioda.pe_list_mutex);
1457
1458                 pnv_ioda_deconfigure_pe(phb, pe);
1459
1460                 pnv_ioda_free_pe(pe);
1461         }
1462 }
1463
1464 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1465 {
1466         struct pci_bus        *bus;
1467         struct pci_controller *hose;
1468         struct pnv_phb        *phb;
1469         struct pnv_ioda_pe    *pe;
1470         struct pci_dn         *pdn;
1471         u16                    num_vfs, i;
1472
1473         bus = pdev->bus;
1474         hose = pci_bus_to_host(bus);
1475         phb = hose->private_data;
1476         pdn = pci_get_pdn(pdev);
1477         num_vfs = pdn->num_vfs;
1478
1479         /* Release VF PEs */
1480         pnv_ioda_release_vf_PE(pdev);
1481
1482         if (phb->type == PNV_PHB_IODA2) {
1483                 if (!pdn->m64_single_mode)
1484                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1485
1486                 /* Release M64 windows */
1487                 pnv_pci_vf_release_m64(pdev, num_vfs);
1488
1489                 /* Release PE numbers */
1490                 if (pdn->m64_single_mode) {
1491                         for (i = 0; i < num_vfs; i++) {
1492                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1493                                         continue;
1494
1495                                 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1496                                 pnv_ioda_free_pe(pe);
1497                         }
1498                 } else
1499                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1500                 /* Releasing pe_num_map */
1501                 kfree(pdn->pe_num_map);
1502         }
1503 }
1504
1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1506                                        struct pnv_ioda_pe *pe);
1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509         struct pci_bus        *bus;
1510         struct pci_controller *hose;
1511         struct pnv_phb        *phb;
1512         struct pnv_ioda_pe    *pe;
1513         int                    pe_num;
1514         u16                    vf_index;
1515         struct pci_dn         *pdn;
1516
1517         bus = pdev->bus;
1518         hose = pci_bus_to_host(bus);
1519         phb = hose->private_data;
1520         pdn = pci_get_pdn(pdev);
1521
1522         if (!pdev->is_physfn)
1523                 return;
1524
1525         /* Reserve PE for each VF */
1526         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1527                 if (pdn->m64_single_mode)
1528                         pe_num = pdn->pe_num_map[vf_index];
1529                 else
1530                         pe_num = *pdn->pe_num_map + vf_index;
1531
1532                 pe = &phb->ioda.pe_array[pe_num];
1533                 pe->pe_number = pe_num;
1534                 pe->phb = phb;
1535                 pe->flags = PNV_IODA_PE_VF;
1536                 pe->pbus = NULL;
1537                 pe->parent_dev = pdev;
1538                 pe->mve_number = -1;
1539                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1540                            pci_iov_virtfn_devfn(pdev, vf_index);
1541
1542                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1543                         hose->global_number, pdev->bus->number,
1544                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1545                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1546
1547                 if (pnv_ioda_configure_pe(phb, pe)) {
1548                         /* XXX What do we do here ? */
1549                         pnv_ioda_free_pe(pe);
1550                         pe->pdev = NULL;
1551                         continue;
1552                 }
1553
1554                 /* Put PE to the list */
1555                 mutex_lock(&phb->ioda.pe_list_mutex);
1556                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1557                 mutex_unlock(&phb->ioda.pe_list_mutex);
1558
1559                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1560         }
1561 }
1562
1563 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1564 {
1565         struct pci_bus        *bus;
1566         struct pci_controller *hose;
1567         struct pnv_phb        *phb;
1568         struct pnv_ioda_pe    *pe;
1569         struct pci_dn         *pdn;
1570         int                    ret;
1571         u16                    i;
1572
1573         bus = pdev->bus;
1574         hose = pci_bus_to_host(bus);
1575         phb = hose->private_data;
1576         pdn = pci_get_pdn(pdev);
1577
1578         if (phb->type == PNV_PHB_IODA2) {
1579                 if (!pdn->vfs_expanded) {
1580                         dev_info(&pdev->dev, "don't support this SRIOV device"
1581                                 " with non 64bit-prefetchable IOV BAR\n");
1582                         return -ENOSPC;
1583                 }
1584
1585                 /*
1586                  * When M64 BARs functions in Single PE mode, the number of VFs
1587                  * could be enabled must be less than the number of M64 BARs.
1588                  */
1589                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1590                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1591                         return -EBUSY;
1592                 }
1593
1594                 /* Allocating pe_num_map */
1595                 if (pdn->m64_single_mode)
1596                         pdn->pe_num_map = kmalloc_array(num_vfs,
1597                                                         sizeof(*pdn->pe_num_map),
1598                                                         GFP_KERNEL);
1599                 else
1600                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1601
1602                 if (!pdn->pe_num_map)
1603                         return -ENOMEM;
1604
1605                 if (pdn->m64_single_mode)
1606                         for (i = 0; i < num_vfs; i++)
1607                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1608
1609                 /* Calculate available PE for required VFs */
1610                 if (pdn->m64_single_mode) {
1611                         for (i = 0; i < num_vfs; i++) {
1612                                 pe = pnv_ioda_alloc_pe(phb);
1613                                 if (!pe) {
1614                                         ret = -EBUSY;
1615                                         goto m64_failed;
1616                                 }
1617
1618                                 pdn->pe_num_map[i] = pe->pe_number;
1619                         }
1620                 } else {
1621                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1622                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1623                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1624                                 0, num_vfs, 0);
1625                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1626                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1627                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1628                                 kfree(pdn->pe_num_map);
1629                                 return -EBUSY;
1630                         }
1631                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1632                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1633                 }
1634                 pdn->num_vfs = num_vfs;
1635
1636                 /* Assign M64 window accordingly */
1637                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1638                 if (ret) {
1639                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1640                         goto m64_failed;
1641                 }
1642
1643                 /*
1644                  * When using one M64 BAR to map one IOV BAR, we need to shift
1645                  * the IOV BAR according to the PE# allocated to the VFs.
1646                  * Otherwise, the PE# for the VF will conflict with others.
1647                  */
1648                 if (!pdn->m64_single_mode) {
1649                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1650                         if (ret)
1651                                 goto m64_failed;
1652                 }
1653         }
1654
1655         /* Setup VF PEs */
1656         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1657
1658         return 0;
1659
1660 m64_failed:
1661         if (pdn->m64_single_mode) {
1662                 for (i = 0; i < num_vfs; i++) {
1663                         if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1664                                 continue;
1665
1666                         pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1667                         pnv_ioda_free_pe(pe);
1668                 }
1669         } else
1670                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1671
1672         /* Releasing pe_num_map */
1673         kfree(pdn->pe_num_map);
1674
1675         return ret;
1676 }
1677
1678 int pcibios_sriov_disable(struct pci_dev *pdev)
1679 {
1680         pnv_pci_sriov_disable(pdev);
1681
1682         /* Release PCI data */
1683         remove_dev_pci_data(pdev);
1684         return 0;
1685 }
1686
1687 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1688 {
1689         /* Allocate PCI data */
1690         add_dev_pci_data(pdev);
1691
1692         return pnv_pci_sriov_enable(pdev, num_vfs);
1693 }
1694 #endif /* CONFIG_PCI_IOV */
1695
1696 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1697 {
1698         struct pci_dn *pdn = pci_get_pdn(pdev);
1699         struct pnv_ioda_pe *pe;
1700
1701         /*
1702          * The function can be called while the PE#
1703          * hasn't been assigned. Do nothing for the
1704          * case.
1705          */
1706         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1707                 return;
1708
1709         pe = &phb->ioda.pe_array[pdn->pe_number];
1710         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1711         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1712         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1713         /*
1714          * Note: iommu_add_device() will fail here as
1715          * for physical PE: the device is already added by now;
1716          * for virtual PE: sysfs entries are not ready yet and
1717          * tce_iommu_bus_notifier will add the device to a group later.
1718          */
1719 }
1720
1721 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1722 {
1723         unsigned short vendor = 0;
1724         struct pci_dev *pdev;
1725
1726         if (pe->device_count == 1)
1727                 return true;
1728
1729         /* pe->pdev should be set if it's a single device, pe->pbus if not */
1730         if (!pe->pbus)
1731                 return true;
1732
1733         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1734                 if (!vendor) {
1735                         vendor = pdev->vendor;
1736                         continue;
1737                 }
1738
1739                 if (pdev->vendor != vendor)
1740                         return false;
1741         }
1742
1743         return true;
1744 }
1745
1746 /*
1747  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1748  *
1749  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1750  * Devices can only access more than that if bit 59 of the PCI address is set
1751  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1752  * Many PCI devices are not capable of addressing that many bits, and as a
1753  * result are limited to the 4GB of virtual memory made available to 32-bit
1754  * devices in TVE#0.
1755  *
1756  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1757  * devices by configuring the virtual memory past the first 4GB inaccessible
1758  * by 64-bit DMAs.  This should only be used by devices that want more than
1759  * 4GB, and only on PEs that have no 32-bit devices.
1760  *
1761  * Currently this will only work on PHB3 (POWER8).
1762  */
1763 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1764 {
1765         u64 window_size, table_size, tce_count, addr;
1766         struct page *table_pages;
1767         u64 tce_order = 28; /* 256MB TCEs */
1768         __be64 *tces;
1769         s64 rc;
1770
1771         /*
1772          * Window size needs to be a power of two, but needs to account for
1773          * shifting memory by the 4GB offset required to skip 32bit space.
1774          */
1775         window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1776         tce_count = window_size >> tce_order;
1777         table_size = tce_count << 3;
1778
1779         if (table_size < PAGE_SIZE)
1780                 table_size = PAGE_SIZE;
1781
1782         table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1783                                        get_order(table_size));
1784         if (!table_pages)
1785                 goto err;
1786
1787         tces = page_address(table_pages);
1788         if (!tces)
1789                 goto err;
1790
1791         memset(tces, 0, table_size);
1792
1793         for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1794                 tces[(addr + (1ULL << 32)) >> tce_order] =
1795                         cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1796         }
1797
1798         rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1799                                         pe->pe_number,
1800                                         /* reconfigure window 0 */
1801                                         (pe->pe_number << 1) + 0,
1802                                         1,
1803                                         __pa(tces),
1804                                         table_size,
1805                                         1 << tce_order);
1806         if (rc == OPAL_SUCCESS) {
1807                 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1808                 return 0;
1809         }
1810 err:
1811         pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1812         return -EIO;
1813 }
1814
1815 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1816 {
1817         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1818         struct pnv_phb *phb = hose->private_data;
1819         struct pci_dn *pdn = pci_get_pdn(pdev);
1820         struct pnv_ioda_pe *pe;
1821         uint64_t top;
1822         bool bypass = false;
1823         s64 rc;
1824
1825         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1826                 return -ENODEV;;
1827
1828         pe = &phb->ioda.pe_array[pdn->pe_number];
1829         if (pe->tce_bypass_enabled) {
1830                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1831                 bypass = (dma_mask >= top);
1832         }
1833
1834         if (bypass) {
1835                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1836                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1837         } else {
1838                 /*
1839                  * If the device can't set the TCE bypass bit but still wants
1840                  * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1841                  * bypass the 32-bit region and be usable for 64-bit DMAs.
1842                  * The device needs to be able to address all of this space.
1843                  */
1844                 if (dma_mask >> 32 &&
1845                     dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1846                     pnv_pci_ioda_pe_single_vendor(pe) &&
1847                     phb->model == PNV_PHB_MODEL_PHB3) {
1848                         /* Configure the bypass mode */
1849                         rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1850                         if (rc)
1851                                 return rc;
1852                         /* 4GB offset bypasses 32-bit space */
1853                         set_dma_offset(&pdev->dev, (1ULL << 32));
1854                         set_dma_ops(&pdev->dev, &dma_direct_ops);
1855                 } else {
1856                         dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1857                         set_dma_ops(&pdev->dev, &dma_iommu_ops);
1858                 }
1859         }
1860         *pdev->dev.dma_mask = dma_mask;
1861
1862         /* Update peer npu devices */
1863         pnv_npu_try_dma_set_bypass(pdev, bypass);
1864
1865         return 0;
1866 }
1867
1868 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1869 {
1870         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1871         struct pnv_phb *phb = hose->private_data;
1872         struct pci_dn *pdn = pci_get_pdn(pdev);
1873         struct pnv_ioda_pe *pe;
1874         u64 end, mask;
1875
1876         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1877                 return 0;
1878
1879         pe = &phb->ioda.pe_array[pdn->pe_number];
1880         if (!pe->tce_bypass_enabled)
1881                 return __dma_get_required_mask(&pdev->dev);
1882
1883
1884         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1885         mask = 1ULL << (fls64(end) - 1);
1886         mask += mask - 1;
1887
1888         return mask;
1889 }
1890
1891 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1892                                    struct pci_bus *bus,
1893                                    bool add_to_group)
1894 {
1895         struct pci_dev *dev;
1896
1897         list_for_each_entry(dev, &bus->devices, bus_list) {
1898                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1899                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1900                 if (add_to_group)
1901                         iommu_add_device(&dev->dev);
1902
1903                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1904                         pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1905                                         add_to_group);
1906         }
1907 }
1908
1909 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1910                                                      bool real_mode)
1911 {
1912         return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1913                 (phb->regs + 0x210);
1914 }
1915
1916 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1917                 unsigned long index, unsigned long npages, bool rm)
1918 {
1919         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1920                         &tbl->it_group_list, struct iommu_table_group_link,
1921                         next);
1922         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1923                         struct pnv_ioda_pe, table_group);
1924         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1925         unsigned long start, end, inc;
1926
1927         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1928         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1929                         npages - 1);
1930
1931         /* p7ioc-style invalidation, 2 TCEs per write */
1932         start |= (1ull << 63);
1933         end |= (1ull << 63);
1934         inc = 16;
1935         end |= inc - 1; /* round up end to be different than start */
1936
1937         mb(); /* Ensure above stores are visible */
1938         while (start <= end) {
1939                 if (rm)
1940                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1941                 else
1942                         __raw_writeq(cpu_to_be64(start), invalidate);
1943                 start += inc;
1944         }
1945
1946         /*
1947          * The iommu layer will do another mb() for us on build()
1948          * and we don't care on free()
1949          */
1950 }
1951
1952 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1953                 long npages, unsigned long uaddr,
1954                 enum dma_data_direction direction,
1955                 unsigned long attrs)
1956 {
1957         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1958                         attrs);
1959
1960         if (!ret)
1961                 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1962
1963         return ret;
1964 }
1965
1966 #ifdef CONFIG_IOMMU_API
1967 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1968                 unsigned long *hpa, enum dma_data_direction *direction)
1969 {
1970         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1971
1972         if (!ret)
1973                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1974
1975         return ret;
1976 }
1977
1978 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
1979                 unsigned long *hpa, enum dma_data_direction *direction)
1980 {
1981         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1982
1983         if (!ret)
1984                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
1985
1986         return ret;
1987 }
1988 #endif
1989
1990 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1991                 long npages)
1992 {
1993         pnv_tce_free(tbl, index, npages);
1994
1995         pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1996 }
1997
1998 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1999         .set = pnv_ioda1_tce_build,
2000 #ifdef CONFIG_IOMMU_API
2001         .exchange = pnv_ioda1_tce_xchg,
2002         .exchange_rm = pnv_ioda1_tce_xchg_rm,
2003 #endif
2004         .clear = pnv_ioda1_tce_free,
2005         .get = pnv_tce_get,
2006 };
2007
2008 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
2009 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
2010 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
2011
2012 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2013 {
2014         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2015         const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2016
2017         mb(); /* Ensure previous TCE table stores are visible */
2018         if (rm)
2019                 __raw_rm_writeq(cpu_to_be64(val), invalidate);
2020         else
2021                 __raw_writeq(cpu_to_be64(val), invalidate);
2022 }
2023
2024 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2025 {
2026         /* 01xb - invalidate TCEs that match the specified PE# */
2027         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2028         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2029
2030         mb(); /* Ensure above stores are visible */
2031         __raw_writeq(cpu_to_be64(val), invalidate);
2032 }
2033
2034 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2035                                         unsigned shift, unsigned long index,
2036                                         unsigned long npages)
2037 {
2038         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2039         unsigned long start, end, inc;
2040
2041         /* We'll invalidate DMA address in PE scope */
2042         start = PHB3_TCE_KILL_INVAL_ONE;
2043         start |= (pe->pe_number & 0xFF);
2044         end = start;
2045
2046         /* Figure out the start, end and step */
2047         start |= (index << shift);
2048         end |= ((index + npages - 1) << shift);
2049         inc = (0x1ull << shift);
2050         mb();
2051
2052         while (start <= end) {
2053                 if (rm)
2054                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
2055                 else
2056                         __raw_writeq(cpu_to_be64(start), invalidate);
2057                 start += inc;
2058         }
2059 }
2060
2061 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2062 {
2063         struct pnv_phb *phb = pe->phb;
2064
2065         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2066                 pnv_pci_phb3_tce_invalidate_pe(pe);
2067         else
2068                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2069                                   pe->pe_number, 0, 0, 0);
2070 }
2071
2072 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2073                 unsigned long index, unsigned long npages, bool rm)
2074 {
2075         struct iommu_table_group_link *tgl;
2076
2077         list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2078                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2079                                 struct pnv_ioda_pe, table_group);
2080                 struct pnv_phb *phb = pe->phb;
2081                 unsigned int shift = tbl->it_page_shift;
2082
2083                 /*
2084                  * NVLink1 can use the TCE kill register directly as
2085                  * it's the same as PHB3. NVLink2 is different and
2086                  * should go via the OPAL call.
2087                  */
2088                 if (phb->model == PNV_PHB_MODEL_NPU) {
2089                         /*
2090                          * The NVLink hardware does not support TCE kill
2091                          * per TCE entry so we have to invalidate
2092                          * the entire cache for it.
2093                          */
2094                         pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2095                         continue;
2096                 }
2097                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2098                         pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2099                                                     index, npages);
2100                 else
2101                         opal_pci_tce_kill(phb->opal_id,
2102                                           OPAL_PCI_TCE_KILL_PAGES,
2103                                           pe->pe_number, 1u << shift,
2104                                           index << shift, npages);
2105         }
2106 }
2107
2108 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2109 {
2110         if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2111                 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2112         else
2113                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2114 }
2115
2116 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2117                 long npages, unsigned long uaddr,
2118                 enum dma_data_direction direction,
2119                 unsigned long attrs)
2120 {
2121         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2122                         attrs);
2123
2124         if (!ret)
2125                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2126
2127         return ret;
2128 }
2129
2130 #ifdef CONFIG_IOMMU_API
2131 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2132                 unsigned long *hpa, enum dma_data_direction *direction)
2133 {
2134         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2135
2136         if (!ret)
2137                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2138
2139         return ret;
2140 }
2141
2142 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2143                 unsigned long *hpa, enum dma_data_direction *direction)
2144 {
2145         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2146
2147         if (!ret)
2148                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2149
2150         return ret;
2151 }
2152 #endif
2153
2154 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2155                 long npages)
2156 {
2157         pnv_tce_free(tbl, index, npages);
2158
2159         pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2160 }
2161
2162 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2163 {
2164         pnv_pci_ioda2_table_free_pages(tbl);
2165 }
2166
2167 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2168         .set = pnv_ioda2_tce_build,
2169 #ifdef CONFIG_IOMMU_API
2170         .exchange = pnv_ioda2_tce_xchg,
2171         .exchange_rm = pnv_ioda2_tce_xchg_rm,
2172 #endif
2173         .clear = pnv_ioda2_tce_free,
2174         .get = pnv_tce_get,
2175         .free = pnv_ioda2_table_free,
2176 };
2177
2178 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2179 {
2180         unsigned int *weight = (unsigned int *)data;
2181
2182         /* This is quite simplistic. The "base" weight of a device
2183          * is 10. 0 means no DMA is to be accounted for it.
2184          */
2185         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2186                 return 0;
2187
2188         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2189             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2190             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2191                 *weight += 3;
2192         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2193                 *weight += 15;
2194         else
2195                 *weight += 10;
2196
2197         return 0;
2198 }
2199
2200 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2201 {
2202         unsigned int weight = 0;
2203
2204         /* SRIOV VF has same DMA32 weight as its PF */
2205 #ifdef CONFIG_PCI_IOV
2206         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2207                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2208                 return weight;
2209         }
2210 #endif
2211
2212         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2213                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2214         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2215                 struct pci_dev *pdev;
2216
2217                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2218                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2219         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2220                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2221         }
2222
2223         return weight;
2224 }
2225
2226 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2227                                        struct pnv_ioda_pe *pe)
2228 {
2229
2230         struct page *tce_mem = NULL;
2231         struct iommu_table *tbl;
2232         unsigned int weight, total_weight = 0;
2233         unsigned int tce32_segsz, base, segs, avail, i;
2234         int64_t rc;
2235         void *addr;
2236
2237         /* XXX FIXME: Handle 64-bit only DMA devices */
2238         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2239         /* XXX FIXME: Allocate multi-level tables on PHB3 */
2240         weight = pnv_pci_ioda_pe_dma_weight(pe);
2241         if (!weight)
2242                 return;
2243
2244         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2245                      &total_weight);
2246         segs = (weight * phb->ioda.dma32_count) / total_weight;
2247         if (!segs)
2248                 segs = 1;
2249
2250         /*
2251          * Allocate contiguous DMA32 segments. We begin with the expected
2252          * number of segments. With one more attempt, the number of DMA32
2253          * segments to be allocated is decreased by one until one segment
2254          * is allocated successfully.
2255          */
2256         do {
2257                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2258                         for (avail = 0, i = base; i < base + segs; i++) {
2259                                 if (phb->ioda.dma32_segmap[i] ==
2260                                     IODA_INVALID_PE)
2261                                         avail++;
2262                         }
2263
2264                         if (avail == segs)
2265                                 goto found;
2266                 }
2267         } while (--segs);
2268
2269         if (!segs) {
2270                 pe_warn(pe, "No available DMA32 segments\n");
2271                 return;
2272         }
2273
2274 found:
2275         tbl = pnv_pci_table_alloc(phb->hose->node);
2276         if (WARN_ON(!tbl))
2277                 return;
2278
2279         iommu_register_group(&pe->table_group, phb->hose->global_number,
2280                         pe->pe_number);
2281         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2282
2283         /* Grab a 32-bit TCE table */
2284         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2285                 weight, total_weight, base, segs);
2286         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2287                 base * PNV_IODA1_DMA32_SEGSIZE,
2288                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2289
2290         /* XXX Currently, we allocate one big contiguous table for the
2291          * TCEs. We only really need one chunk per 256M of TCE space
2292          * (ie per segment) but that's an optimization for later, it
2293          * requires some added smarts with our get/put_tce implementation
2294          *
2295          * Each TCE page is 4KB in size and each TCE entry occupies 8
2296          * bytes
2297          */
2298         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2299         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2300                                    get_order(tce32_segsz * segs));
2301         if (!tce_mem) {
2302                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2303                 goto fail;
2304         }
2305         addr = page_address(tce_mem);
2306         memset(addr, 0, tce32_segsz * segs);
2307
2308         /* Configure HW */
2309         for (i = 0; i < segs; i++) {
2310                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2311                                               pe->pe_number,
2312                                               base + i, 1,
2313                                               __pa(addr) + tce32_segsz * i,
2314                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
2315                 if (rc) {
2316                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2317                                " err %ld\n", rc);
2318                         goto fail;
2319                 }
2320         }
2321
2322         /* Setup DMA32 segment mapping */
2323         for (i = base; i < base + segs; i++)
2324                 phb->ioda.dma32_segmap[i] = pe->pe_number;
2325
2326         /* Setup linux iommu table */
2327         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2328                                   base * PNV_IODA1_DMA32_SEGSIZE,
2329                                   IOMMU_PAGE_SHIFT_4K);
2330
2331         tbl->it_ops = &pnv_ioda1_iommu_ops;
2332         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2333         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2334         iommu_init_table(tbl, phb->hose->node);
2335
2336         if (pe->flags & PNV_IODA_PE_DEV) {
2337                 /*
2338                  * Setting table base here only for carrying iommu_group
2339                  * further down to let iommu_add_device() do the job.
2340                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2341                  */
2342                 set_iommu_table_base(&pe->pdev->dev, tbl);
2343                 iommu_add_device(&pe->pdev->dev);
2344         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2345                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2346
2347         return;
2348  fail:
2349         /* XXX Failure: Try to fallback to 64-bit only ? */
2350         if (tce_mem)
2351                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2352         if (tbl) {
2353                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2354                 iommu_tce_table_put(tbl);
2355         }
2356 }
2357
2358 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2359                 int num, struct iommu_table *tbl)
2360 {
2361         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2362                         table_group);
2363         struct pnv_phb *phb = pe->phb;
2364         int64_t rc;
2365         const unsigned long size = tbl->it_indirect_levels ?
2366                         tbl->it_level_size : tbl->it_size;
2367         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2368         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2369
2370         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2371                         start_addr, start_addr + win_size - 1,
2372                         IOMMU_PAGE_SIZE(tbl));
2373
2374         /*
2375          * Map TCE table through TVT. The TVE index is the PE number
2376          * shifted by 1 bit for 32-bits DMA space.
2377          */
2378         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2379                         pe->pe_number,
2380                         (pe->pe_number << 1) + num,
2381                         tbl->it_indirect_levels + 1,
2382                         __pa(tbl->it_base),
2383                         size << 3,
2384                         IOMMU_PAGE_SIZE(tbl));
2385         if (rc) {
2386                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2387                 return rc;
2388         }
2389
2390         pnv_pci_link_table_and_group(phb->hose->node, num,
2391                         tbl, &pe->table_group);
2392         pnv_pci_ioda2_tce_invalidate_pe(pe);
2393
2394         return 0;
2395 }
2396
2397 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2398 {
2399         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2400         int64_t rc;
2401
2402         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2403         if (enable) {
2404                 phys_addr_t top = memblock_end_of_DRAM();
2405
2406                 top = roundup_pow_of_two(top);
2407                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2408                                                      pe->pe_number,
2409                                                      window_id,
2410                                                      pe->tce_bypass_base,
2411                                                      top);
2412         } else {
2413                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2414                                                      pe->pe_number,
2415                                                      window_id,
2416                                                      pe->tce_bypass_base,
2417                                                      0);
2418         }
2419         if (rc)
2420                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2421         else
2422                 pe->tce_bypass_enabled = enable;
2423 }
2424
2425 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2426                 __u32 page_shift, __u64 window_size, __u32 levels,
2427                 struct iommu_table *tbl);
2428
2429 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2430                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2431                 struct iommu_table **ptbl)
2432 {
2433         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2434                         table_group);
2435         int nid = pe->phb->hose->node;
2436         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2437         long ret;
2438         struct iommu_table *tbl;
2439
2440         tbl = pnv_pci_table_alloc(nid);
2441         if (!tbl)
2442                 return -ENOMEM;
2443
2444         tbl->it_ops = &pnv_ioda2_iommu_ops;
2445
2446         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2447                         bus_offset, page_shift, window_size,
2448                         levels, tbl);
2449         if (ret) {
2450                 iommu_tce_table_put(tbl);
2451                 return ret;
2452         }
2453
2454         *ptbl = tbl;
2455
2456         return 0;
2457 }
2458
2459 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2460 {
2461         struct iommu_table *tbl = NULL;
2462         long rc;
2463
2464         /*
2465          * crashkernel= specifies the kdump kernel's maximum memory at
2466          * some offset and there is no guaranteed the result is a power
2467          * of 2, which will cause errors later.
2468          */
2469         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2470
2471         /*
2472          * In memory constrained environments, e.g. kdump kernel, the
2473          * DMA window can be larger than available memory, which will
2474          * cause errors later.
2475          */
2476         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2477
2478         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2479                         IOMMU_PAGE_SHIFT_4K,
2480                         window_size,
2481                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2482         if (rc) {
2483                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2484                                 rc);
2485                 return rc;
2486         }
2487
2488         iommu_init_table(tbl, pe->phb->hose->node);
2489
2490         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2491         if (rc) {
2492                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2493                                 rc);
2494                 iommu_tce_table_put(tbl);
2495                 return rc;
2496         }
2497
2498         if (!pnv_iommu_bypass_disabled)
2499                 pnv_pci_ioda2_set_bypass(pe, true);
2500
2501         /*
2502          * Setting table base here only for carrying iommu_group
2503          * further down to let iommu_add_device() do the job.
2504          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2505          */
2506         if (pe->flags & PNV_IODA_PE_DEV)
2507                 set_iommu_table_base(&pe->pdev->dev, tbl);
2508
2509         return 0;
2510 }
2511
2512 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2513 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2514                 int num)
2515 {
2516         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2517                         table_group);
2518         struct pnv_phb *phb = pe->phb;
2519         long ret;
2520
2521         pe_info(pe, "Removing DMA window #%d\n", num);
2522
2523         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2524                         (pe->pe_number << 1) + num,
2525                         0/* levels */, 0/* table address */,
2526                         0/* table size */, 0/* page size */);
2527         if (ret)
2528                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2529         else
2530                 pnv_pci_ioda2_tce_invalidate_pe(pe);
2531
2532         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2533
2534         return ret;
2535 }
2536 #endif
2537
2538 #ifdef CONFIG_IOMMU_API
2539 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2540                 __u64 window_size, __u32 levels)
2541 {
2542         unsigned long bytes = 0;
2543         const unsigned window_shift = ilog2(window_size);
2544         unsigned entries_shift = window_shift - page_shift;
2545         unsigned table_shift = entries_shift + 3;
2546         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2547         unsigned long direct_table_size;
2548
2549         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2550                         (window_size > memory_hotplug_max()) ||
2551                         !is_power_of_2(window_size))
2552                 return 0;
2553
2554         /* Calculate a direct table size from window_size and levels */
2555         entries_shift = (entries_shift + levels - 1) / levels;
2556         table_shift = entries_shift + 3;
2557         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2558         direct_table_size =  1UL << table_shift;
2559
2560         for ( ; levels; --levels) {
2561                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2562
2563                 tce_table_size /= direct_table_size;
2564                 tce_table_size <<= 3;
2565                 tce_table_size = max_t(unsigned long,
2566                                 tce_table_size, direct_table_size);
2567         }
2568
2569         return bytes;
2570 }
2571
2572 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2573 {
2574         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2575                                                 table_group);
2576         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2577         struct iommu_table *tbl = pe->table_group.tables[0];
2578
2579         pnv_pci_ioda2_set_bypass(pe, false);
2580         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2581         if (pe->pbus)
2582                 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2583         iommu_tce_table_put(tbl);
2584 }
2585
2586 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2587 {
2588         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2589                                                 table_group);
2590
2591         pnv_pci_ioda2_setup_default_config(pe);
2592         if (pe->pbus)
2593                 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2594 }
2595
2596 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2597         .get_table_size = pnv_pci_ioda2_get_table_size,
2598         .create_table = pnv_pci_ioda2_create_table,
2599         .set_window = pnv_pci_ioda2_set_window,
2600         .unset_window = pnv_pci_ioda2_unset_window,
2601         .take_ownership = pnv_ioda2_take_ownership,
2602         .release_ownership = pnv_ioda2_release_ownership,
2603 };
2604
2605 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2606 {
2607         struct pci_controller *hose;
2608         struct pnv_phb *phb;
2609         struct pnv_ioda_pe **ptmppe = opaque;
2610         struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2611         struct pci_dn *pdn = pci_get_pdn(pdev);
2612
2613         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2614                 return 0;
2615
2616         hose = pci_bus_to_host(pdev->bus);
2617         phb = hose->private_data;
2618         if (phb->type != PNV_PHB_NPU)
2619                 return 0;
2620
2621         *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2622
2623         return 1;
2624 }
2625
2626 /*
2627  * This returns PE of associated NPU.
2628  * This assumes that NPU is in the same IOMMU group with GPU and there is
2629  * no other PEs.
2630  */
2631 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2632                 struct iommu_table_group *table_group)
2633 {
2634         struct pnv_ioda_pe *npe = NULL;
2635         int ret = iommu_group_for_each_dev(table_group->group, &npe,
2636                         gpe_table_group_to_npe_cb);
2637
2638         BUG_ON(!ret || !npe);
2639
2640         return npe;
2641 }
2642
2643 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2644                 int num, struct iommu_table *tbl)
2645 {
2646         long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2647
2648         if (ret)
2649                 return ret;
2650
2651         ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2652         if (ret)
2653                 pnv_pci_ioda2_unset_window(table_group, num);
2654
2655         return ret;
2656 }
2657
2658 static long pnv_pci_ioda2_npu_unset_window(
2659                 struct iommu_table_group *table_group,
2660                 int num)
2661 {
2662         long ret = pnv_pci_ioda2_unset_window(table_group, num);
2663
2664         if (ret)
2665                 return ret;
2666
2667         return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2668 }
2669
2670 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2671 {
2672         /*
2673          * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2674          * the iommu_table if 32bit DMA is enabled.
2675          */
2676         pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2677         pnv_ioda2_take_ownership(table_group);
2678 }
2679
2680 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2681         .get_table_size = pnv_pci_ioda2_get_table_size,
2682         .create_table = pnv_pci_ioda2_create_table,
2683         .set_window = pnv_pci_ioda2_npu_set_window,
2684         .unset_window = pnv_pci_ioda2_npu_unset_window,
2685         .take_ownership = pnv_ioda2_npu_take_ownership,
2686         .release_ownership = pnv_ioda2_release_ownership,
2687 };
2688
2689 static void pnv_pci_ioda_setup_iommu_api(void)
2690 {
2691         struct pci_controller *hose, *tmp;
2692         struct pnv_phb *phb;
2693         struct pnv_ioda_pe *pe, *gpe;
2694
2695         /*
2696          * Now we have all PHBs discovered, time to add NPU devices to
2697          * the corresponding IOMMU groups.
2698          */
2699         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2700                 phb = hose->private_data;
2701
2702                 if (phb->type != PNV_PHB_NPU)
2703                         continue;
2704
2705                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2706                         gpe = pnv_pci_npu_setup_iommu(pe);
2707                         if (gpe)
2708                                 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2709                 }
2710         }
2711 }
2712 #else /* !CONFIG_IOMMU_API */
2713 static void pnv_pci_ioda_setup_iommu_api(void) { };
2714 #endif
2715
2716 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2717                 unsigned levels, unsigned long limit,
2718                 unsigned long *current_offset, unsigned long *total_allocated)
2719 {
2720         struct page *tce_mem = NULL;
2721         __be64 *addr, *tmp;
2722         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2723         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2724         unsigned entries = 1UL << (shift - 3);
2725         long i;
2726
2727         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2728         if (!tce_mem) {
2729                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2730                 return NULL;
2731         }
2732         addr = page_address(tce_mem);
2733         memset(addr, 0, allocated);
2734         *total_allocated += allocated;
2735
2736         --levels;
2737         if (!levels) {
2738                 *current_offset += allocated;
2739                 return addr;
2740         }
2741
2742         for (i = 0; i < entries; ++i) {
2743                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2744                                 levels, limit, current_offset, total_allocated);
2745                 if (!tmp)
2746                         break;
2747
2748                 addr[i] = cpu_to_be64(__pa(tmp) |
2749                                 TCE_PCI_READ | TCE_PCI_WRITE);
2750
2751                 if (*current_offset >= limit)
2752                         break;
2753         }
2754
2755         return addr;
2756 }
2757
2758 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2759                 unsigned long size, unsigned level);
2760
2761 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2762                 __u32 page_shift, __u64 window_size, __u32 levels,
2763                 struct iommu_table *tbl)
2764 {
2765         void *addr;
2766         unsigned long offset = 0, level_shift, total_allocated = 0;
2767         const unsigned window_shift = ilog2(window_size);
2768         unsigned entries_shift = window_shift - page_shift;
2769         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2770         const unsigned long tce_table_size = 1UL << table_shift;
2771
2772         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2773                 return -EINVAL;
2774
2775         if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2776                 return -EINVAL;
2777
2778         /* Adjust direct table size from window_size and levels */
2779         entries_shift = (entries_shift + levels - 1) / levels;
2780         level_shift = entries_shift + 3;
2781         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2782
2783         if ((level_shift - 3) * levels + page_shift >= 60)
2784                 return -EINVAL;
2785
2786         /* Allocate TCE table */
2787         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2788                         levels, tce_table_size, &offset, &total_allocated);
2789
2790         /* addr==NULL means that the first level allocation failed */
2791         if (!addr)
2792                 return -ENOMEM;
2793
2794         /*
2795          * First level was allocated but some lower level failed as
2796          * we did not allocate as much as we wanted,
2797          * release partially allocated table.
2798          */
2799         if (offset < tce_table_size) {
2800                 pnv_pci_ioda2_table_do_free_pages(addr,
2801                                 1ULL << (level_shift - 3), levels - 1);
2802                 return -ENOMEM;
2803         }
2804
2805         /* Setup linux iommu table */
2806         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2807                         page_shift);
2808         tbl->it_level_size = 1ULL << (level_shift - 3);
2809         tbl->it_indirect_levels = levels - 1;
2810         tbl->it_allocated_size = total_allocated;
2811
2812         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2813                         window_size, tce_table_size, bus_offset);
2814
2815         return 0;
2816 }
2817
2818 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2819                 unsigned long size, unsigned level)
2820 {
2821         const unsigned long addr_ul = (unsigned long) addr &
2822                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2823
2824         if (level) {
2825                 long i;
2826                 u64 *tmp = (u64 *) addr_ul;
2827
2828                 for (i = 0; i < size; ++i) {
2829                         unsigned long hpa = be64_to_cpu(tmp[i]);
2830
2831                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2832                                 continue;
2833
2834                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2835                                         level - 1);
2836                 }
2837         }
2838
2839         free_pages(addr_ul, get_order(size << 3));
2840 }
2841
2842 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2843 {
2844         const unsigned long size = tbl->it_indirect_levels ?
2845                         tbl->it_level_size : tbl->it_size;
2846
2847         if (!tbl->it_size)
2848                 return;
2849
2850         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2851                         tbl->it_indirect_levels);
2852 }
2853
2854 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2855                                        struct pnv_ioda_pe *pe)
2856 {
2857         int64_t rc;
2858
2859         if (!pnv_pci_ioda_pe_dma_weight(pe))
2860                 return;
2861
2862         /* TVE #1 is selected by PCI address bit 59 */
2863         pe->tce_bypass_base = 1ull << 59;
2864
2865         iommu_register_group(&pe->table_group, phb->hose->global_number,
2866                         pe->pe_number);
2867
2868         /* The PE will reserve all possible 32-bits space */
2869         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2870                 phb->ioda.m32_pci_base);
2871
2872         /* Setup linux iommu table */
2873         pe->table_group.tce32_start = 0;
2874         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2875         pe->table_group.max_dynamic_windows_supported =
2876                         IOMMU_TABLE_GROUP_MAX_TABLES;
2877         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2878         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2879 #ifdef CONFIG_IOMMU_API
2880         pe->table_group.ops = &pnv_pci_ioda2_ops;
2881 #endif
2882
2883         rc = pnv_pci_ioda2_setup_default_config(pe);
2884         if (rc)
2885                 return;
2886
2887         if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2888                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2889 }
2890
2891 #ifdef CONFIG_PCI_MSI
2892 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2893 {
2894         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2895                                            ioda.irq_chip);
2896
2897         return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2898 }
2899
2900 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2901 {
2902         int64_t rc;
2903         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2904         struct irq_chip *chip = irq_data_get_irq_chip(d);
2905
2906         rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2907         WARN_ON_ONCE(rc);
2908
2909         icp_native_eoi(d);
2910 }
2911
2912
2913 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2914 {
2915         struct irq_data *idata;
2916         struct irq_chip *ichip;
2917
2918         /* The MSI EOI OPAL call is only needed on PHB3 */
2919         if (phb->model != PNV_PHB_MODEL_PHB3)
2920                 return;
2921
2922         if (!phb->ioda.irq_chip_init) {
2923                 /*
2924                  * First time we setup an MSI IRQ, we need to setup the
2925                  * corresponding IRQ chip to route correctly.
2926                  */
2927                 idata = irq_get_irq_data(virq);
2928                 ichip = irq_data_get_irq_chip(idata);
2929                 phb->ioda.irq_chip_init = 1;
2930                 phb->ioda.irq_chip = *ichip;
2931                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2932         }
2933         irq_set_chip(virq, &phb->ioda.irq_chip);
2934 }
2935
2936 /*
2937  * Returns true iff chip is something that we could call
2938  * pnv_opal_pci_msi_eoi for.
2939  */
2940 bool is_pnv_opal_msi(struct irq_chip *chip)
2941 {
2942         return chip->irq_eoi == pnv_ioda2_msi_eoi;
2943 }
2944 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2945
2946 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2947                                   unsigned int hwirq, unsigned int virq,
2948                                   unsigned int is_64, struct msi_msg *msg)
2949 {
2950         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2951         unsigned int xive_num = hwirq - phb->msi_base;
2952         __be32 data;
2953         int rc;
2954
2955         /* No PE assigned ? bail out ... no MSI for you ! */
2956         if (pe == NULL)
2957                 return -ENXIO;
2958
2959         /* Check if we have an MVE */
2960         if (pe->mve_number < 0)
2961                 return -ENXIO;
2962
2963         /* Force 32-bit MSI on some broken devices */
2964         if (dev->no_64bit_msi)
2965                 is_64 = 0;
2966
2967         /* Assign XIVE to PE */
2968         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2969         if (rc) {
2970                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2971                         pci_name(dev), rc, xive_num);
2972                 return -EIO;
2973         }
2974
2975         if (is_64) {
2976                 __be64 addr64;
2977
2978                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2979                                      &addr64, &data);
2980                 if (rc) {
2981                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2982                                 pci_name(dev), rc);
2983                         return -EIO;
2984                 }
2985                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2986                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2987         } else {
2988                 __be32 addr32;
2989
2990                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2991                                      &addr32, &data);
2992                 if (rc) {
2993                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2994                                 pci_name(dev), rc);
2995                         return -EIO;
2996                 }
2997                 msg->address_hi = 0;
2998                 msg->address_lo = be32_to_cpu(addr32);
2999         }
3000         msg->data = be32_to_cpu(data);
3001
3002         pnv_set_msi_irq_chip(phb, virq);
3003
3004         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
3005                  " address=%x_%08x data=%x PE# %x\n",
3006                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
3007                  msg->address_hi, msg->address_lo, data, pe->pe_number);
3008
3009         return 0;
3010 }
3011
3012 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
3013 {
3014         unsigned int count;
3015         const __be32 *prop = of_get_property(phb->hose->dn,
3016                                              "ibm,opal-msi-ranges", NULL);
3017         if (!prop) {
3018                 /* BML Fallback */
3019                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
3020         }
3021         if (!prop)
3022                 return;
3023
3024         phb->msi_base = be32_to_cpup(prop);
3025         count = be32_to_cpup(prop + 1);
3026         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
3027                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3028                        phb->hose->global_number);
3029                 return;
3030         }
3031
3032         phb->msi_setup = pnv_pci_ioda_msi_setup;
3033         phb->msi32_support = 1;
3034         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3035                 count, phb->msi_base);
3036 }
3037 #else
3038 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3039 #endif /* CONFIG_PCI_MSI */
3040
3041 #ifdef CONFIG_PCI_IOV
3042 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3043 {
3044         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3045         struct pnv_phb *phb = hose->private_data;
3046         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3047         struct resource *res;
3048         int i;
3049         resource_size_t size, total_vf_bar_sz;
3050         struct pci_dn *pdn;
3051         int mul, total_vfs;
3052
3053         if (!pdev->is_physfn || pdev->is_added)
3054                 return;
3055
3056         pdn = pci_get_pdn(pdev);
3057         pdn->vfs_expanded = 0;
3058         pdn->m64_single_mode = false;
3059
3060         total_vfs = pci_sriov_get_totalvfs(pdev);
3061         mul = phb->ioda.total_pe_num;
3062         total_vf_bar_sz = 0;
3063
3064         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3065                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3066                 if (!res->flags || res->parent)
3067                         continue;
3068                 if (!pnv_pci_is_m64_flags(res->flags)) {
3069                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
3070                                         " non M64 VF BAR%d: %pR. \n",
3071                                  i, res);
3072                         goto truncate_iov;
3073                 }
3074
3075                 total_vf_bar_sz += pci_iov_resource_size(pdev,
3076                                 i + PCI_IOV_RESOURCES);
3077
3078                 /*
3079                  * If bigger than quarter of M64 segment size, just round up
3080                  * power of two.
3081                  *
3082                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3083                  * with other devices, IOV BAR size is expanded to be
3084                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3085                  * segment size , the expanded size would equal to half of the
3086                  * whole M64 space size, which will exhaust the M64 Space and
3087                  * limit the system flexibility.  This is a design decision to
3088                  * set the boundary to quarter of the M64 segment size.
3089                  */
3090                 if (total_vf_bar_sz > gate) {
3091                         mul = roundup_pow_of_two(total_vfs);
3092                         dev_info(&pdev->dev,
3093                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3094                                 total_vf_bar_sz, gate, mul);
3095                         pdn->m64_single_mode = true;
3096                         break;
3097                 }
3098         }
3099
3100         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3101                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3102                 if (!res->flags || res->parent)
3103                         continue;
3104
3105                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3106                 /*
3107                  * On PHB3, the minimum size alignment of M64 BAR in single
3108                  * mode is 32MB.
3109                  */
3110                 if (pdn->m64_single_mode && (size < SZ_32M))
3111                         goto truncate_iov;
3112                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3113                 res->end = res->start + size * mul - 1;
3114                 dev_dbg(&pdev->dev, "                       %pR\n", res);
3115                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3116                          i, res, mul);
3117         }
3118         pdn->vfs_expanded = mul;
3119
3120         return;
3121
3122 truncate_iov:
3123         /* To save MMIO space, IOV BAR is truncated. */
3124         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3125                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3126                 res->flags = 0;
3127                 res->end = res->start - 1;
3128         }
3129 }
3130 #endif /* CONFIG_PCI_IOV */
3131
3132 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3133                                   struct resource *res)
3134 {
3135         struct pnv_phb *phb = pe->phb;
3136         struct pci_bus_region region;
3137         int index;
3138         int64_t rc;
3139
3140         if (!res || !res->flags || res->start > res->end)
3141                 return;
3142
3143         if (res->flags & IORESOURCE_IO) {
3144                 region.start = res->start - phb->ioda.io_pci_base;
3145                 region.end   = res->end - phb->ioda.io_pci_base;
3146                 index = region.start / phb->ioda.io_segsize;
3147
3148                 while (index < phb->ioda.total_pe_num &&
3149                        region.start <= region.end) {
3150                         phb->ioda.io_segmap[index] = pe->pe_number;
3151                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3152                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3153                         if (rc != OPAL_SUCCESS) {
3154                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3155                                        __func__, rc, index, pe->pe_number);
3156                                 break;
3157                         }
3158
3159                         region.start += phb->ioda.io_segsize;
3160                         index++;
3161                 }
3162         } else if ((res->flags & IORESOURCE_MEM) &&
3163                    !pnv_pci_is_m64(phb, res)) {
3164                 region.start = res->start -
3165                                phb->hose->mem_offset[0] -
3166                                phb->ioda.m32_pci_base;
3167                 region.end   = res->end -
3168                                phb->hose->mem_offset[0] -
3169                                phb->ioda.m32_pci_base;
3170                 index = region.start / phb->ioda.m32_segsize;
3171
3172                 while (index < phb->ioda.total_pe_num &&
3173                        region.start <= region.end) {
3174                         phb->ioda.m32_segmap[index] = pe->pe_number;
3175                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3176                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3177                         if (rc != OPAL_SUCCESS) {
3178                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3179                                        __func__, rc, index, pe->pe_number);
3180                                 break;
3181                         }
3182
3183                         region.start += phb->ioda.m32_segsize;
3184                         index++;
3185                 }
3186         }
3187 }
3188
3189 /*
3190  * This function is supposed to be called on basis of PE from top
3191  * to bottom style. So the the I/O or MMIO segment assigned to
3192  * parent PE could be overridden by its child PEs if necessary.
3193  */
3194 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3195 {
3196         struct pci_dev *pdev;
3197         int i;
3198
3199         /*
3200          * NOTE: We only care PCI bus based PE for now. For PCI
3201          * device based PE, for example SRIOV sensitive VF should
3202          * be figured out later.
3203          */
3204         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3205
3206         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3207                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3208                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3209
3210                 /*
3211                  * If the PE contains all subordinate PCI buses, the
3212                  * windows of the child bridges should be mapped to
3213                  * the PE as well.
3214                  */
3215                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3216                         continue;
3217                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3218                         pnv_ioda_setup_pe_res(pe,
3219                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3220         }
3221 }
3222
3223 #ifdef CONFIG_DEBUG_FS
3224 static int pnv_pci_diag_data_set(void *data, u64 val)
3225 {
3226         struct pci_controller *hose;
3227         struct pnv_phb *phb;
3228         s64 ret;
3229
3230         if (val != 1ULL)
3231                 return -EINVAL;
3232
3233         hose = (struct pci_controller *)data;
3234         if (!hose || !hose->private_data)
3235                 return -ENODEV;
3236
3237         phb = hose->private_data;
3238
3239         /* Retrieve the diag data from firmware */
3240         ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3241                                           phb->diag_data_size);
3242         if (ret != OPAL_SUCCESS)
3243                 return -EIO;
3244
3245         /* Print the diag data to the kernel log */
3246         pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3247         return 0;
3248 }
3249
3250 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3251                         pnv_pci_diag_data_set, "%llu\n");
3252
3253 #endif /* CONFIG_DEBUG_FS */
3254
3255 static void pnv_pci_ioda_create_dbgfs(void)
3256 {
3257 #ifdef CONFIG_DEBUG_FS
3258         struct pci_controller *hose, *tmp;
3259         struct pnv_phb *phb;
3260         char name[16];
3261
3262         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3263                 phb = hose->private_data;
3264
3265                 /* Notify initialization of PHB done */
3266                 phb->initialized = 1;
3267
3268                 sprintf(name, "PCI%04x", hose->global_number);
3269                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3270                 if (!phb->dbgfs) {
3271                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3272                                 __func__, hose->global_number);
3273                         continue;
3274                 }
3275
3276                 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3277                                     &pnv_pci_diag_data_fops);
3278         }
3279 #endif /* CONFIG_DEBUG_FS */
3280 }
3281
3282 static void pnv_pci_ioda_fixup(void)
3283 {
3284         pnv_pci_ioda_setup_PEs();
3285         pnv_pci_ioda_setup_iommu_api();
3286         pnv_pci_ioda_create_dbgfs();
3287
3288 #ifdef CONFIG_EEH
3289         eeh_init();
3290         eeh_addr_cache_build();
3291 #endif
3292 }
3293
3294 /*
3295  * Returns the alignment for I/O or memory windows for P2P
3296  * bridges. That actually depends on how PEs are segmented.
3297  * For now, we return I/O or M32 segment size for PE sensitive
3298  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3299  * 1MiB for memory) will be returned.
3300  *
3301  * The current PCI bus might be put into one PE, which was
3302  * create against the parent PCI bridge. For that case, we
3303  * needn't enlarge the alignment so that we can save some
3304  * resources.
3305  */
3306 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3307                                                 unsigned long type)
3308 {
3309         struct pci_dev *bridge;
3310         struct pci_controller *hose = pci_bus_to_host(bus);
3311         struct pnv_phb *phb = hose->private_data;
3312         int num_pci_bridges = 0;
3313
3314         bridge = bus->self;
3315         while (bridge) {
3316                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3317                         num_pci_bridges++;
3318                         if (num_pci_bridges >= 2)
3319                                 return 1;
3320                 }
3321
3322                 bridge = bridge->bus->self;
3323         }
3324
3325         /*
3326          * We fall back to M32 if M64 isn't supported. We enforce the M64
3327          * alignment for any 64-bit resource, PCIe doesn't care and
3328          * bridges only do 64-bit prefetchable anyway.
3329          */
3330         if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3331                 return phb->ioda.m64_segsize;
3332         if (type & IORESOURCE_MEM)
3333                 return phb->ioda.m32_segsize;
3334
3335         return phb->ioda.io_segsize;
3336 }
3337
3338 /*
3339  * We are updating root port or the upstream port of the
3340  * bridge behind the root port with PHB's windows in order
3341  * to accommodate the changes on required resources during
3342  * PCI (slot) hotplug, which is connected to either root
3343  * port or the downstream ports of PCIe switch behind the
3344  * root port.
3345  */
3346 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3347                                            unsigned long type)
3348 {
3349         struct pci_controller *hose = pci_bus_to_host(bus);
3350         struct pnv_phb *phb = hose->private_data;
3351         struct pci_dev *bridge = bus->self;
3352         struct resource *r, *w;
3353         bool msi_region = false;
3354         int i;
3355
3356         /* Check if we need apply fixup to the bridge's windows */
3357         if (!pci_is_root_bus(bridge->bus) &&
3358             !pci_is_root_bus(bridge->bus->self->bus))
3359                 return;
3360
3361         /* Fixup the resources */
3362         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3363                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3364                 if (!r->flags || !r->parent)
3365                         continue;
3366
3367                 w = NULL;
3368                 if (r->flags & type & IORESOURCE_IO)
3369                         w = &hose->io_resource;
3370                 else if (pnv_pci_is_m64(phb, r) &&
3371                          (type & IORESOURCE_PREFETCH) &&
3372                          phb->ioda.m64_segsize)
3373                         w = &hose->mem_resources[1];
3374                 else if (r->flags & type & IORESOURCE_MEM) {
3375                         w = &hose->mem_resources[0];
3376                         msi_region = true;
3377                 }
3378
3379                 r->start = w->start;
3380                 r->end = w->end;
3381
3382                 /* The 64KB 32-bits MSI region shouldn't be included in
3383                  * the 32-bits bridge window. Otherwise, we can see strange
3384                  * issues. One of them is EEH error observed on Garrison.
3385                  *
3386                  * Exclude top 1MB region which is the minimal alignment of
3387                  * 32-bits bridge window.
3388                  */
3389                 if (msi_region) {
3390                         r->end += 0x10000;
3391                         r->end -= 0x100000;
3392                 }
3393         }
3394 }
3395
3396 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3397 {
3398         struct pci_controller *hose = pci_bus_to_host(bus);
3399         struct pnv_phb *phb = hose->private_data;
3400         struct pci_dev *bridge = bus->self;
3401         struct pnv_ioda_pe *pe;
3402         bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3403
3404         /* Extend bridge's windows if necessary */
3405         pnv_pci_fixup_bridge_resources(bus, type);
3406
3407         /* The PE for root bus should be realized before any one else */
3408         if (!phb->ioda.root_pe_populated) {
3409                 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3410                 if (pe) {
3411                         phb->ioda.root_pe_idx = pe->pe_number;
3412                         phb->ioda.root_pe_populated = true;
3413                 }
3414         }
3415
3416         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3417         if (list_empty(&bus->devices))
3418                 return;
3419
3420         /* Reserve PEs according to used M64 resources */
3421         if (phb->reserve_m64_pe)
3422                 phb->reserve_m64_pe(bus, NULL, all);
3423
3424         /*
3425          * Assign PE. We might run here because of partial hotplug.
3426          * For the case, we just pick up the existing PE and should
3427          * not allocate resources again.
3428          */
3429         pe = pnv_ioda_setup_bus_PE(bus, all);
3430         if (!pe)
3431                 return;
3432
3433         pnv_ioda_setup_pe_seg(pe);
3434         switch (phb->type) {
3435         case PNV_PHB_IODA1:
3436                 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3437                 break;
3438         case PNV_PHB_IODA2:
3439                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3440                 break;
3441         default:
3442                 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3443                         __func__, phb->hose->global_number, phb->type);
3444         }
3445 }
3446
3447 static resource_size_t pnv_pci_default_alignment(void)
3448 {
3449         return PAGE_SIZE;
3450 }
3451
3452 #ifdef CONFIG_PCI_IOV
3453 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3454                                                       int resno)
3455 {
3456         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3457         struct pnv_phb *phb = hose->private_data;
3458         struct pci_dn *pdn = pci_get_pdn(pdev);
3459         resource_size_t align;
3460
3461         /*
3462          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3463          * SR-IOV. While from hardware perspective, the range mapped by M64
3464          * BAR should be size aligned.
3465          *
3466          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3467          * powernv-specific hardware restriction is gone. But if just use the
3468          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3469          * in one segment of M64 #15, which introduces the PE conflict between
3470          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3471          * m64_segsize.
3472          *
3473          * This function returns the total IOV BAR size if M64 BAR is in
3474          * Shared PE mode or just VF BAR size if not.
3475          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3476          * M64 segment size if IOV BAR size is less.
3477          */
3478         align = pci_iov_resource_size(pdev, resno);
3479         if (!pdn->vfs_expanded)
3480                 return align;
3481         if (pdn->m64_single_mode)
3482                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3483
3484         return pdn->vfs_expanded * align;
3485 }
3486 #endif /* CONFIG_PCI_IOV */
3487
3488 /* Prevent enabling devices for which we couldn't properly
3489  * assign a PE
3490  */
3491 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3492 {
3493         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3494         struct pnv_phb *phb = hose->private_data;
3495         struct pci_dn *pdn;
3496
3497         /* The function is probably called while the PEs have
3498          * not be created yet. For example, resource reassignment
3499          * during PCI probe period. We just skip the check if
3500          * PEs isn't ready.
3501          */
3502         if (!phb->initialized)
3503                 return true;
3504
3505         pdn = pci_get_pdn(dev);
3506         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3507                 return false;
3508
3509         return true;
3510 }
3511
3512 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3513                                        int num)
3514 {
3515         struct pnv_ioda_pe *pe = container_of(table_group,
3516                                               struct pnv_ioda_pe, table_group);
3517         struct pnv_phb *phb = pe->phb;
3518         unsigned int idx;
3519         long rc;
3520
3521         pe_info(pe, "Removing DMA window #%d\n", num);
3522         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3523                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3524                         continue;
3525
3526                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3527                                                 idx, 0, 0ul, 0ul, 0ul);
3528                 if (rc != OPAL_SUCCESS) {
3529                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3530                                 rc, idx);
3531                         return rc;
3532                 }
3533
3534                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3535         }
3536
3537         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3538         return OPAL_SUCCESS;
3539 }
3540
3541 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3542 {
3543         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3544         struct iommu_table *tbl = pe->table_group.tables[0];
3545         int64_t rc;
3546
3547         if (!weight)
3548                 return;
3549
3550         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3551         if (rc != OPAL_SUCCESS)
3552                 return;
3553
3554         pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3555         if (pe->table_group.group) {
3556                 iommu_group_put(pe->table_group.group);
3557                 WARN_ON(pe->table_group.group);
3558         }
3559
3560         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3561         iommu_tce_table_put(tbl);
3562 }
3563
3564 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3565 {
3566         struct iommu_table *tbl = pe->table_group.tables[0];
3567         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3568 #ifdef CONFIG_IOMMU_API
3569         int64_t rc;
3570 #endif
3571
3572         if (!weight)
3573                 return;
3574
3575 #ifdef CONFIG_IOMMU_API
3576         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3577         if (rc)
3578                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3579 #endif
3580
3581         pnv_pci_ioda2_set_bypass(pe, false);
3582         if (pe->table_group.group) {
3583                 iommu_group_put(pe->table_group.group);
3584                 WARN_ON(pe->table_group.group);
3585         }
3586
3587         pnv_pci_ioda2_table_free_pages(tbl);
3588         iommu_tce_table_put(tbl);
3589 }
3590
3591 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3592                                  unsigned short win,
3593                                  unsigned int *map)
3594 {
3595         struct pnv_phb *phb = pe->phb;
3596         int idx;
3597         int64_t rc;
3598
3599         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3600                 if (map[idx] != pe->pe_number)
3601                         continue;
3602
3603                 if (win == OPAL_M64_WINDOW_TYPE)
3604                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3605                                         phb->ioda.reserved_pe_idx, win,
3606                                         idx / PNV_IODA1_M64_SEGS,
3607                                         idx % PNV_IODA1_M64_SEGS);
3608                 else
3609                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3610                                         phb->ioda.reserved_pe_idx, win, 0, idx);
3611
3612                 if (rc != OPAL_SUCCESS)
3613                         pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3614                                 rc, win, idx);
3615
3616                 map[idx] = IODA_INVALID_PE;
3617         }
3618 }
3619
3620 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3621 {
3622         struct pnv_phb *phb = pe->phb;
3623
3624         if (phb->type == PNV_PHB_IODA1) {
3625                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3626                                      phb->ioda.io_segmap);
3627                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3628                                      phb->ioda.m32_segmap);
3629                 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3630                                      phb->ioda.m64_segmap);
3631         } else if (phb->type == PNV_PHB_IODA2) {
3632                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3633                                      phb->ioda.m32_segmap);
3634         }
3635 }
3636
3637 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3638 {
3639         struct pnv_phb *phb = pe->phb;
3640         struct pnv_ioda_pe *slave, *tmp;
3641
3642         list_del(&pe->list);
3643         switch (phb->type) {
3644         case PNV_PHB_IODA1:
3645                 pnv_pci_ioda1_release_pe_dma(pe);
3646                 break;
3647         case PNV_PHB_IODA2:
3648                 pnv_pci_ioda2_release_pe_dma(pe);
3649                 break;
3650         default:
3651                 WARN_ON(1);
3652         }
3653
3654         pnv_ioda_release_pe_seg(pe);
3655         pnv_ioda_deconfigure_pe(pe->phb, pe);
3656
3657         /* Release slave PEs in the compound PE */
3658         if (pe->flags & PNV_IODA_PE_MASTER) {
3659                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3660                         list_del(&slave->list);
3661                         pnv_ioda_free_pe(slave);
3662                 }
3663         }
3664
3665         /*
3666          * The PE for root bus can be removed because of hotplug in EEH
3667          * recovery for fenced PHB error. We need to mark the PE dead so
3668          * that it can be populated again in PCI hot add path. The PE
3669          * shouldn't be destroyed as it's the global reserved resource.
3670          */
3671         if (phb->ioda.root_pe_populated &&
3672             phb->ioda.root_pe_idx == pe->pe_number)
3673                 phb->ioda.root_pe_populated = false;
3674         else
3675                 pnv_ioda_free_pe(pe);
3676 }
3677
3678 static void pnv_pci_release_device(struct pci_dev *pdev)
3679 {
3680         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3681         struct pnv_phb *phb = hose->private_data;
3682         struct pci_dn *pdn = pci_get_pdn(pdev);
3683         struct pnv_ioda_pe *pe;
3684
3685         if (pdev->is_virtfn)
3686                 return;
3687
3688         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3689                 return;
3690
3691         /*
3692          * PCI hotplug can happen as part of EEH error recovery. The @pdn
3693          * isn't removed and added afterwards in this scenario. We should
3694          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3695          * device count is decreased on removing devices while failing to
3696          * be increased on adding devices. It leads to unbalanced PE's device
3697          * count and eventually make normal PCI hotplug path broken.
3698          */
3699         pe = &phb->ioda.pe_array[pdn->pe_number];
3700         pdn->pe_number = IODA_INVALID_PE;
3701
3702         WARN_ON(--pe->device_count < 0);
3703         if (pe->device_count == 0)
3704                 pnv_ioda_release_pe(pe);
3705 }
3706
3707 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3708 {
3709         struct pnv_phb *phb = hose->private_data;
3710
3711         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3712                        OPAL_ASSERT_RESET);
3713 }
3714
3715 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3716         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3717         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3718 #ifdef CONFIG_PCI_MSI
3719         .setup_msi_irqs         = pnv_setup_msi_irqs,
3720         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3721 #endif
3722         .enable_device_hook     = pnv_pci_enable_device_hook,
3723         .release_device         = pnv_pci_release_device,
3724         .window_alignment       = pnv_pci_window_alignment,
3725         .setup_bridge           = pnv_pci_setup_bridge,
3726         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3727         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3728         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3729         .shutdown               = pnv_pci_ioda_shutdown,
3730 };
3731
3732 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3733 {
3734         dev_err_once(&npdev->dev,
3735                         "%s operation unsupported for NVLink devices\n",
3736                         __func__);
3737         return -EPERM;
3738 }
3739
3740 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3741         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3742 #ifdef CONFIG_PCI_MSI
3743         .setup_msi_irqs         = pnv_setup_msi_irqs,
3744         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3745 #endif
3746         .enable_device_hook     = pnv_pci_enable_device_hook,
3747         .window_alignment       = pnv_pci_window_alignment,
3748         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3749         .dma_set_mask           = pnv_npu_dma_set_mask,
3750         .shutdown               = pnv_pci_ioda_shutdown,
3751 };
3752
3753 #ifdef CONFIG_CXL_BASE
3754 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3755         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3756         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3757 #ifdef CONFIG_PCI_MSI
3758         .setup_msi_irqs         = pnv_cxl_cx4_setup_msi_irqs,
3759         .teardown_msi_irqs      = pnv_cxl_cx4_teardown_msi_irqs,
3760 #endif
3761         .enable_device_hook     = pnv_cxl_enable_device_hook,
3762         .disable_device         = pnv_cxl_disable_device,
3763         .release_device         = pnv_pci_release_device,
3764         .window_alignment       = pnv_pci_window_alignment,
3765         .setup_bridge           = pnv_pci_setup_bridge,
3766         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3767         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3768         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3769         .shutdown               = pnv_pci_ioda_shutdown,
3770 };
3771 #endif
3772
3773 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3774                                          u64 hub_id, int ioda_type)
3775 {
3776         struct pci_controller *hose;
3777         struct pnv_phb *phb;
3778         unsigned long size, m64map_off, m32map_off, pemap_off;
3779         unsigned long iomap_off = 0, dma32map_off = 0;
3780         struct resource r;
3781         const __be64 *prop64;
3782         const __be32 *prop32;
3783         int len;
3784         unsigned int segno;
3785         u64 phb_id;
3786         void *aux;
3787         long rc;
3788
3789         if (!of_device_is_available(np))
3790                 return;
3791
3792         pr_info("Initializing %s PHB (%s)\n",
3793                 pnv_phb_names[ioda_type], of_node_full_name(np));
3794
3795         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3796         if (!prop64) {
3797                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3798                 return;
3799         }
3800         phb_id = be64_to_cpup(prop64);
3801         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3802
3803         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3804
3805         /* Allocate PCI controller */
3806         phb->hose = hose = pcibios_alloc_controller(np);
3807         if (!phb->hose) {
3808                 pr_err("  Can't allocate PCI controller for %s\n",
3809                        np->full_name);
3810                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3811                 return;
3812         }
3813
3814         spin_lock_init(&phb->lock);
3815         prop32 = of_get_property(np, "bus-range", &len);
3816         if (prop32 && len == 8) {
3817                 hose->first_busno = be32_to_cpu(prop32[0]);
3818                 hose->last_busno = be32_to_cpu(prop32[1]);
3819         } else {
3820                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3821                 hose->first_busno = 0;
3822                 hose->last_busno = 0xff;
3823         }
3824         hose->private_data = phb;
3825         phb->hub_id = hub_id;
3826         phb->opal_id = phb_id;
3827         phb->type = ioda_type;
3828         mutex_init(&phb->ioda.pe_alloc_mutex);
3829
3830         /* Detect specific models for error handling */
3831         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3832                 phb->model = PNV_PHB_MODEL_P7IOC;
3833         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3834                 phb->model = PNV_PHB_MODEL_PHB3;
3835         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3836                 phb->model = PNV_PHB_MODEL_NPU;
3837         else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3838                 phb->model = PNV_PHB_MODEL_NPU2;
3839         else
3840                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3841
3842         /* Initialize diagnostic data buffer */
3843         prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3844         if (prop32)
3845                 phb->diag_data_size = be32_to_cpup(prop32);
3846         else
3847                 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3848
3849         phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3850
3851         /* Parse 32-bit and IO ranges (if any) */
3852         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3853
3854         /* Get registers */
3855         if (!of_address_to_resource(np, 0, &r)) {
3856                 phb->regs_phys = r.start;
3857                 phb->regs = ioremap(r.start, resource_size(&r));
3858                 if (phb->regs == NULL)
3859                         pr_err("  Failed to map registers !\n");
3860         }
3861
3862         /* Initialize more IODA stuff */
3863         phb->ioda.total_pe_num = 1;
3864         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3865         if (prop32)
3866                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3867         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3868         if (prop32)
3869                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3870
3871         /* Invalidate RID to PE# mapping */
3872         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3873                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3874
3875         /* Parse 64-bit MMIO range */
3876         pnv_ioda_parse_m64_window(phb);
3877
3878         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3879         /* FW Has already off top 64k of M32 space (MSI space) */
3880         phb->ioda.m32_size += 0x10000;
3881
3882         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3883         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3884         phb->ioda.io_size = hose->pci_io_size;
3885         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3886         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3887
3888         /* Calculate how many 32-bit TCE segments we have */
3889         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3890                                 PNV_IODA1_DMA32_SEGSIZE;
3891
3892         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3893         size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3894                         sizeof(unsigned long));
3895         m64map_off = size;
3896         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3897         m32map_off = size;
3898         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3899         if (phb->type == PNV_PHB_IODA1) {
3900                 iomap_off = size;
3901                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3902                 dma32map_off = size;
3903                 size += phb->ioda.dma32_count *
3904                         sizeof(phb->ioda.dma32_segmap[0]);
3905         }
3906         pemap_off = size;
3907         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3908         aux = memblock_virt_alloc(size, 0);
3909         phb->ioda.pe_alloc = aux;
3910         phb->ioda.m64_segmap = aux + m64map_off;
3911         phb->ioda.m32_segmap = aux + m32map_off;
3912         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3913                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3914                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3915         }
3916         if (phb->type == PNV_PHB_IODA1) {
3917                 phb->ioda.io_segmap = aux + iomap_off;
3918                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3919                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3920
3921                 phb->ioda.dma32_segmap = aux + dma32map_off;
3922                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3923                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3924         }
3925         phb->ioda.pe_array = aux + pemap_off;
3926
3927         /*
3928          * Choose PE number for root bus, which shouldn't have
3929          * M64 resources consumed by its child devices. To pick
3930          * the PE number adjacent to the reserved one if possible.
3931          */
3932         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3933         if (phb->ioda.reserved_pe_idx == 0) {
3934                 phb->ioda.root_pe_idx = 1;
3935                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3936         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3937                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3938                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3939         } else {
3940                 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3941         }
3942
3943         INIT_LIST_HEAD(&phb->ioda.pe_list);
3944         mutex_init(&phb->ioda.pe_list_mutex);
3945
3946         /* Calculate how many 32-bit TCE segments we have */
3947         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3948                                 PNV_IODA1_DMA32_SEGSIZE;
3949
3950 #if 0 /* We should really do that ... */
3951         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3952                                          window_type,
3953                                          window_num,
3954                                          starting_real_address,
3955                                          starting_pci_address,
3956                                          segment_size);
3957 #endif
3958
3959         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3960                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3961                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3962         if (phb->ioda.m64_size)
3963                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3964                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3965         if (phb->ioda.io_size)
3966                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3967                         phb->ioda.io_size, phb->ioda.io_segsize);
3968
3969
3970         phb->hose->ops = &pnv_pci_ops;
3971         phb->get_pe_state = pnv_ioda_get_pe_state;
3972         phb->freeze_pe = pnv_ioda_freeze_pe;
3973         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3974
3975         /* Setup MSI support */
3976         pnv_pci_init_ioda_msis(phb);
3977
3978         /*
3979          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3980          * to let the PCI core do resource assignment. It's supposed
3981          * that the PCI core will do correct I/O and MMIO alignment
3982          * for the P2P bridge bars so that each PCI bus (excluding
3983          * the child P2P bridges) can form individual PE.
3984          */
3985         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3986
3987         if (phb->type == PNV_PHB_NPU) {
3988                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3989         } else {
3990                 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3991                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3992         }
3993
3994         ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3995
3996 #ifdef CONFIG_PCI_IOV
3997         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3998         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3999 #endif
4000
4001         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
4002
4003         /* Reset IODA tables to a clean state */
4004         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
4005         if (rc)
4006                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
4007
4008         /*
4009          * If we're running in kdump kernel, the previous kernel never
4010          * shutdown PCI devices correctly. We already got IODA table
4011          * cleaned out. So we have to issue PHB reset to stop all PCI
4012          * transactions from previous kernel.
4013          */
4014         if (is_kdump_kernel()) {
4015                 pr_info("  Issue PHB reset ...\n");
4016                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
4017                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
4018         }
4019
4020         /* Remove M64 resource if we can't configure it successfully */
4021         if (!phb->init_m64 || phb->init_m64(phb))
4022                 hose->mem_resources[1].flags = 0;
4023 }
4024
4025 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4026 {
4027         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4028 }
4029
4030 void __init pnv_pci_init_npu_phb(struct device_node *np)
4031 {
4032         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
4033 }
4034
4035 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4036 {
4037         struct device_node *phbn;
4038         const __be64 *prop64;
4039         u64 hub_id;
4040
4041         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
4042
4043         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4044         if (!prop64) {
4045                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4046                 return;
4047         }
4048         hub_id = be64_to_cpup(prop64);
4049         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4050
4051         /* Count child PHBs */
4052         for_each_child_of_node(np, phbn) {
4053                 /* Look for IODA1 PHBs */
4054                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4055                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4056         }
4057 }