]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/sparc/mm/init_64.c
Merge tag 'for-linus-20170812' of git://git.infradead.org/linux-mtd
[karo-tx-linux.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *      0       ==>     4MB
66  *      1       ==>     256MB
67  *      2       ==>     2GB
68  *      3       ==>     16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS       1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100         const struct linux_prom64_registers *x = a, *y = b;
101
102         if (x->phys_addr > y->phys_addr)
103                 return 1;
104         if (x->phys_addr < y->phys_addr)
105                 return -1;
106         return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110                                    struct linux_prom64_registers *regs,
111                                    int *num_ents)
112 {
113         phandle node = prom_finddevice("/memory");
114         int prop_size = prom_getproplen(node, property);
115         int ents, ret, i;
116
117         ents = prop_size / sizeof(struct linux_prom64_registers);
118         if (ents > MAX_BANKS) {
119                 prom_printf("The machine has more %s property entries than "
120                             "this kernel can support (%d).\n",
121                             property, MAX_BANKS);
122                 prom_halt();
123         }
124
125         ret = prom_getproperty(node, property, (char *) regs, prop_size);
126         if (ret == -1) {
127                 prom_printf("Couldn't get %s property from /memory.\n",
128                                 property);
129                 prom_halt();
130         }
131
132         /* Sanitize what we got from the firmware, by page aligning
133          * everything.
134          */
135         for (i = 0; i < ents; i++) {
136                 unsigned long base, size;
137
138                 base = regs[i].phys_addr;
139                 size = regs[i].reg_size;
140
141                 size &= PAGE_MASK;
142                 if (base & ~PAGE_MASK) {
143                         unsigned long new_base = PAGE_ALIGN(base);
144
145                         size -= new_base - base;
146                         if ((long) size < 0L)
147                                 size = 0UL;
148                         base = new_base;
149                 }
150                 if (size == 0UL) {
151                         /* If it is empty, simply get rid of it.
152                          * This simplifies the logic of the other
153                          * functions that process these arrays.
154                          */
155                         memmove(&regs[i], &regs[i + 1],
156                                 (ents - i - 1) * sizeof(regs[0]));
157                         i--;
158                         ents--;
159                         continue;
160                 }
161                 regs[i].phys_addr = base;
162                 regs[i].reg_size = size;
163         }
164
165         *num_ents = ents;
166
167         sort(regs, ents, sizeof(struct linux_prom64_registers),
168              cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200         BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202         atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206         __flush_dcache_page(page_address(page),
207                             ((tlb_type == spitfire) &&
208                              page_mapping(page) != NULL));
209 #else
210         if (page_mapping(page) != NULL &&
211             tlb_type == spitfire)
212                 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty         PG_arch_1
217 #define PG_dcache_cpu_shift     32UL
218 #define PG_dcache_cpu_mask      \
219         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226         unsigned long mask = this_cpu;
227         unsigned long non_cpu_bits;
228
229         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232         __asm__ __volatile__("1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "and       %%g7, %1, %%g1\n\t"
235                              "or        %%g1, %0, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop"
240                              : /* no outputs */
241                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242                              : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247         unsigned long mask = (1UL << PG_dcache_dirty);
248
249         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250                              "1:\n\t"
251                              "ldx       [%2], %%g7\n\t"
252                              "srlx      %%g7, %4, %%g1\n\t"
253                              "and       %%g1, %3, %%g1\n\t"
254                              "cmp       %%g1, %0\n\t"
255                              "bne,pn    %%icc, 2f\n\t"
256                              " andn     %%g7, %1, %%g1\n\t"
257                              "casx      [%2], %%g7, %%g1\n\t"
258                              "cmp       %%g7, %%g1\n\t"
259                              "bne,pn    %%xcc, 1b\n\t"
260                              " nop\n"
261                              "2:"
262                              : /* no outputs */
263                              : "r" (cpu), "r" (mask), "r" (&page->flags),
264                                "i" (PG_dcache_cpu_mask),
265                                "i" (PG_dcache_cpu_shift)
266                              : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271         unsigned long tsb_addr = (unsigned long) ent;
272
273         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274                 tsb_addr = __pa(tsb_addr);
275
276         __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283         struct page *page;
284
285         page = pfn_to_page(pfn);
286         if (page) {
287                 unsigned long pg_flags;
288
289                 pg_flags = page->flags;
290                 if (pg_flags & (1UL << PG_dcache_dirty)) {
291                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292                                    PG_dcache_cpu_mask);
293                         int this_cpu = get_cpu();
294
295                         /* This is just to optimize away some function calls
296                          * in the SMP case.
297                          */
298                         if (cpu == this_cpu)
299                                 flush_dcache_page_impl(page);
300                         else
301                                 smp_flush_dcache_page_impl(page, cpu);
302
303                         clear_dcache_dirty_cpu(page, cpu);
304
305                         put_cpu();
306                 }
307         }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312                                     unsigned long tsb_hash_shift, unsigned long address,
313                                     unsigned long tte)
314 {
315         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316         unsigned long tag;
317
318         if (unlikely(!tsb))
319                 return;
320
321         tsb += ((address >> tsb_hash_shift) &
322                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323         tag = (address >> 22UL);
324         tsb_insert(tsb, tag, tte);
325 }
326
327 #ifdef CONFIG_HUGETLB_PAGE
328 static void __init add_huge_page_size(unsigned long size)
329 {
330         unsigned int order;
331
332         if (size_to_hstate(size))
333                 return;
334
335         order = ilog2(size) - PAGE_SHIFT;
336         hugetlb_add_hstate(order);
337 }
338
339 static int __init hugetlbpage_init(void)
340 {
341         add_huge_page_size(1UL << HPAGE_64K_SHIFT);
342         add_huge_page_size(1UL << HPAGE_SHIFT);
343         add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
344         add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
345
346         return 0;
347 }
348
349 arch_initcall(hugetlbpage_init);
350
351 static int __init setup_hugepagesz(char *string)
352 {
353         unsigned long long hugepage_size;
354         unsigned int hugepage_shift;
355         unsigned short hv_pgsz_idx;
356         unsigned int hv_pgsz_mask;
357         int rc = 0;
358
359         hugepage_size = memparse(string, &string);
360         hugepage_shift = ilog2(hugepage_size);
361
362         switch (hugepage_shift) {
363         case HPAGE_2GB_SHIFT:
364                 hv_pgsz_mask = HV_PGSZ_MASK_2GB;
365                 hv_pgsz_idx = HV_PGSZ_IDX_2GB;
366                 break;
367         case HPAGE_256MB_SHIFT:
368                 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
369                 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
370                 break;
371         case HPAGE_SHIFT:
372                 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
373                 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
374                 break;
375         case HPAGE_64K_SHIFT:
376                 hv_pgsz_mask = HV_PGSZ_MASK_64K;
377                 hv_pgsz_idx = HV_PGSZ_IDX_64K;
378                 break;
379         default:
380                 hv_pgsz_mask = 0;
381         }
382
383         if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
384                 hugetlb_bad_size();
385                 pr_err("hugepagesz=%llu not supported by MMU.\n",
386                         hugepage_size);
387                 goto out;
388         }
389
390         add_huge_page_size(hugepage_size);
391         rc = 1;
392
393 out:
394         return rc;
395 }
396 __setup("hugepagesz=", setup_hugepagesz);
397 #endif  /* CONFIG_HUGETLB_PAGE */
398
399 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
400 {
401         struct mm_struct *mm;
402         unsigned long flags;
403         pte_t pte = *ptep;
404
405         if (tlb_type != hypervisor) {
406                 unsigned long pfn = pte_pfn(pte);
407
408                 if (pfn_valid(pfn))
409                         flush_dcache(pfn);
410         }
411
412         mm = vma->vm_mm;
413
414         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
415         if (!pte_accessible(mm, pte))
416                 return;
417
418         spin_lock_irqsave(&mm->context.lock, flags);
419
420 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
421         if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
422             is_hugetlb_pmd(__pmd(pte_val(pte)))) {
423                 /* We are fabricating 8MB pages using 4MB real hw pages.  */
424                 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
425                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
426                                         address, pte_val(pte));
427         } else
428 #endif
429                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
430                                         address, pte_val(pte));
431
432         spin_unlock_irqrestore(&mm->context.lock, flags);
433 }
434
435 void flush_dcache_page(struct page *page)
436 {
437         struct address_space *mapping;
438         int this_cpu;
439
440         if (tlb_type == hypervisor)
441                 return;
442
443         /* Do not bother with the expensive D-cache flush if it
444          * is merely the zero page.  The 'bigcore' testcase in GDB
445          * causes this case to run millions of times.
446          */
447         if (page == ZERO_PAGE(0))
448                 return;
449
450         this_cpu = get_cpu();
451
452         mapping = page_mapping(page);
453         if (mapping && !mapping_mapped(mapping)) {
454                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
455                 if (dirty) {
456                         int dirty_cpu = dcache_dirty_cpu(page);
457
458                         if (dirty_cpu == this_cpu)
459                                 goto out;
460                         smp_flush_dcache_page_impl(page, dirty_cpu);
461                 }
462                 set_dcache_dirty(page, this_cpu);
463         } else {
464                 /* We could delay the flush for the !page_mapping
465                  * case too.  But that case is for exec env/arg
466                  * pages and those are %99 certainly going to get
467                  * faulted into the tlb (and thus flushed) anyways.
468                  */
469                 flush_dcache_page_impl(page);
470         }
471
472 out:
473         put_cpu();
474 }
475 EXPORT_SYMBOL(flush_dcache_page);
476
477 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
478 {
479         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
480         if (tlb_type == spitfire) {
481                 unsigned long kaddr;
482
483                 /* This code only runs on Spitfire cpus so this is
484                  * why we can assume _PAGE_PADDR_4U.
485                  */
486                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
487                         unsigned long paddr, mask = _PAGE_PADDR_4U;
488
489                         if (kaddr >= PAGE_OFFSET)
490                                 paddr = kaddr & mask;
491                         else {
492                                 pgd_t *pgdp = pgd_offset_k(kaddr);
493                                 pud_t *pudp = pud_offset(pgdp, kaddr);
494                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
495                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
496
497                                 paddr = pte_val(*ptep) & mask;
498                         }
499                         __flush_icache_page(paddr);
500                 }
501         }
502 }
503 EXPORT_SYMBOL(flush_icache_range);
504
505 void mmu_info(struct seq_file *m)
506 {
507         static const char *pgsz_strings[] = {
508                 "8K", "64K", "512K", "4MB", "32MB",
509                 "256MB", "2GB", "16GB",
510         };
511         int i, printed;
512
513         if (tlb_type == cheetah)
514                 seq_printf(m, "MMU Type\t: Cheetah\n");
515         else if (tlb_type == cheetah_plus)
516                 seq_printf(m, "MMU Type\t: Cheetah+\n");
517         else if (tlb_type == spitfire)
518                 seq_printf(m, "MMU Type\t: Spitfire\n");
519         else if (tlb_type == hypervisor)
520                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
521         else
522                 seq_printf(m, "MMU Type\t: ???\n");
523
524         seq_printf(m, "MMU PGSZs\t: ");
525         printed = 0;
526         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
527                 if (cpu_pgsz_mask & (1UL << i)) {
528                         seq_printf(m, "%s%s",
529                                    printed ? "," : "", pgsz_strings[i]);
530                         printed++;
531                 }
532         }
533         seq_putc(m, '\n');
534
535 #ifdef CONFIG_DEBUG_DCFLUSH
536         seq_printf(m, "DCPageFlushes\t: %d\n",
537                    atomic_read(&dcpage_flushes));
538 #ifdef CONFIG_SMP
539         seq_printf(m, "DCPageFlushesXC\t: %d\n",
540                    atomic_read(&dcpage_flushes_xcall));
541 #endif /* CONFIG_SMP */
542 #endif /* CONFIG_DEBUG_DCFLUSH */
543 }
544
545 struct linux_prom_translation prom_trans[512] __read_mostly;
546 unsigned int prom_trans_ents __read_mostly;
547
548 unsigned long kern_locked_tte_data;
549
550 /* The obp translations are saved based on 8k pagesize, since obp can
551  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
552  * HI_OBP_ADDRESS range are handled in ktlb.S.
553  */
554 static inline int in_obp_range(unsigned long vaddr)
555 {
556         return (vaddr >= LOW_OBP_ADDRESS &&
557                 vaddr < HI_OBP_ADDRESS);
558 }
559
560 static int cmp_ptrans(const void *a, const void *b)
561 {
562         const struct linux_prom_translation *x = a, *y = b;
563
564         if (x->virt > y->virt)
565                 return 1;
566         if (x->virt < y->virt)
567                 return -1;
568         return 0;
569 }
570
571 /* Read OBP translations property into 'prom_trans[]'.  */
572 static void __init read_obp_translations(void)
573 {
574         int n, node, ents, first, last, i;
575
576         node = prom_finddevice("/virtual-memory");
577         n = prom_getproplen(node, "translations");
578         if (unlikely(n == 0 || n == -1)) {
579                 prom_printf("prom_mappings: Couldn't get size.\n");
580                 prom_halt();
581         }
582         if (unlikely(n > sizeof(prom_trans))) {
583                 prom_printf("prom_mappings: Size %d is too big.\n", n);
584                 prom_halt();
585         }
586
587         if ((n = prom_getproperty(node, "translations",
588                                   (char *)&prom_trans[0],
589                                   sizeof(prom_trans))) == -1) {
590                 prom_printf("prom_mappings: Couldn't get property.\n");
591                 prom_halt();
592         }
593
594         n = n / sizeof(struct linux_prom_translation);
595
596         ents = n;
597
598         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
599              cmp_ptrans, NULL);
600
601         /* Now kick out all the non-OBP entries.  */
602         for (i = 0; i < ents; i++) {
603                 if (in_obp_range(prom_trans[i].virt))
604                         break;
605         }
606         first = i;
607         for (; i < ents; i++) {
608                 if (!in_obp_range(prom_trans[i].virt))
609                         break;
610         }
611         last = i;
612
613         for (i = 0; i < (last - first); i++) {
614                 struct linux_prom_translation *src = &prom_trans[i + first];
615                 struct linux_prom_translation *dest = &prom_trans[i];
616
617                 *dest = *src;
618         }
619         for (; i < ents; i++) {
620                 struct linux_prom_translation *dest = &prom_trans[i];
621                 dest->virt = dest->size = dest->data = 0x0UL;
622         }
623
624         prom_trans_ents = last - first;
625
626         if (tlb_type == spitfire) {
627                 /* Clear diag TTE bits. */
628                 for (i = 0; i < prom_trans_ents; i++)
629                         prom_trans[i].data &= ~0x0003fe0000000000UL;
630         }
631
632         /* Force execute bit on.  */
633         for (i = 0; i < prom_trans_ents; i++)
634                 prom_trans[i].data |= (tlb_type == hypervisor ?
635                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
636 }
637
638 static void __init hypervisor_tlb_lock(unsigned long vaddr,
639                                        unsigned long pte,
640                                        unsigned long mmu)
641 {
642         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
643
644         if (ret != 0) {
645                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
646                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
647                 prom_halt();
648         }
649 }
650
651 static unsigned long kern_large_tte(unsigned long paddr);
652
653 static void __init remap_kernel(void)
654 {
655         unsigned long phys_page, tte_vaddr, tte_data;
656         int i, tlb_ent = sparc64_highest_locked_tlbent();
657
658         tte_vaddr = (unsigned long) KERNBASE;
659         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
660         tte_data = kern_large_tte(phys_page);
661
662         kern_locked_tte_data = tte_data;
663
664         /* Now lock us into the TLBs via Hypervisor or OBP. */
665         if (tlb_type == hypervisor) {
666                 for (i = 0; i < num_kernel_image_mappings; i++) {
667                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
668                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
669                         tte_vaddr += 0x400000;
670                         tte_data += 0x400000;
671                 }
672         } else {
673                 for (i = 0; i < num_kernel_image_mappings; i++) {
674                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
675                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
676                         tte_vaddr += 0x400000;
677                         tte_data += 0x400000;
678                 }
679                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
680         }
681         if (tlb_type == cheetah_plus) {
682                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
683                                             CTX_CHEETAH_PLUS_NUC);
684                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
685                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
686         }
687 }
688
689
690 static void __init inherit_prom_mappings(void)
691 {
692         /* Now fixup OBP's idea about where we really are mapped. */
693         printk("Remapping the kernel... ");
694         remap_kernel();
695         printk("done.\n");
696 }
697
698 void prom_world(int enter)
699 {
700         if (!enter)
701                 set_fs(get_fs());
702
703         __asm__ __volatile__("flushw");
704 }
705
706 void __flush_dcache_range(unsigned long start, unsigned long end)
707 {
708         unsigned long va;
709
710         if (tlb_type == spitfire) {
711                 int n = 0;
712
713                 for (va = start; va < end; va += 32) {
714                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
715                         if (++n >= 512)
716                                 break;
717                 }
718         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
719                 start = __pa(start);
720                 end = __pa(end);
721                 for (va = start; va < end; va += 32)
722                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
723                                              "membar #Sync"
724                                              : /* no outputs */
725                                              : "r" (va),
726                                                "i" (ASI_DCACHE_INVALIDATE));
727         }
728 }
729 EXPORT_SYMBOL(__flush_dcache_range);
730
731 /* get_new_mmu_context() uses "cache + 1".  */
732 DEFINE_SPINLOCK(ctx_alloc_lock);
733 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
734 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
735 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
736 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
737 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
738
739 static void mmu_context_wrap(void)
740 {
741         unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
742         unsigned long new_ver, new_ctx, old_ctx;
743         struct mm_struct *mm;
744         int cpu;
745
746         bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
747
748         /* Reserve kernel context */
749         set_bit(0, mmu_context_bmap);
750
751         new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
752         if (unlikely(new_ver == 0))
753                 new_ver = CTX_FIRST_VERSION;
754         tlb_context_cache = new_ver;
755
756         /*
757          * Make sure that any new mm that are added into per_cpu_secondary_mm,
758          * are going to go through get_new_mmu_context() path.
759          */
760         mb();
761
762         /*
763          * Updated versions to current on those CPUs that had valid secondary
764          * contexts
765          */
766         for_each_online_cpu(cpu) {
767                 /*
768                  * If a new mm is stored after we took this mm from the array,
769                  * it will go into get_new_mmu_context() path, because we
770                  * already bumped the version in tlb_context_cache.
771                  */
772                 mm = per_cpu(per_cpu_secondary_mm, cpu);
773
774                 if (unlikely(!mm || mm == &init_mm))
775                         continue;
776
777                 old_ctx = mm->context.sparc64_ctx_val;
778                 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
779                         new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
780                         set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
781                         mm->context.sparc64_ctx_val = new_ctx;
782                 }
783         }
784 }
785
786 /* Caller does TLB context flushing on local CPU if necessary.
787  * The caller also ensures that CTX_VALID(mm->context) is false.
788  *
789  * We must be careful about boundary cases so that we never
790  * let the user have CTX 0 (nucleus) or we ever use a CTX
791  * version of zero (and thus NO_CONTEXT would not be caught
792  * by version mis-match tests in mmu_context.h).
793  *
794  * Always invoked with interrupts disabled.
795  */
796 void get_new_mmu_context(struct mm_struct *mm)
797 {
798         unsigned long ctx, new_ctx;
799         unsigned long orig_pgsz_bits;
800
801         spin_lock(&ctx_alloc_lock);
802 retry:
803         /* wrap might have happened, test again if our context became valid */
804         if (unlikely(CTX_VALID(mm->context)))
805                 goto out;
806         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
807         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
808         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
809         if (new_ctx >= (1 << CTX_NR_BITS)) {
810                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
811                 if (new_ctx >= ctx) {
812                         mmu_context_wrap();
813                         goto retry;
814                 }
815         }
816         if (mm->context.sparc64_ctx_val)
817                 cpumask_clear(mm_cpumask(mm));
818         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
819         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
820         tlb_context_cache = new_ctx;
821         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
822 out:
823         spin_unlock(&ctx_alloc_lock);
824 }
825
826 static int numa_enabled = 1;
827 static int numa_debug;
828
829 static int __init early_numa(char *p)
830 {
831         if (!p)
832                 return 0;
833
834         if (strstr(p, "off"))
835                 numa_enabled = 0;
836
837         if (strstr(p, "debug"))
838                 numa_debug = 1;
839
840         return 0;
841 }
842 early_param("numa", early_numa);
843
844 #define numadbg(f, a...) \
845 do {    if (numa_debug) \
846                 printk(KERN_INFO f, ## a); \
847 } while (0)
848
849 static void __init find_ramdisk(unsigned long phys_base)
850 {
851 #ifdef CONFIG_BLK_DEV_INITRD
852         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
853                 unsigned long ramdisk_image;
854
855                 /* Older versions of the bootloader only supported a
856                  * 32-bit physical address for the ramdisk image
857                  * location, stored at sparc_ramdisk_image.  Newer
858                  * SILO versions set sparc_ramdisk_image to zero and
859                  * provide a full 64-bit physical address at
860                  * sparc_ramdisk_image64.
861                  */
862                 ramdisk_image = sparc_ramdisk_image;
863                 if (!ramdisk_image)
864                         ramdisk_image = sparc_ramdisk_image64;
865
866                 /* Another bootloader quirk.  The bootloader normalizes
867                  * the physical address to KERNBASE, so we have to
868                  * factor that back out and add in the lowest valid
869                  * physical page address to get the true physical address.
870                  */
871                 ramdisk_image -= KERNBASE;
872                 ramdisk_image += phys_base;
873
874                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
875                         ramdisk_image, sparc_ramdisk_size);
876
877                 initrd_start = ramdisk_image;
878                 initrd_end = ramdisk_image + sparc_ramdisk_size;
879
880                 memblock_reserve(initrd_start, sparc_ramdisk_size);
881
882                 initrd_start += PAGE_OFFSET;
883                 initrd_end += PAGE_OFFSET;
884         }
885 #endif
886 }
887
888 struct node_mem_mask {
889         unsigned long mask;
890         unsigned long match;
891 };
892 static struct node_mem_mask node_masks[MAX_NUMNODES];
893 static int num_node_masks;
894
895 #ifdef CONFIG_NEED_MULTIPLE_NODES
896
897 struct mdesc_mlgroup {
898         u64     node;
899         u64     latency;
900         u64     match;
901         u64     mask;
902 };
903
904 static struct mdesc_mlgroup *mlgroups;
905 static int num_mlgroups;
906
907 int numa_cpu_lookup_table[NR_CPUS];
908 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
909
910 struct mdesc_mblock {
911         u64     base;
912         u64     size;
913         u64     offset; /* RA-to-PA */
914 };
915 static struct mdesc_mblock *mblocks;
916 static int num_mblocks;
917
918 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
919 {
920         struct mdesc_mblock *m = NULL;
921         int i;
922
923         for (i = 0; i < num_mblocks; i++) {
924                 m = &mblocks[i];
925
926                 if (addr >= m->base &&
927                     addr < (m->base + m->size)) {
928                         break;
929                 }
930         }
931
932         return m;
933 }
934
935 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
936 {
937         int prev_nid, new_nid;
938
939         prev_nid = -1;
940         for ( ; start < end; start += PAGE_SIZE) {
941                 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
942                         struct node_mem_mask *p = &node_masks[new_nid];
943
944                         if ((start & p->mask) == p->match) {
945                                 if (prev_nid == -1)
946                                         prev_nid = new_nid;
947                                 break;
948                         }
949                 }
950
951                 if (new_nid == num_node_masks) {
952                         prev_nid = 0;
953                         WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
954                                   start);
955                         break;
956                 }
957
958                 if (prev_nid != new_nid)
959                         break;
960         }
961         *nid = prev_nid;
962
963         return start > end ? end : start;
964 }
965
966 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
967 {
968         u64 ret_end, pa_start, m_mask, m_match, m_end;
969         struct mdesc_mblock *mblock;
970         int _nid, i;
971
972         if (tlb_type != hypervisor)
973                 return memblock_nid_range_sun4u(start, end, nid);
974
975         mblock = addr_to_mblock(start);
976         if (!mblock) {
977                 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
978                           start);
979
980                 _nid = 0;
981                 ret_end = end;
982                 goto done;
983         }
984
985         pa_start = start + mblock->offset;
986         m_match = 0;
987         m_mask = 0;
988
989         for (_nid = 0; _nid < num_node_masks; _nid++) {
990                 struct node_mem_mask *const m = &node_masks[_nid];
991
992                 if ((pa_start & m->mask) == m->match) {
993                         m_match = m->match;
994                         m_mask = m->mask;
995                         break;
996                 }
997         }
998
999         if (num_node_masks == _nid) {
1000                 /* We could not find NUMA group, so default to 0, but lets
1001                  * search for latency group, so we could calculate the correct
1002                  * end address that we return
1003                  */
1004                 _nid = 0;
1005
1006                 for (i = 0; i < num_mlgroups; i++) {
1007                         struct mdesc_mlgroup *const m = &mlgroups[i];
1008
1009                         if ((pa_start & m->mask) == m->match) {
1010                                 m_match = m->match;
1011                                 m_mask = m->mask;
1012                                 break;
1013                         }
1014                 }
1015
1016                 if (i == num_mlgroups) {
1017                         WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1018                                   start);
1019
1020                         ret_end = end;
1021                         goto done;
1022                 }
1023         }
1024
1025         /*
1026          * Each latency group has match and mask, and each memory block has an
1027          * offset.  An address belongs to a latency group if its address matches
1028          * the following formula: ((addr + offset) & mask) == match
1029          * It is, however, slow to check every single page if it matches a
1030          * particular latency group. As optimization we calculate end value by
1031          * using bit arithmetics.
1032          */
1033         m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1034         m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1035         ret_end = m_end > end ? end : m_end;
1036
1037 done:
1038         *nid = _nid;
1039         return ret_end;
1040 }
1041 #endif
1042
1043 /* This must be invoked after performing all of the necessary
1044  * memblock_set_node() calls for 'nid'.  We need to be able to get
1045  * correct data from get_pfn_range_for_nid().
1046  */
1047 static void __init allocate_node_data(int nid)
1048 {
1049         struct pglist_data *p;
1050         unsigned long start_pfn, end_pfn;
1051 #ifdef CONFIG_NEED_MULTIPLE_NODES
1052         unsigned long paddr;
1053
1054         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
1055         if (!paddr) {
1056                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1057                 prom_halt();
1058         }
1059         NODE_DATA(nid) = __va(paddr);
1060         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1061
1062         NODE_DATA(nid)->node_id = nid;
1063 #endif
1064
1065         p = NODE_DATA(nid);
1066
1067         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1068         p->node_start_pfn = start_pfn;
1069         p->node_spanned_pages = end_pfn - start_pfn;
1070 }
1071
1072 static void init_node_masks_nonnuma(void)
1073 {
1074 #ifdef CONFIG_NEED_MULTIPLE_NODES
1075         int i;
1076 #endif
1077
1078         numadbg("Initializing tables for non-numa.\n");
1079
1080         node_masks[0].mask = 0;
1081         node_masks[0].match = 0;
1082         num_node_masks = 1;
1083
1084 #ifdef CONFIG_NEED_MULTIPLE_NODES
1085         for (i = 0; i < NR_CPUS; i++)
1086                 numa_cpu_lookup_table[i] = 0;
1087
1088         cpumask_setall(&numa_cpumask_lookup_table[0]);
1089 #endif
1090 }
1091
1092 #ifdef CONFIG_NEED_MULTIPLE_NODES
1093 struct pglist_data *node_data[MAX_NUMNODES];
1094
1095 EXPORT_SYMBOL(numa_cpu_lookup_table);
1096 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1097 EXPORT_SYMBOL(node_data);
1098
1099 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1100                                    u32 cfg_handle)
1101 {
1102         u64 arc;
1103
1104         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1105                 u64 target = mdesc_arc_target(md, arc);
1106                 const u64 *val;
1107
1108                 val = mdesc_get_property(md, target,
1109                                          "cfg-handle", NULL);
1110                 if (val && *val == cfg_handle)
1111                         return 0;
1112         }
1113         return -ENODEV;
1114 }
1115
1116 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1117                                     u32 cfg_handle)
1118 {
1119         u64 arc, candidate, best_latency = ~(u64)0;
1120
1121         candidate = MDESC_NODE_NULL;
1122         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1123                 u64 target = mdesc_arc_target(md, arc);
1124                 const char *name = mdesc_node_name(md, target);
1125                 const u64 *val;
1126
1127                 if (strcmp(name, "pio-latency-group"))
1128                         continue;
1129
1130                 val = mdesc_get_property(md, target, "latency", NULL);
1131                 if (!val)
1132                         continue;
1133
1134                 if (*val < best_latency) {
1135                         candidate = target;
1136                         best_latency = *val;
1137                 }
1138         }
1139
1140         if (candidate == MDESC_NODE_NULL)
1141                 return -ENODEV;
1142
1143         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1144 }
1145
1146 int of_node_to_nid(struct device_node *dp)
1147 {
1148         const struct linux_prom64_registers *regs;
1149         struct mdesc_handle *md;
1150         u32 cfg_handle;
1151         int count, nid;
1152         u64 grp;
1153
1154         /* This is the right thing to do on currently supported
1155          * SUN4U NUMA platforms as well, as the PCI controller does
1156          * not sit behind any particular memory controller.
1157          */
1158         if (!mlgroups)
1159                 return -1;
1160
1161         regs = of_get_property(dp, "reg", NULL);
1162         if (!regs)
1163                 return -1;
1164
1165         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1166
1167         md = mdesc_grab();
1168
1169         count = 0;
1170         nid = -1;
1171         mdesc_for_each_node_by_name(md, grp, "group") {
1172                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1173                         nid = count;
1174                         break;
1175                 }
1176                 count++;
1177         }
1178
1179         mdesc_release(md);
1180
1181         return nid;
1182 }
1183
1184 static void __init add_node_ranges(void)
1185 {
1186         struct memblock_region *reg;
1187         unsigned long prev_max;
1188
1189 memblock_resized:
1190         prev_max = memblock.memory.max;
1191
1192         for_each_memblock(memory, reg) {
1193                 unsigned long size = reg->size;
1194                 unsigned long start, end;
1195
1196                 start = reg->base;
1197                 end = start + size;
1198                 while (start < end) {
1199                         unsigned long this_end;
1200                         int nid;
1201
1202                         this_end = memblock_nid_range(start, end, &nid);
1203
1204                         numadbg("Setting memblock NUMA node nid[%d] "
1205                                 "start[%lx] end[%lx]\n",
1206                                 nid, start, this_end);
1207
1208                         memblock_set_node(start, this_end - start,
1209                                           &memblock.memory, nid);
1210                         if (memblock.memory.max != prev_max)
1211                                 goto memblock_resized;
1212                         start = this_end;
1213                 }
1214         }
1215 }
1216
1217 static int __init grab_mlgroups(struct mdesc_handle *md)
1218 {
1219         unsigned long paddr;
1220         int count = 0;
1221         u64 node;
1222
1223         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1224                 count++;
1225         if (!count)
1226                 return -ENOENT;
1227
1228         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1229                           SMP_CACHE_BYTES);
1230         if (!paddr)
1231                 return -ENOMEM;
1232
1233         mlgroups = __va(paddr);
1234         num_mlgroups = count;
1235
1236         count = 0;
1237         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1238                 struct mdesc_mlgroup *m = &mlgroups[count++];
1239                 const u64 *val;
1240
1241                 m->node = node;
1242
1243                 val = mdesc_get_property(md, node, "latency", NULL);
1244                 m->latency = *val;
1245                 val = mdesc_get_property(md, node, "address-match", NULL);
1246                 m->match = *val;
1247                 val = mdesc_get_property(md, node, "address-mask", NULL);
1248                 m->mask = *val;
1249
1250                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1251                         "match[%llx] mask[%llx]\n",
1252                         count - 1, m->node, m->latency, m->match, m->mask);
1253         }
1254
1255         return 0;
1256 }
1257
1258 static int __init grab_mblocks(struct mdesc_handle *md)
1259 {
1260         unsigned long paddr;
1261         int count = 0;
1262         u64 node;
1263
1264         mdesc_for_each_node_by_name(md, node, "mblock")
1265                 count++;
1266         if (!count)
1267                 return -ENOENT;
1268
1269         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1270                           SMP_CACHE_BYTES);
1271         if (!paddr)
1272                 return -ENOMEM;
1273
1274         mblocks = __va(paddr);
1275         num_mblocks = count;
1276
1277         count = 0;
1278         mdesc_for_each_node_by_name(md, node, "mblock") {
1279                 struct mdesc_mblock *m = &mblocks[count++];
1280                 const u64 *val;
1281
1282                 val = mdesc_get_property(md, node, "base", NULL);
1283                 m->base = *val;
1284                 val = mdesc_get_property(md, node, "size", NULL);
1285                 m->size = *val;
1286                 val = mdesc_get_property(md, node,
1287                                          "address-congruence-offset", NULL);
1288
1289                 /* The address-congruence-offset property is optional.
1290                  * Explicity zero it be identifty this.
1291                  */
1292                 if (val)
1293                         m->offset = *val;
1294                 else
1295                         m->offset = 0UL;
1296
1297                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1298                         count - 1, m->base, m->size, m->offset);
1299         }
1300
1301         return 0;
1302 }
1303
1304 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1305                                                u64 grp, cpumask_t *mask)
1306 {
1307         u64 arc;
1308
1309         cpumask_clear(mask);
1310
1311         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1312                 u64 target = mdesc_arc_target(md, arc);
1313                 const char *name = mdesc_node_name(md, target);
1314                 const u64 *id;
1315
1316                 if (strcmp(name, "cpu"))
1317                         continue;
1318                 id = mdesc_get_property(md, target, "id", NULL);
1319                 if (*id < nr_cpu_ids)
1320                         cpumask_set_cpu(*id, mask);
1321         }
1322 }
1323
1324 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1325 {
1326         int i;
1327
1328         for (i = 0; i < num_mlgroups; i++) {
1329                 struct mdesc_mlgroup *m = &mlgroups[i];
1330                 if (m->node == node)
1331                         return m;
1332         }
1333         return NULL;
1334 }
1335
1336 int __node_distance(int from, int to)
1337 {
1338         if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1339                 pr_warn("Returning default NUMA distance value for %d->%d\n",
1340                         from, to);
1341                 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1342         }
1343         return numa_latency[from][to];
1344 }
1345
1346 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1347 {
1348         int i;
1349
1350         for (i = 0; i < MAX_NUMNODES; i++) {
1351                 struct node_mem_mask *n = &node_masks[i];
1352
1353                 if ((grp->mask == n->mask) && (grp->match == n->match))
1354                         break;
1355         }
1356         return i;
1357 }
1358
1359 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1360                                                  u64 grp, int index)
1361 {
1362         u64 arc;
1363
1364         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1365                 int tnode;
1366                 u64 target = mdesc_arc_target(md, arc);
1367                 struct mdesc_mlgroup *m = find_mlgroup(target);
1368
1369                 if (!m)
1370                         continue;
1371                 tnode = find_best_numa_node_for_mlgroup(m);
1372                 if (tnode == MAX_NUMNODES)
1373                         continue;
1374                 numa_latency[index][tnode] = m->latency;
1375         }
1376 }
1377
1378 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1379                                       int index)
1380 {
1381         struct mdesc_mlgroup *candidate = NULL;
1382         u64 arc, best_latency = ~(u64)0;
1383         struct node_mem_mask *n;
1384
1385         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1386                 u64 target = mdesc_arc_target(md, arc);
1387                 struct mdesc_mlgroup *m = find_mlgroup(target);
1388                 if (!m)
1389                         continue;
1390                 if (m->latency < best_latency) {
1391                         candidate = m;
1392                         best_latency = m->latency;
1393                 }
1394         }
1395         if (!candidate)
1396                 return -ENOENT;
1397
1398         if (num_node_masks != index) {
1399                 printk(KERN_ERR "Inconsistent NUMA state, "
1400                        "index[%d] != num_node_masks[%d]\n",
1401                        index, num_node_masks);
1402                 return -EINVAL;
1403         }
1404
1405         n = &node_masks[num_node_masks++];
1406
1407         n->mask = candidate->mask;
1408         n->match = candidate->match;
1409
1410         numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1411                 index, n->mask, n->match, candidate->latency);
1412
1413         return 0;
1414 }
1415
1416 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1417                                          int index)
1418 {
1419         cpumask_t mask;
1420         int cpu;
1421
1422         numa_parse_mdesc_group_cpus(md, grp, &mask);
1423
1424         for_each_cpu(cpu, &mask)
1425                 numa_cpu_lookup_table[cpu] = index;
1426         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1427
1428         if (numa_debug) {
1429                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1430                 for_each_cpu(cpu, &mask)
1431                         printk("%d ", cpu);
1432                 printk("]\n");
1433         }
1434
1435         return numa_attach_mlgroup(md, grp, index);
1436 }
1437
1438 static int __init numa_parse_mdesc(void)
1439 {
1440         struct mdesc_handle *md = mdesc_grab();
1441         int i, j, err, count;
1442         u64 node;
1443
1444         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1445         if (node == MDESC_NODE_NULL) {
1446                 mdesc_release(md);
1447                 return -ENOENT;
1448         }
1449
1450         err = grab_mblocks(md);
1451         if (err < 0)
1452                 goto out;
1453
1454         err = grab_mlgroups(md);
1455         if (err < 0)
1456                 goto out;
1457
1458         count = 0;
1459         mdesc_for_each_node_by_name(md, node, "group") {
1460                 err = numa_parse_mdesc_group(md, node, count);
1461                 if (err < 0)
1462                         break;
1463                 count++;
1464         }
1465
1466         count = 0;
1467         mdesc_for_each_node_by_name(md, node, "group") {
1468                 find_numa_latencies_for_group(md, node, count);
1469                 count++;
1470         }
1471
1472         /* Normalize numa latency matrix according to ACPI SLIT spec. */
1473         for (i = 0; i < MAX_NUMNODES; i++) {
1474                 u64 self_latency = numa_latency[i][i];
1475
1476                 for (j = 0; j < MAX_NUMNODES; j++) {
1477                         numa_latency[i][j] =
1478                                 (numa_latency[i][j] * LOCAL_DISTANCE) /
1479                                 self_latency;
1480                 }
1481         }
1482
1483         add_node_ranges();
1484
1485         for (i = 0; i < num_node_masks; i++) {
1486                 allocate_node_data(i);
1487                 node_set_online(i);
1488         }
1489
1490         err = 0;
1491 out:
1492         mdesc_release(md);
1493         return err;
1494 }
1495
1496 static int __init numa_parse_jbus(void)
1497 {
1498         unsigned long cpu, index;
1499
1500         /* NUMA node id is encoded in bits 36 and higher, and there is
1501          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1502          */
1503         index = 0;
1504         for_each_present_cpu(cpu) {
1505                 numa_cpu_lookup_table[cpu] = index;
1506                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1507                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1508                 node_masks[index].match = cpu << 36UL;
1509
1510                 index++;
1511         }
1512         num_node_masks = index;
1513
1514         add_node_ranges();
1515
1516         for (index = 0; index < num_node_masks; index++) {
1517                 allocate_node_data(index);
1518                 node_set_online(index);
1519         }
1520
1521         return 0;
1522 }
1523
1524 static int __init numa_parse_sun4u(void)
1525 {
1526         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1527                 unsigned long ver;
1528
1529                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1530                 if ((ver >> 32UL) == __JALAPENO_ID ||
1531                     (ver >> 32UL) == __SERRANO_ID)
1532                         return numa_parse_jbus();
1533         }
1534         return -1;
1535 }
1536
1537 static int __init bootmem_init_numa(void)
1538 {
1539         int i, j;
1540         int err = -1;
1541
1542         numadbg("bootmem_init_numa()\n");
1543
1544         /* Some sane defaults for numa latency values */
1545         for (i = 0; i < MAX_NUMNODES; i++) {
1546                 for (j = 0; j < MAX_NUMNODES; j++)
1547                         numa_latency[i][j] = (i == j) ?
1548                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
1549         }
1550
1551         if (numa_enabled) {
1552                 if (tlb_type == hypervisor)
1553                         err = numa_parse_mdesc();
1554                 else
1555                         err = numa_parse_sun4u();
1556         }
1557         return err;
1558 }
1559
1560 #else
1561
1562 static int bootmem_init_numa(void)
1563 {
1564         return -1;
1565 }
1566
1567 #endif
1568
1569 static void __init bootmem_init_nonnuma(void)
1570 {
1571         unsigned long top_of_ram = memblock_end_of_DRAM();
1572         unsigned long total_ram = memblock_phys_mem_size();
1573
1574         numadbg("bootmem_init_nonnuma()\n");
1575
1576         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1577                top_of_ram, total_ram);
1578         printk(KERN_INFO "Memory hole size: %ldMB\n",
1579                (top_of_ram - total_ram) >> 20);
1580
1581         init_node_masks_nonnuma();
1582         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1583         allocate_node_data(0);
1584         node_set_online(0);
1585 }
1586
1587 static unsigned long __init bootmem_init(unsigned long phys_base)
1588 {
1589         unsigned long end_pfn;
1590
1591         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1592         max_pfn = max_low_pfn = end_pfn;
1593         min_low_pfn = (phys_base >> PAGE_SHIFT);
1594
1595         if (bootmem_init_numa() < 0)
1596                 bootmem_init_nonnuma();
1597
1598         /* Dump memblock with node info. */
1599         memblock_dump_all();
1600
1601         /* XXX cpu notifier XXX */
1602
1603         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1604         sparse_init();
1605
1606         return end_pfn;
1607 }
1608
1609 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1610 static int pall_ents __initdata;
1611
1612 static unsigned long max_phys_bits = 40;
1613
1614 bool kern_addr_valid(unsigned long addr)
1615 {
1616         pgd_t *pgd;
1617         pud_t *pud;
1618         pmd_t *pmd;
1619         pte_t *pte;
1620
1621         if ((long)addr < 0L) {
1622                 unsigned long pa = __pa(addr);
1623
1624                 if ((pa >> max_phys_bits) != 0UL)
1625                         return false;
1626
1627                 return pfn_valid(pa >> PAGE_SHIFT);
1628         }
1629
1630         if (addr >= (unsigned long) KERNBASE &&
1631             addr < (unsigned long)&_end)
1632                 return true;
1633
1634         pgd = pgd_offset_k(addr);
1635         if (pgd_none(*pgd))
1636                 return 0;
1637
1638         pud = pud_offset(pgd, addr);
1639         if (pud_none(*pud))
1640                 return 0;
1641
1642         if (pud_large(*pud))
1643                 return pfn_valid(pud_pfn(*pud));
1644
1645         pmd = pmd_offset(pud, addr);
1646         if (pmd_none(*pmd))
1647                 return 0;
1648
1649         if (pmd_large(*pmd))
1650                 return pfn_valid(pmd_pfn(*pmd));
1651
1652         pte = pte_offset_kernel(pmd, addr);
1653         if (pte_none(*pte))
1654                 return 0;
1655
1656         return pfn_valid(pte_pfn(*pte));
1657 }
1658 EXPORT_SYMBOL(kern_addr_valid);
1659
1660 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1661                                               unsigned long vend,
1662                                               pud_t *pud)
1663 {
1664         const unsigned long mask16gb = (1UL << 34) - 1UL;
1665         u64 pte_val = vstart;
1666
1667         /* Each PUD is 8GB */
1668         if ((vstart & mask16gb) ||
1669             (vend - vstart <= mask16gb)) {
1670                 pte_val ^= kern_linear_pte_xor[2];
1671                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1672
1673                 return vstart + PUD_SIZE;
1674         }
1675
1676         pte_val ^= kern_linear_pte_xor[3];
1677         pte_val |= _PAGE_PUD_HUGE;
1678
1679         vend = vstart + mask16gb + 1UL;
1680         while (vstart < vend) {
1681                 pud_val(*pud) = pte_val;
1682
1683                 pte_val += PUD_SIZE;
1684                 vstart += PUD_SIZE;
1685                 pud++;
1686         }
1687         return vstart;
1688 }
1689
1690 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1691                                    bool guard)
1692 {
1693         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1694                 return true;
1695
1696         return false;
1697 }
1698
1699 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1700                                               unsigned long vend,
1701                                               pmd_t *pmd)
1702 {
1703         const unsigned long mask256mb = (1UL << 28) - 1UL;
1704         const unsigned long mask2gb = (1UL << 31) - 1UL;
1705         u64 pte_val = vstart;
1706
1707         /* Each PMD is 8MB */
1708         if ((vstart & mask256mb) ||
1709             (vend - vstart <= mask256mb)) {
1710                 pte_val ^= kern_linear_pte_xor[0];
1711                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1712
1713                 return vstart + PMD_SIZE;
1714         }
1715
1716         if ((vstart & mask2gb) ||
1717             (vend - vstart <= mask2gb)) {
1718                 pte_val ^= kern_linear_pte_xor[1];
1719                 pte_val |= _PAGE_PMD_HUGE;
1720                 vend = vstart + mask256mb + 1UL;
1721         } else {
1722                 pte_val ^= kern_linear_pte_xor[2];
1723                 pte_val |= _PAGE_PMD_HUGE;
1724                 vend = vstart + mask2gb + 1UL;
1725         }
1726
1727         while (vstart < vend) {
1728                 pmd_val(*pmd) = pte_val;
1729
1730                 pte_val += PMD_SIZE;
1731                 vstart += PMD_SIZE;
1732                 pmd++;
1733         }
1734
1735         return vstart;
1736 }
1737
1738 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1739                                    bool guard)
1740 {
1741         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1742                 return true;
1743
1744         return false;
1745 }
1746
1747 static unsigned long __ref kernel_map_range(unsigned long pstart,
1748                                             unsigned long pend, pgprot_t prot,
1749                                             bool use_huge)
1750 {
1751         unsigned long vstart = PAGE_OFFSET + pstart;
1752         unsigned long vend = PAGE_OFFSET + pend;
1753         unsigned long alloc_bytes = 0UL;
1754
1755         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1756                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1757                             vstart, vend);
1758                 prom_halt();
1759         }
1760
1761         while (vstart < vend) {
1762                 unsigned long this_end, paddr = __pa(vstart);
1763                 pgd_t *pgd = pgd_offset_k(vstart);
1764                 pud_t *pud;
1765                 pmd_t *pmd;
1766                 pte_t *pte;
1767
1768                 if (pgd_none(*pgd)) {
1769                         pud_t *new;
1770
1771                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1772                         alloc_bytes += PAGE_SIZE;
1773                         pgd_populate(&init_mm, pgd, new);
1774                 }
1775                 pud = pud_offset(pgd, vstart);
1776                 if (pud_none(*pud)) {
1777                         pmd_t *new;
1778
1779                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1780                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1781                                 continue;
1782                         }
1783                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1784                         alloc_bytes += PAGE_SIZE;
1785                         pud_populate(&init_mm, pud, new);
1786                 }
1787
1788                 pmd = pmd_offset(pud, vstart);
1789                 if (pmd_none(*pmd)) {
1790                         pte_t *new;
1791
1792                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1793                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1794                                 continue;
1795                         }
1796                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1797                         alloc_bytes += PAGE_SIZE;
1798                         pmd_populate_kernel(&init_mm, pmd, new);
1799                 }
1800
1801                 pte = pte_offset_kernel(pmd, vstart);
1802                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1803                 if (this_end > vend)
1804                         this_end = vend;
1805
1806                 while (vstart < this_end) {
1807                         pte_val(*pte) = (paddr | pgprot_val(prot));
1808
1809                         vstart += PAGE_SIZE;
1810                         paddr += PAGE_SIZE;
1811                         pte++;
1812                 }
1813         }
1814
1815         return alloc_bytes;
1816 }
1817
1818 static void __init flush_all_kernel_tsbs(void)
1819 {
1820         int i;
1821
1822         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1823                 struct tsb *ent = &swapper_tsb[i];
1824
1825                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1826         }
1827 #ifndef CONFIG_DEBUG_PAGEALLOC
1828         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1829                 struct tsb *ent = &swapper_4m_tsb[i];
1830
1831                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1832         }
1833 #endif
1834 }
1835
1836 extern unsigned int kvmap_linear_patch[1];
1837
1838 static void __init kernel_physical_mapping_init(void)
1839 {
1840         unsigned long i, mem_alloced = 0UL;
1841         bool use_huge = true;
1842
1843 #ifdef CONFIG_DEBUG_PAGEALLOC
1844         use_huge = false;
1845 #endif
1846         for (i = 0; i < pall_ents; i++) {
1847                 unsigned long phys_start, phys_end;
1848
1849                 phys_start = pall[i].phys_addr;
1850                 phys_end = phys_start + pall[i].reg_size;
1851
1852                 mem_alloced += kernel_map_range(phys_start, phys_end,
1853                                                 PAGE_KERNEL, use_huge);
1854         }
1855
1856         printk("Allocated %ld bytes for kernel page tables.\n",
1857                mem_alloced);
1858
1859         kvmap_linear_patch[0] = 0x01000000; /* nop */
1860         flushi(&kvmap_linear_patch[0]);
1861
1862         flush_all_kernel_tsbs();
1863
1864         __flush_tlb_all();
1865 }
1866
1867 #ifdef CONFIG_DEBUG_PAGEALLOC
1868 void __kernel_map_pages(struct page *page, int numpages, int enable)
1869 {
1870         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1871         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1872
1873         kernel_map_range(phys_start, phys_end,
1874                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1875
1876         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1877                                PAGE_OFFSET + phys_end);
1878
1879         /* we should perform an IPI and flush all tlbs,
1880          * but that can deadlock->flush only current cpu.
1881          */
1882         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1883                                  PAGE_OFFSET + phys_end);
1884 }
1885 #endif
1886
1887 unsigned long __init find_ecache_flush_span(unsigned long size)
1888 {
1889         int i;
1890
1891         for (i = 0; i < pavail_ents; i++) {
1892                 if (pavail[i].reg_size >= size)
1893                         return pavail[i].phys_addr;
1894         }
1895
1896         return ~0UL;
1897 }
1898
1899 unsigned long PAGE_OFFSET;
1900 EXPORT_SYMBOL(PAGE_OFFSET);
1901
1902 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1903 EXPORT_SYMBOL(VMALLOC_END);
1904
1905 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1906 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1907
1908 static void __init setup_page_offset(void)
1909 {
1910         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1911                 /* Cheetah/Panther support a full 64-bit virtual
1912                  * address, so we can use all that our page tables
1913                  * support.
1914                  */
1915                 sparc64_va_hole_top =    0xfff0000000000000UL;
1916                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1917
1918                 max_phys_bits = 42;
1919         } else if (tlb_type == hypervisor) {
1920                 switch (sun4v_chip_type) {
1921                 case SUN4V_CHIP_NIAGARA1:
1922                 case SUN4V_CHIP_NIAGARA2:
1923                         /* T1 and T2 support 48-bit virtual addresses.  */
1924                         sparc64_va_hole_top =    0xffff800000000000UL;
1925                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1926
1927                         max_phys_bits = 39;
1928                         break;
1929                 case SUN4V_CHIP_NIAGARA3:
1930                         /* T3 supports 48-bit virtual addresses.  */
1931                         sparc64_va_hole_top =    0xffff800000000000UL;
1932                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1933
1934                         max_phys_bits = 43;
1935                         break;
1936                 case SUN4V_CHIP_NIAGARA4:
1937                 case SUN4V_CHIP_NIAGARA5:
1938                 case SUN4V_CHIP_SPARC64X:
1939                 case SUN4V_CHIP_SPARC_M6:
1940                         /* T4 and later support 52-bit virtual addresses.  */
1941                         sparc64_va_hole_top =    0xfff8000000000000UL;
1942                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1943                         max_phys_bits = 47;
1944                         break;
1945                 case SUN4V_CHIP_SPARC_M7:
1946                 case SUN4V_CHIP_SPARC_SN:
1947                         /* M7 and later support 52-bit virtual addresses.  */
1948                         sparc64_va_hole_top =    0xfff8000000000000UL;
1949                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1950                         max_phys_bits = 49;
1951                         break;
1952                 case SUN4V_CHIP_SPARC_M8:
1953                 default:
1954                         /* M8 and later support 54-bit virtual addresses.
1955                          * However, restricting M8 and above VA bits to 53
1956                          * as 4-level page table cannot support more than
1957                          * 53 VA bits.
1958                          */
1959                         sparc64_va_hole_top =    0xfff0000000000000UL;
1960                         sparc64_va_hole_bottom = 0x0010000000000000UL;
1961                         max_phys_bits = 51;
1962                         break;
1963                 }
1964         }
1965
1966         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1967                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1968                             max_phys_bits);
1969                 prom_halt();
1970         }
1971
1972         PAGE_OFFSET = sparc64_va_hole_top;
1973         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1974                        (sparc64_va_hole_bottom >> 2));
1975
1976         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1977                 PAGE_OFFSET, max_phys_bits);
1978         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1979                 VMALLOC_START, VMALLOC_END);
1980         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1981                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1982 }
1983
1984 static void __init tsb_phys_patch(void)
1985 {
1986         struct tsb_ldquad_phys_patch_entry *pquad;
1987         struct tsb_phys_patch_entry *p;
1988
1989         pquad = &__tsb_ldquad_phys_patch;
1990         while (pquad < &__tsb_ldquad_phys_patch_end) {
1991                 unsigned long addr = pquad->addr;
1992
1993                 if (tlb_type == hypervisor)
1994                         *(unsigned int *) addr = pquad->sun4v_insn;
1995                 else
1996                         *(unsigned int *) addr = pquad->sun4u_insn;
1997                 wmb();
1998                 __asm__ __volatile__("flush     %0"
1999                                      : /* no outputs */
2000                                      : "r" (addr));
2001
2002                 pquad++;
2003         }
2004
2005         p = &__tsb_phys_patch;
2006         while (p < &__tsb_phys_patch_end) {
2007                 unsigned long addr = p->addr;
2008
2009                 *(unsigned int *) addr = p->insn;
2010                 wmb();
2011                 __asm__ __volatile__("flush     %0"
2012                                      : /* no outputs */
2013                                      : "r" (addr));
2014
2015                 p++;
2016         }
2017 }
2018
2019 /* Don't mark as init, we give this to the Hypervisor.  */
2020 #ifndef CONFIG_DEBUG_PAGEALLOC
2021 #define NUM_KTSB_DESCR  2
2022 #else
2023 #define NUM_KTSB_DESCR  1
2024 #endif
2025 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2026
2027 /* The swapper TSBs are loaded with a base sequence of:
2028  *
2029  *      sethi   %uhi(SYMBOL), REG1
2030  *      sethi   %hi(SYMBOL), REG2
2031  *      or      REG1, %ulo(SYMBOL), REG1
2032  *      or      REG2, %lo(SYMBOL), REG2
2033  *      sllx    REG1, 32, REG1
2034  *      or      REG1, REG2, REG1
2035  *
2036  * When we use physical addressing for the TSB accesses, we patch the
2037  * first four instructions in the above sequence.
2038  */
2039
2040 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2041 {
2042         unsigned long high_bits, low_bits;
2043
2044         high_bits = (pa >> 32) & 0xffffffff;
2045         low_bits = (pa >> 0) & 0xffffffff;
2046
2047         while (start < end) {
2048                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
2049
2050                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2051                 __asm__ __volatile__("flush     %0" : : "r" (ia));
2052
2053                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2054                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
2055
2056                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2057                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
2058
2059                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2060                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
2061
2062                 start++;
2063         }
2064 }
2065
2066 static void ktsb_phys_patch(void)
2067 {
2068         extern unsigned int __swapper_tsb_phys_patch;
2069         extern unsigned int __swapper_tsb_phys_patch_end;
2070         unsigned long ktsb_pa;
2071
2072         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2073         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2074                             &__swapper_tsb_phys_patch_end, ktsb_pa);
2075 #ifndef CONFIG_DEBUG_PAGEALLOC
2076         {
2077         extern unsigned int __swapper_4m_tsb_phys_patch;
2078         extern unsigned int __swapper_4m_tsb_phys_patch_end;
2079         ktsb_pa = (kern_base +
2080                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2081         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2082                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2083         }
2084 #endif
2085 }
2086
2087 static void __init sun4v_ktsb_init(void)
2088 {
2089         unsigned long ktsb_pa;
2090
2091         /* First KTSB for PAGE_SIZE mappings.  */
2092         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2093
2094         switch (PAGE_SIZE) {
2095         case 8 * 1024:
2096         default:
2097                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2098                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2099                 break;
2100
2101         case 64 * 1024:
2102                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2103                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2104                 break;
2105
2106         case 512 * 1024:
2107                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2108                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2109                 break;
2110
2111         case 4 * 1024 * 1024:
2112                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2113                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2114                 break;
2115         }
2116
2117         ktsb_descr[0].assoc = 1;
2118         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2119         ktsb_descr[0].ctx_idx = 0;
2120         ktsb_descr[0].tsb_base = ktsb_pa;
2121         ktsb_descr[0].resv = 0;
2122
2123 #ifndef CONFIG_DEBUG_PAGEALLOC
2124         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2125         ktsb_pa = (kern_base +
2126                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2127
2128         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2129         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2130                                     HV_PGSZ_MASK_256MB |
2131                                     HV_PGSZ_MASK_2GB |
2132                                     HV_PGSZ_MASK_16GB) &
2133                                    cpu_pgsz_mask);
2134         ktsb_descr[1].assoc = 1;
2135         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2136         ktsb_descr[1].ctx_idx = 0;
2137         ktsb_descr[1].tsb_base = ktsb_pa;
2138         ktsb_descr[1].resv = 0;
2139 #endif
2140 }
2141
2142 void sun4v_ktsb_register(void)
2143 {
2144         unsigned long pa, ret;
2145
2146         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2147
2148         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2149         if (ret != 0) {
2150                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2151                             "errors with %lx\n", pa, ret);
2152                 prom_halt();
2153         }
2154 }
2155
2156 static void __init sun4u_linear_pte_xor_finalize(void)
2157 {
2158 #ifndef CONFIG_DEBUG_PAGEALLOC
2159         /* This is where we would add Panther support for
2160          * 32MB and 256MB pages.
2161          */
2162 #endif
2163 }
2164
2165 static void __init sun4v_linear_pte_xor_finalize(void)
2166 {
2167         unsigned long pagecv_flag;
2168
2169         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2170          * enables MCD error. Do not set bit 9 on M7 processor.
2171          */
2172         switch (sun4v_chip_type) {
2173         case SUN4V_CHIP_SPARC_M7:
2174         case SUN4V_CHIP_SPARC_M8:
2175         case SUN4V_CHIP_SPARC_SN:
2176                 pagecv_flag = 0x00;
2177                 break;
2178         default:
2179                 pagecv_flag = _PAGE_CV_4V;
2180                 break;
2181         }
2182 #ifndef CONFIG_DEBUG_PAGEALLOC
2183         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2184                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2185                         PAGE_OFFSET;
2186                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2187                                            _PAGE_P_4V | _PAGE_W_4V);
2188         } else {
2189                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2190         }
2191
2192         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2193                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2194                         PAGE_OFFSET;
2195                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2196                                            _PAGE_P_4V | _PAGE_W_4V);
2197         } else {
2198                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2199         }
2200
2201         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2202                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2203                         PAGE_OFFSET;
2204                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2205                                            _PAGE_P_4V | _PAGE_W_4V);
2206         } else {
2207                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2208         }
2209 #endif
2210 }
2211
2212 /* paging_init() sets up the page tables */
2213
2214 static unsigned long last_valid_pfn;
2215
2216 static void sun4u_pgprot_init(void);
2217 static void sun4v_pgprot_init(void);
2218
2219 static phys_addr_t __init available_memory(void)
2220 {
2221         phys_addr_t available = 0ULL;
2222         phys_addr_t pa_start, pa_end;
2223         u64 i;
2224
2225         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2226                                 &pa_end, NULL)
2227                 available = available + (pa_end  - pa_start);
2228
2229         return available;
2230 }
2231
2232 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2233 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2234 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2235 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2236 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2237 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2238
2239 /* We need to exclude reserved regions. This exclusion will include
2240  * vmlinux and initrd. To be more precise the initrd size could be used to
2241  * compute a new lower limit because it is freed later during initialization.
2242  */
2243 static void __init reduce_memory(phys_addr_t limit_ram)
2244 {
2245         phys_addr_t avail_ram = available_memory();
2246         phys_addr_t pa_start, pa_end;
2247         u64 i;
2248
2249         if (limit_ram >= avail_ram)
2250                 return;
2251
2252         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2253                                 &pa_end, NULL) {
2254                 phys_addr_t region_size = pa_end - pa_start;
2255                 phys_addr_t clip_start = pa_start;
2256
2257                 avail_ram = avail_ram - region_size;
2258                 /* Are we consuming too much? */
2259                 if (avail_ram < limit_ram) {
2260                         phys_addr_t give_back = limit_ram - avail_ram;
2261
2262                         region_size = region_size - give_back;
2263                         clip_start = clip_start + give_back;
2264                 }
2265
2266                 memblock_remove(clip_start, region_size);
2267
2268                 if (avail_ram <= limit_ram)
2269                         break;
2270                 i = 0UL;
2271         }
2272 }
2273
2274 void __init paging_init(void)
2275 {
2276         unsigned long end_pfn, shift, phys_base;
2277         unsigned long real_end, i;
2278
2279         setup_page_offset();
2280
2281         /* These build time checkes make sure that the dcache_dirty_cpu()
2282          * page->flags usage will work.
2283          *
2284          * When a page gets marked as dcache-dirty, we store the
2285          * cpu number starting at bit 32 in the page->flags.  Also,
2286          * functions like clear_dcache_dirty_cpu use the cpu mask
2287          * in 13-bit signed-immediate instruction fields.
2288          */
2289
2290         /*
2291          * Page flags must not reach into upper 32 bits that are used
2292          * for the cpu number
2293          */
2294         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2295
2296         /*
2297          * The bit fields placed in the high range must not reach below
2298          * the 32 bit boundary. Otherwise we cannot place the cpu field
2299          * at the 32 bit boundary.
2300          */
2301         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2302                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2303
2304         BUILD_BUG_ON(NR_CPUS > 4096);
2305
2306         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2307         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2308
2309         /* Invalidate both kernel TSBs.  */
2310         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2311 #ifndef CONFIG_DEBUG_PAGEALLOC
2312         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2313 #endif
2314
2315         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2316          * bit on M7 processor. This is a conflicting usage of the same
2317          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2318          * Detection error on all pages and this will lead to problems
2319          * later. Kernel does not run with MCD enabled and hence rest
2320          * of the required steps to fully configure memory corruption
2321          * detection are not taken. We need to ensure TTE.mcde is not
2322          * set on M7 processor. Compute the value of cacheability
2323          * flag for use later taking this into consideration.
2324          */
2325         switch (sun4v_chip_type) {
2326         case SUN4V_CHIP_SPARC_M7:
2327         case SUN4V_CHIP_SPARC_M8:
2328         case SUN4V_CHIP_SPARC_SN:
2329                 page_cache4v_flag = _PAGE_CP_4V;
2330                 break;
2331         default:
2332                 page_cache4v_flag = _PAGE_CACHE_4V;
2333                 break;
2334         }
2335
2336         if (tlb_type == hypervisor)
2337                 sun4v_pgprot_init();
2338         else
2339                 sun4u_pgprot_init();
2340
2341         if (tlb_type == cheetah_plus ||
2342             tlb_type == hypervisor) {
2343                 tsb_phys_patch();
2344                 ktsb_phys_patch();
2345         }
2346
2347         if (tlb_type == hypervisor)
2348                 sun4v_patch_tlb_handlers();
2349
2350         /* Find available physical memory...
2351          *
2352          * Read it twice in order to work around a bug in openfirmware.
2353          * The call to grab this table itself can cause openfirmware to
2354          * allocate memory, which in turn can take away some space from
2355          * the list of available memory.  Reading it twice makes sure
2356          * we really do get the final value.
2357          */
2358         read_obp_translations();
2359         read_obp_memory("reg", &pall[0], &pall_ents);
2360         read_obp_memory("available", &pavail[0], &pavail_ents);
2361         read_obp_memory("available", &pavail[0], &pavail_ents);
2362
2363         phys_base = 0xffffffffffffffffUL;
2364         for (i = 0; i < pavail_ents; i++) {
2365                 phys_base = min(phys_base, pavail[i].phys_addr);
2366                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2367         }
2368
2369         memblock_reserve(kern_base, kern_size);
2370
2371         find_ramdisk(phys_base);
2372
2373         if (cmdline_memory_size)
2374                 reduce_memory(cmdline_memory_size);
2375
2376         memblock_allow_resize();
2377         memblock_dump_all();
2378
2379         set_bit(0, mmu_context_bmap);
2380
2381         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2382
2383         real_end = (unsigned long)_end;
2384         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2385         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2386                num_kernel_image_mappings);
2387
2388         /* Set kernel pgd to upper alias so physical page computations
2389          * work.
2390          */
2391         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2392         
2393         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2394
2395         inherit_prom_mappings();
2396         
2397         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2398         setup_tba();
2399
2400         __flush_tlb_all();
2401
2402         prom_build_devicetree();
2403         of_populate_present_mask();
2404 #ifndef CONFIG_SMP
2405         of_fill_in_cpu_data();
2406 #endif
2407
2408         if (tlb_type == hypervisor) {
2409                 sun4v_mdesc_init();
2410                 mdesc_populate_present_mask(cpu_all_mask);
2411 #ifndef CONFIG_SMP
2412                 mdesc_fill_in_cpu_data(cpu_all_mask);
2413 #endif
2414                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2415
2416                 sun4v_linear_pte_xor_finalize();
2417
2418                 sun4v_ktsb_init();
2419                 sun4v_ktsb_register();
2420         } else {
2421                 unsigned long impl, ver;
2422
2423                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2424                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2425
2426                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2427                 impl = ((ver >> 32) & 0xffff);
2428                 if (impl == PANTHER_IMPL)
2429                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2430                                           HV_PGSZ_MASK_256MB);
2431
2432                 sun4u_linear_pte_xor_finalize();
2433         }
2434
2435         /* Flush the TLBs and the 4M TSB so that the updated linear
2436          * pte XOR settings are realized for all mappings.
2437          */
2438         __flush_tlb_all();
2439 #ifndef CONFIG_DEBUG_PAGEALLOC
2440         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2441 #endif
2442         __flush_tlb_all();
2443
2444         /* Setup bootmem... */
2445         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2446
2447         kernel_physical_mapping_init();
2448
2449         {
2450                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2451
2452                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2453
2454                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2455
2456                 free_area_init_nodes(max_zone_pfns);
2457         }
2458
2459         printk("Booting Linux...\n");
2460 }
2461
2462 int page_in_phys_avail(unsigned long paddr)
2463 {
2464         int i;
2465
2466         paddr &= PAGE_MASK;
2467
2468         for (i = 0; i < pavail_ents; i++) {
2469                 unsigned long start, end;
2470
2471                 start = pavail[i].phys_addr;
2472                 end = start + pavail[i].reg_size;
2473
2474                 if (paddr >= start && paddr < end)
2475                         return 1;
2476         }
2477         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2478                 return 1;
2479 #ifdef CONFIG_BLK_DEV_INITRD
2480         if (paddr >= __pa(initrd_start) &&
2481             paddr < __pa(PAGE_ALIGN(initrd_end)))
2482                 return 1;
2483 #endif
2484
2485         return 0;
2486 }
2487
2488 static void __init register_page_bootmem_info(void)
2489 {
2490 #ifdef CONFIG_NEED_MULTIPLE_NODES
2491         int i;
2492
2493         for_each_online_node(i)
2494                 if (NODE_DATA(i)->node_spanned_pages)
2495                         register_page_bootmem_info_node(NODE_DATA(i));
2496 #endif
2497 }
2498 void __init mem_init(void)
2499 {
2500         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2501
2502         register_page_bootmem_info();
2503         free_all_bootmem();
2504
2505         /*
2506          * Set up the zero page, mark it reserved, so that page count
2507          * is not manipulated when freeing the page from user ptes.
2508          */
2509         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2510         if (mem_map_zero == NULL) {
2511                 prom_printf("paging_init: Cannot alloc zero page.\n");
2512                 prom_halt();
2513         }
2514         mark_page_reserved(mem_map_zero);
2515
2516         mem_init_print_info(NULL);
2517
2518         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2519                 cheetah_ecache_flush_init();
2520 }
2521
2522 void free_initmem(void)
2523 {
2524         unsigned long addr, initend;
2525         int do_free = 1;
2526
2527         /* If the physical memory maps were trimmed by kernel command
2528          * line options, don't even try freeing this initmem stuff up.
2529          * The kernel image could have been in the trimmed out region
2530          * and if so the freeing below will free invalid page structs.
2531          */
2532         if (cmdline_memory_size)
2533                 do_free = 0;
2534
2535         /*
2536          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2537          */
2538         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2539         initend = (unsigned long)(__init_end) & PAGE_MASK;
2540         for (; addr < initend; addr += PAGE_SIZE) {
2541                 unsigned long page;
2542
2543                 page = (addr +
2544                         ((unsigned long) __va(kern_base)) -
2545                         ((unsigned long) KERNBASE));
2546                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2547
2548                 if (do_free)
2549                         free_reserved_page(virt_to_page(page));
2550         }
2551 }
2552
2553 #ifdef CONFIG_BLK_DEV_INITRD
2554 void free_initrd_mem(unsigned long start, unsigned long end)
2555 {
2556         free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2557                            "initrd");
2558 }
2559 #endif
2560
2561 pgprot_t PAGE_KERNEL __read_mostly;
2562 EXPORT_SYMBOL(PAGE_KERNEL);
2563
2564 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2565 pgprot_t PAGE_COPY __read_mostly;
2566
2567 pgprot_t PAGE_SHARED __read_mostly;
2568 EXPORT_SYMBOL(PAGE_SHARED);
2569
2570 unsigned long pg_iobits __read_mostly;
2571
2572 unsigned long _PAGE_IE __read_mostly;
2573 EXPORT_SYMBOL(_PAGE_IE);
2574
2575 unsigned long _PAGE_E __read_mostly;
2576 EXPORT_SYMBOL(_PAGE_E);
2577
2578 unsigned long _PAGE_CACHE __read_mostly;
2579 EXPORT_SYMBOL(_PAGE_CACHE);
2580
2581 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2582 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2583                                int node)
2584 {
2585         unsigned long pte_base;
2586
2587         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2588                     _PAGE_CP_4U | _PAGE_CV_4U |
2589                     _PAGE_P_4U | _PAGE_W_4U);
2590         if (tlb_type == hypervisor)
2591                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2592                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2593
2594         pte_base |= _PAGE_PMD_HUGE;
2595
2596         vstart = vstart & PMD_MASK;
2597         vend = ALIGN(vend, PMD_SIZE);
2598         for (; vstart < vend; vstart += PMD_SIZE) {
2599                 pgd_t *pgd = pgd_offset_k(vstart);
2600                 unsigned long pte;
2601                 pud_t *pud;
2602                 pmd_t *pmd;
2603
2604                 if (pgd_none(*pgd)) {
2605                         pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2606
2607                         if (!new)
2608                                 return -ENOMEM;
2609                         pgd_populate(&init_mm, pgd, new);
2610                 }
2611
2612                 pud = pud_offset(pgd, vstart);
2613                 if (pud_none(*pud)) {
2614                         pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2615
2616                         if (!new)
2617                                 return -ENOMEM;
2618                         pud_populate(&init_mm, pud, new);
2619                 }
2620
2621                 pmd = pmd_offset(pud, vstart);
2622
2623                 pte = pmd_val(*pmd);
2624                 if (!(pte & _PAGE_VALID)) {
2625                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2626
2627                         if (!block)
2628                                 return -ENOMEM;
2629
2630                         pmd_val(*pmd) = pte_base | __pa(block);
2631                 }
2632         }
2633
2634         return 0;
2635 }
2636
2637 void vmemmap_free(unsigned long start, unsigned long end)
2638 {
2639 }
2640 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2641
2642 static void prot_init_common(unsigned long page_none,
2643                              unsigned long page_shared,
2644                              unsigned long page_copy,
2645                              unsigned long page_readonly,
2646                              unsigned long page_exec_bit)
2647 {
2648         PAGE_COPY = __pgprot(page_copy);
2649         PAGE_SHARED = __pgprot(page_shared);
2650
2651         protection_map[0x0] = __pgprot(page_none);
2652         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2653         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2654         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2655         protection_map[0x4] = __pgprot(page_readonly);
2656         protection_map[0x5] = __pgprot(page_readonly);
2657         protection_map[0x6] = __pgprot(page_copy);
2658         protection_map[0x7] = __pgprot(page_copy);
2659         protection_map[0x8] = __pgprot(page_none);
2660         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2661         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2662         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2663         protection_map[0xc] = __pgprot(page_readonly);
2664         protection_map[0xd] = __pgprot(page_readonly);
2665         protection_map[0xe] = __pgprot(page_shared);
2666         protection_map[0xf] = __pgprot(page_shared);
2667 }
2668
2669 static void __init sun4u_pgprot_init(void)
2670 {
2671         unsigned long page_none, page_shared, page_copy, page_readonly;
2672         unsigned long page_exec_bit;
2673         int i;
2674
2675         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2676                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2677                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2678                                 _PAGE_EXEC_4U);
2679         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2680                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2681                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2682                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2683
2684         _PAGE_IE = _PAGE_IE_4U;
2685         _PAGE_E = _PAGE_E_4U;
2686         _PAGE_CACHE = _PAGE_CACHE_4U;
2687
2688         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2689                      __ACCESS_BITS_4U | _PAGE_E_4U);
2690
2691 #ifdef CONFIG_DEBUG_PAGEALLOC
2692         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2693 #else
2694         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2695                 PAGE_OFFSET;
2696 #endif
2697         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2698                                    _PAGE_P_4U | _PAGE_W_4U);
2699
2700         for (i = 1; i < 4; i++)
2701                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2702
2703         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2704                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2705                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2706
2707
2708         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2709         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2710                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2711         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2712                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2713         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2714                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2715
2716         page_exec_bit = _PAGE_EXEC_4U;
2717
2718         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2719                          page_exec_bit);
2720 }
2721
2722 static void __init sun4v_pgprot_init(void)
2723 {
2724         unsigned long page_none, page_shared, page_copy, page_readonly;
2725         unsigned long page_exec_bit;
2726         int i;
2727
2728         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2729                                 page_cache4v_flag | _PAGE_P_4V |
2730                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2731                                 _PAGE_EXEC_4V);
2732         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2733
2734         _PAGE_IE = _PAGE_IE_4V;
2735         _PAGE_E = _PAGE_E_4V;
2736         _PAGE_CACHE = page_cache4v_flag;
2737
2738 #ifdef CONFIG_DEBUG_PAGEALLOC
2739         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2740 #else
2741         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2742                 PAGE_OFFSET;
2743 #endif
2744         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2745                                    _PAGE_W_4V);
2746
2747         for (i = 1; i < 4; i++)
2748                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2749
2750         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2751                      __ACCESS_BITS_4V | _PAGE_E_4V);
2752
2753         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2754                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2755                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2756                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2757
2758         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2759         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2760                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2761         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2762                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2763         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2764                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2765
2766         page_exec_bit = _PAGE_EXEC_4V;
2767
2768         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2769                          page_exec_bit);
2770 }
2771
2772 unsigned long pte_sz_bits(unsigned long sz)
2773 {
2774         if (tlb_type == hypervisor) {
2775                 switch (sz) {
2776                 case 8 * 1024:
2777                 default:
2778                         return _PAGE_SZ8K_4V;
2779                 case 64 * 1024:
2780                         return _PAGE_SZ64K_4V;
2781                 case 512 * 1024:
2782                         return _PAGE_SZ512K_4V;
2783                 case 4 * 1024 * 1024:
2784                         return _PAGE_SZ4MB_4V;
2785                 }
2786         } else {
2787                 switch (sz) {
2788                 case 8 * 1024:
2789                 default:
2790                         return _PAGE_SZ8K_4U;
2791                 case 64 * 1024:
2792                         return _PAGE_SZ64K_4U;
2793                 case 512 * 1024:
2794                         return _PAGE_SZ512K_4U;
2795                 case 4 * 1024 * 1024:
2796                         return _PAGE_SZ4MB_4U;
2797                 }
2798         }
2799 }
2800
2801 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2802 {
2803         pte_t pte;
2804
2805         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2806         pte_val(pte) |= (((unsigned long)space) << 32);
2807         pte_val(pte) |= pte_sz_bits(page_size);
2808
2809         return pte;
2810 }
2811
2812 static unsigned long kern_large_tte(unsigned long paddr)
2813 {
2814         unsigned long val;
2815
2816         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2817                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2818                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2819         if (tlb_type == hypervisor)
2820                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2821                        page_cache4v_flag | _PAGE_P_4V |
2822                        _PAGE_EXEC_4V | _PAGE_W_4V);
2823
2824         return val | paddr;
2825 }
2826
2827 /* If not locked, zap it. */
2828 void __flush_tlb_all(void)
2829 {
2830         unsigned long pstate;
2831         int i;
2832
2833         __asm__ __volatile__("flushw\n\t"
2834                              "rdpr      %%pstate, %0\n\t"
2835                              "wrpr      %0, %1, %%pstate"
2836                              : "=r" (pstate)
2837                              : "i" (PSTATE_IE));
2838         if (tlb_type == hypervisor) {
2839                 sun4v_mmu_demap_all();
2840         } else if (tlb_type == spitfire) {
2841                 for (i = 0; i < 64; i++) {
2842                         /* Spitfire Errata #32 workaround */
2843                         /* NOTE: Always runs on spitfire, so no
2844                          *       cheetah+ page size encodings.
2845                          */
2846                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2847                                              "flush     %%g6"
2848                                              : /* No outputs */
2849                                              : "r" (0),
2850                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2851
2852                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2853                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2854                                                      "membar #Sync"
2855                                                      : /* no outputs */
2856                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2857                                 spitfire_put_dtlb_data(i, 0x0UL);
2858                         }
2859
2860                         /* Spitfire Errata #32 workaround */
2861                         /* NOTE: Always runs on spitfire, so no
2862                          *       cheetah+ page size encodings.
2863                          */
2864                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2865                                              "flush     %%g6"
2866                                              : /* No outputs */
2867                                              : "r" (0),
2868                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2869
2870                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2871                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2872                                                      "membar #Sync"
2873                                                      : /* no outputs */
2874                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2875                                 spitfire_put_itlb_data(i, 0x0UL);
2876                         }
2877                 }
2878         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2879                 cheetah_flush_dtlb_all();
2880                 cheetah_flush_itlb_all();
2881         }
2882         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2883                              : : "r" (pstate));
2884 }
2885
2886 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2887                             unsigned long address)
2888 {
2889         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2890         pte_t *pte = NULL;
2891
2892         if (page)
2893                 pte = (pte_t *) page_address(page);
2894
2895         return pte;
2896 }
2897
2898 pgtable_t pte_alloc_one(struct mm_struct *mm,
2899                         unsigned long address)
2900 {
2901         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2902         if (!page)
2903                 return NULL;
2904         if (!pgtable_page_ctor(page)) {
2905                 free_hot_cold_page(page, 0);
2906                 return NULL;
2907         }
2908         return (pte_t *) page_address(page);
2909 }
2910
2911 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2912 {
2913         free_page((unsigned long)pte);
2914 }
2915
2916 static void __pte_free(pgtable_t pte)
2917 {
2918         struct page *page = virt_to_page(pte);
2919
2920         pgtable_page_dtor(page);
2921         __free_page(page);
2922 }
2923
2924 void pte_free(struct mm_struct *mm, pgtable_t pte)
2925 {
2926         __pte_free(pte);
2927 }
2928
2929 void pgtable_free(void *table, bool is_page)
2930 {
2931         if (is_page)
2932                 __pte_free(table);
2933         else
2934                 kmem_cache_free(pgtable_cache, table);
2935 }
2936
2937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2938 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2939                           pmd_t *pmd)
2940 {
2941         unsigned long pte, flags;
2942         struct mm_struct *mm;
2943         pmd_t entry = *pmd;
2944
2945         if (!pmd_large(entry) || !pmd_young(entry))
2946                 return;
2947
2948         pte = pmd_val(entry);
2949
2950         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2951         if (!(pte & _PAGE_VALID))
2952                 return;
2953
2954         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2955         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2956
2957         mm = vma->vm_mm;
2958
2959         spin_lock_irqsave(&mm->context.lock, flags);
2960
2961         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2962                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2963                                         addr, pte);
2964
2965         spin_unlock_irqrestore(&mm->context.lock, flags);
2966 }
2967 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2968
2969 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2970 static void context_reload(void *__data)
2971 {
2972         struct mm_struct *mm = __data;
2973
2974         if (mm == current->mm)
2975                 load_secondary_context(mm);
2976 }
2977
2978 void hugetlb_setup(struct pt_regs *regs)
2979 {
2980         struct mm_struct *mm = current->mm;
2981         struct tsb_config *tp;
2982
2983         if (faulthandler_disabled() || !mm) {
2984                 const struct exception_table_entry *entry;
2985
2986                 entry = search_exception_tables(regs->tpc);
2987                 if (entry) {
2988                         regs->tpc = entry->fixup;
2989                         regs->tnpc = regs->tpc + 4;
2990                         return;
2991                 }
2992                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2993                 die_if_kernel("HugeTSB in atomic", regs);
2994         }
2995
2996         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2997         if (likely(tp->tsb == NULL))
2998                 tsb_grow(mm, MM_TSB_HUGE, 0);
2999
3000         tsb_context_switch(mm);
3001         smp_tsb_sync(mm);
3002
3003         /* On UltraSPARC-III+ and later, configure the second half of
3004          * the Data-TLB for huge pages.
3005          */
3006         if (tlb_type == cheetah_plus) {
3007                 bool need_context_reload = false;
3008                 unsigned long ctx;
3009
3010                 spin_lock_irq(&ctx_alloc_lock);
3011                 ctx = mm->context.sparc64_ctx_val;
3012                 ctx &= ~CTX_PGSZ_MASK;
3013                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3014                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3015
3016                 if (ctx != mm->context.sparc64_ctx_val) {
3017                         /* When changing the page size fields, we
3018                          * must perform a context flush so that no
3019                          * stale entries match.  This flush must
3020                          * occur with the original context register
3021                          * settings.
3022                          */
3023                         do_flush_tlb_mm(mm);
3024
3025                         /* Reload the context register of all processors
3026                          * also executing in this address space.
3027                          */
3028                         mm->context.sparc64_ctx_val = ctx;
3029                         need_context_reload = true;
3030                 }
3031                 spin_unlock_irq(&ctx_alloc_lock);
3032
3033                 if (need_context_reload)
3034                         on_each_cpu(context_reload, mm, 0);
3035         }
3036 }
3037 #endif
3038
3039 static struct resource code_resource = {
3040         .name   = "Kernel code",
3041         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3042 };
3043
3044 static struct resource data_resource = {
3045         .name   = "Kernel data",
3046         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3047 };
3048
3049 static struct resource bss_resource = {
3050         .name   = "Kernel bss",
3051         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3052 };
3053
3054 static inline resource_size_t compute_kern_paddr(void *addr)
3055 {
3056         return (resource_size_t) (addr - KERNBASE + kern_base);
3057 }
3058
3059 static void __init kernel_lds_init(void)
3060 {
3061         code_resource.start = compute_kern_paddr(_text);
3062         code_resource.end   = compute_kern_paddr(_etext - 1);
3063         data_resource.start = compute_kern_paddr(_etext);
3064         data_resource.end   = compute_kern_paddr(_edata - 1);
3065         bss_resource.start  = compute_kern_paddr(__bss_start);
3066         bss_resource.end    = compute_kern_paddr(_end - 1);
3067 }
3068
3069 static int __init report_memory(void)
3070 {
3071         int i;
3072         struct resource *res;
3073
3074         kernel_lds_init();
3075
3076         for (i = 0; i < pavail_ents; i++) {
3077                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3078
3079                 if (!res) {
3080                         pr_warn("Failed to allocate source.\n");
3081                         break;
3082                 }
3083
3084                 res->name = "System RAM";
3085                 res->start = pavail[i].phys_addr;
3086                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3087                 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3088
3089                 if (insert_resource(&iomem_resource, res) < 0) {
3090                         pr_warn("Resource insertion failed.\n");
3091                         break;
3092                 }
3093
3094                 insert_resource(res, &code_resource);
3095                 insert_resource(res, &data_resource);
3096                 insert_resource(res, &bss_resource);
3097         }
3098
3099         return 0;
3100 }
3101 arch_initcall(report_memory);
3102
3103 #ifdef CONFIG_SMP
3104 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
3105 #else
3106 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
3107 #endif
3108
3109 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3110 {
3111         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3112                 if (start < LOW_OBP_ADDRESS) {
3113                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3114                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3115                 }
3116                 if (end > HI_OBP_ADDRESS) {
3117                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3118                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3119                 }
3120         } else {
3121                 flush_tsb_kernel_range(start, end);
3122                 do_flush_tlb_kernel_range(start, end);
3123         }
3124 }