]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/cpu/perf_event_intel_ds.c
drivers: usb: removed assignment of 0 to static variables
[karo-tx-linux.git] / arch / x86 / kernel / cpu / perf_event_intel_ds.c
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE         24
12
13 #define BTS_BUFFER_SIZE         (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE        (PAGE_SIZE << 4)
15 #define PEBS_FIXUP_SIZE         PAGE_SIZE
16
17 /*
18  * pebs_record_32 for p4 and core not supported
19
20 struct pebs_record_32 {
21         u32 flags, ip;
22         u32 ax, bc, cx, dx;
23         u32 si, di, bp, sp;
24 };
25
26  */
27
28 union intel_x86_pebs_dse {
29         u64 val;
30         struct {
31                 unsigned int ld_dse:4;
32                 unsigned int ld_stlb_miss:1;
33                 unsigned int ld_locked:1;
34                 unsigned int ld_reserved:26;
35         };
36         struct {
37                 unsigned int st_l1d_hit:1;
38                 unsigned int st_reserved1:3;
39                 unsigned int st_stlb_miss:1;
40                 unsigned int st_locked:1;
41                 unsigned int st_reserved2:26;
42         };
43 };
44
45
46 /*
47  * Map PEBS Load Latency Data Source encodings to generic
48  * memory data source information
49  */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53
54 static const u64 pebs_data_source[] = {
55         P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
56         OP_LH | P(LVL, L1)  | P(SNOOP, NONE),   /* 0x01: L1 local */
57         OP_LH | P(LVL, LFB) | P(SNOOP, NONE),   /* 0x02: LFB hit */
58         OP_LH | P(LVL, L2)  | P(SNOOP, NONE),   /* 0x03: L2 hit */
59         OP_LH | P(LVL, L3)  | P(SNOOP, NONE),   /* 0x04: L3 hit */
60         OP_LH | P(LVL, L3)  | P(SNOOP, MISS),   /* 0x05: L3 hit, snoop miss */
61         OP_LH | P(LVL, L3)  | P(SNOOP, HIT),    /* 0x06: L3 hit, snoop hit */
62         OP_LH | P(LVL, L3)  | P(SNOOP, HITM),   /* 0x07: L3 hit, snoop hitm */
63         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
64         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
65         OP_LH | P(LVL, LOC_RAM)  | P(SNOOP, HIT),  /* 0x0a: L3 miss, shared */
66         OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
67         OP_LH | P(LVL, LOC_RAM)  | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
68         OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
69         OP_LH | P(LVL, IO)  | P(SNOOP, NONE), /* 0x0e: I/O */
70         OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
71 };
72
73 static u64 precise_store_data(u64 status)
74 {
75         union intel_x86_pebs_dse dse;
76         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
77
78         dse.val = status;
79
80         /*
81          * bit 4: TLB access
82          * 1 = stored missed 2nd level TLB
83          *
84          * so it either hit the walker or the OS
85          * otherwise hit 2nd level TLB
86          */
87         if (dse.st_stlb_miss)
88                 val |= P(TLB, MISS);
89         else
90                 val |= P(TLB, HIT);
91
92         /*
93          * bit 0: hit L1 data cache
94          * if not set, then all we know is that
95          * it missed L1D
96          */
97         if (dse.st_l1d_hit)
98                 val |= P(LVL, HIT);
99         else
100                 val |= P(LVL, MISS);
101
102         /*
103          * bit 5: Locked prefix
104          */
105         if (dse.st_locked)
106                 val |= P(LOCK, LOCKED);
107
108         return val;
109 }
110
111 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
112 {
113         union perf_mem_data_src dse;
114
115         dse.val = PERF_MEM_NA;
116
117         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
118                 dse.mem_op = PERF_MEM_OP_STORE;
119         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
120                 dse.mem_op = PERF_MEM_OP_LOAD;
121
122         /*
123          * L1 info only valid for following events:
124          *
125          * MEM_UOPS_RETIRED.STLB_MISS_STORES
126          * MEM_UOPS_RETIRED.LOCK_STORES
127          * MEM_UOPS_RETIRED.SPLIT_STORES
128          * MEM_UOPS_RETIRED.ALL_STORES
129          */
130         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
131                 if (status & 1)
132                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
133                 else
134                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
135         }
136         return dse.val;
137 }
138
139 static u64 load_latency_data(u64 status)
140 {
141         union intel_x86_pebs_dse dse;
142         u64 val;
143         int model = boot_cpu_data.x86_model;
144         int fam = boot_cpu_data.x86;
145
146         dse.val = status;
147
148         /*
149          * use the mapping table for bit 0-3
150          */
151         val = pebs_data_source[dse.ld_dse];
152
153         /*
154          * Nehalem models do not support TLB, Lock infos
155          */
156         if (fam == 0x6 && (model == 26 || model == 30
157             || model == 31 || model == 46)) {
158                 val |= P(TLB, NA) | P(LOCK, NA);
159                 return val;
160         }
161         /*
162          * bit 4: TLB access
163          * 0 = did not miss 2nd level TLB
164          * 1 = missed 2nd level TLB
165          */
166         if (dse.ld_stlb_miss)
167                 val |= P(TLB, MISS) | P(TLB, L2);
168         else
169                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
170
171         /*
172          * bit 5: locked prefix
173          */
174         if (dse.ld_locked)
175                 val |= P(LOCK, LOCKED);
176
177         return val;
178 }
179
180 struct pebs_record_core {
181         u64 flags, ip;
182         u64 ax, bx, cx, dx;
183         u64 si, di, bp, sp;
184         u64 r8,  r9,  r10, r11;
185         u64 r12, r13, r14, r15;
186 };
187
188 struct pebs_record_nhm {
189         u64 flags, ip;
190         u64 ax, bx, cx, dx;
191         u64 si, di, bp, sp;
192         u64 r8,  r9,  r10, r11;
193         u64 r12, r13, r14, r15;
194         u64 status, dla, dse, lat;
195 };
196
197 /*
198  * Same as pebs_record_nhm, with two additional fields.
199  */
200 struct pebs_record_hsw {
201         u64 flags, ip;
202         u64 ax, bx, cx, dx;
203         u64 si, di, bp, sp;
204         u64 r8,  r9,  r10, r11;
205         u64 r12, r13, r14, r15;
206         u64 status, dla, dse, lat;
207         u64 real_ip, tsx_tuning;
208 };
209
210 union hsw_tsx_tuning {
211         struct {
212                 u32 cycles_last_block     : 32,
213                     hle_abort             : 1,
214                     rtm_abort             : 1,
215                     instruction_abort     : 1,
216                     non_instruction_abort : 1,
217                     retry                 : 1,
218                     data_conflict         : 1,
219                     capacity_writes       : 1,
220                     capacity_reads        : 1;
221         };
222         u64         value;
223 };
224
225 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
226
227 /* Same as HSW, plus TSC */
228
229 struct pebs_record_skl {
230         u64 flags, ip;
231         u64 ax, bx, cx, dx;
232         u64 si, di, bp, sp;
233         u64 r8,  r9,  r10, r11;
234         u64 r12, r13, r14, r15;
235         u64 status, dla, dse, lat;
236         u64 real_ip, tsx_tuning;
237         u64 tsc;
238 };
239
240 void init_debug_store_on_cpu(int cpu)
241 {
242         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
243
244         if (!ds)
245                 return;
246
247         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
248                      (u32)((u64)(unsigned long)ds),
249                      (u32)((u64)(unsigned long)ds >> 32));
250 }
251
252 void fini_debug_store_on_cpu(int cpu)
253 {
254         if (!per_cpu(cpu_hw_events, cpu).ds)
255                 return;
256
257         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
258 }
259
260 static DEFINE_PER_CPU(void *, insn_buffer);
261
262 static int alloc_pebs_buffer(int cpu)
263 {
264         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
265         int node = cpu_to_node(cpu);
266         int max;
267         void *buffer, *ibuffer;
268
269         if (!x86_pmu.pebs)
270                 return 0;
271
272         buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
273         if (unlikely(!buffer))
274                 return -ENOMEM;
275
276         /*
277          * HSW+ already provides us the eventing ip; no need to allocate this
278          * buffer then.
279          */
280         if (x86_pmu.intel_cap.pebs_format < 2) {
281                 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
282                 if (!ibuffer) {
283                         kfree(buffer);
284                         return -ENOMEM;
285                 }
286                 per_cpu(insn_buffer, cpu) = ibuffer;
287         }
288
289         max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;
290
291         ds->pebs_buffer_base = (u64)(unsigned long)buffer;
292         ds->pebs_index = ds->pebs_buffer_base;
293         ds->pebs_absolute_maximum = ds->pebs_buffer_base +
294                 max * x86_pmu.pebs_record_size;
295
296         return 0;
297 }
298
299 static void release_pebs_buffer(int cpu)
300 {
301         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
302
303         if (!ds || !x86_pmu.pebs)
304                 return;
305
306         kfree(per_cpu(insn_buffer, cpu));
307         per_cpu(insn_buffer, cpu) = NULL;
308
309         kfree((void *)(unsigned long)ds->pebs_buffer_base);
310         ds->pebs_buffer_base = 0;
311 }
312
313 static int alloc_bts_buffer(int cpu)
314 {
315         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
316         int node = cpu_to_node(cpu);
317         int max, thresh;
318         void *buffer;
319
320         if (!x86_pmu.bts)
321                 return 0;
322
323         buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
324         if (unlikely(!buffer)) {
325                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
326                 return -ENOMEM;
327         }
328
329         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
330         thresh = max / 16;
331
332         ds->bts_buffer_base = (u64)(unsigned long)buffer;
333         ds->bts_index = ds->bts_buffer_base;
334         ds->bts_absolute_maximum = ds->bts_buffer_base +
335                 max * BTS_RECORD_SIZE;
336         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
337                 thresh * BTS_RECORD_SIZE;
338
339         return 0;
340 }
341
342 static void release_bts_buffer(int cpu)
343 {
344         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
345
346         if (!ds || !x86_pmu.bts)
347                 return;
348
349         kfree((void *)(unsigned long)ds->bts_buffer_base);
350         ds->bts_buffer_base = 0;
351 }
352
353 static int alloc_ds_buffer(int cpu)
354 {
355         int node = cpu_to_node(cpu);
356         struct debug_store *ds;
357
358         ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
359         if (unlikely(!ds))
360                 return -ENOMEM;
361
362         per_cpu(cpu_hw_events, cpu).ds = ds;
363
364         return 0;
365 }
366
367 static void release_ds_buffer(int cpu)
368 {
369         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
370
371         if (!ds)
372                 return;
373
374         per_cpu(cpu_hw_events, cpu).ds = NULL;
375         kfree(ds);
376 }
377
378 void release_ds_buffers(void)
379 {
380         int cpu;
381
382         if (!x86_pmu.bts && !x86_pmu.pebs)
383                 return;
384
385         get_online_cpus();
386         for_each_online_cpu(cpu)
387                 fini_debug_store_on_cpu(cpu);
388
389         for_each_possible_cpu(cpu) {
390                 release_pebs_buffer(cpu);
391                 release_bts_buffer(cpu);
392                 release_ds_buffer(cpu);
393         }
394         put_online_cpus();
395 }
396
397 void reserve_ds_buffers(void)
398 {
399         int bts_err = 0, pebs_err = 0;
400         int cpu;
401
402         x86_pmu.bts_active = 0;
403         x86_pmu.pebs_active = 0;
404
405         if (!x86_pmu.bts && !x86_pmu.pebs)
406                 return;
407
408         if (!x86_pmu.bts)
409                 bts_err = 1;
410
411         if (!x86_pmu.pebs)
412                 pebs_err = 1;
413
414         get_online_cpus();
415
416         for_each_possible_cpu(cpu) {
417                 if (alloc_ds_buffer(cpu)) {
418                         bts_err = 1;
419                         pebs_err = 1;
420                 }
421
422                 if (!bts_err && alloc_bts_buffer(cpu))
423                         bts_err = 1;
424
425                 if (!pebs_err && alloc_pebs_buffer(cpu))
426                         pebs_err = 1;
427
428                 if (bts_err && pebs_err)
429                         break;
430         }
431
432         if (bts_err) {
433                 for_each_possible_cpu(cpu)
434                         release_bts_buffer(cpu);
435         }
436
437         if (pebs_err) {
438                 for_each_possible_cpu(cpu)
439                         release_pebs_buffer(cpu);
440         }
441
442         if (bts_err && pebs_err) {
443                 for_each_possible_cpu(cpu)
444                         release_ds_buffer(cpu);
445         } else {
446                 if (x86_pmu.bts && !bts_err)
447                         x86_pmu.bts_active = 1;
448
449                 if (x86_pmu.pebs && !pebs_err)
450                         x86_pmu.pebs_active = 1;
451
452                 for_each_online_cpu(cpu)
453                         init_debug_store_on_cpu(cpu);
454         }
455
456         put_online_cpus();
457 }
458
459 /*
460  * BTS
461  */
462
463 struct event_constraint bts_constraint =
464         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
465
466 void intel_pmu_enable_bts(u64 config)
467 {
468         unsigned long debugctlmsr;
469
470         debugctlmsr = get_debugctlmsr();
471
472         debugctlmsr |= DEBUGCTLMSR_TR;
473         debugctlmsr |= DEBUGCTLMSR_BTS;
474         if (config & ARCH_PERFMON_EVENTSEL_INT)
475                 debugctlmsr |= DEBUGCTLMSR_BTINT;
476
477         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
478                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
479
480         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
481                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
482
483         update_debugctlmsr(debugctlmsr);
484 }
485
486 void intel_pmu_disable_bts(void)
487 {
488         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
489         unsigned long debugctlmsr;
490
491         if (!cpuc->ds)
492                 return;
493
494         debugctlmsr = get_debugctlmsr();
495
496         debugctlmsr &=
497                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
498                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
499
500         update_debugctlmsr(debugctlmsr);
501 }
502
503 int intel_pmu_drain_bts_buffer(void)
504 {
505         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
506         struct debug_store *ds = cpuc->ds;
507         struct bts_record {
508                 u64     from;
509                 u64     to;
510                 u64     flags;
511         };
512         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
513         struct bts_record *at, *base, *top;
514         struct perf_output_handle handle;
515         struct perf_event_header header;
516         struct perf_sample_data data;
517         unsigned long skip = 0;
518         struct pt_regs regs;
519
520         if (!event)
521                 return 0;
522
523         if (!x86_pmu.bts_active)
524                 return 0;
525
526         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
527         top  = (struct bts_record *)(unsigned long)ds->bts_index;
528
529         if (top <= base)
530                 return 0;
531
532         memset(&regs, 0, sizeof(regs));
533
534         ds->bts_index = ds->bts_buffer_base;
535
536         perf_sample_data_init(&data, 0, event->hw.last_period);
537
538         /*
539          * BTS leaks kernel addresses in branches across the cpl boundary,
540          * such as traps or system calls, so unless the user is asking for
541          * kernel tracing (and right now it's not possible), we'd need to
542          * filter them out. But first we need to count how many of those we
543          * have in the current batch. This is an extra O(n) pass, however,
544          * it's much faster than the other one especially considering that
545          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
546          * alloc_bts_buffer()).
547          */
548         for (at = base; at < top; at++) {
549                 /*
550                  * Note that right now *this* BTS code only works if
551                  * attr::exclude_kernel is set, but let's keep this extra
552                  * check here in case that changes.
553                  */
554                 if (event->attr.exclude_kernel &&
555                     (kernel_ip(at->from) || kernel_ip(at->to)))
556                         skip++;
557         }
558
559         /*
560          * Prepare a generic sample, i.e. fill in the invariant fields.
561          * We will overwrite the from and to address before we output
562          * the sample.
563          */
564         perf_prepare_sample(&header, &data, event, &regs);
565
566         if (perf_output_begin(&handle, event, header.size *
567                               (top - base - skip)))
568                 return 1;
569
570         for (at = base; at < top; at++) {
571                 /* Filter out any records that contain kernel addresses. */
572                 if (event->attr.exclude_kernel &&
573                     (kernel_ip(at->from) || kernel_ip(at->to)))
574                         continue;
575
576                 data.ip         = at->from;
577                 data.addr       = at->to;
578
579                 perf_output_sample(&handle, &header, &data, event);
580         }
581
582         perf_output_end(&handle);
583
584         /* There's new data available. */
585         event->hw.interrupts++;
586         event->pending_kill = POLL_IN;
587         return 1;
588 }
589
590 static inline void intel_pmu_drain_pebs_buffer(void)
591 {
592         struct pt_regs regs;
593
594         x86_pmu.drain_pebs(&regs);
595 }
596
597 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
598 {
599         if (!sched_in)
600                 intel_pmu_drain_pebs_buffer();
601 }
602
603 /*
604  * PEBS
605  */
606 struct event_constraint intel_core2_pebs_event_constraints[] = {
607         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
608         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
609         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
610         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
611         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
612         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
613         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
614         EVENT_CONSTRAINT_END
615 };
616
617 struct event_constraint intel_atom_pebs_event_constraints[] = {
618         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
619         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
620         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
621         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
622         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
623         /* Allow all events as PEBS with no flags */
624         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
625         EVENT_CONSTRAINT_END
626 };
627
628 struct event_constraint intel_slm_pebs_event_constraints[] = {
629         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
630         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
631         /* Allow all events as PEBS with no flags */
632         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
633         EVENT_CONSTRAINT_END
634 };
635
636 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
637         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
638         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
639         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
640         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
641         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
642         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
643         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
644         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
645         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
646         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
647         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
648         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
649         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
650         EVENT_CONSTRAINT_END
651 };
652
653 struct event_constraint intel_westmere_pebs_event_constraints[] = {
654         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
655         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
656         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
657         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
658         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
659         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
660         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
661         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
662         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
663         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
664         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
665         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
666         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
667         EVENT_CONSTRAINT_END
668 };
669
670 struct event_constraint intel_snb_pebs_event_constraints[] = {
671         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
672         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
673         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
674         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
675         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
676         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
677         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
678         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
679         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
680         /* Allow all events as PEBS with no flags */
681         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
682         EVENT_CONSTRAINT_END
683 };
684
685 struct event_constraint intel_ivb_pebs_event_constraints[] = {
686         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
687         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
688         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
689         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
690         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
691         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
692         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
693         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
694         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
695         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
696         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
697         /* Allow all events as PEBS with no flags */
698         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
699         EVENT_CONSTRAINT_END
700 };
701
702 struct event_constraint intel_hsw_pebs_event_constraints[] = {
703         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
704         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
705         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
706         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
707         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
708         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
709         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
710         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
711         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
712         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
713         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
714         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
715         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
716         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
717         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
718         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
719         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
720         /* Allow all events as PEBS with no flags */
721         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
722         EVENT_CONSTRAINT_END
723 };
724
725 struct event_constraint intel_skl_pebs_event_constraints[] = {
726         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
727         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
728         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
729         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
730         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
731         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
732         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
733         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
734         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
735         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
736         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
737         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
738         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
739         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
740         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
741         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
742         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
743         /* Allow all events as PEBS with no flags */
744         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
745         EVENT_CONSTRAINT_END
746 };
747
748 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
749 {
750         struct event_constraint *c;
751
752         if (!event->attr.precise_ip)
753                 return NULL;
754
755         if (x86_pmu.pebs_constraints) {
756                 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
757                         if ((event->hw.config & c->cmask) == c->code) {
758                                 event->hw.flags |= c->flags;
759                                 return c;
760                         }
761                 }
762         }
763
764         return &emptyconstraint;
765 }
766
767 static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
768 {
769         return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
770 }
771
772 void intel_pmu_pebs_enable(struct perf_event *event)
773 {
774         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
775         struct hw_perf_event *hwc = &event->hw;
776         struct debug_store *ds = cpuc->ds;
777         bool first_pebs;
778         u64 threshold;
779
780         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
781
782         first_pebs = !pebs_is_enabled(cpuc);
783         cpuc->pebs_enabled |= 1ULL << hwc->idx;
784
785         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
786                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
787         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
788                 cpuc->pebs_enabled |= 1ULL << 63;
789
790         /*
791          * When the event is constrained enough we can use a larger
792          * threshold and run the event with less frequent PMI.
793          */
794         if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
795                 threshold = ds->pebs_absolute_maximum -
796                         x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
797
798                 if (first_pebs)
799                         perf_sched_cb_inc(event->ctx->pmu);
800         } else {
801                 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
802
803                 /*
804                  * If not all events can use larger buffer,
805                  * roll back to threshold = 1
806                  */
807                 if (!first_pebs &&
808                     (ds->pebs_interrupt_threshold > threshold))
809                         perf_sched_cb_dec(event->ctx->pmu);
810         }
811
812         /* Use auto-reload if possible to save a MSR write in the PMI */
813         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
814                 ds->pebs_event_reset[hwc->idx] =
815                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
816         }
817
818         if (first_pebs || ds->pebs_interrupt_threshold > threshold)
819                 ds->pebs_interrupt_threshold = threshold;
820 }
821
822 void intel_pmu_pebs_disable(struct perf_event *event)
823 {
824         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
825         struct hw_perf_event *hwc = &event->hw;
826         struct debug_store *ds = cpuc->ds;
827         bool large_pebs = ds->pebs_interrupt_threshold >
828                 ds->pebs_buffer_base + x86_pmu.pebs_record_size;
829
830         if (large_pebs)
831                 intel_pmu_drain_pebs_buffer();
832
833         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
834
835         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
836                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
837         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
838                 cpuc->pebs_enabled &= ~(1ULL << 63);
839
840         if (large_pebs && !pebs_is_enabled(cpuc))
841                 perf_sched_cb_dec(event->ctx->pmu);
842
843         if (cpuc->enabled)
844                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
845
846         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
847 }
848
849 void intel_pmu_pebs_enable_all(void)
850 {
851         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
852
853         if (cpuc->pebs_enabled)
854                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
855 }
856
857 void intel_pmu_pebs_disable_all(void)
858 {
859         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
860
861         if (cpuc->pebs_enabled)
862                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
863 }
864
865 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
866 {
867         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
868         unsigned long from = cpuc->lbr_entries[0].from;
869         unsigned long old_to, to = cpuc->lbr_entries[0].to;
870         unsigned long ip = regs->ip;
871         int is_64bit = 0;
872         void *kaddr;
873         int size;
874
875         /*
876          * We don't need to fixup if the PEBS assist is fault like
877          */
878         if (!x86_pmu.intel_cap.pebs_trap)
879                 return 1;
880
881         /*
882          * No LBR entry, no basic block, no rewinding
883          */
884         if (!cpuc->lbr_stack.nr || !from || !to)
885                 return 0;
886
887         /*
888          * Basic blocks should never cross user/kernel boundaries
889          */
890         if (kernel_ip(ip) != kernel_ip(to))
891                 return 0;
892
893         /*
894          * unsigned math, either ip is before the start (impossible) or
895          * the basic block is larger than 1 page (sanity)
896          */
897         if ((ip - to) > PEBS_FIXUP_SIZE)
898                 return 0;
899
900         /*
901          * We sampled a branch insn, rewind using the LBR stack
902          */
903         if (ip == to) {
904                 set_linear_ip(regs, from);
905                 return 1;
906         }
907
908         size = ip - to;
909         if (!kernel_ip(ip)) {
910                 int bytes;
911                 u8 *buf = this_cpu_read(insn_buffer);
912
913                 /* 'size' must fit our buffer, see above */
914                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
915                 if (bytes != 0)
916                         return 0;
917
918                 kaddr = buf;
919         } else {
920                 kaddr = (void *)to;
921         }
922
923         do {
924                 struct insn insn;
925
926                 old_to = to;
927
928 #ifdef CONFIG_X86_64
929                 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
930 #endif
931                 insn_init(&insn, kaddr, size, is_64bit);
932                 insn_get_length(&insn);
933                 /*
934                  * Make sure there was not a problem decoding the
935                  * instruction and getting the length.  This is
936                  * doubly important because we have an infinite
937                  * loop if insn.length=0.
938                  */
939                 if (!insn.length)
940                         break;
941
942                 to += insn.length;
943                 kaddr += insn.length;
944                 size -= insn.length;
945         } while (to < ip);
946
947         if (to == ip) {
948                 set_linear_ip(regs, old_to);
949                 return 1;
950         }
951
952         /*
953          * Even though we decoded the basic block, the instruction stream
954          * never matched the given IP, either the TO or the IP got corrupted.
955          */
956         return 0;
957 }
958
959 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
960 {
961         if (pebs->tsx_tuning) {
962                 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
963                 return tsx.cycles_last_block;
964         }
965         return 0;
966 }
967
968 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
969 {
970         u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
971
972         /* For RTM XABORTs also log the abort code from AX */
973         if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
974                 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
975         return txn;
976 }
977
978 static void setup_pebs_sample_data(struct perf_event *event,
979                                    struct pt_regs *iregs, void *__pebs,
980                                    struct perf_sample_data *data,
981                                    struct pt_regs *regs)
982 {
983 #define PERF_X86_EVENT_PEBS_HSW_PREC \
984                 (PERF_X86_EVENT_PEBS_ST_HSW | \
985                  PERF_X86_EVENT_PEBS_LD_HSW | \
986                  PERF_X86_EVENT_PEBS_NA_HSW)
987         /*
988          * We cast to the biggest pebs_record but are careful not to
989          * unconditionally access the 'extra' entries.
990          */
991         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
992         struct pebs_record_skl *pebs = __pebs;
993         u64 sample_type;
994         int fll, fst, dsrc;
995         int fl = event->hw.flags;
996
997         if (pebs == NULL)
998                 return;
999
1000         sample_type = event->attr.sample_type;
1001         dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1002
1003         fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1004         fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1005
1006         perf_sample_data_init(data, 0, event->hw.last_period);
1007
1008         data->period = event->hw.last_period;
1009
1010         /*
1011          * Use latency for weight (only avail with PEBS-LL)
1012          */
1013         if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1014                 data->weight = pebs->lat;
1015
1016         /*
1017          * data.data_src encodes the data source
1018          */
1019         if (dsrc) {
1020                 u64 val = PERF_MEM_NA;
1021                 if (fll)
1022                         val = load_latency_data(pebs->dse);
1023                 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1024                         val = precise_datala_hsw(event, pebs->dse);
1025                 else if (fst)
1026                         val = precise_store_data(pebs->dse);
1027                 data->data_src.val = val;
1028         }
1029
1030         /*
1031          * We use the interrupt regs as a base because the PEBS record
1032          * does not contain a full regs set, specifically it seems to
1033          * lack segment descriptors, which get used by things like
1034          * user_mode().
1035          *
1036          * In the simple case fix up only the IP and BP,SP regs, for
1037          * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
1038          * A possible PERF_SAMPLE_REGS will have to transfer all regs.
1039          */
1040         *regs = *iregs;
1041         regs->flags = pebs->flags;
1042         set_linear_ip(regs, pebs->ip);
1043         regs->bp = pebs->bp;
1044         regs->sp = pebs->sp;
1045
1046         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1047                 regs->ax = pebs->ax;
1048                 regs->bx = pebs->bx;
1049                 regs->cx = pebs->cx;
1050                 regs->dx = pebs->dx;
1051                 regs->si = pebs->si;
1052                 regs->di = pebs->di;
1053                 regs->bp = pebs->bp;
1054                 regs->sp = pebs->sp;
1055
1056                 regs->flags = pebs->flags;
1057 #ifndef CONFIG_X86_32
1058                 regs->r8 = pebs->r8;
1059                 regs->r9 = pebs->r9;
1060                 regs->r10 = pebs->r10;
1061                 regs->r11 = pebs->r11;
1062                 regs->r12 = pebs->r12;
1063                 regs->r13 = pebs->r13;
1064                 regs->r14 = pebs->r14;
1065                 regs->r15 = pebs->r15;
1066 #endif
1067         }
1068
1069         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1070                 regs->ip = pebs->real_ip;
1071                 regs->flags |= PERF_EFLAGS_EXACT;
1072         } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1073                 regs->flags |= PERF_EFLAGS_EXACT;
1074         else
1075                 regs->flags &= ~PERF_EFLAGS_EXACT;
1076
1077         if ((sample_type & PERF_SAMPLE_ADDR) &&
1078             x86_pmu.intel_cap.pebs_format >= 1)
1079                 data->addr = pebs->dla;
1080
1081         if (x86_pmu.intel_cap.pebs_format >= 2) {
1082                 /* Only set the TSX weight when no memory weight. */
1083                 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1084                         data->weight = intel_hsw_weight(pebs);
1085
1086                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1087                         data->txn = intel_hsw_transaction(pebs);
1088         }
1089
1090         /*
1091          * v3 supplies an accurate time stamp, so we use that
1092          * for the time stamp.
1093          *
1094          * We can only do this for the default trace clock.
1095          */
1096         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1097                 event->attr.use_clockid == 0)
1098                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1099
1100         if (has_branch_stack(event))
1101                 data->br_stack = &cpuc->lbr_stack;
1102 }
1103
1104 static inline void *
1105 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1106 {
1107         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1108         void *at;
1109         u64 pebs_status;
1110
1111         /*
1112          * fmt0 does not have a status bitfield (does not use
1113          * perf_record_nhm format)
1114          */
1115         if (x86_pmu.intel_cap.pebs_format < 1)
1116                 return base;
1117
1118         if (base == NULL)
1119                 return NULL;
1120
1121         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1122                 struct pebs_record_nhm *p = at;
1123
1124                 if (test_bit(bit, (unsigned long *)&p->status)) {
1125                         /* PEBS v3 has accurate status bits */
1126                         if (x86_pmu.intel_cap.pebs_format >= 3)
1127                                 return at;
1128
1129                         if (p->status == (1 << bit))
1130                                 return at;
1131
1132                         /* clear non-PEBS bit and re-check */
1133                         pebs_status = p->status & cpuc->pebs_enabled;
1134                         pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1135                         if (pebs_status == (1 << bit))
1136                                 return at;
1137                 }
1138         }
1139         return NULL;
1140 }
1141
1142 static void __intel_pmu_pebs_event(struct perf_event *event,
1143                                    struct pt_regs *iregs,
1144                                    void *base, void *top,
1145                                    int bit, int count)
1146 {
1147         struct perf_sample_data data;
1148         struct pt_regs regs;
1149         void *at = get_next_pebs_record_by_bit(base, top, bit);
1150
1151         if (!intel_pmu_save_and_restart(event) &&
1152             !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1153                 return;
1154
1155         while (count > 1) {
1156                 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1157                 perf_event_output(event, &data, &regs);
1158                 at += x86_pmu.pebs_record_size;
1159                 at = get_next_pebs_record_by_bit(at, top, bit);
1160                 count--;
1161         }
1162
1163         setup_pebs_sample_data(event, iregs, at, &data, &regs);
1164
1165         /*
1166          * All but the last records are processed.
1167          * The last one is left to be able to call the overflow handler.
1168          */
1169         if (perf_event_overflow(event, &data, &regs)) {
1170                 x86_pmu_stop(event, 0);
1171                 return;
1172         }
1173
1174 }
1175
1176 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1177 {
1178         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1179         struct debug_store *ds = cpuc->ds;
1180         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1181         struct pebs_record_core *at, *top;
1182         int n;
1183
1184         if (!x86_pmu.pebs_active)
1185                 return;
1186
1187         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1188         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1189
1190         /*
1191          * Whatever else happens, drain the thing
1192          */
1193         ds->pebs_index = ds->pebs_buffer_base;
1194
1195         if (!test_bit(0, cpuc->active_mask))
1196                 return;
1197
1198         WARN_ON_ONCE(!event);
1199
1200         if (!event->attr.precise_ip)
1201                 return;
1202
1203         n = top - at;
1204         if (n <= 0)
1205                 return;
1206
1207         __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1208 }
1209
1210 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1211 {
1212         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1213         struct debug_store *ds = cpuc->ds;
1214         struct perf_event *event;
1215         void *base, *at, *top;
1216         short counts[MAX_PEBS_EVENTS] = {};
1217         short error[MAX_PEBS_EVENTS] = {};
1218         int bit, i;
1219
1220         if (!x86_pmu.pebs_active)
1221                 return;
1222
1223         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1224         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1225
1226         ds->pebs_index = ds->pebs_buffer_base;
1227
1228         if (unlikely(base >= top))
1229                 return;
1230
1231         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1232                 struct pebs_record_nhm *p = at;
1233                 u64 pebs_status;
1234
1235                 /* PEBS v3 has accurate status bits */
1236                 if (x86_pmu.intel_cap.pebs_format >= 3) {
1237                         for_each_set_bit(bit, (unsigned long *)&p->status,
1238                                          MAX_PEBS_EVENTS)
1239                                 counts[bit]++;
1240
1241                         continue;
1242                 }
1243
1244                 pebs_status = p->status & cpuc->pebs_enabled;
1245                 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1246
1247                 /*
1248                  * On some CPUs the PEBS status can be zero when PEBS is
1249                  * racing with clearing of GLOBAL_STATUS.
1250                  *
1251                  * Normally we would drop that record, but in the
1252                  * case when there is only a single active PEBS event
1253                  * we can assume it's for that event.
1254                  */
1255                 if (!pebs_status && cpuc->pebs_enabled &&
1256                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1257                         pebs_status = cpuc->pebs_enabled;
1258
1259                 bit = find_first_bit((unsigned long *)&pebs_status,
1260                                         x86_pmu.max_pebs_events);
1261                 if (bit >= x86_pmu.max_pebs_events)
1262                         continue;
1263
1264                 /*
1265                  * The PEBS hardware does not deal well with the situation
1266                  * when events happen near to each other and multiple bits
1267                  * are set. But it should happen rarely.
1268                  *
1269                  * If these events include one PEBS and multiple non-PEBS
1270                  * events, it doesn't impact PEBS record. The record will
1271                  * be handled normally. (slow path)
1272                  *
1273                  * If these events include two or more PEBS events, the
1274                  * records for the events can be collapsed into a single
1275                  * one, and it's not possible to reconstruct all events
1276                  * that caused the PEBS record. It's called collision.
1277                  * If collision happened, the record will be dropped.
1278                  */
1279                 if (p->status != (1ULL << bit)) {
1280                         for_each_set_bit(i, (unsigned long *)&pebs_status,
1281                                          x86_pmu.max_pebs_events)
1282                                 error[i]++;
1283                         continue;
1284                 }
1285
1286                 counts[bit]++;
1287         }
1288
1289         for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1290                 if ((counts[bit] == 0) && (error[bit] == 0))
1291                         continue;
1292
1293                 event = cpuc->events[bit];
1294                 WARN_ON_ONCE(!event);
1295                 WARN_ON_ONCE(!event->attr.precise_ip);
1296
1297                 /* log dropped samples number */
1298                 if (error[bit])
1299                         perf_log_lost_samples(event, error[bit]);
1300
1301                 if (counts[bit]) {
1302                         __intel_pmu_pebs_event(event, iregs, base,
1303                                                top, bit, counts[bit]);
1304                 }
1305         }
1306 }
1307
1308 /*
1309  * BTS, PEBS probe and setup
1310  */
1311
1312 void __init intel_ds_init(void)
1313 {
1314         /*
1315          * No support for 32bit formats
1316          */
1317         if (!boot_cpu_has(X86_FEATURE_DTES64))
1318                 return;
1319
1320         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
1321         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1322         if (x86_pmu.pebs) {
1323                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
1324                 int format = x86_pmu.intel_cap.pebs_format;
1325
1326                 switch (format) {
1327                 case 0:
1328                         printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
1329                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1330                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1331                         break;
1332
1333                 case 1:
1334                         printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
1335                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1336                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1337                         break;
1338
1339                 case 2:
1340                         pr_cont("PEBS fmt2%c, ", pebs_type);
1341                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1342                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1343                         break;
1344
1345                 case 3:
1346                         pr_cont("PEBS fmt3%c, ", pebs_type);
1347                         x86_pmu.pebs_record_size =
1348                                                 sizeof(struct pebs_record_skl);
1349                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1350                         x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1351                         break;
1352
1353                 default:
1354                         printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
1355                         x86_pmu.pebs = 0;
1356                 }
1357         }
1358 }
1359
1360 void perf_restore_debug_store(void)
1361 {
1362         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1363
1364         if (!x86_pmu.bts && !x86_pmu.pebs)
1365                 return;
1366
1367         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1368 }