]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/fpu/xstate.c
x86/boot/64/clang: Use fixup_pointer() to access 'next_early_pgt'
[karo-tx-linux.git] / arch / x86 / kernel / fpu / xstate.c
1 /*
2  * xsave/xrstor support.
3  *
4  * Author: Suresh Siddha <suresh.b.siddha@intel.com>
5  */
6 #include <linux/compat.h>
7 #include <linux/cpu.h>
8 #include <linux/mman.h>
9 #include <linux/pkeys.h>
10
11 #include <asm/fpu/api.h>
12 #include <asm/fpu/internal.h>
13 #include <asm/fpu/signal.h>
14 #include <asm/fpu/regset.h>
15 #include <asm/fpu/xstate.h>
16
17 #include <asm/tlbflush.h>
18
19 /*
20  * Although we spell it out in here, the Processor Trace
21  * xfeature is completely unused.  We use other mechanisms
22  * to save/restore PT state in Linux.
23  */
24 static const char *xfeature_names[] =
25 {
26         "x87 floating point registers"  ,
27         "SSE registers"                 ,
28         "AVX registers"                 ,
29         "MPX bounds registers"          ,
30         "MPX CSR"                       ,
31         "AVX-512 opmask"                ,
32         "AVX-512 Hi256"                 ,
33         "AVX-512 ZMM_Hi256"             ,
34         "Processor Trace (unused)"      ,
35         "Protection Keys User registers",
36         "unknown xstate feature"        ,
37 };
38
39 /*
40  * Mask of xstate features supported by the CPU and the kernel:
41  */
42 u64 xfeatures_mask __read_mostly;
43
44 static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
45 static unsigned int xstate_sizes[XFEATURE_MAX]   = { [ 0 ... XFEATURE_MAX - 1] = -1};
46 static unsigned int xstate_comp_offsets[sizeof(xfeatures_mask)*8];
47
48 /*
49  * The XSAVE area of kernel can be in standard or compacted format;
50  * it is always in standard format for user mode. This is the user
51  * mode standard format size used for signal and ptrace frames.
52  */
53 unsigned int fpu_user_xstate_size;
54
55 /*
56  * Clear all of the X86_FEATURE_* bits that are unavailable
57  * when the CPU has no XSAVE support.
58  */
59 void fpu__xstate_clear_all_cpu_caps(void)
60 {
61         setup_clear_cpu_cap(X86_FEATURE_XSAVE);
62         setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
63         setup_clear_cpu_cap(X86_FEATURE_XSAVEC);
64         setup_clear_cpu_cap(X86_FEATURE_XSAVES);
65         setup_clear_cpu_cap(X86_FEATURE_AVX);
66         setup_clear_cpu_cap(X86_FEATURE_AVX2);
67         setup_clear_cpu_cap(X86_FEATURE_AVX512F);
68         setup_clear_cpu_cap(X86_FEATURE_AVX512IFMA);
69         setup_clear_cpu_cap(X86_FEATURE_AVX512PF);
70         setup_clear_cpu_cap(X86_FEATURE_AVX512ER);
71         setup_clear_cpu_cap(X86_FEATURE_AVX512CD);
72         setup_clear_cpu_cap(X86_FEATURE_AVX512DQ);
73         setup_clear_cpu_cap(X86_FEATURE_AVX512BW);
74         setup_clear_cpu_cap(X86_FEATURE_AVX512VL);
75         setup_clear_cpu_cap(X86_FEATURE_MPX);
76         setup_clear_cpu_cap(X86_FEATURE_XGETBV1);
77         setup_clear_cpu_cap(X86_FEATURE_AVX512VBMI);
78         setup_clear_cpu_cap(X86_FEATURE_PKU);
79         setup_clear_cpu_cap(X86_FEATURE_AVX512_4VNNIW);
80         setup_clear_cpu_cap(X86_FEATURE_AVX512_4FMAPS);
81         setup_clear_cpu_cap(X86_FEATURE_AVX512_VPOPCNTDQ);
82 }
83
84 /*
85  * Return whether the system supports a given xfeature.
86  *
87  * Also return the name of the (most advanced) feature that the caller requested:
88  */
89 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
90 {
91         u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask;
92
93         if (unlikely(feature_name)) {
94                 long xfeature_idx, max_idx;
95                 u64 xfeatures_print;
96                 /*
97                  * So we use FLS here to be able to print the most advanced
98                  * feature that was requested but is missing. So if a driver
99                  * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
100                  * missing AVX feature - this is the most informative message
101                  * to users:
102                  */
103                 if (xfeatures_missing)
104                         xfeatures_print = xfeatures_missing;
105                 else
106                         xfeatures_print = xfeatures_needed;
107
108                 xfeature_idx = fls64(xfeatures_print)-1;
109                 max_idx = ARRAY_SIZE(xfeature_names)-1;
110                 xfeature_idx = min(xfeature_idx, max_idx);
111
112                 *feature_name = xfeature_names[xfeature_idx];
113         }
114
115         if (xfeatures_missing)
116                 return 0;
117
118         return 1;
119 }
120 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
121
122 static int xfeature_is_supervisor(int xfeature_nr)
123 {
124         /*
125          * We currently do not support supervisor states, but if
126          * we did, we could find out like this.
127          *
128          * SDM says: If state component 'i' is a user state component,
129          * ECX[0] return 0; if state component i is a supervisor
130          * state component, ECX[0] returns 1.
131          */
132         u32 eax, ebx, ecx, edx;
133
134         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
135         return !!(ecx & 1);
136 }
137
138 static int xfeature_is_user(int xfeature_nr)
139 {
140         return !xfeature_is_supervisor(xfeature_nr);
141 }
142
143 /*
144  * When executing XSAVEOPT (or other optimized XSAVE instructions), if
145  * a processor implementation detects that an FPU state component is still
146  * (or is again) in its initialized state, it may clear the corresponding
147  * bit in the header.xfeatures field, and can skip the writeout of registers
148  * to the corresponding memory layout.
149  *
150  * This means that when the bit is zero, the state component might still contain
151  * some previous - non-initialized register state.
152  *
153  * Before writing xstate information to user-space we sanitize those components,
154  * to always ensure that the memory layout of a feature will be in the init state
155  * if the corresponding header bit is zero. This is to ensure that user-space doesn't
156  * see some stale state in the memory layout during signal handling, debugging etc.
157  */
158 void fpstate_sanitize_xstate(struct fpu *fpu)
159 {
160         struct fxregs_state *fx = &fpu->state.fxsave;
161         int feature_bit;
162         u64 xfeatures;
163
164         if (!use_xsaveopt())
165                 return;
166
167         xfeatures = fpu->state.xsave.header.xfeatures;
168
169         /*
170          * None of the feature bits are in init state. So nothing else
171          * to do for us, as the memory layout is up to date.
172          */
173         if ((xfeatures & xfeatures_mask) == xfeatures_mask)
174                 return;
175
176         /*
177          * FP is in init state
178          */
179         if (!(xfeatures & XFEATURE_MASK_FP)) {
180                 fx->cwd = 0x37f;
181                 fx->swd = 0;
182                 fx->twd = 0;
183                 fx->fop = 0;
184                 fx->rip = 0;
185                 fx->rdp = 0;
186                 memset(&fx->st_space[0], 0, 128);
187         }
188
189         /*
190          * SSE is in init state
191          */
192         if (!(xfeatures & XFEATURE_MASK_SSE))
193                 memset(&fx->xmm_space[0], 0, 256);
194
195         /*
196          * First two features are FPU and SSE, which above we handled
197          * in a special way already:
198          */
199         feature_bit = 0x2;
200         xfeatures = (xfeatures_mask & ~xfeatures) >> 2;
201
202         /*
203          * Update all the remaining memory layouts according to their
204          * standard xstate layout, if their header bit is in the init
205          * state:
206          */
207         while (xfeatures) {
208                 if (xfeatures & 0x1) {
209                         int offset = xstate_comp_offsets[feature_bit];
210                         int size = xstate_sizes[feature_bit];
211
212                         memcpy((void *)fx + offset,
213                                (void *)&init_fpstate.xsave + offset,
214                                size);
215                 }
216
217                 xfeatures >>= 1;
218                 feature_bit++;
219         }
220 }
221
222 /*
223  * Enable the extended processor state save/restore feature.
224  * Called once per CPU onlining.
225  */
226 void fpu__init_cpu_xstate(void)
227 {
228         if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask)
229                 return;
230         /*
231          * Make it clear that XSAVES supervisor states are not yet
232          * implemented should anyone expect it to work by changing
233          * bits in XFEATURE_MASK_* macros and XCR0.
234          */
235         WARN_ONCE((xfeatures_mask & XFEATURE_MASK_SUPERVISOR),
236                 "x86/fpu: XSAVES supervisor states are not yet implemented.\n");
237
238         xfeatures_mask &= ~XFEATURE_MASK_SUPERVISOR;
239
240         cr4_set_bits(X86_CR4_OSXSAVE);
241         xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
242 }
243
244 /*
245  * Note that in the future we will likely need a pair of
246  * functions here: one for user xstates and the other for
247  * system xstates.  For now, they are the same.
248  */
249 static int xfeature_enabled(enum xfeature xfeature)
250 {
251         return !!(xfeatures_mask & (1UL << xfeature));
252 }
253
254 /*
255  * Record the offsets and sizes of various xstates contained
256  * in the XSAVE state memory layout.
257  */
258 static void __init setup_xstate_features(void)
259 {
260         u32 eax, ebx, ecx, edx, i;
261         /* start at the beginnning of the "extended state" */
262         unsigned int last_good_offset = offsetof(struct xregs_state,
263                                                  extended_state_area);
264         /*
265          * The FP xstates and SSE xstates are legacy states. They are always
266          * in the fixed offsets in the xsave area in either compacted form
267          * or standard form.
268          */
269         xstate_offsets[0] = 0;
270         xstate_sizes[0] = offsetof(struct fxregs_state, xmm_space);
271         xstate_offsets[1] = xstate_sizes[0];
272         xstate_sizes[1] = FIELD_SIZEOF(struct fxregs_state, xmm_space);
273
274         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
275                 if (!xfeature_enabled(i))
276                         continue;
277
278                 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
279
280                 /*
281                  * If an xfeature is supervisor state, the offset
282                  * in EBX is invalid. We leave it to -1.
283                  */
284                 if (xfeature_is_user(i))
285                         xstate_offsets[i] = ebx;
286
287                 xstate_sizes[i] = eax;
288                 /*
289                  * In our xstate size checks, we assume that the
290                  * highest-numbered xstate feature has the
291                  * highest offset in the buffer.  Ensure it does.
292                  */
293                 WARN_ONCE(last_good_offset > xstate_offsets[i],
294                         "x86/fpu: misordered xstate at %d\n", last_good_offset);
295                 last_good_offset = xstate_offsets[i];
296         }
297 }
298
299 static void __init print_xstate_feature(u64 xstate_mask)
300 {
301         const char *feature_name;
302
303         if (cpu_has_xfeatures(xstate_mask, &feature_name))
304                 pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
305 }
306
307 /*
308  * Print out all the supported xstate features:
309  */
310 static void __init print_xstate_features(void)
311 {
312         print_xstate_feature(XFEATURE_MASK_FP);
313         print_xstate_feature(XFEATURE_MASK_SSE);
314         print_xstate_feature(XFEATURE_MASK_YMM);
315         print_xstate_feature(XFEATURE_MASK_BNDREGS);
316         print_xstate_feature(XFEATURE_MASK_BNDCSR);
317         print_xstate_feature(XFEATURE_MASK_OPMASK);
318         print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
319         print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
320         print_xstate_feature(XFEATURE_MASK_PKRU);
321 }
322
323 /*
324  * This check is important because it is easy to get XSTATE_*
325  * confused with XSTATE_BIT_*.
326  */
327 #define CHECK_XFEATURE(nr) do {         \
328         WARN_ON(nr < FIRST_EXTENDED_XFEATURE);  \
329         WARN_ON(nr >= XFEATURE_MAX);    \
330 } while (0)
331
332 /*
333  * We could cache this like xstate_size[], but we only use
334  * it here, so it would be a waste of space.
335  */
336 static int xfeature_is_aligned(int xfeature_nr)
337 {
338         u32 eax, ebx, ecx, edx;
339
340         CHECK_XFEATURE(xfeature_nr);
341         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
342         /*
343          * The value returned by ECX[1] indicates the alignment
344          * of state component 'i' when the compacted format
345          * of the extended region of an XSAVE area is used:
346          */
347         return !!(ecx & 2);
348 }
349
350 /*
351  * This function sets up offsets and sizes of all extended states in
352  * xsave area. This supports both standard format and compacted format
353  * of the xsave aread.
354  */
355 static void __init setup_xstate_comp(void)
356 {
357         unsigned int xstate_comp_sizes[sizeof(xfeatures_mask)*8];
358         int i;
359
360         /*
361          * The FP xstates and SSE xstates are legacy states. They are always
362          * in the fixed offsets in the xsave area in either compacted form
363          * or standard form.
364          */
365         xstate_comp_offsets[0] = 0;
366         xstate_comp_offsets[1] = offsetof(struct fxregs_state, xmm_space);
367
368         if (!boot_cpu_has(X86_FEATURE_XSAVES)) {
369                 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
370                         if (xfeature_enabled(i)) {
371                                 xstate_comp_offsets[i] = xstate_offsets[i];
372                                 xstate_comp_sizes[i] = xstate_sizes[i];
373                         }
374                 }
375                 return;
376         }
377
378         xstate_comp_offsets[FIRST_EXTENDED_XFEATURE] =
379                 FXSAVE_SIZE + XSAVE_HDR_SIZE;
380
381         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
382                 if (xfeature_enabled(i))
383                         xstate_comp_sizes[i] = xstate_sizes[i];
384                 else
385                         xstate_comp_sizes[i] = 0;
386
387                 if (i > FIRST_EXTENDED_XFEATURE) {
388                         xstate_comp_offsets[i] = xstate_comp_offsets[i-1]
389                                         + xstate_comp_sizes[i-1];
390
391                         if (xfeature_is_aligned(i))
392                                 xstate_comp_offsets[i] =
393                                         ALIGN(xstate_comp_offsets[i], 64);
394                 }
395         }
396 }
397
398 /*
399  * Print out xstate component offsets and sizes
400  */
401 static void __init print_xstate_offset_size(void)
402 {
403         int i;
404
405         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
406                 if (!xfeature_enabled(i))
407                         continue;
408                 pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
409                          i, xstate_comp_offsets[i], i, xstate_sizes[i]);
410         }
411 }
412
413 /*
414  * setup the xstate image representing the init state
415  */
416 static void __init setup_init_fpu_buf(void)
417 {
418         static int on_boot_cpu __initdata = 1;
419
420         WARN_ON_FPU(!on_boot_cpu);
421         on_boot_cpu = 0;
422
423         if (!boot_cpu_has(X86_FEATURE_XSAVE))
424                 return;
425
426         setup_xstate_features();
427         print_xstate_features();
428
429         if (boot_cpu_has(X86_FEATURE_XSAVES))
430                 init_fpstate.xsave.header.xcomp_bv = (u64)1 << 63 | xfeatures_mask;
431
432         /*
433          * Init all the features state with header.xfeatures being 0x0
434          */
435         copy_kernel_to_xregs_booting(&init_fpstate.xsave);
436
437         /*
438          * Dump the init state again. This is to identify the init state
439          * of any feature which is not represented by all zero's.
440          */
441         copy_xregs_to_kernel_booting(&init_fpstate.xsave);
442 }
443
444 static int xfeature_uncompacted_offset(int xfeature_nr)
445 {
446         u32 eax, ebx, ecx, edx;
447
448         /*
449          * Only XSAVES supports supervisor states and it uses compacted
450          * format. Checking a supervisor state's uncompacted offset is
451          * an error.
452          */
453         if (XFEATURE_MASK_SUPERVISOR & (1 << xfeature_nr)) {
454                 WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr);
455                 return -1;
456         }
457
458         CHECK_XFEATURE(xfeature_nr);
459         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
460         return ebx;
461 }
462
463 static int xfeature_size(int xfeature_nr)
464 {
465         u32 eax, ebx, ecx, edx;
466
467         CHECK_XFEATURE(xfeature_nr);
468         cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
469         return eax;
470 }
471
472 /*
473  * 'XSAVES' implies two different things:
474  * 1. saving of supervisor/system state
475  * 2. using the compacted format
476  *
477  * Use this function when dealing with the compacted format so
478  * that it is obvious which aspect of 'XSAVES' is being handled
479  * by the calling code.
480  */
481 int using_compacted_format(void)
482 {
483         return boot_cpu_has(X86_FEATURE_XSAVES);
484 }
485
486 static void __xstate_dump_leaves(void)
487 {
488         int i;
489         u32 eax, ebx, ecx, edx;
490         static int should_dump = 1;
491
492         if (!should_dump)
493                 return;
494         should_dump = 0;
495         /*
496          * Dump out a few leaves past the ones that we support
497          * just in case there are some goodies up there
498          */
499         for (i = 0; i < XFEATURE_MAX + 10; i++) {
500                 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
501                 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
502                         XSTATE_CPUID, i, eax, ebx, ecx, edx);
503         }
504 }
505
506 #define XSTATE_WARN_ON(x) do {                                                  \
507         if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) {        \
508                 __xstate_dump_leaves();                                         \
509         }                                                                       \
510 } while (0)
511
512 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do {                      \
513         if ((nr == nr_macro) &&                                         \
514             WARN_ONCE(sz != sizeof(__struct),                           \
515                 "%s: struct is %zu bytes, cpu state %d bytes\n",        \
516                 __stringify(nr_macro), sizeof(__struct), sz)) {         \
517                 __xstate_dump_leaves();                                 \
518         }                                                               \
519 } while (0)
520
521 /*
522  * We have a C struct for each 'xstate'.  We need to ensure
523  * that our software representation matches what the CPU
524  * tells us about the state's size.
525  */
526 static void check_xstate_against_struct(int nr)
527 {
528         /*
529          * Ask the CPU for the size of the state.
530          */
531         int sz = xfeature_size(nr);
532         /*
533          * Match each CPU state with the corresponding software
534          * structure.
535          */
536         XCHECK_SZ(sz, nr, XFEATURE_YMM,       struct ymmh_struct);
537         XCHECK_SZ(sz, nr, XFEATURE_BNDREGS,   struct mpx_bndreg_state);
538         XCHECK_SZ(sz, nr, XFEATURE_BNDCSR,    struct mpx_bndcsr_state);
539         XCHECK_SZ(sz, nr, XFEATURE_OPMASK,    struct avx_512_opmask_state);
540         XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
541         XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM,  struct avx_512_hi16_state);
542         XCHECK_SZ(sz, nr, XFEATURE_PKRU,      struct pkru_state);
543
544         /*
545          * Make *SURE* to add any feature numbers in below if
546          * there are "holes" in the xsave state component
547          * numbers.
548          */
549         if ((nr < XFEATURE_YMM) ||
550             (nr >= XFEATURE_MAX) ||
551             (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR)) {
552                 WARN_ONCE(1, "no structure for xstate: %d\n", nr);
553                 XSTATE_WARN_ON(1);
554         }
555 }
556
557 /*
558  * This essentially double-checks what the cpu told us about
559  * how large the XSAVE buffer needs to be.  We are recalculating
560  * it to be safe.
561  */
562 static void do_extra_xstate_size_checks(void)
563 {
564         int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
565         int i;
566
567         for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
568                 if (!xfeature_enabled(i))
569                         continue;
570
571                 check_xstate_against_struct(i);
572                 /*
573                  * Supervisor state components can be managed only by
574                  * XSAVES, which is compacted-format only.
575                  */
576                 if (!using_compacted_format())
577                         XSTATE_WARN_ON(xfeature_is_supervisor(i));
578
579                 /* Align from the end of the previous feature */
580                 if (xfeature_is_aligned(i))
581                         paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64);
582                 /*
583                  * The offset of a given state in the non-compacted
584                  * format is given to us in a CPUID leaf.  We check
585                  * them for being ordered (increasing offsets) in
586                  * setup_xstate_features().
587                  */
588                 if (!using_compacted_format())
589                         paranoid_xstate_size = xfeature_uncompacted_offset(i);
590                 /*
591                  * The compacted-format offset always depends on where
592                  * the previous state ended.
593                  */
594                 paranoid_xstate_size += xfeature_size(i);
595         }
596         XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size);
597 }
598
599
600 /*
601  * Get total size of enabled xstates in XCR0/xfeatures_mask.
602  *
603  * Note the SDM's wording here.  "sub-function 0" only enumerates
604  * the size of the *user* states.  If we use it to size a buffer
605  * that we use 'XSAVES' on, we could potentially overflow the
606  * buffer because 'XSAVES' saves system states too.
607  *
608  * Note that we do not currently set any bits on IA32_XSS so
609  * 'XCR0 | IA32_XSS == XCR0' for now.
610  */
611 static unsigned int __init get_xsaves_size(void)
612 {
613         unsigned int eax, ebx, ecx, edx;
614         /*
615          * - CPUID function 0DH, sub-function 1:
616          *    EBX enumerates the size (in bytes) required by
617          *    the XSAVES instruction for an XSAVE area
618          *    containing all the state components
619          *    corresponding to bits currently set in
620          *    XCR0 | IA32_XSS.
621          */
622         cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
623         return ebx;
624 }
625
626 static unsigned int __init get_xsave_size(void)
627 {
628         unsigned int eax, ebx, ecx, edx;
629         /*
630          * - CPUID function 0DH, sub-function 0:
631          *    EBX enumerates the size (in bytes) required by
632          *    the XSAVE instruction for an XSAVE area
633          *    containing all the *user* state components
634          *    corresponding to bits currently set in XCR0.
635          */
636         cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
637         return ebx;
638 }
639
640 /*
641  * Will the runtime-enumerated 'xstate_size' fit in the init
642  * task's statically-allocated buffer?
643  */
644 static bool is_supported_xstate_size(unsigned int test_xstate_size)
645 {
646         if (test_xstate_size <= sizeof(union fpregs_state))
647                 return true;
648
649         pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n",
650                         sizeof(union fpregs_state), test_xstate_size);
651         return false;
652 }
653
654 static int init_xstate_size(void)
655 {
656         /* Recompute the context size for enabled features: */
657         unsigned int possible_xstate_size;
658         unsigned int xsave_size;
659
660         xsave_size = get_xsave_size();
661
662         if (boot_cpu_has(X86_FEATURE_XSAVES))
663                 possible_xstate_size = get_xsaves_size();
664         else
665                 possible_xstate_size = xsave_size;
666
667         /* Ensure we have the space to store all enabled: */
668         if (!is_supported_xstate_size(possible_xstate_size))
669                 return -EINVAL;
670
671         /*
672          * The size is OK, we are definitely going to use xsave,
673          * make it known to the world that we need more space.
674          */
675         fpu_kernel_xstate_size = possible_xstate_size;
676         do_extra_xstate_size_checks();
677
678         /*
679          * User space is always in standard format.
680          */
681         fpu_user_xstate_size = xsave_size;
682         return 0;
683 }
684
685 /*
686  * We enabled the XSAVE hardware, but something went wrong and
687  * we can not use it.  Disable it.
688  */
689 static void fpu__init_disable_system_xstate(void)
690 {
691         xfeatures_mask = 0;
692         cr4_clear_bits(X86_CR4_OSXSAVE);
693         fpu__xstate_clear_all_cpu_caps();
694 }
695
696 /*
697  * Enable and initialize the xsave feature.
698  * Called once per system bootup.
699  */
700 void __init fpu__init_system_xstate(void)
701 {
702         unsigned int eax, ebx, ecx, edx;
703         static int on_boot_cpu __initdata = 1;
704         int err;
705
706         WARN_ON_FPU(!on_boot_cpu);
707         on_boot_cpu = 0;
708
709         if (!boot_cpu_has(X86_FEATURE_FPU)) {
710                 pr_info("x86/fpu: No FPU detected\n");
711                 return;
712         }
713
714         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
715                 pr_info("x86/fpu: x87 FPU will use %s\n",
716                         boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE");
717                 return;
718         }
719
720         if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
721                 WARN_ON_FPU(1);
722                 return;
723         }
724
725         cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
726         xfeatures_mask = eax + ((u64)edx << 32);
727
728         if ((xfeatures_mask & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
729                 /*
730                  * This indicates that something really unexpected happened
731                  * with the enumeration.  Disable XSAVE and try to continue
732                  * booting without it.  This is too early to BUG().
733                  */
734                 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", xfeatures_mask);
735                 goto out_disable;
736         }
737
738         xfeatures_mask &= fpu__get_supported_xfeatures_mask();
739
740         /* Enable xstate instructions to be able to continue with initialization: */
741         fpu__init_cpu_xstate();
742         err = init_xstate_size();
743         if (err)
744                 goto out_disable;
745
746         /*
747          * Update info used for ptrace frames; use standard-format size and no
748          * supervisor xstates:
749          */
750         update_regset_xstate_info(fpu_user_xstate_size, xfeatures_mask & ~XFEATURE_MASK_SUPERVISOR);
751
752         fpu__init_prepare_fx_sw_frame();
753         setup_init_fpu_buf();
754         setup_xstate_comp();
755         print_xstate_offset_size();
756
757         pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
758                 xfeatures_mask,
759                 fpu_kernel_xstate_size,
760                 boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard");
761         return;
762
763 out_disable:
764         /* something went wrong, try to boot without any XSAVE support */
765         fpu__init_disable_system_xstate();
766 }
767
768 /*
769  * Restore minimal FPU state after suspend:
770  */
771 void fpu__resume_cpu(void)
772 {
773         /*
774          * Restore XCR0 on xsave capable CPUs:
775          */
776         if (boot_cpu_has(X86_FEATURE_XSAVE))
777                 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
778 }
779
780 /*
781  * Given an xstate feature mask, calculate where in the xsave
782  * buffer the state is.  Callers should ensure that the buffer
783  * is valid.
784  *
785  * Note: does not work for compacted buffers.
786  */
787 void *__raw_xsave_addr(struct xregs_state *xsave, int xstate_feature_mask)
788 {
789         int feature_nr = fls64(xstate_feature_mask) - 1;
790
791         if (!xfeature_enabled(feature_nr)) {
792                 WARN_ON_FPU(1);
793                 return NULL;
794         }
795
796         return (void *)xsave + xstate_comp_offsets[feature_nr];
797 }
798 /*
799  * Given the xsave area and a state inside, this function returns the
800  * address of the state.
801  *
802  * This is the API that is called to get xstate address in either
803  * standard format or compacted format of xsave area.
804  *
805  * Note that if there is no data for the field in the xsave buffer
806  * this will return NULL.
807  *
808  * Inputs:
809  *      xstate: the thread's storage area for all FPU data
810  *      xstate_feature: state which is defined in xsave.h (e.g.
811  *      XFEATURE_MASK_FP, XFEATURE_MASK_SSE, etc...)
812  * Output:
813  *      address of the state in the xsave area, or NULL if the
814  *      field is not present in the xsave buffer.
815  */
816 void *get_xsave_addr(struct xregs_state *xsave, int xstate_feature)
817 {
818         /*
819          * Do we even *have* xsave state?
820          */
821         if (!boot_cpu_has(X86_FEATURE_XSAVE))
822                 return NULL;
823
824         /*
825          * We should not ever be requesting features that we
826          * have not enabled.  Remember that pcntxt_mask is
827          * what we write to the XCR0 register.
828          */
829         WARN_ONCE(!(xfeatures_mask & xstate_feature),
830                   "get of unsupported state");
831         /*
832          * This assumes the last 'xsave*' instruction to
833          * have requested that 'xstate_feature' be saved.
834          * If it did not, we might be seeing and old value
835          * of the field in the buffer.
836          *
837          * This can happen because the last 'xsave' did not
838          * request that this feature be saved (unlikely)
839          * or because the "init optimization" caused it
840          * to not be saved.
841          */
842         if (!(xsave->header.xfeatures & xstate_feature))
843                 return NULL;
844
845         return __raw_xsave_addr(xsave, xstate_feature);
846 }
847 EXPORT_SYMBOL_GPL(get_xsave_addr);
848
849 /*
850  * This wraps up the common operations that need to occur when retrieving
851  * data from xsave state.  It first ensures that the current task was
852  * using the FPU and retrieves the data in to a buffer.  It then calculates
853  * the offset of the requested field in the buffer.
854  *
855  * This function is safe to call whether the FPU is in use or not.
856  *
857  * Note that this only works on the current task.
858  *
859  * Inputs:
860  *      @xsave_state: state which is defined in xsave.h (e.g. XFEATURE_MASK_FP,
861  *      XFEATURE_MASK_SSE, etc...)
862  * Output:
863  *      address of the state in the xsave area or NULL if the state
864  *      is not present or is in its 'init state'.
865  */
866 const void *get_xsave_field_ptr(int xsave_state)
867 {
868         struct fpu *fpu = &current->thread.fpu;
869
870         if (!fpu->fpstate_active)
871                 return NULL;
872         /*
873          * fpu__save() takes the CPU's xstate registers
874          * and saves them off to the 'fpu memory buffer.
875          */
876         fpu__save(fpu);
877
878         return get_xsave_addr(&fpu->state.xsave, xsave_state);
879 }
880
881 #ifdef CONFIG_ARCH_HAS_PKEYS
882
883 #define NR_VALID_PKRU_BITS (CONFIG_NR_PROTECTION_KEYS * 2)
884 #define PKRU_VALID_MASK (NR_VALID_PKRU_BITS - 1)
885 /*
886  * This will go out and modify PKRU register to set the access
887  * rights for @pkey to @init_val.
888  */
889 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
890                 unsigned long init_val)
891 {
892         u32 old_pkru;
893         int pkey_shift = (pkey * PKRU_BITS_PER_PKEY);
894         u32 new_pkru_bits = 0;
895
896         /*
897          * This check implies XSAVE support.  OSPKE only gets
898          * set if we enable XSAVE and we enable PKU in XCR0.
899          */
900         if (!boot_cpu_has(X86_FEATURE_OSPKE))
901                 return -EINVAL;
902
903         /* Set the bits we need in PKRU:  */
904         if (init_val & PKEY_DISABLE_ACCESS)
905                 new_pkru_bits |= PKRU_AD_BIT;
906         if (init_val & PKEY_DISABLE_WRITE)
907                 new_pkru_bits |= PKRU_WD_BIT;
908
909         /* Shift the bits in to the correct place in PKRU for pkey: */
910         new_pkru_bits <<= pkey_shift;
911
912         /* Get old PKRU and mask off any old bits in place: */
913         old_pkru = read_pkru();
914         old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
915
916         /* Write old part along with new part: */
917         write_pkru(old_pkru | new_pkru_bits);
918
919         return 0;
920 }
921 #endif /* ! CONFIG_ARCH_HAS_PKEYS */
922
923 /*
924  * This is similar to user_regset_copyout(), but will not add offset to
925  * the source data pointer or increment pos, count, kbuf, and ubuf.
926  */
927 static inline int xstate_copyout(unsigned int pos, unsigned int count,
928                                  void *kbuf, void __user *ubuf,
929                                  const void *data, const int start_pos,
930                                  const int end_pos)
931 {
932         if ((count == 0) || (pos < start_pos))
933                 return 0;
934
935         if (end_pos < 0 || pos < end_pos) {
936                 unsigned int copy = (end_pos < 0 ? count : min(count, end_pos - pos));
937
938                 if (kbuf) {
939                         memcpy(kbuf + pos, data, copy);
940                 } else {
941                         if (__copy_to_user(ubuf + pos, data, copy))
942                                 return -EFAULT;
943                 }
944         }
945         return 0;
946 }
947
948 /*
949  * Convert from kernel XSAVES compacted format to standard format and copy
950  * to a ptrace buffer. It supports partial copy but pos always starts from
951  * zero. This is called from xstateregs_get() and there we check the CPU
952  * has XSAVES.
953  */
954 int copyout_from_xsaves(unsigned int pos, unsigned int count, void *kbuf,
955                         void __user *ubuf, struct xregs_state *xsave)
956 {
957         unsigned int offset, size;
958         int ret, i;
959         struct xstate_header header;
960
961         /*
962          * Currently copy_regset_to_user() starts from pos 0:
963          */
964         if (unlikely(pos != 0))
965                 return -EFAULT;
966
967         /*
968          * The destination is a ptrace buffer; we put in only user xstates:
969          */
970         memset(&header, 0, sizeof(header));
971         header.xfeatures = xsave->header.xfeatures;
972         header.xfeatures &= ~XFEATURE_MASK_SUPERVISOR;
973
974         /*
975          * Copy xregs_state->header:
976          */
977         offset = offsetof(struct xregs_state, header);
978         size = sizeof(header);
979
980         ret = xstate_copyout(offset, size, kbuf, ubuf, &header, 0, count);
981
982         if (ret)
983                 return ret;
984
985         for (i = 0; i < XFEATURE_MAX; i++) {
986                 /*
987                  * Copy only in-use xstates:
988                  */
989                 if ((header.xfeatures >> i) & 1) {
990                         void *src = __raw_xsave_addr(xsave, 1 << i);
991
992                         offset = xstate_offsets[i];
993                         size = xstate_sizes[i];
994
995                         ret = xstate_copyout(offset, size, kbuf, ubuf, src, 0, count);
996
997                         if (ret)
998                                 return ret;
999
1000                         if (offset + size >= count)
1001                                 break;
1002                 }
1003
1004         }
1005
1006         /*
1007          * Fill xsave->i387.sw_reserved value for ptrace frame:
1008          */
1009         offset = offsetof(struct fxregs_state, sw_reserved);
1010         size = sizeof(xstate_fx_sw_bytes);
1011
1012         ret = xstate_copyout(offset, size, kbuf, ubuf, xstate_fx_sw_bytes, 0, count);
1013
1014         if (ret)
1015                 return ret;
1016
1017         return 0;
1018 }
1019
1020 /*
1021  * Convert from a ptrace standard-format buffer to kernel XSAVES format
1022  * and copy to the target thread. This is called from xstateregs_set() and
1023  * there we check the CPU has XSAVES and a whole standard-sized buffer
1024  * exists.
1025  */
1026 int copyin_to_xsaves(const void *kbuf, const void __user *ubuf,
1027                      struct xregs_state *xsave)
1028 {
1029         unsigned int offset, size;
1030         int i;
1031         u64 xfeatures;
1032         u64 allowed_features;
1033
1034         offset = offsetof(struct xregs_state, header);
1035         size = sizeof(xfeatures);
1036
1037         if (kbuf) {
1038                 memcpy(&xfeatures, kbuf + offset, size);
1039         } else {
1040                 if (__copy_from_user(&xfeatures, ubuf + offset, size))
1041                         return -EFAULT;
1042         }
1043
1044         /*
1045          * Reject if the user sets any disabled or supervisor features:
1046          */
1047         allowed_features = xfeatures_mask & ~XFEATURE_MASK_SUPERVISOR;
1048
1049         if (xfeatures & ~allowed_features)
1050                 return -EINVAL;
1051
1052         for (i = 0; i < XFEATURE_MAX; i++) {
1053                 u64 mask = ((u64)1 << i);
1054
1055                 if (xfeatures & mask) {
1056                         void *dst = __raw_xsave_addr(xsave, 1 << i);
1057
1058                         offset = xstate_offsets[i];
1059                         size = xstate_sizes[i];
1060
1061                         if (kbuf) {
1062                                 memcpy(dst, kbuf + offset, size);
1063                         } else {
1064                                 if (__copy_from_user(dst, ubuf + offset, size))
1065                                         return -EFAULT;
1066                         }
1067                 }
1068         }
1069
1070         /*
1071          * The state that came in from userspace was user-state only.
1072          * Mask all the user states out of 'xfeatures':
1073          */
1074         xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR;
1075
1076         /*
1077          * Add back in the features that came in from userspace:
1078          */
1079         xsave->header.xfeatures |= xfeatures;
1080
1081         return 0;
1082 }