]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kernel/machine_kexec_64.c
Merge tag 'xfs-4.13-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[karo-tx-linux.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29 #include <asm/setup.h>
30 #include <asm/set_memory.h>
31
32 #ifdef CONFIG_KEXEC_FILE
33 static struct kexec_file_ops *kexec_file_loaders[] = {
34                 &kexec_bzImage64_ops,
35 };
36 #endif
37
38 static void free_transition_pgtable(struct kimage *image)
39 {
40         free_page((unsigned long)image->arch.p4d);
41         free_page((unsigned long)image->arch.pud);
42         free_page((unsigned long)image->arch.pmd);
43         free_page((unsigned long)image->arch.pte);
44 }
45
46 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
47 {
48         p4d_t *p4d;
49         pud_t *pud;
50         pmd_t *pmd;
51         pte_t *pte;
52         unsigned long vaddr, paddr;
53         int result = -ENOMEM;
54
55         vaddr = (unsigned long)relocate_kernel;
56         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
57         pgd += pgd_index(vaddr);
58         if (!pgd_present(*pgd)) {
59                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
60                 if (!p4d)
61                         goto err;
62                 image->arch.p4d = p4d;
63                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
64         }
65         p4d = p4d_offset(pgd, vaddr);
66         if (!p4d_present(*p4d)) {
67                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
68                 if (!pud)
69                         goto err;
70                 image->arch.pud = pud;
71                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
72         }
73         pud = pud_offset(p4d, vaddr);
74         if (!pud_present(*pud)) {
75                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
76                 if (!pmd)
77                         goto err;
78                 image->arch.pmd = pmd;
79                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
80         }
81         pmd = pmd_offset(pud, vaddr);
82         if (!pmd_present(*pmd)) {
83                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
84                 if (!pte)
85                         goto err;
86                 image->arch.pte = pte;
87                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
88         }
89         pte = pte_offset_kernel(pmd, vaddr);
90         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
91         return 0;
92 err:
93         free_transition_pgtable(image);
94         return result;
95 }
96
97 static void *alloc_pgt_page(void *data)
98 {
99         struct kimage *image = (struct kimage *)data;
100         struct page *page;
101         void *p = NULL;
102
103         page = kimage_alloc_control_pages(image, 0);
104         if (page) {
105                 p = page_address(page);
106                 clear_page(p);
107         }
108
109         return p;
110 }
111
112 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
113 {
114         struct x86_mapping_info info = {
115                 .alloc_pgt_page = alloc_pgt_page,
116                 .context        = image,
117                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
118         };
119         unsigned long mstart, mend;
120         pgd_t *level4p;
121         int result;
122         int i;
123
124         level4p = (pgd_t *)__va(start_pgtable);
125         clear_page(level4p);
126
127         if (direct_gbpages)
128                 info.direct_gbpages = true;
129
130         for (i = 0; i < nr_pfn_mapped; i++) {
131                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
132                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
133
134                 result = kernel_ident_mapping_init(&info,
135                                                  level4p, mstart, mend);
136                 if (result)
137                         return result;
138         }
139
140         /*
141          * segments's mem ranges could be outside 0 ~ max_pfn,
142          * for example when jump back to original kernel from kexeced kernel.
143          * or first kernel is booted with user mem map, and second kernel
144          * could be loaded out of that range.
145          */
146         for (i = 0; i < image->nr_segments; i++) {
147                 mstart = image->segment[i].mem;
148                 mend   = mstart + image->segment[i].memsz;
149
150                 result = kernel_ident_mapping_init(&info,
151                                                  level4p, mstart, mend);
152
153                 if (result)
154                         return result;
155         }
156
157         return init_transition_pgtable(image, level4p);
158 }
159
160 static void set_idt(void *newidt, u16 limit)
161 {
162         struct desc_ptr curidt;
163
164         /* x86-64 supports unaliged loads & stores */
165         curidt.size    = limit;
166         curidt.address = (unsigned long)newidt;
167
168         __asm__ __volatile__ (
169                 "lidtq %0\n"
170                 : : "m" (curidt)
171                 );
172 };
173
174
175 static void set_gdt(void *newgdt, u16 limit)
176 {
177         struct desc_ptr curgdt;
178
179         /* x86-64 supports unaligned loads & stores */
180         curgdt.size    = limit;
181         curgdt.address = (unsigned long)newgdt;
182
183         __asm__ __volatile__ (
184                 "lgdtq %0\n"
185                 : : "m" (curgdt)
186                 );
187 };
188
189 static void load_segments(void)
190 {
191         __asm__ __volatile__ (
192                 "\tmovl %0,%%ds\n"
193                 "\tmovl %0,%%es\n"
194                 "\tmovl %0,%%ss\n"
195                 "\tmovl %0,%%fs\n"
196                 "\tmovl %0,%%gs\n"
197                 : : "a" (__KERNEL_DS) : "memory"
198                 );
199 }
200
201 #ifdef CONFIG_KEXEC_FILE
202 /* Update purgatory as needed after various image segments have been prepared */
203 static int arch_update_purgatory(struct kimage *image)
204 {
205         int ret = 0;
206
207         if (!image->file_mode)
208                 return 0;
209
210         /* Setup copying of backup region */
211         if (image->type == KEXEC_TYPE_CRASH) {
212                 ret = kexec_purgatory_get_set_symbol(image,
213                                 "purgatory_backup_dest",
214                                 &image->arch.backup_load_addr,
215                                 sizeof(image->arch.backup_load_addr), 0);
216                 if (ret)
217                         return ret;
218
219                 ret = kexec_purgatory_get_set_symbol(image,
220                                 "purgatory_backup_src",
221                                 &image->arch.backup_src_start,
222                                 sizeof(image->arch.backup_src_start), 0);
223                 if (ret)
224                         return ret;
225
226                 ret = kexec_purgatory_get_set_symbol(image,
227                                 "purgatory_backup_sz",
228                                 &image->arch.backup_src_sz,
229                                 sizeof(image->arch.backup_src_sz), 0);
230                 if (ret)
231                         return ret;
232         }
233
234         return ret;
235 }
236 #else /* !CONFIG_KEXEC_FILE */
237 static inline int arch_update_purgatory(struct kimage *image)
238 {
239         return 0;
240 }
241 #endif /* CONFIG_KEXEC_FILE */
242
243 int machine_kexec_prepare(struct kimage *image)
244 {
245         unsigned long start_pgtable;
246         int result;
247
248         /* Calculate the offsets */
249         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
250
251         /* Setup the identity mapped 64bit page table */
252         result = init_pgtable(image, start_pgtable);
253         if (result)
254                 return result;
255
256         /* update purgatory as needed */
257         result = arch_update_purgatory(image);
258         if (result)
259                 return result;
260
261         return 0;
262 }
263
264 void machine_kexec_cleanup(struct kimage *image)
265 {
266         free_transition_pgtable(image);
267 }
268
269 /*
270  * Do not allocate memory (or fail in any way) in machine_kexec().
271  * We are past the point of no return, committed to rebooting now.
272  */
273 void machine_kexec(struct kimage *image)
274 {
275         unsigned long page_list[PAGES_NR];
276         void *control_page;
277         int save_ftrace_enabled;
278
279 #ifdef CONFIG_KEXEC_JUMP
280         if (image->preserve_context)
281                 save_processor_state();
282 #endif
283
284         save_ftrace_enabled = __ftrace_enabled_save();
285
286         /* Interrupts aren't acceptable while we reboot */
287         local_irq_disable();
288         hw_breakpoint_disable();
289
290         if (image->preserve_context) {
291 #ifdef CONFIG_X86_IO_APIC
292                 /*
293                  * We need to put APICs in legacy mode so that we can
294                  * get timer interrupts in second kernel. kexec/kdump
295                  * paths already have calls to disable_IO_APIC() in
296                  * one form or other. kexec jump path also need
297                  * one.
298                  */
299                 disable_IO_APIC();
300 #endif
301         }
302
303         control_page = page_address(image->control_code_page) + PAGE_SIZE;
304         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
305
306         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
307         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
308         page_list[PA_TABLE_PAGE] =
309           (unsigned long)__pa(page_address(image->control_code_page));
310
311         if (image->type == KEXEC_TYPE_DEFAULT)
312                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
313                                                 << PAGE_SHIFT);
314
315         /*
316          * The segment registers are funny things, they have both a
317          * visible and an invisible part.  Whenever the visible part is
318          * set to a specific selector, the invisible part is loaded
319          * with from a table in memory.  At no other time is the
320          * descriptor table in memory accessed.
321          *
322          * I take advantage of this here by force loading the
323          * segments, before I zap the gdt with an invalid value.
324          */
325         load_segments();
326         /*
327          * The gdt & idt are now invalid.
328          * If you want to load them you must set up your own idt & gdt.
329          */
330         set_gdt(phys_to_virt(0), 0);
331         set_idt(phys_to_virt(0), 0);
332
333         /* now call it */
334         image->start = relocate_kernel((unsigned long)image->head,
335                                        (unsigned long)page_list,
336                                        image->start,
337                                        image->preserve_context);
338
339 #ifdef CONFIG_KEXEC_JUMP
340         if (image->preserve_context)
341                 restore_processor_state();
342 #endif
343
344         __ftrace_enabled_restore(save_ftrace_enabled);
345 }
346
347 void arch_crash_save_vmcoreinfo(void)
348 {
349         VMCOREINFO_NUMBER(phys_base);
350         VMCOREINFO_SYMBOL(init_top_pgt);
351
352 #ifdef CONFIG_NUMA
353         VMCOREINFO_SYMBOL(node_data);
354         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
355 #endif
356         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
357                               kaslr_offset());
358         VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
359 }
360
361 /* arch-dependent functionality related to kexec file-based syscall */
362
363 #ifdef CONFIG_KEXEC_FILE
364 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
365                                   unsigned long buf_len)
366 {
367         int i, ret = -ENOEXEC;
368         struct kexec_file_ops *fops;
369
370         for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
371                 fops = kexec_file_loaders[i];
372                 if (!fops || !fops->probe)
373                         continue;
374
375                 ret = fops->probe(buf, buf_len);
376                 if (!ret) {
377                         image->fops = fops;
378                         return ret;
379                 }
380         }
381
382         return ret;
383 }
384
385 void *arch_kexec_kernel_image_load(struct kimage *image)
386 {
387         vfree(image->arch.elf_headers);
388         image->arch.elf_headers = NULL;
389
390         if (!image->fops || !image->fops->load)
391                 return ERR_PTR(-ENOEXEC);
392
393         return image->fops->load(image, image->kernel_buf,
394                                  image->kernel_buf_len, image->initrd_buf,
395                                  image->initrd_buf_len, image->cmdline_buf,
396                                  image->cmdline_buf_len);
397 }
398
399 int arch_kimage_file_post_load_cleanup(struct kimage *image)
400 {
401         if (!image->fops || !image->fops->cleanup)
402                 return 0;
403
404         return image->fops->cleanup(image->image_loader_data);
405 }
406
407 #ifdef CONFIG_KEXEC_VERIFY_SIG
408 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
409                                  unsigned long kernel_len)
410 {
411         if (!image->fops || !image->fops->verify_sig) {
412                 pr_debug("kernel loader does not support signature verification.");
413                 return -EKEYREJECTED;
414         }
415
416         return image->fops->verify_sig(kernel, kernel_len);
417 }
418 #endif
419
420 /*
421  * Apply purgatory relocations.
422  *
423  * ehdr: Pointer to elf headers
424  * sechdrs: Pointer to section headers.
425  * relsec: section index of SHT_RELA section.
426  *
427  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
428  */
429 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
430                                      Elf64_Shdr *sechdrs, unsigned int relsec)
431 {
432         unsigned int i;
433         Elf64_Rela *rel;
434         Elf64_Sym *sym;
435         void *location;
436         Elf64_Shdr *section, *symtabsec;
437         unsigned long address, sec_base, value;
438         const char *strtab, *name, *shstrtab;
439
440         /*
441          * ->sh_offset has been modified to keep the pointer to section
442          * contents in memory
443          */
444         rel = (void *)sechdrs[relsec].sh_offset;
445
446         /* Section to which relocations apply */
447         section = &sechdrs[sechdrs[relsec].sh_info];
448
449         pr_debug("Applying relocate section %u to %u\n", relsec,
450                  sechdrs[relsec].sh_info);
451
452         /* Associated symbol table */
453         symtabsec = &sechdrs[sechdrs[relsec].sh_link];
454
455         /* String table */
456         if (symtabsec->sh_link >= ehdr->e_shnum) {
457                 /* Invalid strtab section number */
458                 pr_err("Invalid string table section index %d\n",
459                        symtabsec->sh_link);
460                 return -ENOEXEC;
461         }
462
463         strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
464
465         /* section header string table */
466         shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
467
468         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
469
470                 /*
471                  * rel[i].r_offset contains byte offset from beginning
472                  * of section to the storage unit affected.
473                  *
474                  * This is location to update (->sh_offset). This is temporary
475                  * buffer where section is currently loaded. This will finally
476                  * be loaded to a different address later, pointed to by
477                  * ->sh_addr. kexec takes care of moving it
478                  *  (kexec_load_segment()).
479                  */
480                 location = (void *)(section->sh_offset + rel[i].r_offset);
481
482                 /* Final address of the location */
483                 address = section->sh_addr + rel[i].r_offset;
484
485                 /*
486                  * rel[i].r_info contains information about symbol table index
487                  * w.r.t which relocation must be made and type of relocation
488                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
489                  * these respectively.
490                  */
491                 sym = (Elf64_Sym *)symtabsec->sh_offset +
492                                 ELF64_R_SYM(rel[i].r_info);
493
494                 if (sym->st_name)
495                         name = strtab + sym->st_name;
496                 else
497                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
498
499                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
500                          name, sym->st_info, sym->st_shndx, sym->st_value,
501                          sym->st_size);
502
503                 if (sym->st_shndx == SHN_UNDEF) {
504                         pr_err("Undefined symbol: %s\n", name);
505                         return -ENOEXEC;
506                 }
507
508                 if (sym->st_shndx == SHN_COMMON) {
509                         pr_err("symbol '%s' in common section\n", name);
510                         return -ENOEXEC;
511                 }
512
513                 if (sym->st_shndx == SHN_ABS)
514                         sec_base = 0;
515                 else if (sym->st_shndx >= ehdr->e_shnum) {
516                         pr_err("Invalid section %d for symbol %s\n",
517                                sym->st_shndx, name);
518                         return -ENOEXEC;
519                 } else
520                         sec_base = sechdrs[sym->st_shndx].sh_addr;
521
522                 value = sym->st_value;
523                 value += sec_base;
524                 value += rel[i].r_addend;
525
526                 switch (ELF64_R_TYPE(rel[i].r_info)) {
527                 case R_X86_64_NONE:
528                         break;
529                 case R_X86_64_64:
530                         *(u64 *)location = value;
531                         break;
532                 case R_X86_64_32:
533                         *(u32 *)location = value;
534                         if (value != *(u32 *)location)
535                                 goto overflow;
536                         break;
537                 case R_X86_64_32S:
538                         *(s32 *)location = value;
539                         if ((s64)value != *(s32 *)location)
540                                 goto overflow;
541                         break;
542                 case R_X86_64_PC32:
543                         value -= (u64)address;
544                         *(u32 *)location = value;
545                         break;
546                 default:
547                         pr_err("Unknown rela relocation: %llu\n",
548                                ELF64_R_TYPE(rel[i].r_info));
549                         return -ENOEXEC;
550                 }
551         }
552         return 0;
553
554 overflow:
555         pr_err("Overflow in relocation type %d value 0x%lx\n",
556                (int)ELF64_R_TYPE(rel[i].r_info), value);
557         return -ENOEXEC;
558 }
559 #endif /* CONFIG_KEXEC_FILE */
560
561 static int
562 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
563 {
564         struct page *page;
565         unsigned int nr_pages;
566
567         /*
568          * For physical range: [start, end]. We must skip the unassigned
569          * crashk resource with zero-valued "end" member.
570          */
571         if (!end || start > end)
572                 return 0;
573
574         page = pfn_to_page(start >> PAGE_SHIFT);
575         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
576         if (protect)
577                 return set_pages_ro(page, nr_pages);
578         else
579                 return set_pages_rw(page, nr_pages);
580 }
581
582 static void kexec_mark_crashkres(bool protect)
583 {
584         unsigned long control;
585
586         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
587
588         /* Don't touch the control code page used in crash_kexec().*/
589         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
590         /* Control code page is located in the 2nd page. */
591         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
592         control += KEXEC_CONTROL_PAGE_SIZE;
593         kexec_mark_range(control, crashk_res.end, protect);
594 }
595
596 void arch_kexec_protect_crashkres(void)
597 {
598         kexec_mark_crashkres(true);
599 }
600
601 void arch_kexec_unprotect_crashkres(void)
602 {
603         kexec_mark_crashkres(false);
604 }