]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'driver-core-4.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82  * - enable syscall per default because its emulated by KVM
83  * - enable LME and LMA per default on 64 bit KVM
84  */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32  __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64  __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 #define KVM_NR_SHARED_MSRS 16
138
139 struct kvm_shared_msrs_global {
140         int nr;
141         u32 msrs[KVM_NR_SHARED_MSRS];
142 };
143
144 struct kvm_shared_msrs {
145         struct user_return_notifier urn;
146         bool registered;
147         struct kvm_shared_msr_values {
148                 u64 host;
149                 u64 curr;
150         } values[KVM_NR_SHARED_MSRS];
151 };
152
153 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
154 static struct kvm_shared_msrs __percpu *shared_msrs;
155
156 struct kvm_stats_debugfs_item debugfs_entries[] = {
157         { "pf_fixed", VCPU_STAT(pf_fixed) },
158         { "pf_guest", VCPU_STAT(pf_guest) },
159         { "tlb_flush", VCPU_STAT(tlb_flush) },
160         { "invlpg", VCPU_STAT(invlpg) },
161         { "exits", VCPU_STAT(exits) },
162         { "io_exits", VCPU_STAT(io_exits) },
163         { "mmio_exits", VCPU_STAT(mmio_exits) },
164         { "signal_exits", VCPU_STAT(signal_exits) },
165         { "irq_window", VCPU_STAT(irq_window_exits) },
166         { "nmi_window", VCPU_STAT(nmi_window_exits) },
167         { "halt_exits", VCPU_STAT(halt_exits) },
168         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
169         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
170         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
171         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
172         { "hypercalls", VCPU_STAT(hypercalls) },
173         { "request_irq", VCPU_STAT(request_irq_exits) },
174         { "irq_exits", VCPU_STAT(irq_exits) },
175         { "host_state_reload", VCPU_STAT(host_state_reload) },
176         { "efer_reload", VCPU_STAT(efer_reload) },
177         { "fpu_reload", VCPU_STAT(fpu_reload) },
178         { "insn_emulation", VCPU_STAT(insn_emulation) },
179         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
180         { "irq_injections", VCPU_STAT(irq_injections) },
181         { "nmi_injections", VCPU_STAT(nmi_injections) },
182         { "req_event", VCPU_STAT(req_event) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { "max_mmu_page_hash_collisions",
194                 VM_STAT(max_mmu_page_hash_collisions) },
195         { NULL }
196 };
197
198 u64 __read_mostly host_xcr0;
199
200 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
201
202 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
203 {
204         int i;
205         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
206                 vcpu->arch.apf.gfns[i] = ~0;
207 }
208
209 static void kvm_on_user_return(struct user_return_notifier *urn)
210 {
211         unsigned slot;
212         struct kvm_shared_msrs *locals
213                 = container_of(urn, struct kvm_shared_msrs, urn);
214         struct kvm_shared_msr_values *values;
215         unsigned long flags;
216
217         /*
218          * Disabling irqs at this point since the following code could be
219          * interrupted and executed through kvm_arch_hardware_disable()
220          */
221         local_irq_save(flags);
222         if (locals->registered) {
223                 locals->registered = false;
224                 user_return_notifier_unregister(urn);
225         }
226         local_irq_restore(flags);
227         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
228                 values = &locals->values[slot];
229                 if (values->host != values->curr) {
230                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
231                         values->curr = values->host;
232                 }
233         }
234 }
235
236 static void shared_msr_update(unsigned slot, u32 msr)
237 {
238         u64 value;
239         unsigned int cpu = smp_processor_id();
240         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
241
242         /* only read, and nobody should modify it at this time,
243          * so don't need lock */
244         if (slot >= shared_msrs_global.nr) {
245                 printk(KERN_ERR "kvm: invalid MSR slot!");
246                 return;
247         }
248         rdmsrl_safe(msr, &value);
249         smsr->values[slot].host = value;
250         smsr->values[slot].curr = value;
251 }
252
253 void kvm_define_shared_msr(unsigned slot, u32 msr)
254 {
255         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
256         shared_msrs_global.msrs[slot] = msr;
257         if (slot >= shared_msrs_global.nr)
258                 shared_msrs_global.nr = slot + 1;
259 }
260 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
261
262 static void kvm_shared_msr_cpu_online(void)
263 {
264         unsigned i;
265
266         for (i = 0; i < shared_msrs_global.nr; ++i)
267                 shared_msr_update(i, shared_msrs_global.msrs[i]);
268 }
269
270 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
271 {
272         unsigned int cpu = smp_processor_id();
273         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274         int err;
275
276         if (((value ^ smsr->values[slot].curr) & mask) == 0)
277                 return 0;
278         smsr->values[slot].curr = value;
279         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
280         if (err)
281                 return 1;
282
283         if (!smsr->registered) {
284                 smsr->urn.on_user_return = kvm_on_user_return;
285                 user_return_notifier_register(&smsr->urn);
286                 smsr->registered = true;
287         }
288         return 0;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
291
292 static void drop_user_return_notifiers(void)
293 {
294         unsigned int cpu = smp_processor_id();
295         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296
297         if (smsr->registered)
298                 kvm_on_user_return(&smsr->urn);
299 }
300
301 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
302 {
303         return vcpu->arch.apic_base;
304 }
305 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
306
307 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
308 {
309         u64 old_state = vcpu->arch.apic_base &
310                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311         u64 new_state = msr_info->data &
312                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
314                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
315
316         if (!msr_info->host_initiated &&
317             ((msr_info->data & reserved_bits) != 0 ||
318              new_state == X2APIC_ENABLE ||
319              (new_state == MSR_IA32_APICBASE_ENABLE &&
320               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
321              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
322               old_state == 0)))
323                 return 1;
324
325         kvm_lapic_set_base(vcpu, msr_info->data);
326         return 0;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
329
330 asmlinkage __visible void kvm_spurious_fault(void)
331 {
332         /* Fault while not rebooting.  We want the trace. */
333         BUG();
334 }
335 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
336
337 #define EXCPT_BENIGN            0
338 #define EXCPT_CONTRIBUTORY      1
339 #define EXCPT_PF                2
340
341 static int exception_class(int vector)
342 {
343         switch (vector) {
344         case PF_VECTOR:
345                 return EXCPT_PF;
346         case DE_VECTOR:
347         case TS_VECTOR:
348         case NP_VECTOR:
349         case SS_VECTOR:
350         case GP_VECTOR:
351                 return EXCPT_CONTRIBUTORY;
352         default:
353                 break;
354         }
355         return EXCPT_BENIGN;
356 }
357
358 #define EXCPT_FAULT             0
359 #define EXCPT_TRAP              1
360 #define EXCPT_ABORT             2
361 #define EXCPT_INTERRUPT         3
362
363 static int exception_type(int vector)
364 {
365         unsigned int mask;
366
367         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
368                 return EXCPT_INTERRUPT;
369
370         mask = 1 << vector;
371
372         /* #DB is trap, as instruction watchpoints are handled elsewhere */
373         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
374                 return EXCPT_TRAP;
375
376         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
377                 return EXCPT_ABORT;
378
379         /* Reserved exceptions will result in fault */
380         return EXCPT_FAULT;
381 }
382
383 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
384                 unsigned nr, bool has_error, u32 error_code,
385                 bool reinject)
386 {
387         u32 prev_nr;
388         int class1, class2;
389
390         kvm_make_request(KVM_REQ_EVENT, vcpu);
391
392         if (!vcpu->arch.exception.pending) {
393         queue:
394                 if (has_error && !is_protmode(vcpu))
395                         has_error = false;
396                 vcpu->arch.exception.pending = true;
397                 vcpu->arch.exception.has_error_code = has_error;
398                 vcpu->arch.exception.nr = nr;
399                 vcpu->arch.exception.error_code = error_code;
400                 vcpu->arch.exception.reinject = reinject;
401                 return;
402         }
403
404         /* to check exception */
405         prev_nr = vcpu->arch.exception.nr;
406         if (prev_nr == DF_VECTOR) {
407                 /* triple fault -> shutdown */
408                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
409                 return;
410         }
411         class1 = exception_class(prev_nr);
412         class2 = exception_class(nr);
413         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
414                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
415                 /* generate double fault per SDM Table 5-5 */
416                 vcpu->arch.exception.pending = true;
417                 vcpu->arch.exception.has_error_code = true;
418                 vcpu->arch.exception.nr = DF_VECTOR;
419                 vcpu->arch.exception.error_code = 0;
420         } else
421                 /* replace previous exception with a new one in a hope
422                    that instruction re-execution will regenerate lost
423                    exception */
424                 goto queue;
425 }
426
427 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
428 {
429         kvm_multiple_exception(vcpu, nr, false, 0, false);
430 }
431 EXPORT_SYMBOL_GPL(kvm_queue_exception);
432
433 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
434 {
435         kvm_multiple_exception(vcpu, nr, false, 0, true);
436 }
437 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
438
439 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
440 {
441         if (err)
442                 kvm_inject_gp(vcpu, 0);
443         else
444                 return kvm_skip_emulated_instruction(vcpu);
445
446         return 1;
447 }
448 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
449
450 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
451 {
452         ++vcpu->stat.pf_guest;
453         vcpu->arch.exception.nested_apf =
454                 is_guest_mode(vcpu) && fault->async_page_fault;
455         if (vcpu->arch.exception.nested_apf)
456                 vcpu->arch.apf.nested_apf_token = fault->address;
457         else
458                 vcpu->arch.cr2 = fault->address;
459         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
460 }
461 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
462
463 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
464 {
465         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
466                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
467         else
468                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
469
470         return fault->nested_page_fault;
471 }
472
473 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
474 {
475         atomic_inc(&vcpu->arch.nmi_queued);
476         kvm_make_request(KVM_REQ_NMI, vcpu);
477 }
478 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
479
480 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
481 {
482         kvm_multiple_exception(vcpu, nr, true, error_code, false);
483 }
484 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
485
486 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
487 {
488         kvm_multiple_exception(vcpu, nr, true, error_code, true);
489 }
490 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
491
492 /*
493  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
494  * a #GP and return false.
495  */
496 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
497 {
498         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
499                 return true;
500         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
501         return false;
502 }
503 EXPORT_SYMBOL_GPL(kvm_require_cpl);
504
505 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
506 {
507         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
508                 return true;
509
510         kvm_queue_exception(vcpu, UD_VECTOR);
511         return false;
512 }
513 EXPORT_SYMBOL_GPL(kvm_require_dr);
514
515 /*
516  * This function will be used to read from the physical memory of the currently
517  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
518  * can read from guest physical or from the guest's guest physical memory.
519  */
520 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
521                             gfn_t ngfn, void *data, int offset, int len,
522                             u32 access)
523 {
524         struct x86_exception exception;
525         gfn_t real_gfn;
526         gpa_t ngpa;
527
528         ngpa     = gfn_to_gpa(ngfn);
529         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
530         if (real_gfn == UNMAPPED_GVA)
531                 return -EFAULT;
532
533         real_gfn = gpa_to_gfn(real_gfn);
534
535         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
536 }
537 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
538
539 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
540                                void *data, int offset, int len, u32 access)
541 {
542         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
543                                        data, offset, len, access);
544 }
545
546 /*
547  * Load the pae pdptrs.  Return true is they are all valid.
548  */
549 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
550 {
551         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
552         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
553         int i;
554         int ret;
555         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
556
557         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
558                                       offset * sizeof(u64), sizeof(pdpte),
559                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
560         if (ret < 0) {
561                 ret = 0;
562                 goto out;
563         }
564         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
565                 if ((pdpte[i] & PT_PRESENT_MASK) &&
566                     (pdpte[i] &
567                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
568                         ret = 0;
569                         goto out;
570                 }
571         }
572         ret = 1;
573
574         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
575         __set_bit(VCPU_EXREG_PDPTR,
576                   (unsigned long *)&vcpu->arch.regs_avail);
577         __set_bit(VCPU_EXREG_PDPTR,
578                   (unsigned long *)&vcpu->arch.regs_dirty);
579 out:
580
581         return ret;
582 }
583 EXPORT_SYMBOL_GPL(load_pdptrs);
584
585 bool pdptrs_changed(struct kvm_vcpu *vcpu)
586 {
587         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
588         bool changed = true;
589         int offset;
590         gfn_t gfn;
591         int r;
592
593         if (is_long_mode(vcpu) || !is_pae(vcpu))
594                 return false;
595
596         if (!test_bit(VCPU_EXREG_PDPTR,
597                       (unsigned long *)&vcpu->arch.regs_avail))
598                 return true;
599
600         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
601         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
602         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
603                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
604         if (r < 0)
605                 goto out;
606         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
607 out:
608
609         return changed;
610 }
611 EXPORT_SYMBOL_GPL(pdptrs_changed);
612
613 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
614 {
615         unsigned long old_cr0 = kvm_read_cr0(vcpu);
616         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
617
618         cr0 |= X86_CR0_ET;
619
620 #ifdef CONFIG_X86_64
621         if (cr0 & 0xffffffff00000000UL)
622                 return 1;
623 #endif
624
625         cr0 &= ~CR0_RESERVED_BITS;
626
627         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
628                 return 1;
629
630         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
631                 return 1;
632
633         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
634 #ifdef CONFIG_X86_64
635                 if ((vcpu->arch.efer & EFER_LME)) {
636                         int cs_db, cs_l;
637
638                         if (!is_pae(vcpu))
639                                 return 1;
640                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
641                         if (cs_l)
642                                 return 1;
643                 } else
644 #endif
645                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
646                                                  kvm_read_cr3(vcpu)))
647                         return 1;
648         }
649
650         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
651                 return 1;
652
653         kvm_x86_ops->set_cr0(vcpu, cr0);
654
655         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
656                 kvm_clear_async_pf_completion_queue(vcpu);
657                 kvm_async_pf_hash_reset(vcpu);
658         }
659
660         if ((cr0 ^ old_cr0) & update_bits)
661                 kvm_mmu_reset_context(vcpu);
662
663         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
664             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
665             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
666                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
667
668         return 0;
669 }
670 EXPORT_SYMBOL_GPL(kvm_set_cr0);
671
672 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
673 {
674         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
675 }
676 EXPORT_SYMBOL_GPL(kvm_lmsw);
677
678 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
679 {
680         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
681                         !vcpu->guest_xcr0_loaded) {
682                 /* kvm_set_xcr() also depends on this */
683                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
684                 vcpu->guest_xcr0_loaded = 1;
685         }
686 }
687
688 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
689 {
690         if (vcpu->guest_xcr0_loaded) {
691                 if (vcpu->arch.xcr0 != host_xcr0)
692                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
693                 vcpu->guest_xcr0_loaded = 0;
694         }
695 }
696
697 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699         u64 xcr0 = xcr;
700         u64 old_xcr0 = vcpu->arch.xcr0;
701         u64 valid_bits;
702
703         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
704         if (index != XCR_XFEATURE_ENABLED_MASK)
705                 return 1;
706         if (!(xcr0 & XFEATURE_MASK_FP))
707                 return 1;
708         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
709                 return 1;
710
711         /*
712          * Do not allow the guest to set bits that we do not support
713          * saving.  However, xcr0 bit 0 is always set, even if the
714          * emulated CPU does not support XSAVE (see fx_init).
715          */
716         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
717         if (xcr0 & ~valid_bits)
718                 return 1;
719
720         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
721             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
722                 return 1;
723
724         if (xcr0 & XFEATURE_MASK_AVX512) {
725                 if (!(xcr0 & XFEATURE_MASK_YMM))
726                         return 1;
727                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
728                         return 1;
729         }
730         vcpu->arch.xcr0 = xcr0;
731
732         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
733                 kvm_update_cpuid(vcpu);
734         return 0;
735 }
736
737 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
738 {
739         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
740             __kvm_set_xcr(vcpu, index, xcr)) {
741                 kvm_inject_gp(vcpu, 0);
742                 return 1;
743         }
744         return 0;
745 }
746 EXPORT_SYMBOL_GPL(kvm_set_xcr);
747
748 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
749 {
750         unsigned long old_cr4 = kvm_read_cr4(vcpu);
751         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
752                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
753
754         if (cr4 & CR4_RESERVED_BITS)
755                 return 1;
756
757         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
758                 return 1;
759
760         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
761                 return 1;
762
763         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
764                 return 1;
765
766         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
767                 return 1;
768
769         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
770                 return 1;
771
772         if (is_long_mode(vcpu)) {
773                 if (!(cr4 & X86_CR4_PAE))
774                         return 1;
775         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
776                    && ((cr4 ^ old_cr4) & pdptr_bits)
777                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
778                                    kvm_read_cr3(vcpu)))
779                 return 1;
780
781         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
782                 if (!guest_cpuid_has_pcid(vcpu))
783                         return 1;
784
785                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
786                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
787                         return 1;
788         }
789
790         if (kvm_x86_ops->set_cr4(vcpu, cr4))
791                 return 1;
792
793         if (((cr4 ^ old_cr4) & pdptr_bits) ||
794             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
795                 kvm_mmu_reset_context(vcpu);
796
797         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
798                 kvm_update_cpuid(vcpu);
799
800         return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr4);
803
804 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
805 {
806 #ifdef CONFIG_X86_64
807         cr3 &= ~CR3_PCID_INVD;
808 #endif
809
810         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
811                 kvm_mmu_sync_roots(vcpu);
812                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
813                 return 0;
814         }
815
816         if (is_long_mode(vcpu)) {
817                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
818                         return 1;
819         } else if (is_pae(vcpu) && is_paging(vcpu) &&
820                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
821                 return 1;
822
823         vcpu->arch.cr3 = cr3;
824         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
825         kvm_mmu_new_cr3(vcpu);
826         return 0;
827 }
828 EXPORT_SYMBOL_GPL(kvm_set_cr3);
829
830 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
831 {
832         if (cr8 & CR8_RESERVED_BITS)
833                 return 1;
834         if (lapic_in_kernel(vcpu))
835                 kvm_lapic_set_tpr(vcpu, cr8);
836         else
837                 vcpu->arch.cr8 = cr8;
838         return 0;
839 }
840 EXPORT_SYMBOL_GPL(kvm_set_cr8);
841
842 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
843 {
844         if (lapic_in_kernel(vcpu))
845                 return kvm_lapic_get_cr8(vcpu);
846         else
847                 return vcpu->arch.cr8;
848 }
849 EXPORT_SYMBOL_GPL(kvm_get_cr8);
850
851 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
852 {
853         int i;
854
855         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
856                 for (i = 0; i < KVM_NR_DB_REGS; i++)
857                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
858                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
859         }
860 }
861
862 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
863 {
864         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
866 }
867
868 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
869 {
870         unsigned long dr7;
871
872         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
873                 dr7 = vcpu->arch.guest_debug_dr7;
874         else
875                 dr7 = vcpu->arch.dr7;
876         kvm_x86_ops->set_dr7(vcpu, dr7);
877         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
878         if (dr7 & DR7_BP_EN_MASK)
879                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
880 }
881
882 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
883 {
884         u64 fixed = DR6_FIXED_1;
885
886         if (!guest_cpuid_has_rtm(vcpu))
887                 fixed |= DR6_RTM;
888         return fixed;
889 }
890
891 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 {
893         switch (dr) {
894         case 0 ... 3:
895                 vcpu->arch.db[dr] = val;
896                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
897                         vcpu->arch.eff_db[dr] = val;
898                 break;
899         case 4:
900                 /* fall through */
901         case 6:
902                 if (val & 0xffffffff00000000ULL)
903                         return -1; /* #GP */
904                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
905                 kvm_update_dr6(vcpu);
906                 break;
907         case 5:
908                 /* fall through */
909         default: /* 7 */
910                 if (val & 0xffffffff00000000ULL)
911                         return -1; /* #GP */
912                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
913                 kvm_update_dr7(vcpu);
914                 break;
915         }
916
917         return 0;
918 }
919
920 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922         if (__kvm_set_dr(vcpu, dr, val)) {
923                 kvm_inject_gp(vcpu, 0);
924                 return 1;
925         }
926         return 0;
927 }
928 EXPORT_SYMBOL_GPL(kvm_set_dr);
929
930 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
931 {
932         switch (dr) {
933         case 0 ... 3:
934                 *val = vcpu->arch.db[dr];
935                 break;
936         case 4:
937                 /* fall through */
938         case 6:
939                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
940                         *val = vcpu->arch.dr6;
941                 else
942                         *val = kvm_x86_ops->get_dr6(vcpu);
943                 break;
944         case 5:
945                 /* fall through */
946         default: /* 7 */
947                 *val = vcpu->arch.dr7;
948                 break;
949         }
950         return 0;
951 }
952 EXPORT_SYMBOL_GPL(kvm_get_dr);
953
954 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
955 {
956         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
957         u64 data;
958         int err;
959
960         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
961         if (err)
962                 return err;
963         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
964         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
965         return err;
966 }
967 EXPORT_SYMBOL_GPL(kvm_rdpmc);
968
969 /*
970  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
971  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
972  *
973  * This list is modified at module load time to reflect the
974  * capabilities of the host cpu. This capabilities test skips MSRs that are
975  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
976  * may depend on host virtualization features rather than host cpu features.
977  */
978
979 static u32 msrs_to_save[] = {
980         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
981         MSR_STAR,
982 #ifdef CONFIG_X86_64
983         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
984 #endif
985         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
986         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
987 };
988
989 static unsigned num_msrs_to_save;
990
991 static u32 emulated_msrs[] = {
992         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
993         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
994         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
995         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
996         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
997         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
998         HV_X64_MSR_RESET,
999         HV_X64_MSR_VP_INDEX,
1000         HV_X64_MSR_VP_RUNTIME,
1001         HV_X64_MSR_SCONTROL,
1002         HV_X64_MSR_STIMER0_CONFIG,
1003         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1004         MSR_KVM_PV_EOI_EN,
1005
1006         MSR_IA32_TSC_ADJUST,
1007         MSR_IA32_TSCDEADLINE,
1008         MSR_IA32_MISC_ENABLE,
1009         MSR_IA32_MCG_STATUS,
1010         MSR_IA32_MCG_CTL,
1011         MSR_IA32_MCG_EXT_CTL,
1012         MSR_IA32_SMBASE,
1013         MSR_PLATFORM_INFO,
1014         MSR_MISC_FEATURES_ENABLES,
1015 };
1016
1017 static unsigned num_emulated_msrs;
1018
1019 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1020 {
1021         if (efer & efer_reserved_bits)
1022                 return false;
1023
1024         if (efer & EFER_FFXSR) {
1025                 struct kvm_cpuid_entry2 *feat;
1026
1027                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1028                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1029                         return false;
1030         }
1031
1032         if (efer & EFER_SVME) {
1033                 struct kvm_cpuid_entry2 *feat;
1034
1035                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1036                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1037                         return false;
1038         }
1039
1040         return true;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1043
1044 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1045 {
1046         u64 old_efer = vcpu->arch.efer;
1047
1048         if (!kvm_valid_efer(vcpu, efer))
1049                 return 1;
1050
1051         if (is_paging(vcpu)
1052             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1053                 return 1;
1054
1055         efer &= ~EFER_LMA;
1056         efer |= vcpu->arch.efer & EFER_LMA;
1057
1058         kvm_x86_ops->set_efer(vcpu, efer);
1059
1060         /* Update reserved bits */
1061         if ((efer ^ old_efer) & EFER_NX)
1062                 kvm_mmu_reset_context(vcpu);
1063
1064         return 0;
1065 }
1066
1067 void kvm_enable_efer_bits(u64 mask)
1068 {
1069        efer_reserved_bits &= ~mask;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1072
1073 /*
1074  * Writes msr value into into the appropriate "register".
1075  * Returns 0 on success, non-0 otherwise.
1076  * Assumes vcpu_load() was already called.
1077  */
1078 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1079 {
1080         switch (msr->index) {
1081         case MSR_FS_BASE:
1082         case MSR_GS_BASE:
1083         case MSR_KERNEL_GS_BASE:
1084         case MSR_CSTAR:
1085         case MSR_LSTAR:
1086                 if (is_noncanonical_address(msr->data))
1087                         return 1;
1088                 break;
1089         case MSR_IA32_SYSENTER_EIP:
1090         case MSR_IA32_SYSENTER_ESP:
1091                 /*
1092                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1093                  * non-canonical address is written on Intel but not on
1094                  * AMD (which ignores the top 32-bits, because it does
1095                  * not implement 64-bit SYSENTER).
1096                  *
1097                  * 64-bit code should hence be able to write a non-canonical
1098                  * value on AMD.  Making the address canonical ensures that
1099                  * vmentry does not fail on Intel after writing a non-canonical
1100                  * value, and that something deterministic happens if the guest
1101                  * invokes 64-bit SYSENTER.
1102                  */
1103                 msr->data = get_canonical(msr->data);
1104         }
1105         return kvm_x86_ops->set_msr(vcpu, msr);
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_set_msr);
1108
1109 /*
1110  * Adapt set_msr() to msr_io()'s calling convention
1111  */
1112 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1113 {
1114         struct msr_data msr;
1115         int r;
1116
1117         msr.index = index;
1118         msr.host_initiated = true;
1119         r = kvm_get_msr(vcpu, &msr);
1120         if (r)
1121                 return r;
1122
1123         *data = msr.data;
1124         return 0;
1125 }
1126
1127 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1128 {
1129         struct msr_data msr;
1130
1131         msr.data = *data;
1132         msr.index = index;
1133         msr.host_initiated = true;
1134         return kvm_set_msr(vcpu, &msr);
1135 }
1136
1137 #ifdef CONFIG_X86_64
1138 struct pvclock_gtod_data {
1139         seqcount_t      seq;
1140
1141         struct { /* extract of a clocksource struct */
1142                 int vclock_mode;
1143                 u64     cycle_last;
1144                 u64     mask;
1145                 u32     mult;
1146                 u32     shift;
1147         } clock;
1148
1149         u64             boot_ns;
1150         u64             nsec_base;
1151         u64             wall_time_sec;
1152 };
1153
1154 static struct pvclock_gtod_data pvclock_gtod_data;
1155
1156 static void update_pvclock_gtod(struct timekeeper *tk)
1157 {
1158         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1159         u64 boot_ns;
1160
1161         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1162
1163         write_seqcount_begin(&vdata->seq);
1164
1165         /* copy pvclock gtod data */
1166         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1167         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1168         vdata->clock.mask               = tk->tkr_mono.mask;
1169         vdata->clock.mult               = tk->tkr_mono.mult;
1170         vdata->clock.shift              = tk->tkr_mono.shift;
1171
1172         vdata->boot_ns                  = boot_ns;
1173         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1174
1175         vdata->wall_time_sec            = tk->xtime_sec;
1176
1177         write_seqcount_end(&vdata->seq);
1178 }
1179 #endif
1180
1181 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1182 {
1183         /*
1184          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1185          * vcpu_enter_guest.  This function is only called from
1186          * the physical CPU that is running vcpu.
1187          */
1188         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1189 }
1190
1191 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1192 {
1193         int version;
1194         int r;
1195         struct pvclock_wall_clock wc;
1196         struct timespec64 boot;
1197
1198         if (!wall_clock)
1199                 return;
1200
1201         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1202         if (r)
1203                 return;
1204
1205         if (version & 1)
1206                 ++version;  /* first time write, random junk */
1207
1208         ++version;
1209
1210         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1211                 return;
1212
1213         /*
1214          * The guest calculates current wall clock time by adding
1215          * system time (updated by kvm_guest_time_update below) to the
1216          * wall clock specified here.  guest system time equals host
1217          * system time for us, thus we must fill in host boot time here.
1218          */
1219         getboottime64(&boot);
1220
1221         if (kvm->arch.kvmclock_offset) {
1222                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1223                 boot = timespec64_sub(boot, ts);
1224         }
1225         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1226         wc.nsec = boot.tv_nsec;
1227         wc.version = version;
1228
1229         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1230
1231         version++;
1232         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1233 }
1234
1235 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1236 {
1237         do_shl32_div32(dividend, divisor);
1238         return dividend;
1239 }
1240
1241 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1242                                s8 *pshift, u32 *pmultiplier)
1243 {
1244         uint64_t scaled64;
1245         int32_t  shift = 0;
1246         uint64_t tps64;
1247         uint32_t tps32;
1248
1249         tps64 = base_hz;
1250         scaled64 = scaled_hz;
1251         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1252                 tps64 >>= 1;
1253                 shift--;
1254         }
1255
1256         tps32 = (uint32_t)tps64;
1257         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1258                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1259                         scaled64 >>= 1;
1260                 else
1261                         tps32 <<= 1;
1262                 shift++;
1263         }
1264
1265         *pshift = shift;
1266         *pmultiplier = div_frac(scaled64, tps32);
1267
1268         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1269                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1270 }
1271
1272 #ifdef CONFIG_X86_64
1273 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1274 #endif
1275
1276 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1277 static unsigned long max_tsc_khz;
1278
1279 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1280 {
1281         u64 v = (u64)khz * (1000000 + ppm);
1282         do_div(v, 1000000);
1283         return v;
1284 }
1285
1286 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1287 {
1288         u64 ratio;
1289
1290         /* Guest TSC same frequency as host TSC? */
1291         if (!scale) {
1292                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1293                 return 0;
1294         }
1295
1296         /* TSC scaling supported? */
1297         if (!kvm_has_tsc_control) {
1298                 if (user_tsc_khz > tsc_khz) {
1299                         vcpu->arch.tsc_catchup = 1;
1300                         vcpu->arch.tsc_always_catchup = 1;
1301                         return 0;
1302                 } else {
1303                         WARN(1, "user requested TSC rate below hardware speed\n");
1304                         return -1;
1305                 }
1306         }
1307
1308         /* TSC scaling required  - calculate ratio */
1309         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1310                                 user_tsc_khz, tsc_khz);
1311
1312         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1313                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1314                           user_tsc_khz);
1315                 return -1;
1316         }
1317
1318         vcpu->arch.tsc_scaling_ratio = ratio;
1319         return 0;
1320 }
1321
1322 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1323 {
1324         u32 thresh_lo, thresh_hi;
1325         int use_scaling = 0;
1326
1327         /* tsc_khz can be zero if TSC calibration fails */
1328         if (user_tsc_khz == 0) {
1329                 /* set tsc_scaling_ratio to a safe value */
1330                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1331                 return -1;
1332         }
1333
1334         /* Compute a scale to convert nanoseconds in TSC cycles */
1335         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1336                            &vcpu->arch.virtual_tsc_shift,
1337                            &vcpu->arch.virtual_tsc_mult);
1338         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1339
1340         /*
1341          * Compute the variation in TSC rate which is acceptable
1342          * within the range of tolerance and decide if the
1343          * rate being applied is within that bounds of the hardware
1344          * rate.  If so, no scaling or compensation need be done.
1345          */
1346         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1347         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1348         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1349                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1350                 use_scaling = 1;
1351         }
1352         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1353 }
1354
1355 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1356 {
1357         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1358                                       vcpu->arch.virtual_tsc_mult,
1359                                       vcpu->arch.virtual_tsc_shift);
1360         tsc += vcpu->arch.this_tsc_write;
1361         return tsc;
1362 }
1363
1364 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1365 {
1366 #ifdef CONFIG_X86_64
1367         bool vcpus_matched;
1368         struct kvm_arch *ka = &vcpu->kvm->arch;
1369         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1370
1371         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1372                          atomic_read(&vcpu->kvm->online_vcpus));
1373
1374         /*
1375          * Once the masterclock is enabled, always perform request in
1376          * order to update it.
1377          *
1378          * In order to enable masterclock, the host clocksource must be TSC
1379          * and the vcpus need to have matched TSCs.  When that happens,
1380          * perform request to enable masterclock.
1381          */
1382         if (ka->use_master_clock ||
1383             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1384                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1385
1386         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1387                             atomic_read(&vcpu->kvm->online_vcpus),
1388                             ka->use_master_clock, gtod->clock.vclock_mode);
1389 #endif
1390 }
1391
1392 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1393 {
1394         u64 curr_offset = vcpu->arch.tsc_offset;
1395         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1396 }
1397
1398 /*
1399  * Multiply tsc by a fixed point number represented by ratio.
1400  *
1401  * The most significant 64-N bits (mult) of ratio represent the
1402  * integral part of the fixed point number; the remaining N bits
1403  * (frac) represent the fractional part, ie. ratio represents a fixed
1404  * point number (mult + frac * 2^(-N)).
1405  *
1406  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1407  */
1408 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1409 {
1410         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1411 }
1412
1413 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1414 {
1415         u64 _tsc = tsc;
1416         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1417
1418         if (ratio != kvm_default_tsc_scaling_ratio)
1419                 _tsc = __scale_tsc(ratio, tsc);
1420
1421         return _tsc;
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1424
1425 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1426 {
1427         u64 tsc;
1428
1429         tsc = kvm_scale_tsc(vcpu, rdtsc());
1430
1431         return target_tsc - tsc;
1432 }
1433
1434 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1435 {
1436         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1439
1440 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1441 {
1442         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1443         vcpu->arch.tsc_offset = offset;
1444 }
1445
1446 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1447 {
1448         struct kvm *kvm = vcpu->kvm;
1449         u64 offset, ns, elapsed;
1450         unsigned long flags;
1451         bool matched;
1452         bool already_matched;
1453         u64 data = msr->data;
1454         bool synchronizing = false;
1455
1456         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1457         offset = kvm_compute_tsc_offset(vcpu, data);
1458         ns = ktime_get_boot_ns();
1459         elapsed = ns - kvm->arch.last_tsc_nsec;
1460
1461         if (vcpu->arch.virtual_tsc_khz) {
1462                 if (data == 0 && msr->host_initiated) {
1463                         /*
1464                          * detection of vcpu initialization -- need to sync
1465                          * with other vCPUs. This particularly helps to keep
1466                          * kvm_clock stable after CPU hotplug
1467                          */
1468                         synchronizing = true;
1469                 } else {
1470                         u64 tsc_exp = kvm->arch.last_tsc_write +
1471                                                 nsec_to_cycles(vcpu, elapsed);
1472                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1473                         /*
1474                          * Special case: TSC write with a small delta (1 second)
1475                          * of virtual cycle time against real time is
1476                          * interpreted as an attempt to synchronize the CPU.
1477                          */
1478                         synchronizing = data < tsc_exp + tsc_hz &&
1479                                         data + tsc_hz > tsc_exp;
1480                 }
1481         }
1482
1483         /*
1484          * For a reliable TSC, we can match TSC offsets, and for an unstable
1485          * TSC, we add elapsed time in this computation.  We could let the
1486          * compensation code attempt to catch up if we fall behind, but
1487          * it's better to try to match offsets from the beginning.
1488          */
1489         if (synchronizing &&
1490             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1491                 if (!check_tsc_unstable()) {
1492                         offset = kvm->arch.cur_tsc_offset;
1493                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1494                 } else {
1495                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1496                         data += delta;
1497                         offset = kvm_compute_tsc_offset(vcpu, data);
1498                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1499                 }
1500                 matched = true;
1501                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1502         } else {
1503                 /*
1504                  * We split periods of matched TSC writes into generations.
1505                  * For each generation, we track the original measured
1506                  * nanosecond time, offset, and write, so if TSCs are in
1507                  * sync, we can match exact offset, and if not, we can match
1508                  * exact software computation in compute_guest_tsc()
1509                  *
1510                  * These values are tracked in kvm->arch.cur_xxx variables.
1511                  */
1512                 kvm->arch.cur_tsc_generation++;
1513                 kvm->arch.cur_tsc_nsec = ns;
1514                 kvm->arch.cur_tsc_write = data;
1515                 kvm->arch.cur_tsc_offset = offset;
1516                 matched = false;
1517                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1518                          kvm->arch.cur_tsc_generation, data);
1519         }
1520
1521         /*
1522          * We also track th most recent recorded KHZ, write and time to
1523          * allow the matching interval to be extended at each write.
1524          */
1525         kvm->arch.last_tsc_nsec = ns;
1526         kvm->arch.last_tsc_write = data;
1527         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1528
1529         vcpu->arch.last_guest_tsc = data;
1530
1531         /* Keep track of which generation this VCPU has synchronized to */
1532         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1533         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1534         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1535
1536         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1537                 update_ia32_tsc_adjust_msr(vcpu, offset);
1538         kvm_vcpu_write_tsc_offset(vcpu, offset);
1539         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1540
1541         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1542         if (!matched) {
1543                 kvm->arch.nr_vcpus_matched_tsc = 0;
1544         } else if (!already_matched) {
1545                 kvm->arch.nr_vcpus_matched_tsc++;
1546         }
1547
1548         kvm_track_tsc_matching(vcpu);
1549         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1550 }
1551
1552 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1553
1554 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1555                                            s64 adjustment)
1556 {
1557         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1558 }
1559
1560 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1561 {
1562         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1563                 WARN_ON(adjustment < 0);
1564         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1565         adjust_tsc_offset_guest(vcpu, adjustment);
1566 }
1567
1568 #ifdef CONFIG_X86_64
1569
1570 static u64 read_tsc(void)
1571 {
1572         u64 ret = (u64)rdtsc_ordered();
1573         u64 last = pvclock_gtod_data.clock.cycle_last;
1574
1575         if (likely(ret >= last))
1576                 return ret;
1577
1578         /*
1579          * GCC likes to generate cmov here, but this branch is extremely
1580          * predictable (it's just a function of time and the likely is
1581          * very likely) and there's a data dependence, so force GCC
1582          * to generate a branch instead.  I don't barrier() because
1583          * we don't actually need a barrier, and if this function
1584          * ever gets inlined it will generate worse code.
1585          */
1586         asm volatile ("");
1587         return last;
1588 }
1589
1590 static inline u64 vgettsc(u64 *cycle_now)
1591 {
1592         long v;
1593         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1594
1595         *cycle_now = read_tsc();
1596
1597         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1598         return v * gtod->clock.mult;
1599 }
1600
1601 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1602 {
1603         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1604         unsigned long seq;
1605         int mode;
1606         u64 ns;
1607
1608         do {
1609                 seq = read_seqcount_begin(&gtod->seq);
1610                 mode = gtod->clock.vclock_mode;
1611                 ns = gtod->nsec_base;
1612                 ns += vgettsc(cycle_now);
1613                 ns >>= gtod->clock.shift;
1614                 ns += gtod->boot_ns;
1615         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1616         *t = ns;
1617
1618         return mode;
1619 }
1620
1621 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1622 {
1623         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1624         unsigned long seq;
1625         int mode;
1626         u64 ns;
1627
1628         do {
1629                 seq = read_seqcount_begin(&gtod->seq);
1630                 mode = gtod->clock.vclock_mode;
1631                 ts->tv_sec = gtod->wall_time_sec;
1632                 ns = gtod->nsec_base;
1633                 ns += vgettsc(cycle_now);
1634                 ns >>= gtod->clock.shift;
1635         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1636
1637         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1638         ts->tv_nsec = ns;
1639
1640         return mode;
1641 }
1642
1643 /* returns true if host is using tsc clocksource */
1644 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1645 {
1646         /* checked again under seqlock below */
1647         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1648                 return false;
1649
1650         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1651 }
1652
1653 /* returns true if host is using tsc clocksource */
1654 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1655                                            u64 *cycle_now)
1656 {
1657         /* checked again under seqlock below */
1658         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1659                 return false;
1660
1661         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1662 }
1663 #endif
1664
1665 /*
1666  *
1667  * Assuming a stable TSC across physical CPUS, and a stable TSC
1668  * across virtual CPUs, the following condition is possible.
1669  * Each numbered line represents an event visible to both
1670  * CPUs at the next numbered event.
1671  *
1672  * "timespecX" represents host monotonic time. "tscX" represents
1673  * RDTSC value.
1674  *
1675  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1676  *
1677  * 1.  read timespec0,tsc0
1678  * 2.                                   | timespec1 = timespec0 + N
1679  *                                      | tsc1 = tsc0 + M
1680  * 3. transition to guest               | transition to guest
1681  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1682  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1683  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1684  *
1685  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1686  *
1687  *      - ret0 < ret1
1688  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1689  *              ...
1690  *      - 0 < N - M => M < N
1691  *
1692  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1693  * always the case (the difference between two distinct xtime instances
1694  * might be smaller then the difference between corresponding TSC reads,
1695  * when updating guest vcpus pvclock areas).
1696  *
1697  * To avoid that problem, do not allow visibility of distinct
1698  * system_timestamp/tsc_timestamp values simultaneously: use a master
1699  * copy of host monotonic time values. Update that master copy
1700  * in lockstep.
1701  *
1702  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1703  *
1704  */
1705
1706 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1707 {
1708 #ifdef CONFIG_X86_64
1709         struct kvm_arch *ka = &kvm->arch;
1710         int vclock_mode;
1711         bool host_tsc_clocksource, vcpus_matched;
1712
1713         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1714                         atomic_read(&kvm->online_vcpus));
1715
1716         /*
1717          * If the host uses TSC clock, then passthrough TSC as stable
1718          * to the guest.
1719          */
1720         host_tsc_clocksource = kvm_get_time_and_clockread(
1721                                         &ka->master_kernel_ns,
1722                                         &ka->master_cycle_now);
1723
1724         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1725                                 && !ka->backwards_tsc_observed
1726                                 && !ka->boot_vcpu_runs_old_kvmclock;
1727
1728         if (ka->use_master_clock)
1729                 atomic_set(&kvm_guest_has_master_clock, 1);
1730
1731         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1732         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1733                                         vcpus_matched);
1734 #endif
1735 }
1736
1737 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1738 {
1739         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1740 }
1741
1742 static void kvm_gen_update_masterclock(struct kvm *kvm)
1743 {
1744 #ifdef CONFIG_X86_64
1745         int i;
1746         struct kvm_vcpu *vcpu;
1747         struct kvm_arch *ka = &kvm->arch;
1748
1749         spin_lock(&ka->pvclock_gtod_sync_lock);
1750         kvm_make_mclock_inprogress_request(kvm);
1751         /* no guest entries from this point */
1752         pvclock_update_vm_gtod_copy(kvm);
1753
1754         kvm_for_each_vcpu(i, vcpu, kvm)
1755                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1756
1757         /* guest entries allowed */
1758         kvm_for_each_vcpu(i, vcpu, kvm)
1759                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1760
1761         spin_unlock(&ka->pvclock_gtod_sync_lock);
1762 #endif
1763 }
1764
1765 u64 get_kvmclock_ns(struct kvm *kvm)
1766 {
1767         struct kvm_arch *ka = &kvm->arch;
1768         struct pvclock_vcpu_time_info hv_clock;
1769         u64 ret;
1770
1771         spin_lock(&ka->pvclock_gtod_sync_lock);
1772         if (!ka->use_master_clock) {
1773                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1774                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1775         }
1776
1777         hv_clock.tsc_timestamp = ka->master_cycle_now;
1778         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1779         spin_unlock(&ka->pvclock_gtod_sync_lock);
1780
1781         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1782         get_cpu();
1783
1784         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1785                            &hv_clock.tsc_shift,
1786                            &hv_clock.tsc_to_system_mul);
1787         ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1788
1789         put_cpu();
1790
1791         return ret;
1792 }
1793
1794 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1795 {
1796         struct kvm_vcpu_arch *vcpu = &v->arch;
1797         struct pvclock_vcpu_time_info guest_hv_clock;
1798
1799         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1800                 &guest_hv_clock, sizeof(guest_hv_clock))))
1801                 return;
1802
1803         /* This VCPU is paused, but it's legal for a guest to read another
1804          * VCPU's kvmclock, so we really have to follow the specification where
1805          * it says that version is odd if data is being modified, and even after
1806          * it is consistent.
1807          *
1808          * Version field updates must be kept separate.  This is because
1809          * kvm_write_guest_cached might use a "rep movs" instruction, and
1810          * writes within a string instruction are weakly ordered.  So there
1811          * are three writes overall.
1812          *
1813          * As a small optimization, only write the version field in the first
1814          * and third write.  The vcpu->pv_time cache is still valid, because the
1815          * version field is the first in the struct.
1816          */
1817         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1818
1819         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1820         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1821                                 &vcpu->hv_clock,
1822                                 sizeof(vcpu->hv_clock.version));
1823
1824         smp_wmb();
1825
1826         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1827         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1828
1829         if (vcpu->pvclock_set_guest_stopped_request) {
1830                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1831                 vcpu->pvclock_set_guest_stopped_request = false;
1832         }
1833
1834         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1835
1836         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1837                                 &vcpu->hv_clock,
1838                                 sizeof(vcpu->hv_clock));
1839
1840         smp_wmb();
1841
1842         vcpu->hv_clock.version++;
1843         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1844                                 &vcpu->hv_clock,
1845                                 sizeof(vcpu->hv_clock.version));
1846 }
1847
1848 static int kvm_guest_time_update(struct kvm_vcpu *v)
1849 {
1850         unsigned long flags, tgt_tsc_khz;
1851         struct kvm_vcpu_arch *vcpu = &v->arch;
1852         struct kvm_arch *ka = &v->kvm->arch;
1853         s64 kernel_ns;
1854         u64 tsc_timestamp, host_tsc;
1855         u8 pvclock_flags;
1856         bool use_master_clock;
1857
1858         kernel_ns = 0;
1859         host_tsc = 0;
1860
1861         /*
1862          * If the host uses TSC clock, then passthrough TSC as stable
1863          * to the guest.
1864          */
1865         spin_lock(&ka->pvclock_gtod_sync_lock);
1866         use_master_clock = ka->use_master_clock;
1867         if (use_master_clock) {
1868                 host_tsc = ka->master_cycle_now;
1869                 kernel_ns = ka->master_kernel_ns;
1870         }
1871         spin_unlock(&ka->pvclock_gtod_sync_lock);
1872
1873         /* Keep irq disabled to prevent changes to the clock */
1874         local_irq_save(flags);
1875         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1876         if (unlikely(tgt_tsc_khz == 0)) {
1877                 local_irq_restore(flags);
1878                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1879                 return 1;
1880         }
1881         if (!use_master_clock) {
1882                 host_tsc = rdtsc();
1883                 kernel_ns = ktime_get_boot_ns();
1884         }
1885
1886         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1887
1888         /*
1889          * We may have to catch up the TSC to match elapsed wall clock
1890          * time for two reasons, even if kvmclock is used.
1891          *   1) CPU could have been running below the maximum TSC rate
1892          *   2) Broken TSC compensation resets the base at each VCPU
1893          *      entry to avoid unknown leaps of TSC even when running
1894          *      again on the same CPU.  This may cause apparent elapsed
1895          *      time to disappear, and the guest to stand still or run
1896          *      very slowly.
1897          */
1898         if (vcpu->tsc_catchup) {
1899                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1900                 if (tsc > tsc_timestamp) {
1901                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1902                         tsc_timestamp = tsc;
1903                 }
1904         }
1905
1906         local_irq_restore(flags);
1907
1908         /* With all the info we got, fill in the values */
1909
1910         if (kvm_has_tsc_control)
1911                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1912
1913         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1914                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1915                                    &vcpu->hv_clock.tsc_shift,
1916                                    &vcpu->hv_clock.tsc_to_system_mul);
1917                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1918         }
1919
1920         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1921         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1922         vcpu->last_guest_tsc = tsc_timestamp;
1923
1924         /* If the host uses TSC clocksource, then it is stable */
1925         pvclock_flags = 0;
1926         if (use_master_clock)
1927                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1928
1929         vcpu->hv_clock.flags = pvclock_flags;
1930
1931         if (vcpu->pv_time_enabled)
1932                 kvm_setup_pvclock_page(v);
1933         if (v == kvm_get_vcpu(v->kvm, 0))
1934                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1935         return 0;
1936 }
1937
1938 /*
1939  * kvmclock updates which are isolated to a given vcpu, such as
1940  * vcpu->cpu migration, should not allow system_timestamp from
1941  * the rest of the vcpus to remain static. Otherwise ntp frequency
1942  * correction applies to one vcpu's system_timestamp but not
1943  * the others.
1944  *
1945  * So in those cases, request a kvmclock update for all vcpus.
1946  * We need to rate-limit these requests though, as they can
1947  * considerably slow guests that have a large number of vcpus.
1948  * The time for a remote vcpu to update its kvmclock is bound
1949  * by the delay we use to rate-limit the updates.
1950  */
1951
1952 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1953
1954 static void kvmclock_update_fn(struct work_struct *work)
1955 {
1956         int i;
1957         struct delayed_work *dwork = to_delayed_work(work);
1958         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1959                                            kvmclock_update_work);
1960         struct kvm *kvm = container_of(ka, struct kvm, arch);
1961         struct kvm_vcpu *vcpu;
1962
1963         kvm_for_each_vcpu(i, vcpu, kvm) {
1964                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1965                 kvm_vcpu_kick(vcpu);
1966         }
1967 }
1968
1969 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1970 {
1971         struct kvm *kvm = v->kvm;
1972
1973         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1974         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1975                                         KVMCLOCK_UPDATE_DELAY);
1976 }
1977
1978 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1979
1980 static void kvmclock_sync_fn(struct work_struct *work)
1981 {
1982         struct delayed_work *dwork = to_delayed_work(work);
1983         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1984                                            kvmclock_sync_work);
1985         struct kvm *kvm = container_of(ka, struct kvm, arch);
1986
1987         if (!kvmclock_periodic_sync)
1988                 return;
1989
1990         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1991         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1992                                         KVMCLOCK_SYNC_PERIOD);
1993 }
1994
1995 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1996 {
1997         u64 mcg_cap = vcpu->arch.mcg_cap;
1998         unsigned bank_num = mcg_cap & 0xff;
1999
2000         switch (msr) {
2001         case MSR_IA32_MCG_STATUS:
2002                 vcpu->arch.mcg_status = data;
2003                 break;
2004         case MSR_IA32_MCG_CTL:
2005                 if (!(mcg_cap & MCG_CTL_P))
2006                         return 1;
2007                 if (data != 0 && data != ~(u64)0)
2008                         return -1;
2009                 vcpu->arch.mcg_ctl = data;
2010                 break;
2011         default:
2012                 if (msr >= MSR_IA32_MC0_CTL &&
2013                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2014                         u32 offset = msr - MSR_IA32_MC0_CTL;
2015                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2016                          * some Linux kernels though clear bit 10 in bank 4 to
2017                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2018                          * this to avoid an uncatched #GP in the guest
2019                          */
2020                         if ((offset & 0x3) == 0 &&
2021                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2022                                 return -1;
2023                         vcpu->arch.mce_banks[offset] = data;
2024                         break;
2025                 }
2026                 return 1;
2027         }
2028         return 0;
2029 }
2030
2031 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2032 {
2033         struct kvm *kvm = vcpu->kvm;
2034         int lm = is_long_mode(vcpu);
2035         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2036                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2037         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2038                 : kvm->arch.xen_hvm_config.blob_size_32;
2039         u32 page_num = data & ~PAGE_MASK;
2040         u64 page_addr = data & PAGE_MASK;
2041         u8 *page;
2042         int r;
2043
2044         r = -E2BIG;
2045         if (page_num >= blob_size)
2046                 goto out;
2047         r = -ENOMEM;
2048         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2049         if (IS_ERR(page)) {
2050                 r = PTR_ERR(page);
2051                 goto out;
2052         }
2053         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2054                 goto out_free;
2055         r = 0;
2056 out_free:
2057         kfree(page);
2058 out:
2059         return r;
2060 }
2061
2062 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2063 {
2064         gpa_t gpa = data & ~0x3f;
2065
2066         /* Bits 3:5 are reserved, Should be zero */
2067         if (data & 0x38)
2068                 return 1;
2069
2070         vcpu->arch.apf.msr_val = data;
2071
2072         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2073                 kvm_clear_async_pf_completion_queue(vcpu);
2074                 kvm_async_pf_hash_reset(vcpu);
2075                 return 0;
2076         }
2077
2078         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2079                                         sizeof(u32)))
2080                 return 1;
2081
2082         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2083         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2084         kvm_async_pf_wakeup_all(vcpu);
2085         return 0;
2086 }
2087
2088 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2089 {
2090         vcpu->arch.pv_time_enabled = false;
2091 }
2092
2093 static void record_steal_time(struct kvm_vcpu *vcpu)
2094 {
2095         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2096                 return;
2097
2098         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2099                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2100                 return;
2101
2102         vcpu->arch.st.steal.preempted = 0;
2103
2104         if (vcpu->arch.st.steal.version & 1)
2105                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2106
2107         vcpu->arch.st.steal.version += 1;
2108
2109         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2110                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2111
2112         smp_wmb();
2113
2114         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2115                 vcpu->arch.st.last_steal;
2116         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2117
2118         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2119                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2120
2121         smp_wmb();
2122
2123         vcpu->arch.st.steal.version += 1;
2124
2125         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2126                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2127 }
2128
2129 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2130 {
2131         bool pr = false;
2132         u32 msr = msr_info->index;
2133         u64 data = msr_info->data;
2134
2135         switch (msr) {
2136         case MSR_AMD64_NB_CFG:
2137         case MSR_IA32_UCODE_REV:
2138         case MSR_IA32_UCODE_WRITE:
2139         case MSR_VM_HSAVE_PA:
2140         case MSR_AMD64_PATCH_LOADER:
2141         case MSR_AMD64_BU_CFG2:
2142         case MSR_AMD64_DC_CFG:
2143                 break;
2144
2145         case MSR_EFER:
2146                 return set_efer(vcpu, data);
2147         case MSR_K7_HWCR:
2148                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2149                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2150                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2151                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2152                 if (data != 0) {
2153                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2154                                     data);
2155                         return 1;
2156                 }
2157                 break;
2158         case MSR_FAM10H_MMIO_CONF_BASE:
2159                 if (data != 0) {
2160                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2161                                     "0x%llx\n", data);
2162                         return 1;
2163                 }
2164                 break;
2165         case MSR_IA32_DEBUGCTLMSR:
2166                 if (!data) {
2167                         /* We support the non-activated case already */
2168                         break;
2169                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2170                         /* Values other than LBR and BTF are vendor-specific,
2171                            thus reserved and should throw a #GP */
2172                         return 1;
2173                 }
2174                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2175                             __func__, data);
2176                 break;
2177         case 0x200 ... 0x2ff:
2178                 return kvm_mtrr_set_msr(vcpu, msr, data);
2179         case MSR_IA32_APICBASE:
2180                 return kvm_set_apic_base(vcpu, msr_info);
2181         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2182                 return kvm_x2apic_msr_write(vcpu, msr, data);
2183         case MSR_IA32_TSCDEADLINE:
2184                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2185                 break;
2186         case MSR_IA32_TSC_ADJUST:
2187                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2188                         if (!msr_info->host_initiated) {
2189                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2190                                 adjust_tsc_offset_guest(vcpu, adj);
2191                         }
2192                         vcpu->arch.ia32_tsc_adjust_msr = data;
2193                 }
2194                 break;
2195         case MSR_IA32_MISC_ENABLE:
2196                 vcpu->arch.ia32_misc_enable_msr = data;
2197                 break;
2198         case MSR_IA32_SMBASE:
2199                 if (!msr_info->host_initiated)
2200                         return 1;
2201                 vcpu->arch.smbase = data;
2202                 break;
2203         case MSR_KVM_WALL_CLOCK_NEW:
2204         case MSR_KVM_WALL_CLOCK:
2205                 vcpu->kvm->arch.wall_clock = data;
2206                 kvm_write_wall_clock(vcpu->kvm, data);
2207                 break;
2208         case MSR_KVM_SYSTEM_TIME_NEW:
2209         case MSR_KVM_SYSTEM_TIME: {
2210                 struct kvm_arch *ka = &vcpu->kvm->arch;
2211
2212                 kvmclock_reset(vcpu);
2213
2214                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2215                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2216
2217                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2218                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2219
2220                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2221                 }
2222
2223                 vcpu->arch.time = data;
2224                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2225
2226                 /* we verify if the enable bit is set... */
2227                 if (!(data & 1))
2228                         break;
2229
2230                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2231                      &vcpu->arch.pv_time, data & ~1ULL,
2232                      sizeof(struct pvclock_vcpu_time_info)))
2233                         vcpu->arch.pv_time_enabled = false;
2234                 else
2235                         vcpu->arch.pv_time_enabled = true;
2236
2237                 break;
2238         }
2239         case MSR_KVM_ASYNC_PF_EN:
2240                 if (kvm_pv_enable_async_pf(vcpu, data))
2241                         return 1;
2242                 break;
2243         case MSR_KVM_STEAL_TIME:
2244
2245                 if (unlikely(!sched_info_on()))
2246                         return 1;
2247
2248                 if (data & KVM_STEAL_RESERVED_MASK)
2249                         return 1;
2250
2251                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2252                                                 data & KVM_STEAL_VALID_BITS,
2253                                                 sizeof(struct kvm_steal_time)))
2254                         return 1;
2255
2256                 vcpu->arch.st.msr_val = data;
2257
2258                 if (!(data & KVM_MSR_ENABLED))
2259                         break;
2260
2261                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2262
2263                 break;
2264         case MSR_KVM_PV_EOI_EN:
2265                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2266                         return 1;
2267                 break;
2268
2269         case MSR_IA32_MCG_CTL:
2270         case MSR_IA32_MCG_STATUS:
2271         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2272                 return set_msr_mce(vcpu, msr, data);
2273
2274         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2275         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2276                 pr = true; /* fall through */
2277         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2278         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2279                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2280                         return kvm_pmu_set_msr(vcpu, msr_info);
2281
2282                 if (pr || data != 0)
2283                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2284                                     "0x%x data 0x%llx\n", msr, data);
2285                 break;
2286         case MSR_K7_CLK_CTL:
2287                 /*
2288                  * Ignore all writes to this no longer documented MSR.
2289                  * Writes are only relevant for old K7 processors,
2290                  * all pre-dating SVM, but a recommended workaround from
2291                  * AMD for these chips. It is possible to specify the
2292                  * affected processor models on the command line, hence
2293                  * the need to ignore the workaround.
2294                  */
2295                 break;
2296         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2297         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2298         case HV_X64_MSR_CRASH_CTL:
2299         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2300                 return kvm_hv_set_msr_common(vcpu, msr, data,
2301                                              msr_info->host_initiated);
2302         case MSR_IA32_BBL_CR_CTL3:
2303                 /* Drop writes to this legacy MSR -- see rdmsr
2304                  * counterpart for further detail.
2305                  */
2306                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2307                 break;
2308         case MSR_AMD64_OSVW_ID_LENGTH:
2309                 if (!guest_cpuid_has_osvw(vcpu))
2310                         return 1;
2311                 vcpu->arch.osvw.length = data;
2312                 break;
2313         case MSR_AMD64_OSVW_STATUS:
2314                 if (!guest_cpuid_has_osvw(vcpu))
2315                         return 1;
2316                 vcpu->arch.osvw.status = data;
2317                 break;
2318         case MSR_PLATFORM_INFO:
2319                 if (!msr_info->host_initiated ||
2320                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2321                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2322                      cpuid_fault_enabled(vcpu)))
2323                         return 1;
2324                 vcpu->arch.msr_platform_info = data;
2325                 break;
2326         case MSR_MISC_FEATURES_ENABLES:
2327                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2328                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2329                      !supports_cpuid_fault(vcpu)))
2330                         return 1;
2331                 vcpu->arch.msr_misc_features_enables = data;
2332                 break;
2333         default:
2334                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2335                         return xen_hvm_config(vcpu, data);
2336                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2337                         return kvm_pmu_set_msr(vcpu, msr_info);
2338                 if (!ignore_msrs) {
2339                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2340                                     msr, data);
2341                         return 1;
2342                 } else {
2343                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2344                                     msr, data);
2345                         break;
2346                 }
2347         }
2348         return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2351
2352
2353 /*
2354  * Reads an msr value (of 'msr_index') into 'pdata'.
2355  * Returns 0 on success, non-0 otherwise.
2356  * Assumes vcpu_load() was already called.
2357  */
2358 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2359 {
2360         return kvm_x86_ops->get_msr(vcpu, msr);
2361 }
2362 EXPORT_SYMBOL_GPL(kvm_get_msr);
2363
2364 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2365 {
2366         u64 data;
2367         u64 mcg_cap = vcpu->arch.mcg_cap;
2368         unsigned bank_num = mcg_cap & 0xff;
2369
2370         switch (msr) {
2371         case MSR_IA32_P5_MC_ADDR:
2372         case MSR_IA32_P5_MC_TYPE:
2373                 data = 0;
2374                 break;
2375         case MSR_IA32_MCG_CAP:
2376                 data = vcpu->arch.mcg_cap;
2377                 break;
2378         case MSR_IA32_MCG_CTL:
2379                 if (!(mcg_cap & MCG_CTL_P))
2380                         return 1;
2381                 data = vcpu->arch.mcg_ctl;
2382                 break;
2383         case MSR_IA32_MCG_STATUS:
2384                 data = vcpu->arch.mcg_status;
2385                 break;
2386         default:
2387                 if (msr >= MSR_IA32_MC0_CTL &&
2388                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2389                         u32 offset = msr - MSR_IA32_MC0_CTL;
2390                         data = vcpu->arch.mce_banks[offset];
2391                         break;
2392                 }
2393                 return 1;
2394         }
2395         *pdata = data;
2396         return 0;
2397 }
2398
2399 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2400 {
2401         switch (msr_info->index) {
2402         case MSR_IA32_PLATFORM_ID:
2403         case MSR_IA32_EBL_CR_POWERON:
2404         case MSR_IA32_DEBUGCTLMSR:
2405         case MSR_IA32_LASTBRANCHFROMIP:
2406         case MSR_IA32_LASTBRANCHTOIP:
2407         case MSR_IA32_LASTINTFROMIP:
2408         case MSR_IA32_LASTINTTOIP:
2409         case MSR_K8_SYSCFG:
2410         case MSR_K8_TSEG_ADDR:
2411         case MSR_K8_TSEG_MASK:
2412         case MSR_K7_HWCR:
2413         case MSR_VM_HSAVE_PA:
2414         case MSR_K8_INT_PENDING_MSG:
2415         case MSR_AMD64_NB_CFG:
2416         case MSR_FAM10H_MMIO_CONF_BASE:
2417         case MSR_AMD64_BU_CFG2:
2418         case MSR_IA32_PERF_CTL:
2419         case MSR_AMD64_DC_CFG:
2420                 msr_info->data = 0;
2421                 break;
2422         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2423         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2424         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2425         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2426                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2427                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2428                 msr_info->data = 0;
2429                 break;
2430         case MSR_IA32_UCODE_REV:
2431                 msr_info->data = 0x100000000ULL;
2432                 break;
2433         case MSR_MTRRcap:
2434         case 0x200 ... 0x2ff:
2435                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2436         case 0xcd: /* fsb frequency */
2437                 msr_info->data = 3;
2438                 break;
2439                 /*
2440                  * MSR_EBC_FREQUENCY_ID
2441                  * Conservative value valid for even the basic CPU models.
2442                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2443                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2444                  * and 266MHz for model 3, or 4. Set Core Clock
2445                  * Frequency to System Bus Frequency Ratio to 1 (bits
2446                  * 31:24) even though these are only valid for CPU
2447                  * models > 2, however guests may end up dividing or
2448                  * multiplying by zero otherwise.
2449                  */
2450         case MSR_EBC_FREQUENCY_ID:
2451                 msr_info->data = 1 << 24;
2452                 break;
2453         case MSR_IA32_APICBASE:
2454                 msr_info->data = kvm_get_apic_base(vcpu);
2455                 break;
2456         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2457                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2458                 break;
2459         case MSR_IA32_TSCDEADLINE:
2460                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2461                 break;
2462         case MSR_IA32_TSC_ADJUST:
2463                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2464                 break;
2465         case MSR_IA32_MISC_ENABLE:
2466                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2467                 break;
2468         case MSR_IA32_SMBASE:
2469                 if (!msr_info->host_initiated)
2470                         return 1;
2471                 msr_info->data = vcpu->arch.smbase;
2472                 break;
2473         case MSR_IA32_PERF_STATUS:
2474                 /* TSC increment by tick */
2475                 msr_info->data = 1000ULL;
2476                 /* CPU multiplier */
2477                 msr_info->data |= (((uint64_t)4ULL) << 40);
2478                 break;
2479         case MSR_EFER:
2480                 msr_info->data = vcpu->arch.efer;
2481                 break;
2482         case MSR_KVM_WALL_CLOCK:
2483         case MSR_KVM_WALL_CLOCK_NEW:
2484                 msr_info->data = vcpu->kvm->arch.wall_clock;
2485                 break;
2486         case MSR_KVM_SYSTEM_TIME:
2487         case MSR_KVM_SYSTEM_TIME_NEW:
2488                 msr_info->data = vcpu->arch.time;
2489                 break;
2490         case MSR_KVM_ASYNC_PF_EN:
2491                 msr_info->data = vcpu->arch.apf.msr_val;
2492                 break;
2493         case MSR_KVM_STEAL_TIME:
2494                 msr_info->data = vcpu->arch.st.msr_val;
2495                 break;
2496         case MSR_KVM_PV_EOI_EN:
2497                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2498                 break;
2499         case MSR_IA32_P5_MC_ADDR:
2500         case MSR_IA32_P5_MC_TYPE:
2501         case MSR_IA32_MCG_CAP:
2502         case MSR_IA32_MCG_CTL:
2503         case MSR_IA32_MCG_STATUS:
2504         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2505                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2506         case MSR_K7_CLK_CTL:
2507                 /*
2508                  * Provide expected ramp-up count for K7. All other
2509                  * are set to zero, indicating minimum divisors for
2510                  * every field.
2511                  *
2512                  * This prevents guest kernels on AMD host with CPU
2513                  * type 6, model 8 and higher from exploding due to
2514                  * the rdmsr failing.
2515                  */
2516                 msr_info->data = 0x20000000;
2517                 break;
2518         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2519         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2520         case HV_X64_MSR_CRASH_CTL:
2521         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2522                 return kvm_hv_get_msr_common(vcpu,
2523                                              msr_info->index, &msr_info->data);
2524                 break;
2525         case MSR_IA32_BBL_CR_CTL3:
2526                 /* This legacy MSR exists but isn't fully documented in current
2527                  * silicon.  It is however accessed by winxp in very narrow
2528                  * scenarios where it sets bit #19, itself documented as
2529                  * a "reserved" bit.  Best effort attempt to source coherent
2530                  * read data here should the balance of the register be
2531                  * interpreted by the guest:
2532                  *
2533                  * L2 cache control register 3: 64GB range, 256KB size,
2534                  * enabled, latency 0x1, configured
2535                  */
2536                 msr_info->data = 0xbe702111;
2537                 break;
2538         case MSR_AMD64_OSVW_ID_LENGTH:
2539                 if (!guest_cpuid_has_osvw(vcpu))
2540                         return 1;
2541                 msr_info->data = vcpu->arch.osvw.length;
2542                 break;
2543         case MSR_AMD64_OSVW_STATUS:
2544                 if (!guest_cpuid_has_osvw(vcpu))
2545                         return 1;
2546                 msr_info->data = vcpu->arch.osvw.status;
2547                 break;
2548         case MSR_PLATFORM_INFO:
2549                 msr_info->data = vcpu->arch.msr_platform_info;
2550                 break;
2551         case MSR_MISC_FEATURES_ENABLES:
2552                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2553                 break;
2554         default:
2555                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2556                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2557                 if (!ignore_msrs) {
2558                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2559                                                msr_info->index);
2560                         return 1;
2561                 } else {
2562                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2563                         msr_info->data = 0;
2564                 }
2565                 break;
2566         }
2567         return 0;
2568 }
2569 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2570
2571 /*
2572  * Read or write a bunch of msrs. All parameters are kernel addresses.
2573  *
2574  * @return number of msrs set successfully.
2575  */
2576 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2577                     struct kvm_msr_entry *entries,
2578                     int (*do_msr)(struct kvm_vcpu *vcpu,
2579                                   unsigned index, u64 *data))
2580 {
2581         int i, idx;
2582
2583         idx = srcu_read_lock(&vcpu->kvm->srcu);
2584         for (i = 0; i < msrs->nmsrs; ++i)
2585                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2586                         break;
2587         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2588
2589         return i;
2590 }
2591
2592 /*
2593  * Read or write a bunch of msrs. Parameters are user addresses.
2594  *
2595  * @return number of msrs set successfully.
2596  */
2597 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2598                   int (*do_msr)(struct kvm_vcpu *vcpu,
2599                                 unsigned index, u64 *data),
2600                   int writeback)
2601 {
2602         struct kvm_msrs msrs;
2603         struct kvm_msr_entry *entries;
2604         int r, n;
2605         unsigned size;
2606
2607         r = -EFAULT;
2608         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2609                 goto out;
2610
2611         r = -E2BIG;
2612         if (msrs.nmsrs >= MAX_IO_MSRS)
2613                 goto out;
2614
2615         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2616         entries = memdup_user(user_msrs->entries, size);
2617         if (IS_ERR(entries)) {
2618                 r = PTR_ERR(entries);
2619                 goto out;
2620         }
2621
2622         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2623         if (r < 0)
2624                 goto out_free;
2625
2626         r = -EFAULT;
2627         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2628                 goto out_free;
2629
2630         r = n;
2631
2632 out_free:
2633         kfree(entries);
2634 out:
2635         return r;
2636 }
2637
2638 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2639 {
2640         int r;
2641
2642         switch (ext) {
2643         case KVM_CAP_IRQCHIP:
2644         case KVM_CAP_HLT:
2645         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2646         case KVM_CAP_SET_TSS_ADDR:
2647         case KVM_CAP_EXT_CPUID:
2648         case KVM_CAP_EXT_EMUL_CPUID:
2649         case KVM_CAP_CLOCKSOURCE:
2650         case KVM_CAP_PIT:
2651         case KVM_CAP_NOP_IO_DELAY:
2652         case KVM_CAP_MP_STATE:
2653         case KVM_CAP_SYNC_MMU:
2654         case KVM_CAP_USER_NMI:
2655         case KVM_CAP_REINJECT_CONTROL:
2656         case KVM_CAP_IRQ_INJECT_STATUS:
2657         case KVM_CAP_IOEVENTFD:
2658         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2659         case KVM_CAP_PIT2:
2660         case KVM_CAP_PIT_STATE2:
2661         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2662         case KVM_CAP_XEN_HVM:
2663         case KVM_CAP_VCPU_EVENTS:
2664         case KVM_CAP_HYPERV:
2665         case KVM_CAP_HYPERV_VAPIC:
2666         case KVM_CAP_HYPERV_SPIN:
2667         case KVM_CAP_HYPERV_SYNIC:
2668         case KVM_CAP_HYPERV_SYNIC2:
2669         case KVM_CAP_HYPERV_VP_INDEX:
2670         case KVM_CAP_PCI_SEGMENT:
2671         case KVM_CAP_DEBUGREGS:
2672         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2673         case KVM_CAP_XSAVE:
2674         case KVM_CAP_ASYNC_PF:
2675         case KVM_CAP_GET_TSC_KHZ:
2676         case KVM_CAP_KVMCLOCK_CTRL:
2677         case KVM_CAP_READONLY_MEM:
2678         case KVM_CAP_HYPERV_TIME:
2679         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2680         case KVM_CAP_TSC_DEADLINE_TIMER:
2681         case KVM_CAP_ENABLE_CAP_VM:
2682         case KVM_CAP_DISABLE_QUIRKS:
2683         case KVM_CAP_SET_BOOT_CPU_ID:
2684         case KVM_CAP_SPLIT_IRQCHIP:
2685         case KVM_CAP_IMMEDIATE_EXIT:
2686                 r = 1;
2687                 break;
2688         case KVM_CAP_ADJUST_CLOCK:
2689                 r = KVM_CLOCK_TSC_STABLE;
2690                 break;
2691         case KVM_CAP_X86_GUEST_MWAIT:
2692                 r = kvm_mwait_in_guest();
2693                 break;
2694         case KVM_CAP_X86_SMM:
2695                 /* SMBASE is usually relocated above 1M on modern chipsets,
2696                  * and SMM handlers might indeed rely on 4G segment limits,
2697                  * so do not report SMM to be available if real mode is
2698                  * emulated via vm86 mode.  Still, do not go to great lengths
2699                  * to avoid userspace's usage of the feature, because it is a
2700                  * fringe case that is not enabled except via specific settings
2701                  * of the module parameters.
2702                  */
2703                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2704                 break;
2705         case KVM_CAP_VAPIC:
2706                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2707                 break;
2708         case KVM_CAP_NR_VCPUS:
2709                 r = KVM_SOFT_MAX_VCPUS;
2710                 break;
2711         case KVM_CAP_MAX_VCPUS:
2712                 r = KVM_MAX_VCPUS;
2713                 break;
2714         case KVM_CAP_NR_MEMSLOTS:
2715                 r = KVM_USER_MEM_SLOTS;
2716                 break;
2717         case KVM_CAP_PV_MMU:    /* obsolete */
2718                 r = 0;
2719                 break;
2720         case KVM_CAP_MCE:
2721                 r = KVM_MAX_MCE_BANKS;
2722                 break;
2723         case KVM_CAP_XCRS:
2724                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2725                 break;
2726         case KVM_CAP_TSC_CONTROL:
2727                 r = kvm_has_tsc_control;
2728                 break;
2729         case KVM_CAP_X2APIC_API:
2730                 r = KVM_X2APIC_API_VALID_FLAGS;
2731                 break;
2732         default:
2733                 r = 0;
2734                 break;
2735         }
2736         return r;
2737
2738 }
2739
2740 long kvm_arch_dev_ioctl(struct file *filp,
2741                         unsigned int ioctl, unsigned long arg)
2742 {
2743         void __user *argp = (void __user *)arg;
2744         long r;
2745
2746         switch (ioctl) {
2747         case KVM_GET_MSR_INDEX_LIST: {
2748                 struct kvm_msr_list __user *user_msr_list = argp;
2749                 struct kvm_msr_list msr_list;
2750                 unsigned n;
2751
2752                 r = -EFAULT;
2753                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2754                         goto out;
2755                 n = msr_list.nmsrs;
2756                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2757                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2758                         goto out;
2759                 r = -E2BIG;
2760                 if (n < msr_list.nmsrs)
2761                         goto out;
2762                 r = -EFAULT;
2763                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2764                                  num_msrs_to_save * sizeof(u32)))
2765                         goto out;
2766                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2767                                  &emulated_msrs,
2768                                  num_emulated_msrs * sizeof(u32)))
2769                         goto out;
2770                 r = 0;
2771                 break;
2772         }
2773         case KVM_GET_SUPPORTED_CPUID:
2774         case KVM_GET_EMULATED_CPUID: {
2775                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2776                 struct kvm_cpuid2 cpuid;
2777
2778                 r = -EFAULT;
2779                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2780                         goto out;
2781
2782                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2783                                             ioctl);
2784                 if (r)
2785                         goto out;
2786
2787                 r = -EFAULT;
2788                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2789                         goto out;
2790                 r = 0;
2791                 break;
2792         }
2793         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2794                 r = -EFAULT;
2795                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2796                                  sizeof(kvm_mce_cap_supported)))
2797                         goto out;
2798                 r = 0;
2799                 break;
2800         }
2801         default:
2802                 r = -EINVAL;
2803         }
2804 out:
2805         return r;
2806 }
2807
2808 static void wbinvd_ipi(void *garbage)
2809 {
2810         wbinvd();
2811 }
2812
2813 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2814 {
2815         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2816 }
2817
2818 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2819 {
2820         /* Address WBINVD may be executed by guest */
2821         if (need_emulate_wbinvd(vcpu)) {
2822                 if (kvm_x86_ops->has_wbinvd_exit())
2823                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2824                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2825                         smp_call_function_single(vcpu->cpu,
2826                                         wbinvd_ipi, NULL, 1);
2827         }
2828
2829         kvm_x86_ops->vcpu_load(vcpu, cpu);
2830
2831         /* Apply any externally detected TSC adjustments (due to suspend) */
2832         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2833                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2834                 vcpu->arch.tsc_offset_adjustment = 0;
2835                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2836         }
2837
2838         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2839                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2840                                 rdtsc() - vcpu->arch.last_host_tsc;
2841                 if (tsc_delta < 0)
2842                         mark_tsc_unstable("KVM discovered backwards TSC");
2843
2844                 if (check_tsc_unstable()) {
2845                         u64 offset = kvm_compute_tsc_offset(vcpu,
2846                                                 vcpu->arch.last_guest_tsc);
2847                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2848                         vcpu->arch.tsc_catchup = 1;
2849                 }
2850
2851                 if (kvm_lapic_hv_timer_in_use(vcpu))
2852                         kvm_lapic_restart_hv_timer(vcpu);
2853
2854                 /*
2855                  * On a host with synchronized TSC, there is no need to update
2856                  * kvmclock on vcpu->cpu migration
2857                  */
2858                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2859                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2860                 if (vcpu->cpu != cpu)
2861                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2862                 vcpu->cpu = cpu;
2863         }
2864
2865         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2866 }
2867
2868 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2869 {
2870         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2871                 return;
2872
2873         vcpu->arch.st.steal.preempted = 1;
2874
2875         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2876                         &vcpu->arch.st.steal.preempted,
2877                         offsetof(struct kvm_steal_time, preempted),
2878                         sizeof(vcpu->arch.st.steal.preempted));
2879 }
2880
2881 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2882 {
2883         int idx;
2884         /*
2885          * Disable page faults because we're in atomic context here.
2886          * kvm_write_guest_offset_cached() would call might_fault()
2887          * that relies on pagefault_disable() to tell if there's a
2888          * bug. NOTE: the write to guest memory may not go through if
2889          * during postcopy live migration or if there's heavy guest
2890          * paging.
2891          */
2892         pagefault_disable();
2893         /*
2894          * kvm_memslots() will be called by
2895          * kvm_write_guest_offset_cached() so take the srcu lock.
2896          */
2897         idx = srcu_read_lock(&vcpu->kvm->srcu);
2898         kvm_steal_time_set_preempted(vcpu);
2899         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2900         pagefault_enable();
2901         kvm_x86_ops->vcpu_put(vcpu);
2902         kvm_put_guest_fpu(vcpu);
2903         vcpu->arch.last_host_tsc = rdtsc();
2904 }
2905
2906 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2907                                     struct kvm_lapic_state *s)
2908 {
2909         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2910                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2911
2912         return kvm_apic_get_state(vcpu, s);
2913 }
2914
2915 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2916                                     struct kvm_lapic_state *s)
2917 {
2918         int r;
2919
2920         r = kvm_apic_set_state(vcpu, s);
2921         if (r)
2922                 return r;
2923         update_cr8_intercept(vcpu);
2924
2925         return 0;
2926 }
2927
2928 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2929 {
2930         return (!lapic_in_kernel(vcpu) ||
2931                 kvm_apic_accept_pic_intr(vcpu));
2932 }
2933
2934 /*
2935  * if userspace requested an interrupt window, check that the
2936  * interrupt window is open.
2937  *
2938  * No need to exit to userspace if we already have an interrupt queued.
2939  */
2940 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2941 {
2942         return kvm_arch_interrupt_allowed(vcpu) &&
2943                 !kvm_cpu_has_interrupt(vcpu) &&
2944                 !kvm_event_needs_reinjection(vcpu) &&
2945                 kvm_cpu_accept_dm_intr(vcpu);
2946 }
2947
2948 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2949                                     struct kvm_interrupt *irq)
2950 {
2951         if (irq->irq >= KVM_NR_INTERRUPTS)
2952                 return -EINVAL;
2953
2954         if (!irqchip_in_kernel(vcpu->kvm)) {
2955                 kvm_queue_interrupt(vcpu, irq->irq, false);
2956                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2957                 return 0;
2958         }
2959
2960         /*
2961          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2962          * fail for in-kernel 8259.
2963          */
2964         if (pic_in_kernel(vcpu->kvm))
2965                 return -ENXIO;
2966
2967         if (vcpu->arch.pending_external_vector != -1)
2968                 return -EEXIST;
2969
2970         vcpu->arch.pending_external_vector = irq->irq;
2971         kvm_make_request(KVM_REQ_EVENT, vcpu);
2972         return 0;
2973 }
2974
2975 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2976 {
2977         kvm_inject_nmi(vcpu);
2978
2979         return 0;
2980 }
2981
2982 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2983 {
2984         kvm_make_request(KVM_REQ_SMI, vcpu);
2985
2986         return 0;
2987 }
2988
2989 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2990                                            struct kvm_tpr_access_ctl *tac)
2991 {
2992         if (tac->flags)
2993                 return -EINVAL;
2994         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2995         return 0;
2996 }
2997
2998 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2999                                         u64 mcg_cap)
3000 {
3001         int r;
3002         unsigned bank_num = mcg_cap & 0xff, bank;
3003
3004         r = -EINVAL;
3005         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3006                 goto out;
3007         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3008                 goto out;
3009         r = 0;
3010         vcpu->arch.mcg_cap = mcg_cap;
3011         /* Init IA32_MCG_CTL to all 1s */
3012         if (mcg_cap & MCG_CTL_P)
3013                 vcpu->arch.mcg_ctl = ~(u64)0;
3014         /* Init IA32_MCi_CTL to all 1s */
3015         for (bank = 0; bank < bank_num; bank++)
3016                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3017
3018         if (kvm_x86_ops->setup_mce)
3019                 kvm_x86_ops->setup_mce(vcpu);
3020 out:
3021         return r;
3022 }
3023
3024 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3025                                       struct kvm_x86_mce *mce)
3026 {
3027         u64 mcg_cap = vcpu->arch.mcg_cap;
3028         unsigned bank_num = mcg_cap & 0xff;
3029         u64 *banks = vcpu->arch.mce_banks;
3030
3031         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3032                 return -EINVAL;
3033         /*
3034          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3035          * reporting is disabled
3036          */
3037         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3038             vcpu->arch.mcg_ctl != ~(u64)0)
3039                 return 0;
3040         banks += 4 * mce->bank;
3041         /*
3042          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3043          * reporting is disabled for the bank
3044          */
3045         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3046                 return 0;
3047         if (mce->status & MCI_STATUS_UC) {
3048                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3049                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3050                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3051                         return 0;
3052                 }
3053                 if (banks[1] & MCI_STATUS_VAL)
3054                         mce->status |= MCI_STATUS_OVER;
3055                 banks[2] = mce->addr;
3056                 banks[3] = mce->misc;
3057                 vcpu->arch.mcg_status = mce->mcg_status;
3058                 banks[1] = mce->status;
3059                 kvm_queue_exception(vcpu, MC_VECTOR);
3060         } else if (!(banks[1] & MCI_STATUS_VAL)
3061                    || !(banks[1] & MCI_STATUS_UC)) {
3062                 if (banks[1] & MCI_STATUS_VAL)
3063                         mce->status |= MCI_STATUS_OVER;
3064                 banks[2] = mce->addr;
3065                 banks[3] = mce->misc;
3066                 banks[1] = mce->status;
3067         } else
3068                 banks[1] |= MCI_STATUS_OVER;
3069         return 0;
3070 }
3071
3072 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3073                                                struct kvm_vcpu_events *events)
3074 {
3075         process_nmi(vcpu);
3076         events->exception.injected =
3077                 vcpu->arch.exception.pending &&
3078                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3079         events->exception.nr = vcpu->arch.exception.nr;
3080         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3081         events->exception.pad = 0;
3082         events->exception.error_code = vcpu->arch.exception.error_code;
3083
3084         events->interrupt.injected =
3085                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3086         events->interrupt.nr = vcpu->arch.interrupt.nr;
3087         events->interrupt.soft = 0;
3088         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3089
3090         events->nmi.injected = vcpu->arch.nmi_injected;
3091         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3092         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3093         events->nmi.pad = 0;
3094
3095         events->sipi_vector = 0; /* never valid when reporting to user space */
3096
3097         events->smi.smm = is_smm(vcpu);
3098         events->smi.pending = vcpu->arch.smi_pending;
3099         events->smi.smm_inside_nmi =
3100                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3101         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3102
3103         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3104                          | KVM_VCPUEVENT_VALID_SHADOW
3105                          | KVM_VCPUEVENT_VALID_SMM);
3106         memset(&events->reserved, 0, sizeof(events->reserved));
3107 }
3108
3109 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3110
3111 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3112                                               struct kvm_vcpu_events *events)
3113 {
3114         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3115                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3116                               | KVM_VCPUEVENT_VALID_SHADOW
3117                               | KVM_VCPUEVENT_VALID_SMM))
3118                 return -EINVAL;
3119
3120         if (events->exception.injected &&
3121             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3122              is_guest_mode(vcpu)))
3123                 return -EINVAL;
3124
3125         /* INITs are latched while in SMM */
3126         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3127             (events->smi.smm || events->smi.pending) &&
3128             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3129                 return -EINVAL;
3130
3131         process_nmi(vcpu);
3132         vcpu->arch.exception.pending = events->exception.injected;
3133         vcpu->arch.exception.nr = events->exception.nr;
3134         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3135         vcpu->arch.exception.error_code = events->exception.error_code;
3136
3137         vcpu->arch.interrupt.pending = events->interrupt.injected;
3138         vcpu->arch.interrupt.nr = events->interrupt.nr;
3139         vcpu->arch.interrupt.soft = events->interrupt.soft;
3140         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3141                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3142                                                   events->interrupt.shadow);
3143
3144         vcpu->arch.nmi_injected = events->nmi.injected;
3145         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3146                 vcpu->arch.nmi_pending = events->nmi.pending;
3147         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3148
3149         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3150             lapic_in_kernel(vcpu))
3151                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3152
3153         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3154                 u32 hflags = vcpu->arch.hflags;
3155                 if (events->smi.smm)
3156                         hflags |= HF_SMM_MASK;
3157                 else
3158                         hflags &= ~HF_SMM_MASK;
3159                 kvm_set_hflags(vcpu, hflags);
3160
3161                 vcpu->arch.smi_pending = events->smi.pending;
3162
3163                 if (events->smi.smm) {
3164                         if (events->smi.smm_inside_nmi)
3165                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3166                         else
3167                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3168                         if (lapic_in_kernel(vcpu)) {
3169                                 if (events->smi.latched_init)
3170                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3171                                 else
3172                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3173                         }
3174                 }
3175         }
3176
3177         kvm_make_request(KVM_REQ_EVENT, vcpu);
3178
3179         return 0;
3180 }
3181
3182 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3183                                              struct kvm_debugregs *dbgregs)
3184 {
3185         unsigned long val;
3186
3187         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3188         kvm_get_dr(vcpu, 6, &val);
3189         dbgregs->dr6 = val;
3190         dbgregs->dr7 = vcpu->arch.dr7;
3191         dbgregs->flags = 0;
3192         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3193 }
3194
3195 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3196                                             struct kvm_debugregs *dbgregs)
3197 {
3198         if (dbgregs->flags)
3199                 return -EINVAL;
3200
3201         if (dbgregs->dr6 & ~0xffffffffull)
3202                 return -EINVAL;
3203         if (dbgregs->dr7 & ~0xffffffffull)
3204                 return -EINVAL;
3205
3206         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3207         kvm_update_dr0123(vcpu);
3208         vcpu->arch.dr6 = dbgregs->dr6;
3209         kvm_update_dr6(vcpu);
3210         vcpu->arch.dr7 = dbgregs->dr7;
3211         kvm_update_dr7(vcpu);
3212
3213         return 0;
3214 }
3215
3216 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3217
3218 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3219 {
3220         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3221         u64 xstate_bv = xsave->header.xfeatures;
3222         u64 valid;
3223
3224         /*
3225          * Copy legacy XSAVE area, to avoid complications with CPUID
3226          * leaves 0 and 1 in the loop below.
3227          */
3228         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3229
3230         /* Set XSTATE_BV */
3231         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3232         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3233
3234         /*
3235          * Copy each region from the possibly compacted offset to the
3236          * non-compacted offset.
3237          */
3238         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3239         while (valid) {
3240                 u64 feature = valid & -valid;
3241                 int index = fls64(feature) - 1;
3242                 void *src = get_xsave_addr(xsave, feature);
3243
3244                 if (src) {
3245                         u32 size, offset, ecx, edx;
3246                         cpuid_count(XSTATE_CPUID, index,
3247                                     &size, &offset, &ecx, &edx);
3248                         memcpy(dest + offset, src, size);
3249                 }
3250
3251                 valid -= feature;
3252         }
3253 }
3254
3255 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3256 {
3257         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3258         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3259         u64 valid;
3260
3261         /*
3262          * Copy legacy XSAVE area, to avoid complications with CPUID
3263          * leaves 0 and 1 in the loop below.
3264          */
3265         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3266
3267         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3268         xsave->header.xfeatures = xstate_bv;
3269         if (boot_cpu_has(X86_FEATURE_XSAVES))
3270                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3271
3272         /*
3273          * Copy each region from the non-compacted offset to the
3274          * possibly compacted offset.
3275          */
3276         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3277         while (valid) {
3278                 u64 feature = valid & -valid;
3279                 int index = fls64(feature) - 1;
3280                 void *dest = get_xsave_addr(xsave, feature);
3281
3282                 if (dest) {
3283                         u32 size, offset, ecx, edx;
3284                         cpuid_count(XSTATE_CPUID, index,
3285                                     &size, &offset, &ecx, &edx);
3286                         memcpy(dest, src + offset, size);
3287                 }
3288
3289                 valid -= feature;
3290         }
3291 }
3292
3293 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3294                                          struct kvm_xsave *guest_xsave)
3295 {
3296         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3297                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3298                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3299         } else {
3300                 memcpy(guest_xsave->region,
3301                         &vcpu->arch.guest_fpu.state.fxsave,
3302                         sizeof(struct fxregs_state));
3303                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3304                         XFEATURE_MASK_FPSSE;
3305         }
3306 }
3307
3308 #define XSAVE_MXCSR_OFFSET 24
3309
3310 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3311                                         struct kvm_xsave *guest_xsave)
3312 {
3313         u64 xstate_bv =
3314                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3315         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3316
3317         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3318                 /*
3319                  * Here we allow setting states that are not present in
3320                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3321                  * with old userspace.
3322                  */
3323                 if (xstate_bv & ~kvm_supported_xcr0() ||
3324                         mxcsr & ~mxcsr_feature_mask)
3325                         return -EINVAL;
3326                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3327         } else {
3328                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3329                         mxcsr & ~mxcsr_feature_mask)
3330                         return -EINVAL;
3331                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3332                         guest_xsave->region, sizeof(struct fxregs_state));
3333         }
3334         return 0;
3335 }
3336
3337 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3338                                         struct kvm_xcrs *guest_xcrs)
3339 {
3340         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3341                 guest_xcrs->nr_xcrs = 0;
3342                 return;
3343         }
3344
3345         guest_xcrs->nr_xcrs = 1;
3346         guest_xcrs->flags = 0;
3347         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3348         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3349 }
3350
3351 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3352                                        struct kvm_xcrs *guest_xcrs)
3353 {
3354         int i, r = 0;
3355
3356         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3357                 return -EINVAL;
3358
3359         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3360                 return -EINVAL;
3361
3362         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3363                 /* Only support XCR0 currently */
3364                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3365                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3366                                 guest_xcrs->xcrs[i].value);
3367                         break;
3368                 }
3369         if (r)
3370                 r = -EINVAL;
3371         return r;
3372 }
3373
3374 /*
3375  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3376  * stopped by the hypervisor.  This function will be called from the host only.
3377  * EINVAL is returned when the host attempts to set the flag for a guest that
3378  * does not support pv clocks.
3379  */
3380 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3381 {
3382         if (!vcpu->arch.pv_time_enabled)
3383                 return -EINVAL;
3384         vcpu->arch.pvclock_set_guest_stopped_request = true;
3385         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3386         return 0;
3387 }
3388
3389 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3390                                      struct kvm_enable_cap *cap)
3391 {
3392         if (cap->flags)
3393                 return -EINVAL;
3394
3395         switch (cap->cap) {
3396         case KVM_CAP_HYPERV_SYNIC2:
3397                 if (cap->args[0])
3398                         return -EINVAL;
3399         case KVM_CAP_HYPERV_SYNIC:
3400                 if (!irqchip_in_kernel(vcpu->kvm))
3401                         return -EINVAL;
3402                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3403                                              KVM_CAP_HYPERV_SYNIC2);
3404         default:
3405                 return -EINVAL;
3406         }
3407 }
3408
3409 long kvm_arch_vcpu_ioctl(struct file *filp,
3410                          unsigned int ioctl, unsigned long arg)
3411 {
3412         struct kvm_vcpu *vcpu = filp->private_data;
3413         void __user *argp = (void __user *)arg;
3414         int r;
3415         union {
3416                 struct kvm_lapic_state *lapic;
3417                 struct kvm_xsave *xsave;
3418                 struct kvm_xcrs *xcrs;
3419                 void *buffer;
3420         } u;
3421
3422         u.buffer = NULL;
3423         switch (ioctl) {
3424         case KVM_GET_LAPIC: {
3425                 r = -EINVAL;
3426                 if (!lapic_in_kernel(vcpu))
3427                         goto out;
3428                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3429
3430                 r = -ENOMEM;
3431                 if (!u.lapic)
3432                         goto out;
3433                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3434                 if (r)
3435                         goto out;
3436                 r = -EFAULT;
3437                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3438                         goto out;
3439                 r = 0;
3440                 break;
3441         }
3442         case KVM_SET_LAPIC: {
3443                 r = -EINVAL;
3444                 if (!lapic_in_kernel(vcpu))
3445                         goto out;
3446                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3447                 if (IS_ERR(u.lapic))
3448                         return PTR_ERR(u.lapic);
3449
3450                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3451                 break;
3452         }
3453         case KVM_INTERRUPT: {
3454                 struct kvm_interrupt irq;
3455
3456                 r = -EFAULT;
3457                 if (copy_from_user(&irq, argp, sizeof irq))
3458                         goto out;
3459                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3460                 break;
3461         }
3462         case KVM_NMI: {
3463                 r = kvm_vcpu_ioctl_nmi(vcpu);
3464                 break;
3465         }
3466         case KVM_SMI: {
3467                 r = kvm_vcpu_ioctl_smi(vcpu);
3468                 break;
3469         }
3470         case KVM_SET_CPUID: {
3471                 struct kvm_cpuid __user *cpuid_arg = argp;
3472                 struct kvm_cpuid cpuid;
3473
3474                 r = -EFAULT;
3475                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3476                         goto out;
3477                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3478                 break;
3479         }
3480         case KVM_SET_CPUID2: {
3481                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3482                 struct kvm_cpuid2 cpuid;
3483
3484                 r = -EFAULT;
3485                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3486                         goto out;
3487                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3488                                               cpuid_arg->entries);
3489                 break;
3490         }
3491         case KVM_GET_CPUID2: {
3492                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3493                 struct kvm_cpuid2 cpuid;
3494
3495                 r = -EFAULT;
3496                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3497                         goto out;
3498                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3499                                               cpuid_arg->entries);
3500                 if (r)
3501                         goto out;
3502                 r = -EFAULT;
3503                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3504                         goto out;
3505                 r = 0;
3506                 break;
3507         }
3508         case KVM_GET_MSRS:
3509                 r = msr_io(vcpu, argp, do_get_msr, 1);
3510                 break;
3511         case KVM_SET_MSRS:
3512                 r = msr_io(vcpu, argp, do_set_msr, 0);
3513                 break;
3514         case KVM_TPR_ACCESS_REPORTING: {
3515                 struct kvm_tpr_access_ctl tac;
3516
3517                 r = -EFAULT;
3518                 if (copy_from_user(&tac, argp, sizeof tac))
3519                         goto out;
3520                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3521                 if (r)
3522                         goto out;
3523                 r = -EFAULT;
3524                 if (copy_to_user(argp, &tac, sizeof tac))
3525                         goto out;
3526                 r = 0;
3527                 break;
3528         };
3529         case KVM_SET_VAPIC_ADDR: {
3530                 struct kvm_vapic_addr va;
3531                 int idx;
3532
3533                 r = -EINVAL;
3534                 if (!lapic_in_kernel(vcpu))
3535                         goto out;
3536                 r = -EFAULT;
3537                 if (copy_from_user(&va, argp, sizeof va))
3538                         goto out;
3539                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3540                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3541                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3542                 break;
3543         }
3544         case KVM_X86_SETUP_MCE: {
3545                 u64 mcg_cap;
3546
3547                 r = -EFAULT;
3548                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3549                         goto out;
3550                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3551                 break;
3552         }
3553         case KVM_X86_SET_MCE: {
3554                 struct kvm_x86_mce mce;
3555
3556                 r = -EFAULT;
3557                 if (copy_from_user(&mce, argp, sizeof mce))
3558                         goto out;
3559                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3560                 break;
3561         }
3562         case KVM_GET_VCPU_EVENTS: {
3563                 struct kvm_vcpu_events events;
3564
3565                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3566
3567                 r = -EFAULT;
3568                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3569                         break;
3570                 r = 0;
3571                 break;
3572         }
3573         case KVM_SET_VCPU_EVENTS: {
3574                 struct kvm_vcpu_events events;
3575
3576                 r = -EFAULT;
3577                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3578                         break;
3579
3580                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3581                 break;
3582         }
3583         case KVM_GET_DEBUGREGS: {
3584                 struct kvm_debugregs dbgregs;
3585
3586                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3587
3588                 r = -EFAULT;
3589                 if (copy_to_user(argp, &dbgregs,
3590                                  sizeof(struct kvm_debugregs)))
3591                         break;
3592                 r = 0;
3593                 break;
3594         }
3595         case KVM_SET_DEBUGREGS: {
3596                 struct kvm_debugregs dbgregs;
3597
3598                 r = -EFAULT;
3599                 if (copy_from_user(&dbgregs, argp,
3600                                    sizeof(struct kvm_debugregs)))
3601                         break;
3602
3603                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3604                 break;
3605         }
3606         case KVM_GET_XSAVE: {
3607                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3608                 r = -ENOMEM;
3609                 if (!u.xsave)
3610                         break;
3611
3612                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3613
3614                 r = -EFAULT;
3615                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3616                         break;
3617                 r = 0;
3618                 break;
3619         }
3620         case KVM_SET_XSAVE: {
3621                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3622                 if (IS_ERR(u.xsave))
3623                         return PTR_ERR(u.xsave);
3624
3625                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3626                 break;
3627         }
3628         case KVM_GET_XCRS: {
3629                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3630                 r = -ENOMEM;
3631                 if (!u.xcrs)
3632                         break;
3633
3634                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3635
3636                 r = -EFAULT;
3637                 if (copy_to_user(argp, u.xcrs,
3638                                  sizeof(struct kvm_xcrs)))
3639                         break;
3640                 r = 0;
3641                 break;
3642         }
3643         case KVM_SET_XCRS: {
3644                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3645                 if (IS_ERR(u.xcrs))
3646                         return PTR_ERR(u.xcrs);
3647
3648                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3649                 break;
3650         }
3651         case KVM_SET_TSC_KHZ: {
3652                 u32 user_tsc_khz;
3653
3654                 r = -EINVAL;
3655                 user_tsc_khz = (u32)arg;
3656
3657                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3658                         goto out;
3659
3660                 if (user_tsc_khz == 0)
3661                         user_tsc_khz = tsc_khz;
3662
3663                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3664                         r = 0;
3665
3666                 goto out;
3667         }
3668         case KVM_GET_TSC_KHZ: {
3669                 r = vcpu->arch.virtual_tsc_khz;
3670                 goto out;
3671         }
3672         case KVM_KVMCLOCK_CTRL: {
3673                 r = kvm_set_guest_paused(vcpu);
3674                 goto out;
3675         }
3676         case KVM_ENABLE_CAP: {
3677                 struct kvm_enable_cap cap;
3678
3679                 r = -EFAULT;
3680                 if (copy_from_user(&cap, argp, sizeof(cap)))
3681                         goto out;
3682                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3683                 break;
3684         }
3685         default:
3686                 r = -EINVAL;
3687         }
3688 out:
3689         kfree(u.buffer);
3690         return r;
3691 }
3692
3693 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3694 {
3695         return VM_FAULT_SIGBUS;
3696 }
3697
3698 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3699 {
3700         int ret;
3701
3702         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3703                 return -EINVAL;
3704         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3705         return ret;
3706 }
3707
3708 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3709                                               u64 ident_addr)
3710 {
3711         kvm->arch.ept_identity_map_addr = ident_addr;
3712         return 0;
3713 }
3714
3715 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3716                                           u32 kvm_nr_mmu_pages)
3717 {
3718         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3719                 return -EINVAL;
3720
3721         mutex_lock(&kvm->slots_lock);
3722
3723         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3724         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3725
3726         mutex_unlock(&kvm->slots_lock);
3727         return 0;
3728 }
3729
3730 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3731 {
3732         return kvm->arch.n_max_mmu_pages;
3733 }
3734
3735 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3736 {
3737         struct kvm_pic *pic = kvm->arch.vpic;
3738         int r;
3739
3740         r = 0;
3741         switch (chip->chip_id) {
3742         case KVM_IRQCHIP_PIC_MASTER:
3743                 memcpy(&chip->chip.pic, &pic->pics[0],
3744                         sizeof(struct kvm_pic_state));
3745                 break;
3746         case KVM_IRQCHIP_PIC_SLAVE:
3747                 memcpy(&chip->chip.pic, &pic->pics[1],
3748                         sizeof(struct kvm_pic_state));
3749                 break;
3750         case KVM_IRQCHIP_IOAPIC:
3751                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3752                 break;
3753         default:
3754                 r = -EINVAL;
3755                 break;
3756         }
3757         return r;
3758 }
3759
3760 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3761 {
3762         struct kvm_pic *pic = kvm->arch.vpic;
3763         int r;
3764
3765         r = 0;
3766         switch (chip->chip_id) {
3767         case KVM_IRQCHIP_PIC_MASTER:
3768                 spin_lock(&pic->lock);
3769                 memcpy(&pic->pics[0], &chip->chip.pic,
3770                         sizeof(struct kvm_pic_state));
3771                 spin_unlock(&pic->lock);
3772                 break;
3773         case KVM_IRQCHIP_PIC_SLAVE:
3774                 spin_lock(&pic->lock);
3775                 memcpy(&pic->pics[1], &chip->chip.pic,
3776                         sizeof(struct kvm_pic_state));
3777                 spin_unlock(&pic->lock);
3778                 break;
3779         case KVM_IRQCHIP_IOAPIC:
3780                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3781                 break;
3782         default:
3783                 r = -EINVAL;
3784                 break;
3785         }
3786         kvm_pic_update_irq(pic);
3787         return r;
3788 }
3789
3790 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3791 {
3792         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3793
3794         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3795
3796         mutex_lock(&kps->lock);
3797         memcpy(ps, &kps->channels, sizeof(*ps));
3798         mutex_unlock(&kps->lock);
3799         return 0;
3800 }
3801
3802 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3803 {
3804         int i;
3805         struct kvm_pit *pit = kvm->arch.vpit;
3806
3807         mutex_lock(&pit->pit_state.lock);
3808         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3809         for (i = 0; i < 3; i++)
3810                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3811         mutex_unlock(&pit->pit_state.lock);
3812         return 0;
3813 }
3814
3815 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3816 {
3817         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3818         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3819                 sizeof(ps->channels));
3820         ps->flags = kvm->arch.vpit->pit_state.flags;
3821         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3822         memset(&ps->reserved, 0, sizeof(ps->reserved));
3823         return 0;
3824 }
3825
3826 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3827 {
3828         int start = 0;
3829         int i;
3830         u32 prev_legacy, cur_legacy;
3831         struct kvm_pit *pit = kvm->arch.vpit;
3832
3833         mutex_lock(&pit->pit_state.lock);
3834         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3835         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3836         if (!prev_legacy && cur_legacy)
3837                 start = 1;
3838         memcpy(&pit->pit_state.channels, &ps->channels,
3839                sizeof(pit->pit_state.channels));
3840         pit->pit_state.flags = ps->flags;
3841         for (i = 0; i < 3; i++)
3842                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3843                                    start && i == 0);
3844         mutex_unlock(&pit->pit_state.lock);
3845         return 0;
3846 }
3847
3848 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3849                                  struct kvm_reinject_control *control)
3850 {
3851         struct kvm_pit *pit = kvm->arch.vpit;
3852
3853         if (!pit)
3854                 return -ENXIO;
3855
3856         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3857          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3858          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3859          */
3860         mutex_lock(&pit->pit_state.lock);
3861         kvm_pit_set_reinject(pit, control->pit_reinject);
3862         mutex_unlock(&pit->pit_state.lock);
3863
3864         return 0;
3865 }
3866
3867 /**
3868  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3869  * @kvm: kvm instance
3870  * @log: slot id and address to which we copy the log
3871  *
3872  * Steps 1-4 below provide general overview of dirty page logging. See
3873  * kvm_get_dirty_log_protect() function description for additional details.
3874  *
3875  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3876  * always flush the TLB (step 4) even if previous step failed  and the dirty
3877  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3878  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3879  * writes will be marked dirty for next log read.
3880  *
3881  *   1. Take a snapshot of the bit and clear it if needed.
3882  *   2. Write protect the corresponding page.
3883  *   3. Copy the snapshot to the userspace.
3884  *   4. Flush TLB's if needed.
3885  */
3886 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3887 {
3888         bool is_dirty = false;
3889         int r;
3890
3891         mutex_lock(&kvm->slots_lock);
3892
3893         /*
3894          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3895          */
3896         if (kvm_x86_ops->flush_log_dirty)
3897                 kvm_x86_ops->flush_log_dirty(kvm);
3898
3899         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3900
3901         /*
3902          * All the TLBs can be flushed out of mmu lock, see the comments in
3903          * kvm_mmu_slot_remove_write_access().
3904          */
3905         lockdep_assert_held(&kvm->slots_lock);
3906         if (is_dirty)
3907                 kvm_flush_remote_tlbs(kvm);
3908
3909         mutex_unlock(&kvm->slots_lock);
3910         return r;
3911 }
3912
3913 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3914                         bool line_status)
3915 {
3916         if (!irqchip_in_kernel(kvm))
3917                 return -ENXIO;
3918
3919         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3920                                         irq_event->irq, irq_event->level,
3921                                         line_status);
3922         return 0;
3923 }
3924
3925 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3926                                    struct kvm_enable_cap *cap)
3927 {
3928         int r;
3929
3930         if (cap->flags)
3931                 return -EINVAL;
3932
3933         switch (cap->cap) {
3934         case KVM_CAP_DISABLE_QUIRKS:
3935                 kvm->arch.disabled_quirks = cap->args[0];
3936                 r = 0;
3937                 break;
3938         case KVM_CAP_SPLIT_IRQCHIP: {
3939                 mutex_lock(&kvm->lock);
3940                 r = -EINVAL;
3941                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3942                         goto split_irqchip_unlock;
3943                 r = -EEXIST;
3944                 if (irqchip_in_kernel(kvm))
3945                         goto split_irqchip_unlock;
3946                 if (kvm->created_vcpus)
3947                         goto split_irqchip_unlock;
3948                 r = kvm_setup_empty_irq_routing(kvm);
3949                 if (r)
3950                         goto split_irqchip_unlock;
3951                 /* Pairs with irqchip_in_kernel. */
3952                 smp_wmb();
3953                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3954                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3955                 r = 0;
3956 split_irqchip_unlock:
3957                 mutex_unlock(&kvm->lock);
3958                 break;
3959         }
3960         case KVM_CAP_X2APIC_API:
3961                 r = -EINVAL;
3962                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3963                         break;
3964
3965                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3966                         kvm->arch.x2apic_format = true;
3967                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3968                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3969
3970                 r = 0;
3971                 break;
3972         default:
3973                 r = -EINVAL;
3974                 break;
3975         }
3976         return r;
3977 }
3978
3979 long kvm_arch_vm_ioctl(struct file *filp,
3980                        unsigned int ioctl, unsigned long arg)
3981 {
3982         struct kvm *kvm = filp->private_data;
3983         void __user *argp = (void __user *)arg;
3984         int r = -ENOTTY;
3985         /*
3986          * This union makes it completely explicit to gcc-3.x
3987          * that these two variables' stack usage should be
3988          * combined, not added together.
3989          */
3990         union {
3991                 struct kvm_pit_state ps;
3992                 struct kvm_pit_state2 ps2;
3993                 struct kvm_pit_config pit_config;
3994         } u;
3995
3996         switch (ioctl) {
3997         case KVM_SET_TSS_ADDR:
3998                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3999                 break;
4000         case KVM_SET_IDENTITY_MAP_ADDR: {
4001                 u64 ident_addr;
4002
4003                 r = -EFAULT;
4004                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4005                         goto out;
4006                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4007                 break;
4008         }
4009         case KVM_SET_NR_MMU_PAGES:
4010                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4011                 break;
4012         case KVM_GET_NR_MMU_PAGES:
4013                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4014                 break;
4015         case KVM_CREATE_IRQCHIP: {
4016                 mutex_lock(&kvm->lock);
4017
4018                 r = -EEXIST;
4019                 if (irqchip_in_kernel(kvm))
4020                         goto create_irqchip_unlock;
4021
4022                 r = -EINVAL;
4023                 if (kvm->created_vcpus)
4024                         goto create_irqchip_unlock;
4025
4026                 r = kvm_pic_init(kvm);
4027                 if (r)
4028                         goto create_irqchip_unlock;
4029
4030                 r = kvm_ioapic_init(kvm);
4031                 if (r) {
4032                         kvm_pic_destroy(kvm);
4033                         goto create_irqchip_unlock;
4034                 }
4035
4036                 r = kvm_setup_default_irq_routing(kvm);
4037                 if (r) {
4038                         kvm_ioapic_destroy(kvm);
4039                         kvm_pic_destroy(kvm);
4040                         goto create_irqchip_unlock;
4041                 }
4042                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4043                 smp_wmb();
4044                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4045         create_irqchip_unlock:
4046                 mutex_unlock(&kvm->lock);
4047                 break;
4048         }
4049         case KVM_CREATE_PIT:
4050                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4051                 goto create_pit;
4052         case KVM_CREATE_PIT2:
4053                 r = -EFAULT;
4054                 if (copy_from_user(&u.pit_config, argp,
4055                                    sizeof(struct kvm_pit_config)))
4056                         goto out;
4057         create_pit:
4058                 mutex_lock(&kvm->lock);
4059                 r = -EEXIST;
4060                 if (kvm->arch.vpit)
4061                         goto create_pit_unlock;
4062                 r = -ENOMEM;
4063                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4064                 if (kvm->arch.vpit)
4065                         r = 0;
4066         create_pit_unlock:
4067                 mutex_unlock(&kvm->lock);
4068                 break;
4069         case KVM_GET_IRQCHIP: {
4070                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4071                 struct kvm_irqchip *chip;
4072
4073                 chip = memdup_user(argp, sizeof(*chip));
4074                 if (IS_ERR(chip)) {
4075                         r = PTR_ERR(chip);
4076                         goto out;
4077                 }
4078
4079                 r = -ENXIO;
4080                 if (!irqchip_kernel(kvm))
4081                         goto get_irqchip_out;
4082                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4083                 if (r)
4084                         goto get_irqchip_out;
4085                 r = -EFAULT;
4086                 if (copy_to_user(argp, chip, sizeof *chip))
4087                         goto get_irqchip_out;
4088                 r = 0;
4089         get_irqchip_out:
4090                 kfree(chip);
4091                 break;
4092         }
4093         case KVM_SET_IRQCHIP: {
4094                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4095                 struct kvm_irqchip *chip;
4096
4097                 chip = memdup_user(argp, sizeof(*chip));
4098                 if (IS_ERR(chip)) {
4099                         r = PTR_ERR(chip);
4100                         goto out;
4101                 }
4102
4103                 r = -ENXIO;
4104                 if (!irqchip_kernel(kvm))
4105                         goto set_irqchip_out;
4106                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4107                 if (r)
4108                         goto set_irqchip_out;
4109                 r = 0;
4110         set_irqchip_out:
4111                 kfree(chip);
4112                 break;
4113         }
4114         case KVM_GET_PIT: {
4115                 r = -EFAULT;
4116                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4117                         goto out;
4118                 r = -ENXIO;
4119                 if (!kvm->arch.vpit)
4120                         goto out;
4121                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4122                 if (r)
4123                         goto out;
4124                 r = -EFAULT;
4125                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4126                         goto out;
4127                 r = 0;
4128                 break;
4129         }
4130         case KVM_SET_PIT: {
4131                 r = -EFAULT;
4132                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4133                         goto out;
4134                 r = -ENXIO;
4135                 if (!kvm->arch.vpit)
4136                         goto out;
4137                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4138                 break;
4139         }
4140         case KVM_GET_PIT2: {
4141                 r = -ENXIO;
4142                 if (!kvm->arch.vpit)
4143                         goto out;
4144                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4145                 if (r)
4146                         goto out;
4147                 r = -EFAULT;
4148                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4149                         goto out;
4150                 r = 0;
4151                 break;
4152         }
4153         case KVM_SET_PIT2: {
4154                 r = -EFAULT;
4155                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4156                         goto out;
4157                 r = -ENXIO;
4158                 if (!kvm->arch.vpit)
4159                         goto out;
4160                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4161                 break;
4162         }
4163         case KVM_REINJECT_CONTROL: {
4164                 struct kvm_reinject_control control;
4165                 r =  -EFAULT;
4166                 if (copy_from_user(&control, argp, sizeof(control)))
4167                         goto out;
4168                 r = kvm_vm_ioctl_reinject(kvm, &control);
4169                 break;
4170         }
4171         case KVM_SET_BOOT_CPU_ID:
4172                 r = 0;
4173                 mutex_lock(&kvm->lock);
4174                 if (kvm->created_vcpus)
4175                         r = -EBUSY;
4176                 else
4177                         kvm->arch.bsp_vcpu_id = arg;
4178                 mutex_unlock(&kvm->lock);
4179                 break;
4180         case KVM_XEN_HVM_CONFIG: {
4181                 r = -EFAULT;
4182                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4183                                    sizeof(struct kvm_xen_hvm_config)))
4184                         goto out;
4185                 r = -EINVAL;
4186                 if (kvm->arch.xen_hvm_config.flags)
4187                         goto out;
4188                 r = 0;
4189                 break;
4190         }
4191         case KVM_SET_CLOCK: {
4192                 struct kvm_clock_data user_ns;
4193                 u64 now_ns;
4194
4195                 r = -EFAULT;
4196                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4197                         goto out;
4198
4199                 r = -EINVAL;
4200                 if (user_ns.flags)
4201                         goto out;
4202
4203                 r = 0;
4204                 /*
4205                  * TODO: userspace has to take care of races with VCPU_RUN, so
4206                  * kvm_gen_update_masterclock() can be cut down to locked
4207                  * pvclock_update_vm_gtod_copy().
4208                  */
4209                 kvm_gen_update_masterclock(kvm);
4210                 now_ns = get_kvmclock_ns(kvm);
4211                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4212                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4213                 break;
4214         }
4215         case KVM_GET_CLOCK: {
4216                 struct kvm_clock_data user_ns;
4217                 u64 now_ns;
4218
4219                 now_ns = get_kvmclock_ns(kvm);
4220                 user_ns.clock = now_ns;
4221                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4222                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4223
4224                 r = -EFAULT;
4225                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4226                         goto out;
4227                 r = 0;
4228                 break;
4229         }
4230         case KVM_ENABLE_CAP: {
4231                 struct kvm_enable_cap cap;
4232
4233                 r = -EFAULT;
4234                 if (copy_from_user(&cap, argp, sizeof(cap)))
4235                         goto out;
4236                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4237                 break;
4238         }
4239         default:
4240                 r = -ENOTTY;
4241         }
4242 out:
4243         return r;
4244 }
4245
4246 static void kvm_init_msr_list(void)
4247 {
4248         u32 dummy[2];
4249         unsigned i, j;
4250
4251         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4252                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4253                         continue;
4254
4255                 /*
4256                  * Even MSRs that are valid in the host may not be exposed
4257                  * to the guests in some cases.
4258                  */
4259                 switch (msrs_to_save[i]) {
4260                 case MSR_IA32_BNDCFGS:
4261                         if (!kvm_x86_ops->mpx_supported())
4262                                 continue;
4263                         break;
4264                 case MSR_TSC_AUX:
4265                         if (!kvm_x86_ops->rdtscp_supported())
4266                                 continue;
4267                         break;
4268                 default:
4269                         break;
4270                 }
4271
4272                 if (j < i)
4273                         msrs_to_save[j] = msrs_to_save[i];
4274                 j++;
4275         }
4276         num_msrs_to_save = j;
4277
4278         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4279                 switch (emulated_msrs[i]) {
4280                 case MSR_IA32_SMBASE:
4281                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4282                                 continue;
4283                         break;
4284                 default:
4285                         break;
4286                 }
4287
4288                 if (j < i)
4289                         emulated_msrs[j] = emulated_msrs[i];
4290                 j++;
4291         }
4292         num_emulated_msrs = j;
4293 }
4294
4295 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4296                            const void *v)
4297 {
4298         int handled = 0;
4299         int n;
4300
4301         do {
4302                 n = min(len, 8);
4303                 if (!(lapic_in_kernel(vcpu) &&
4304                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4305                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4306                         break;
4307                 handled += n;
4308                 addr += n;
4309                 len -= n;
4310                 v += n;
4311         } while (len);
4312
4313         return handled;
4314 }
4315
4316 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4317 {
4318         int handled = 0;
4319         int n;
4320
4321         do {
4322                 n = min(len, 8);
4323                 if (!(lapic_in_kernel(vcpu) &&
4324                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4325                                          addr, n, v))
4326                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4327                         break;
4328                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4329                 handled += n;
4330                 addr += n;
4331                 len -= n;
4332                 v += n;
4333         } while (len);
4334
4335         return handled;
4336 }
4337
4338 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4339                         struct kvm_segment *var, int seg)
4340 {
4341         kvm_x86_ops->set_segment(vcpu, var, seg);
4342 }
4343
4344 void kvm_get_segment(struct kvm_vcpu *vcpu,
4345                      struct kvm_segment *var, int seg)
4346 {
4347         kvm_x86_ops->get_segment(vcpu, var, seg);
4348 }
4349
4350 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4351                            struct x86_exception *exception)
4352 {
4353         gpa_t t_gpa;
4354
4355         BUG_ON(!mmu_is_nested(vcpu));
4356
4357         /* NPT walks are always user-walks */
4358         access |= PFERR_USER_MASK;
4359         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4360
4361         return t_gpa;
4362 }
4363
4364 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4365                               struct x86_exception *exception)
4366 {
4367         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4368         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4369 }
4370
4371  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4372                                 struct x86_exception *exception)
4373 {
4374         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4375         access |= PFERR_FETCH_MASK;
4376         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4377 }
4378
4379 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4380                                struct x86_exception *exception)
4381 {
4382         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4383         access |= PFERR_WRITE_MASK;
4384         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4385 }
4386
4387 /* uses this to access any guest's mapped memory without checking CPL */
4388 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4389                                 struct x86_exception *exception)
4390 {
4391         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4392 }
4393
4394 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4395                                       struct kvm_vcpu *vcpu, u32 access,
4396                                       struct x86_exception *exception)
4397 {
4398         void *data = val;
4399         int r = X86EMUL_CONTINUE;
4400
4401         while (bytes) {
4402                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4403                                                             exception);
4404                 unsigned offset = addr & (PAGE_SIZE-1);
4405                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4406                 int ret;
4407
4408                 if (gpa == UNMAPPED_GVA)
4409                         return X86EMUL_PROPAGATE_FAULT;
4410                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4411                                                offset, toread);
4412                 if (ret < 0) {
4413                         r = X86EMUL_IO_NEEDED;
4414                         goto out;
4415                 }
4416
4417                 bytes -= toread;
4418                 data += toread;
4419                 addr += toread;
4420         }
4421 out:
4422         return r;
4423 }
4424
4425 /* used for instruction fetching */
4426 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4427                                 gva_t addr, void *val, unsigned int bytes,
4428                                 struct x86_exception *exception)
4429 {
4430         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4431         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4432         unsigned offset;
4433         int ret;
4434
4435         /* Inline kvm_read_guest_virt_helper for speed.  */
4436         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4437                                                     exception);
4438         if (unlikely(gpa == UNMAPPED_GVA))
4439                 return X86EMUL_PROPAGATE_FAULT;
4440
4441         offset = addr & (PAGE_SIZE-1);
4442         if (WARN_ON(offset + bytes > PAGE_SIZE))
4443                 bytes = (unsigned)PAGE_SIZE - offset;
4444         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4445                                        offset, bytes);
4446         if (unlikely(ret < 0))
4447                 return X86EMUL_IO_NEEDED;
4448
4449         return X86EMUL_CONTINUE;
4450 }
4451
4452 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4453                                gva_t addr, void *val, unsigned int bytes,
4454                                struct x86_exception *exception)
4455 {
4456         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4457         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4458
4459         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4460                                           exception);
4461 }
4462 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4463
4464 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4465                                       gva_t addr, void *val, unsigned int bytes,
4466                                       struct x86_exception *exception)
4467 {
4468         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4469         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4470 }
4471
4472 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4473                 unsigned long addr, void *val, unsigned int bytes)
4474 {
4475         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4476         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4477
4478         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4479 }
4480
4481 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4482                                        gva_t addr, void *val,
4483                                        unsigned int bytes,
4484                                        struct x86_exception *exception)
4485 {
4486         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4487         void *data = val;
4488         int r = X86EMUL_CONTINUE;
4489
4490         while (bytes) {
4491                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4492                                                              PFERR_WRITE_MASK,
4493                                                              exception);
4494                 unsigned offset = addr & (PAGE_SIZE-1);
4495                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4496                 int ret;
4497
4498                 if (gpa == UNMAPPED_GVA)
4499                         return X86EMUL_PROPAGATE_FAULT;
4500                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4501                 if (ret < 0) {
4502                         r = X86EMUL_IO_NEEDED;
4503                         goto out;
4504                 }
4505
4506                 bytes -= towrite;
4507                 data += towrite;
4508                 addr += towrite;
4509         }
4510 out:
4511         return r;
4512 }
4513 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4514
4515 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4516                             gpa_t gpa, bool write)
4517 {
4518         /* For APIC access vmexit */
4519         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4520                 return 1;
4521
4522         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4523                 trace_vcpu_match_mmio(gva, gpa, write, true);
4524                 return 1;
4525         }
4526
4527         return 0;
4528 }
4529
4530 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4531                                 gpa_t *gpa, struct x86_exception *exception,
4532                                 bool write)
4533 {
4534         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4535                 | (write ? PFERR_WRITE_MASK : 0);
4536
4537         /*
4538          * currently PKRU is only applied to ept enabled guest so
4539          * there is no pkey in EPT page table for L1 guest or EPT
4540          * shadow page table for L2 guest.
4541          */
4542         if (vcpu_match_mmio_gva(vcpu, gva)
4543             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4544                                  vcpu->arch.access, 0, access)) {
4545                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4546                                         (gva & (PAGE_SIZE - 1));
4547                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4548                 return 1;
4549         }
4550
4551         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4552
4553         if (*gpa == UNMAPPED_GVA)
4554                 return -1;
4555
4556         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4557 }
4558
4559 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4560                         const void *val, int bytes)
4561 {
4562         int ret;
4563
4564         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4565         if (ret < 0)
4566                 return 0;
4567         kvm_page_track_write(vcpu, gpa, val, bytes);
4568         return 1;
4569 }
4570
4571 struct read_write_emulator_ops {
4572         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4573                                   int bytes);
4574         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4575                                   void *val, int bytes);
4576         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4577                                int bytes, void *val);
4578         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4579                                     void *val, int bytes);
4580         bool write;
4581 };
4582
4583 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4584 {
4585         if (vcpu->mmio_read_completed) {
4586                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4587                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4588                 vcpu->mmio_read_completed = 0;
4589                 return 1;
4590         }
4591
4592         return 0;
4593 }
4594
4595 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4596                         void *val, int bytes)
4597 {
4598         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4599 }
4600
4601 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4602                          void *val, int bytes)
4603 {
4604         return emulator_write_phys(vcpu, gpa, val, bytes);
4605 }
4606
4607 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4608 {
4609         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4610         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4611 }
4612
4613 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4614                           void *val, int bytes)
4615 {
4616         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4617         return X86EMUL_IO_NEEDED;
4618 }
4619
4620 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4621                            void *val, int bytes)
4622 {
4623         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4624
4625         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4626         return X86EMUL_CONTINUE;
4627 }
4628
4629 static const struct read_write_emulator_ops read_emultor = {
4630         .read_write_prepare = read_prepare,
4631         .read_write_emulate = read_emulate,
4632         .read_write_mmio = vcpu_mmio_read,
4633         .read_write_exit_mmio = read_exit_mmio,
4634 };
4635
4636 static const struct read_write_emulator_ops write_emultor = {
4637         .read_write_emulate = write_emulate,
4638         .read_write_mmio = write_mmio,
4639         .read_write_exit_mmio = write_exit_mmio,
4640         .write = true,
4641 };
4642
4643 static int emulator_read_write_onepage(unsigned long addr, void *val,
4644                                        unsigned int bytes,
4645                                        struct x86_exception *exception,
4646                                        struct kvm_vcpu *vcpu,
4647                                        const struct read_write_emulator_ops *ops)
4648 {
4649         gpa_t gpa;
4650         int handled, ret;
4651         bool write = ops->write;
4652         struct kvm_mmio_fragment *frag;
4653         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4654
4655         /*
4656          * If the exit was due to a NPF we may already have a GPA.
4657          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4658          * Note, this cannot be used on string operations since string
4659          * operation using rep will only have the initial GPA from the NPF
4660          * occurred.
4661          */
4662         if (vcpu->arch.gpa_available &&
4663             emulator_can_use_gpa(ctxt) &&
4664             vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4665             (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4666                 gpa = exception->address;
4667                 goto mmio;
4668         }
4669
4670         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4671
4672         if (ret < 0)
4673                 return X86EMUL_PROPAGATE_FAULT;
4674
4675         /* For APIC access vmexit */
4676         if (ret)
4677                 goto mmio;
4678
4679         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4680                 return X86EMUL_CONTINUE;
4681
4682 mmio:
4683         /*
4684          * Is this MMIO handled locally?
4685          */
4686         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4687         if (handled == bytes)
4688                 return X86EMUL_CONTINUE;
4689
4690         gpa += handled;
4691         bytes -= handled;
4692         val += handled;
4693
4694         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4695         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4696         frag->gpa = gpa;
4697         frag->data = val;
4698         frag->len = bytes;
4699         return X86EMUL_CONTINUE;
4700 }
4701
4702 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4703                         unsigned long addr,
4704                         void *val, unsigned int bytes,
4705                         struct x86_exception *exception,
4706                         const struct read_write_emulator_ops *ops)
4707 {
4708         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4709         gpa_t gpa;
4710         int rc;
4711
4712         if (ops->read_write_prepare &&
4713                   ops->read_write_prepare(vcpu, val, bytes))
4714                 return X86EMUL_CONTINUE;
4715
4716         vcpu->mmio_nr_fragments = 0;
4717
4718         /* Crossing a page boundary? */
4719         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4720                 int now;
4721
4722                 now = -addr & ~PAGE_MASK;
4723                 rc = emulator_read_write_onepage(addr, val, now, exception,
4724                                                  vcpu, ops);
4725
4726                 if (rc != X86EMUL_CONTINUE)
4727                         return rc;
4728                 addr += now;
4729                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4730                         addr = (u32)addr;
4731                 val += now;
4732                 bytes -= now;
4733         }
4734
4735         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4736                                          vcpu, ops);
4737         if (rc != X86EMUL_CONTINUE)
4738                 return rc;
4739
4740         if (!vcpu->mmio_nr_fragments)
4741                 return rc;
4742
4743         gpa = vcpu->mmio_fragments[0].gpa;
4744
4745         vcpu->mmio_needed = 1;
4746         vcpu->mmio_cur_fragment = 0;
4747
4748         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4749         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4750         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4751         vcpu->run->mmio.phys_addr = gpa;
4752
4753         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4754 }
4755
4756 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4757                                   unsigned long addr,
4758                                   void *val,
4759                                   unsigned int bytes,
4760                                   struct x86_exception *exception)
4761 {
4762         return emulator_read_write(ctxt, addr, val, bytes,
4763                                    exception, &read_emultor);
4764 }
4765
4766 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4767                             unsigned long addr,
4768                             const void *val,
4769                             unsigned int bytes,
4770                             struct x86_exception *exception)
4771 {
4772         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4773                                    exception, &write_emultor);
4774 }
4775
4776 #define CMPXCHG_TYPE(t, ptr, old, new) \
4777         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4778
4779 #ifdef CONFIG_X86_64
4780 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4781 #else
4782 #  define CMPXCHG64(ptr, old, new) \
4783         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4784 #endif
4785
4786 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4787                                      unsigned long addr,
4788                                      const void *old,
4789                                      const void *new,
4790                                      unsigned int bytes,
4791                                      struct x86_exception *exception)
4792 {
4793         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4794         gpa_t gpa;
4795         struct page *page;
4796         char *kaddr;
4797         bool exchanged;
4798
4799         /* guests cmpxchg8b have to be emulated atomically */
4800         if (bytes > 8 || (bytes & (bytes - 1)))
4801                 goto emul_write;
4802
4803         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4804
4805         if (gpa == UNMAPPED_GVA ||
4806             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4807                 goto emul_write;
4808
4809         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4810                 goto emul_write;
4811
4812         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4813         if (is_error_page(page))
4814                 goto emul_write;
4815
4816         kaddr = kmap_atomic(page);
4817         kaddr += offset_in_page(gpa);
4818         switch (bytes) {
4819         case 1:
4820                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4821                 break;
4822         case 2:
4823                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4824                 break;
4825         case 4:
4826                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4827                 break;
4828         case 8:
4829                 exchanged = CMPXCHG64(kaddr, old, new);
4830                 break;
4831         default:
4832                 BUG();
4833         }
4834         kunmap_atomic(kaddr);
4835         kvm_release_page_dirty(page);
4836
4837         if (!exchanged)
4838                 return X86EMUL_CMPXCHG_FAILED;
4839
4840         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4841         kvm_page_track_write(vcpu, gpa, new, bytes);
4842
4843         return X86EMUL_CONTINUE;
4844
4845 emul_write:
4846         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4847
4848         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4849 }
4850
4851 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4852 {
4853         int r = 0, i;
4854
4855         for (i = 0; i < vcpu->arch.pio.count; i++) {
4856                 if (vcpu->arch.pio.in)
4857                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4858                                             vcpu->arch.pio.size, pd);
4859                 else
4860                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4861                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
4862                                              pd);
4863                 if (r)
4864                         break;
4865                 pd += vcpu->arch.pio.size;
4866         }
4867         return r;
4868 }
4869
4870 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4871                                unsigned short port, void *val,
4872                                unsigned int count, bool in)
4873 {
4874         vcpu->arch.pio.port = port;
4875         vcpu->arch.pio.in = in;
4876         vcpu->arch.pio.count  = count;
4877         vcpu->arch.pio.size = size;
4878
4879         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4880                 vcpu->arch.pio.count = 0;
4881                 return 1;
4882         }
4883
4884         vcpu->run->exit_reason = KVM_EXIT_IO;
4885         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4886         vcpu->run->io.size = size;
4887         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4888         vcpu->run->io.count = count;
4889         vcpu->run->io.port = port;
4890
4891         return 0;
4892 }
4893
4894 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4895                                     int size, unsigned short port, void *val,
4896                                     unsigned int count)
4897 {
4898         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4899         int ret;
4900
4901         if (vcpu->arch.pio.count)
4902                 goto data_avail;
4903
4904         memset(vcpu->arch.pio_data, 0, size * count);
4905
4906         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4907         if (ret) {
4908 data_avail:
4909                 memcpy(val, vcpu->arch.pio_data, size * count);
4910                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4911                 vcpu->arch.pio.count = 0;
4912                 return 1;
4913         }
4914
4915         return 0;
4916 }
4917
4918 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4919                                      int size, unsigned short port,
4920                                      const void *val, unsigned int count)
4921 {
4922         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4923
4924         memcpy(vcpu->arch.pio_data, val, size * count);
4925         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4926         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4927 }
4928
4929 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4930 {
4931         return kvm_x86_ops->get_segment_base(vcpu, seg);
4932 }
4933
4934 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4935 {
4936         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4937 }
4938
4939 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4940 {
4941         if (!need_emulate_wbinvd(vcpu))
4942                 return X86EMUL_CONTINUE;
4943
4944         if (kvm_x86_ops->has_wbinvd_exit()) {
4945                 int cpu = get_cpu();
4946
4947                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4948                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4949                                 wbinvd_ipi, NULL, 1);
4950                 put_cpu();
4951                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4952         } else
4953                 wbinvd();
4954         return X86EMUL_CONTINUE;
4955 }
4956
4957 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4958 {
4959         kvm_emulate_wbinvd_noskip(vcpu);
4960         return kvm_skip_emulated_instruction(vcpu);
4961 }
4962 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4963
4964
4965
4966 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4967 {
4968         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4969 }
4970
4971 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4972                            unsigned long *dest)
4973 {
4974         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4975 }
4976
4977 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4978                            unsigned long value)
4979 {
4980
4981         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4982 }
4983
4984 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4985 {
4986         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4987 }
4988
4989 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4990 {
4991         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4992         unsigned long value;
4993
4994         switch (cr) {
4995         case 0:
4996                 value = kvm_read_cr0(vcpu);
4997                 break;
4998         case 2:
4999                 value = vcpu->arch.cr2;
5000                 break;
5001         case 3:
5002                 value = kvm_read_cr3(vcpu);
5003                 break;
5004         case 4:
5005                 value = kvm_read_cr4(vcpu);
5006                 break;
5007         case 8:
5008                 value = kvm_get_cr8(vcpu);
5009                 break;
5010         default:
5011                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5012                 return 0;
5013         }
5014
5015         return value;
5016 }
5017
5018 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5019 {
5020         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5021         int res = 0;
5022
5023         switch (cr) {
5024         case 0:
5025                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5026                 break;
5027         case 2:
5028                 vcpu->arch.cr2 = val;
5029                 break;
5030         case 3:
5031                 res = kvm_set_cr3(vcpu, val);
5032                 break;
5033         case 4:
5034                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5035                 break;
5036         case 8:
5037                 res = kvm_set_cr8(vcpu, val);
5038                 break;
5039         default:
5040                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5041                 res = -1;
5042         }
5043
5044         return res;
5045 }
5046
5047 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5048 {
5049         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5050 }
5051
5052 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5053 {
5054         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5055 }
5056
5057 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5058 {
5059         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5060 }
5061
5062 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5063 {
5064         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5065 }
5066
5067 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5068 {
5069         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5070 }
5071
5072 static unsigned long emulator_get_cached_segment_base(
5073         struct x86_emulate_ctxt *ctxt, int seg)
5074 {
5075         return get_segment_base(emul_to_vcpu(ctxt), seg);
5076 }
5077
5078 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5079                                  struct desc_struct *desc, u32 *base3,
5080                                  int seg)
5081 {
5082         struct kvm_segment var;
5083
5084         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5085         *selector = var.selector;
5086
5087         if (var.unusable) {
5088                 memset(desc, 0, sizeof(*desc));
5089                 if (base3)
5090                         *base3 = 0;
5091                 return false;
5092         }
5093
5094         if (var.g)
5095                 var.limit >>= 12;
5096         set_desc_limit(desc, var.limit);
5097         set_desc_base(desc, (unsigned long)var.base);
5098 #ifdef CONFIG_X86_64
5099         if (base3)
5100                 *base3 = var.base >> 32;
5101 #endif
5102         desc->type = var.type;
5103         desc->s = var.s;
5104         desc->dpl = var.dpl;
5105         desc->p = var.present;
5106         desc->avl = var.avl;
5107         desc->l = var.l;
5108         desc->d = var.db;
5109         desc->g = var.g;
5110
5111         return true;
5112 }
5113
5114 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5115                                  struct desc_struct *desc, u32 base3,
5116                                  int seg)
5117 {
5118         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5119         struct kvm_segment var;
5120
5121         var.selector = selector;
5122         var.base = get_desc_base(desc);
5123 #ifdef CONFIG_X86_64
5124         var.base |= ((u64)base3) << 32;
5125 #endif
5126         var.limit = get_desc_limit(desc);
5127         if (desc->g)
5128                 var.limit = (var.limit << 12) | 0xfff;
5129         var.type = desc->type;
5130         var.dpl = desc->dpl;
5131         var.db = desc->d;
5132         var.s = desc->s;
5133         var.l = desc->l;
5134         var.g = desc->g;
5135         var.avl = desc->avl;
5136         var.present = desc->p;
5137         var.unusable = !var.present;
5138         var.padding = 0;
5139
5140         kvm_set_segment(vcpu, &var, seg);
5141         return;
5142 }
5143
5144 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5145                             u32 msr_index, u64 *pdata)
5146 {
5147         struct msr_data msr;
5148         int r;
5149
5150         msr.index = msr_index;
5151         msr.host_initiated = false;
5152         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5153         if (r)
5154                 return r;
5155
5156         *pdata = msr.data;
5157         return 0;
5158 }
5159
5160 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5161                             u32 msr_index, u64 data)
5162 {
5163         struct msr_data msr;
5164
5165         msr.data = data;
5166         msr.index = msr_index;
5167         msr.host_initiated = false;
5168         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5169 }
5170
5171 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5172 {
5173         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5174
5175         return vcpu->arch.smbase;
5176 }
5177
5178 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5179 {
5180         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5181
5182         vcpu->arch.smbase = smbase;
5183 }
5184
5185 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5186                               u32 pmc)
5187 {
5188         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5189 }
5190
5191 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5192                              u32 pmc, u64 *pdata)
5193 {
5194         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5195 }
5196
5197 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5198 {
5199         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5200 }
5201
5202 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5203 {
5204         preempt_disable();
5205         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5206 }
5207
5208 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5209 {
5210         preempt_enable();
5211 }
5212
5213 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5214                               struct x86_instruction_info *info,
5215                               enum x86_intercept_stage stage)
5216 {
5217         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5218 }
5219
5220 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5221                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5222 {
5223         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5224 }
5225
5226 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5227 {
5228         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5229 }
5230
5231 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5232 {
5233         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5234 }
5235
5236 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5237 {
5238         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5239 }
5240
5241 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5242 {
5243         return emul_to_vcpu(ctxt)->arch.hflags;
5244 }
5245
5246 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5247 {
5248         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5249 }
5250
5251 static const struct x86_emulate_ops emulate_ops = {
5252         .read_gpr            = emulator_read_gpr,
5253         .write_gpr           = emulator_write_gpr,
5254         .read_std            = kvm_read_guest_virt_system,
5255         .write_std           = kvm_write_guest_virt_system,
5256         .read_phys           = kvm_read_guest_phys_system,
5257         .fetch               = kvm_fetch_guest_virt,
5258         .read_emulated       = emulator_read_emulated,
5259         .write_emulated      = emulator_write_emulated,
5260         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5261         .invlpg              = emulator_invlpg,
5262         .pio_in_emulated     = emulator_pio_in_emulated,
5263         .pio_out_emulated    = emulator_pio_out_emulated,
5264         .get_segment         = emulator_get_segment,
5265         .set_segment         = emulator_set_segment,
5266         .get_cached_segment_base = emulator_get_cached_segment_base,
5267         .get_gdt             = emulator_get_gdt,
5268         .get_idt             = emulator_get_idt,
5269         .set_gdt             = emulator_set_gdt,
5270         .set_idt             = emulator_set_idt,
5271         .get_cr              = emulator_get_cr,
5272         .set_cr              = emulator_set_cr,
5273         .cpl                 = emulator_get_cpl,
5274         .get_dr              = emulator_get_dr,
5275         .set_dr              = emulator_set_dr,
5276         .get_smbase          = emulator_get_smbase,
5277         .set_smbase          = emulator_set_smbase,
5278         .set_msr             = emulator_set_msr,
5279         .get_msr             = emulator_get_msr,
5280         .check_pmc           = emulator_check_pmc,
5281         .read_pmc            = emulator_read_pmc,
5282         .halt                = emulator_halt,
5283         .wbinvd              = emulator_wbinvd,
5284         .fix_hypercall       = emulator_fix_hypercall,
5285         .get_fpu             = emulator_get_fpu,
5286         .put_fpu             = emulator_put_fpu,
5287         .intercept           = emulator_intercept,
5288         .get_cpuid           = emulator_get_cpuid,
5289         .set_nmi_mask        = emulator_set_nmi_mask,
5290         .get_hflags          = emulator_get_hflags,
5291         .set_hflags          = emulator_set_hflags,
5292 };
5293
5294 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5295 {
5296         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5297         /*
5298          * an sti; sti; sequence only disable interrupts for the first
5299          * instruction. So, if the last instruction, be it emulated or
5300          * not, left the system with the INT_STI flag enabled, it
5301          * means that the last instruction is an sti. We should not
5302          * leave the flag on in this case. The same goes for mov ss
5303          */
5304         if (int_shadow & mask)
5305                 mask = 0;
5306         if (unlikely(int_shadow || mask)) {
5307                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5308                 if (!mask)
5309                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5310         }
5311 }
5312
5313 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5314 {
5315         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5316         if (ctxt->exception.vector == PF_VECTOR)
5317                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5318
5319         if (ctxt->exception.error_code_valid)
5320                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5321                                       ctxt->exception.error_code);
5322         else
5323                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5324         return false;
5325 }
5326
5327 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5328 {
5329         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5330         int cs_db, cs_l;
5331
5332         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5333
5334         ctxt->eflags = kvm_get_rflags(vcpu);
5335         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5336
5337         ctxt->eip = kvm_rip_read(vcpu);
5338         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5339                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5340                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5341                      cs_db                              ? X86EMUL_MODE_PROT32 :
5342                                                           X86EMUL_MODE_PROT16;
5343         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5344         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5345         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5346
5347         init_decode_cache(ctxt);
5348         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5349 }
5350
5351 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5352 {
5353         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5354         int ret;
5355
5356         init_emulate_ctxt(vcpu);
5357
5358         ctxt->op_bytes = 2;
5359         ctxt->ad_bytes = 2;
5360         ctxt->_eip = ctxt->eip + inc_eip;
5361         ret = emulate_int_real(ctxt, irq);
5362
5363         if (ret != X86EMUL_CONTINUE)
5364                 return EMULATE_FAIL;
5365
5366         ctxt->eip = ctxt->_eip;
5367         kvm_rip_write(vcpu, ctxt->eip);
5368         kvm_set_rflags(vcpu, ctxt->eflags);
5369
5370         if (irq == NMI_VECTOR)
5371                 vcpu->arch.nmi_pending = 0;
5372         else
5373                 vcpu->arch.interrupt.pending = false;
5374
5375         return EMULATE_DONE;
5376 }
5377 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5378
5379 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5380 {
5381         int r = EMULATE_DONE;
5382
5383         ++vcpu->stat.insn_emulation_fail;
5384         trace_kvm_emulate_insn_failed(vcpu);
5385         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5386                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5387                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5388                 vcpu->run->internal.ndata = 0;
5389                 r = EMULATE_FAIL;
5390         }
5391         kvm_queue_exception(vcpu, UD_VECTOR);
5392
5393         return r;
5394 }
5395
5396 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5397                                   bool write_fault_to_shadow_pgtable,
5398                                   int emulation_type)
5399 {
5400         gpa_t gpa = cr2;
5401         kvm_pfn_t pfn;
5402
5403         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5404                 return false;
5405
5406         if (!vcpu->arch.mmu.direct_map) {
5407                 /*
5408                  * Write permission should be allowed since only
5409                  * write access need to be emulated.
5410                  */
5411                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5412
5413                 /*
5414                  * If the mapping is invalid in guest, let cpu retry
5415                  * it to generate fault.
5416                  */
5417                 if (gpa == UNMAPPED_GVA)
5418                         return true;
5419         }
5420
5421         /*
5422          * Do not retry the unhandleable instruction if it faults on the
5423          * readonly host memory, otherwise it will goto a infinite loop:
5424          * retry instruction -> write #PF -> emulation fail -> retry
5425          * instruction -> ...
5426          */
5427         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5428
5429         /*
5430          * If the instruction failed on the error pfn, it can not be fixed,
5431          * report the error to userspace.
5432          */
5433         if (is_error_noslot_pfn(pfn))
5434                 return false;
5435
5436         kvm_release_pfn_clean(pfn);
5437
5438         /* The instructions are well-emulated on direct mmu. */
5439         if (vcpu->arch.mmu.direct_map) {
5440                 unsigned int indirect_shadow_pages;
5441
5442                 spin_lock(&vcpu->kvm->mmu_lock);
5443                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5444                 spin_unlock(&vcpu->kvm->mmu_lock);
5445
5446                 if (indirect_shadow_pages)
5447                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5448
5449                 return true;
5450         }
5451
5452         /*
5453          * if emulation was due to access to shadowed page table
5454          * and it failed try to unshadow page and re-enter the
5455          * guest to let CPU execute the instruction.
5456          */
5457         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5458
5459         /*
5460          * If the access faults on its page table, it can not
5461          * be fixed by unprotecting shadow page and it should
5462          * be reported to userspace.
5463          */
5464         return !write_fault_to_shadow_pgtable;
5465 }
5466
5467 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5468                               unsigned long cr2,  int emulation_type)
5469 {
5470         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5471         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5472
5473         last_retry_eip = vcpu->arch.last_retry_eip;
5474         last_retry_addr = vcpu->arch.last_retry_addr;
5475
5476         /*
5477          * If the emulation is caused by #PF and it is non-page_table
5478          * writing instruction, it means the VM-EXIT is caused by shadow
5479          * page protected, we can zap the shadow page and retry this
5480          * instruction directly.
5481          *
5482          * Note: if the guest uses a non-page-table modifying instruction
5483          * on the PDE that points to the instruction, then we will unmap
5484          * the instruction and go to an infinite loop. So, we cache the
5485          * last retried eip and the last fault address, if we meet the eip
5486          * and the address again, we can break out of the potential infinite
5487          * loop.
5488          */
5489         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5490
5491         if (!(emulation_type & EMULTYPE_RETRY))
5492                 return false;
5493
5494         if (x86_page_table_writing_insn(ctxt))
5495                 return false;
5496
5497         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5498                 return false;
5499
5500         vcpu->arch.last_retry_eip = ctxt->eip;
5501         vcpu->arch.last_retry_addr = cr2;
5502
5503         if (!vcpu->arch.mmu.direct_map)
5504                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5505
5506         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5507
5508         return true;
5509 }
5510
5511 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5512 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5513
5514 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5515 {
5516         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5517                 /* This is a good place to trace that we are exiting SMM.  */
5518                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5519
5520                 /* Process a latched INIT or SMI, if any.  */
5521                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5522         }
5523
5524         kvm_mmu_reset_context(vcpu);
5525 }
5526
5527 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5528 {
5529         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5530
5531         vcpu->arch.hflags = emul_flags;
5532
5533         if (changed & HF_SMM_MASK)
5534                 kvm_smm_changed(vcpu);
5535 }
5536
5537 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5538                                 unsigned long *db)
5539 {
5540         u32 dr6 = 0;
5541         int i;
5542         u32 enable, rwlen;
5543
5544         enable = dr7;
5545         rwlen = dr7 >> 16;
5546         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5547                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5548                         dr6 |= (1 << i);
5549         return dr6;
5550 }
5551
5552 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5553 {
5554         struct kvm_run *kvm_run = vcpu->run;
5555
5556         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5557                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5558                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5559                 kvm_run->debug.arch.exception = DB_VECTOR;
5560                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5561                 *r = EMULATE_USER_EXIT;
5562         } else {
5563                 /*
5564                  * "Certain debug exceptions may clear bit 0-3.  The
5565                  * remaining contents of the DR6 register are never
5566                  * cleared by the processor".
5567                  */
5568                 vcpu->arch.dr6 &= ~15;
5569                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5570                 kvm_queue_exception(vcpu, DB_VECTOR);
5571         }
5572 }
5573
5574 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5575 {
5576         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5577         int r = EMULATE_DONE;
5578
5579         kvm_x86_ops->skip_emulated_instruction(vcpu);
5580
5581         /*
5582          * rflags is the old, "raw" value of the flags.  The new value has
5583          * not been saved yet.
5584          *
5585          * This is correct even for TF set by the guest, because "the
5586          * processor will not generate this exception after the instruction
5587          * that sets the TF flag".
5588          */
5589         if (unlikely(rflags & X86_EFLAGS_TF))
5590                 kvm_vcpu_do_singlestep(vcpu, &r);
5591         return r == EMULATE_DONE;
5592 }
5593 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5594
5595 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5596 {
5597         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5598             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5599                 struct kvm_run *kvm_run = vcpu->run;
5600                 unsigned long eip = kvm_get_linear_rip(vcpu);
5601                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5602                                            vcpu->arch.guest_debug_dr7,
5603                                            vcpu->arch.eff_db);
5604
5605                 if (dr6 != 0) {
5606                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5607                         kvm_run->debug.arch.pc = eip;
5608                         kvm_run->debug.arch.exception = DB_VECTOR;
5609                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5610                         *r = EMULATE_USER_EXIT;
5611                         return true;
5612                 }
5613         }
5614
5615         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5616             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5617                 unsigned long eip = kvm_get_linear_rip(vcpu);
5618                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5619                                            vcpu->arch.dr7,
5620                                            vcpu->arch.db);
5621
5622                 if (dr6 != 0) {
5623                         vcpu->arch.dr6 &= ~15;
5624                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5625                         kvm_queue_exception(vcpu, DB_VECTOR);
5626                         *r = EMULATE_DONE;
5627                         return true;
5628                 }
5629         }
5630
5631         return false;
5632 }
5633
5634 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5635                             unsigned long cr2,
5636                             int emulation_type,
5637                             void *insn,
5638                             int insn_len)
5639 {
5640         int r;
5641         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5642         bool writeback = true;
5643         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5644
5645         /*
5646          * Clear write_fault_to_shadow_pgtable here to ensure it is
5647          * never reused.
5648          */
5649         vcpu->arch.write_fault_to_shadow_pgtable = false;
5650         kvm_clear_exception_queue(vcpu);
5651
5652         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5653                 init_emulate_ctxt(vcpu);
5654
5655                 /*
5656                  * We will reenter on the same instruction since
5657                  * we do not set complete_userspace_io.  This does not
5658                  * handle watchpoints yet, those would be handled in
5659                  * the emulate_ops.
5660                  */
5661                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5662                         return r;
5663
5664                 ctxt->interruptibility = 0;
5665                 ctxt->have_exception = false;
5666                 ctxt->exception.vector = -1;
5667                 ctxt->perm_ok = false;
5668
5669                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5670
5671                 r = x86_decode_insn(ctxt, insn, insn_len);
5672
5673                 trace_kvm_emulate_insn_start(vcpu);
5674                 ++vcpu->stat.insn_emulation;
5675                 if (r != EMULATION_OK)  {
5676                         if (emulation_type & EMULTYPE_TRAP_UD)
5677                                 return EMULATE_FAIL;
5678                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5679                                                 emulation_type))
5680                                 return EMULATE_DONE;
5681                         if (emulation_type & EMULTYPE_SKIP)
5682                                 return EMULATE_FAIL;
5683                         return handle_emulation_failure(vcpu);
5684                 }
5685         }
5686
5687         if (emulation_type & EMULTYPE_SKIP) {
5688                 kvm_rip_write(vcpu, ctxt->_eip);
5689                 if (ctxt->eflags & X86_EFLAGS_RF)
5690                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5691                 return EMULATE_DONE;
5692         }
5693
5694         if (retry_instruction(ctxt, cr2, emulation_type))
5695                 return EMULATE_DONE;
5696
5697         /* this is needed for vmware backdoor interface to work since it
5698            changes registers values  during IO operation */
5699         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5700                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5701                 emulator_invalidate_register_cache(ctxt);
5702         }
5703
5704 restart:
5705         /* Save the faulting GPA (cr2) in the address field */
5706         ctxt->exception.address = cr2;
5707
5708         r = x86_emulate_insn(ctxt);
5709
5710         if (r == EMULATION_INTERCEPTED)
5711                 return EMULATE_DONE;
5712
5713         if (r == EMULATION_FAILED) {
5714                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5715                                         emulation_type))
5716                         return EMULATE_DONE;
5717
5718                 return handle_emulation_failure(vcpu);
5719         }
5720
5721         if (ctxt->have_exception) {
5722                 r = EMULATE_DONE;
5723                 if (inject_emulated_exception(vcpu))
5724                         return r;
5725         } else if (vcpu->arch.pio.count) {
5726                 if (!vcpu->arch.pio.in) {
5727                         /* FIXME: return into emulator if single-stepping.  */
5728                         vcpu->arch.pio.count = 0;
5729                 } else {
5730                         writeback = false;
5731                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5732                 }
5733                 r = EMULATE_USER_EXIT;
5734         } else if (vcpu->mmio_needed) {
5735                 if (!vcpu->mmio_is_write)
5736                         writeback = false;
5737                 r = EMULATE_USER_EXIT;
5738                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5739         } else if (r == EMULATION_RESTART)
5740                 goto restart;
5741         else
5742                 r = EMULATE_DONE;
5743
5744         if (writeback) {
5745                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5746                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5747                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5748                 kvm_rip_write(vcpu, ctxt->eip);
5749                 if (r == EMULATE_DONE &&
5750                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5751                         kvm_vcpu_do_singlestep(vcpu, &r);
5752                 if (!ctxt->have_exception ||
5753                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5754                         __kvm_set_rflags(vcpu, ctxt->eflags);
5755
5756                 /*
5757                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5758                  * do nothing, and it will be requested again as soon as
5759                  * the shadow expires.  But we still need to check here,
5760                  * because POPF has no interrupt shadow.
5761                  */
5762                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5763                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5764         } else
5765                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5766
5767         return r;
5768 }
5769 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5770
5771 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5772 {
5773         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5774         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5775                                             size, port, &val, 1);
5776         /* do not return to emulator after return from userspace */
5777         vcpu->arch.pio.count = 0;
5778         return ret;
5779 }
5780 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5781
5782 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5783 {
5784         unsigned long val;
5785
5786         /* We should only ever be called with arch.pio.count equal to 1 */
5787         BUG_ON(vcpu->arch.pio.count != 1);
5788
5789         /* For size less than 4 we merge, else we zero extend */
5790         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5791                                         : 0;
5792
5793         /*
5794          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5795          * the copy and tracing
5796          */
5797         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5798                                  vcpu->arch.pio.port, &val, 1);
5799         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5800
5801         return 1;
5802 }
5803
5804 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5805 {
5806         unsigned long val;
5807         int ret;
5808
5809         /* For size less than 4 we merge, else we zero extend */
5810         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5811
5812         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5813                                        &val, 1);
5814         if (ret) {
5815                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5816                 return ret;
5817         }
5818
5819         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5820
5821         return 0;
5822 }
5823 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5824
5825 static int kvmclock_cpu_down_prep(unsigned int cpu)
5826 {
5827         __this_cpu_write(cpu_tsc_khz, 0);
5828         return 0;
5829 }
5830
5831 static void tsc_khz_changed(void *data)
5832 {
5833         struct cpufreq_freqs *freq = data;
5834         unsigned long khz = 0;
5835
5836         if (data)
5837                 khz = freq->new;
5838         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5839                 khz = cpufreq_quick_get(raw_smp_processor_id());
5840         if (!khz)
5841                 khz = tsc_khz;
5842         __this_cpu_write(cpu_tsc_khz, khz);
5843 }
5844
5845 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5846                                      void *data)
5847 {
5848         struct cpufreq_freqs *freq = data;
5849         struct kvm *kvm;
5850         struct kvm_vcpu *vcpu;
5851         int i, send_ipi = 0;
5852
5853         /*
5854          * We allow guests to temporarily run on slowing clocks,
5855          * provided we notify them after, or to run on accelerating
5856          * clocks, provided we notify them before.  Thus time never
5857          * goes backwards.
5858          *
5859          * However, we have a problem.  We can't atomically update
5860          * the frequency of a given CPU from this function; it is
5861          * merely a notifier, which can be called from any CPU.
5862          * Changing the TSC frequency at arbitrary points in time
5863          * requires a recomputation of local variables related to
5864          * the TSC for each VCPU.  We must flag these local variables
5865          * to be updated and be sure the update takes place with the
5866          * new frequency before any guests proceed.
5867          *
5868          * Unfortunately, the combination of hotplug CPU and frequency
5869          * change creates an intractable locking scenario; the order
5870          * of when these callouts happen is undefined with respect to
5871          * CPU hotplug, and they can race with each other.  As such,
5872          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5873          * undefined; you can actually have a CPU frequency change take
5874          * place in between the computation of X and the setting of the
5875          * variable.  To protect against this problem, all updates of
5876          * the per_cpu tsc_khz variable are done in an interrupt
5877          * protected IPI, and all callers wishing to update the value
5878          * must wait for a synchronous IPI to complete (which is trivial
5879          * if the caller is on the CPU already).  This establishes the
5880          * necessary total order on variable updates.
5881          *
5882          * Note that because a guest time update may take place
5883          * anytime after the setting of the VCPU's request bit, the
5884          * correct TSC value must be set before the request.  However,
5885          * to ensure the update actually makes it to any guest which
5886          * starts running in hardware virtualization between the set
5887          * and the acquisition of the spinlock, we must also ping the
5888          * CPU after setting the request bit.
5889          *
5890          */
5891
5892         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5893                 return 0;
5894         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5895                 return 0;
5896
5897         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5898
5899         spin_lock(&kvm_lock);
5900         list_for_each_entry(kvm, &vm_list, vm_list) {
5901                 kvm_for_each_vcpu(i, vcpu, kvm) {
5902                         if (vcpu->cpu != freq->cpu)
5903                                 continue;
5904                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5905                         if (vcpu->cpu != smp_processor_id())
5906                                 send_ipi = 1;
5907                 }
5908         }
5909         spin_unlock(&kvm_lock);
5910
5911         if (freq->old < freq->new && send_ipi) {
5912                 /*
5913                  * We upscale the frequency.  Must make the guest
5914                  * doesn't see old kvmclock values while running with
5915                  * the new frequency, otherwise we risk the guest sees
5916                  * time go backwards.
5917                  *
5918                  * In case we update the frequency for another cpu
5919                  * (which might be in guest context) send an interrupt
5920                  * to kick the cpu out of guest context.  Next time
5921                  * guest context is entered kvmclock will be updated,
5922                  * so the guest will not see stale values.
5923                  */
5924                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5925         }
5926         return 0;
5927 }
5928
5929 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5930         .notifier_call  = kvmclock_cpufreq_notifier
5931 };
5932
5933 static int kvmclock_cpu_online(unsigned int cpu)
5934 {
5935         tsc_khz_changed(NULL);
5936         return 0;
5937 }
5938
5939 static void kvm_timer_init(void)
5940 {
5941         max_tsc_khz = tsc_khz;
5942
5943         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5944 #ifdef CONFIG_CPU_FREQ
5945                 struct cpufreq_policy policy;
5946                 int cpu;
5947
5948                 memset(&policy, 0, sizeof(policy));
5949                 cpu = get_cpu();
5950                 cpufreq_get_policy(&policy, cpu);
5951                 if (policy.cpuinfo.max_freq)
5952                         max_tsc_khz = policy.cpuinfo.max_freq;
5953                 put_cpu();
5954 #endif
5955                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5956                                           CPUFREQ_TRANSITION_NOTIFIER);
5957         }
5958         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5959
5960         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5961                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5962 }
5963
5964 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5965
5966 int kvm_is_in_guest(void)
5967 {
5968         return __this_cpu_read(current_vcpu) != NULL;
5969 }
5970
5971 static int kvm_is_user_mode(void)
5972 {
5973         int user_mode = 3;
5974
5975         if (__this_cpu_read(current_vcpu))
5976                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5977
5978         return user_mode != 0;
5979 }
5980
5981 static unsigned long kvm_get_guest_ip(void)
5982 {
5983         unsigned long ip = 0;
5984
5985         if (__this_cpu_read(current_vcpu))
5986                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5987
5988         return ip;
5989 }
5990
5991 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5992         .is_in_guest            = kvm_is_in_guest,
5993         .is_user_mode           = kvm_is_user_mode,
5994         .get_guest_ip           = kvm_get_guest_ip,
5995 };
5996
5997 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5998 {
5999         __this_cpu_write(current_vcpu, vcpu);
6000 }
6001 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6002
6003 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6004 {
6005         __this_cpu_write(current_vcpu, NULL);
6006 }
6007 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6008
6009 static void kvm_set_mmio_spte_mask(void)
6010 {
6011         u64 mask;
6012         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6013
6014         /*
6015          * Set the reserved bits and the present bit of an paging-structure
6016          * entry to generate page fault with PFER.RSV = 1.
6017          */
6018          /* Mask the reserved physical address bits. */
6019         mask = rsvd_bits(maxphyaddr, 51);
6020
6021         /* Set the present bit. */
6022         mask |= 1ull;
6023
6024 #ifdef CONFIG_X86_64
6025         /*
6026          * If reserved bit is not supported, clear the present bit to disable
6027          * mmio page fault.
6028          */
6029         if (maxphyaddr == 52)
6030                 mask &= ~1ull;
6031 #endif
6032
6033         kvm_mmu_set_mmio_spte_mask(mask, mask);
6034 }
6035
6036 #ifdef CONFIG_X86_64
6037 static void pvclock_gtod_update_fn(struct work_struct *work)
6038 {
6039         struct kvm *kvm;
6040
6041         struct kvm_vcpu *vcpu;
6042         int i;
6043
6044         spin_lock(&kvm_lock);
6045         list_for_each_entry(kvm, &vm_list, vm_list)
6046                 kvm_for_each_vcpu(i, vcpu, kvm)
6047                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6048         atomic_set(&kvm_guest_has_master_clock, 0);
6049         spin_unlock(&kvm_lock);
6050 }
6051
6052 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6053
6054 /*
6055  * Notification about pvclock gtod data update.
6056  */
6057 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6058                                void *priv)
6059 {
6060         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6061         struct timekeeper *tk = priv;
6062
6063         update_pvclock_gtod(tk);
6064
6065         /* disable master clock if host does not trust, or does not
6066          * use, TSC clocksource
6067          */
6068         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6069             atomic_read(&kvm_guest_has_master_clock) != 0)
6070                 queue_work(system_long_wq, &pvclock_gtod_work);
6071
6072         return 0;
6073 }
6074
6075 static struct notifier_block pvclock_gtod_notifier = {
6076         .notifier_call = pvclock_gtod_notify,
6077 };
6078 #endif
6079
6080 int kvm_arch_init(void *opaque)
6081 {
6082         int r;
6083         struct kvm_x86_ops *ops = opaque;
6084
6085         if (kvm_x86_ops) {
6086                 printk(KERN_ERR "kvm: already loaded the other module\n");
6087                 r = -EEXIST;
6088                 goto out;
6089         }
6090
6091         if (!ops->cpu_has_kvm_support()) {
6092                 printk(KERN_ERR "kvm: no hardware support\n");
6093                 r = -EOPNOTSUPP;
6094                 goto out;
6095         }
6096         if (ops->disabled_by_bios()) {
6097                 printk(KERN_ERR "kvm: disabled by bios\n");
6098                 r = -EOPNOTSUPP;
6099                 goto out;
6100         }
6101
6102         r = -ENOMEM;
6103         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6104         if (!shared_msrs) {
6105                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6106                 goto out;
6107         }
6108
6109         r = kvm_mmu_module_init();
6110         if (r)
6111                 goto out_free_percpu;
6112
6113         kvm_set_mmio_spte_mask();
6114
6115         kvm_x86_ops = ops;
6116
6117         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6118                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6119                         PT_PRESENT_MASK, 0);
6120         kvm_timer_init();
6121
6122         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6123
6124         if (boot_cpu_has(X86_FEATURE_XSAVE))
6125                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6126
6127         kvm_lapic_init();
6128 #ifdef CONFIG_X86_64
6129         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6130 #endif
6131
6132         return 0;
6133
6134 out_free_percpu:
6135         free_percpu(shared_msrs);
6136 out:
6137         return r;
6138 }
6139
6140 void kvm_arch_exit(void)
6141 {
6142         kvm_lapic_exit();
6143         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6144
6145         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6146                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6147                                             CPUFREQ_TRANSITION_NOTIFIER);
6148         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6149 #ifdef CONFIG_X86_64
6150         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6151 #endif
6152         kvm_x86_ops = NULL;
6153         kvm_mmu_module_exit();
6154         free_percpu(shared_msrs);
6155 }
6156
6157 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6158 {
6159         ++vcpu->stat.halt_exits;
6160         if (lapic_in_kernel(vcpu)) {
6161                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6162                 return 1;
6163         } else {
6164                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6165                 return 0;
6166         }
6167 }
6168 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6169
6170 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6171 {
6172         int ret = kvm_skip_emulated_instruction(vcpu);
6173         /*
6174          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6175          * KVM_EXIT_DEBUG here.
6176          */
6177         return kvm_vcpu_halt(vcpu) && ret;
6178 }
6179 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6180
6181 #ifdef CONFIG_X86_64
6182 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6183                                 unsigned long clock_type)
6184 {
6185         struct kvm_clock_pairing clock_pairing;
6186         struct timespec ts;
6187         u64 cycle;
6188         int ret;
6189
6190         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6191                 return -KVM_EOPNOTSUPP;
6192
6193         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6194                 return -KVM_EOPNOTSUPP;
6195
6196         clock_pairing.sec = ts.tv_sec;
6197         clock_pairing.nsec = ts.tv_nsec;
6198         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6199         clock_pairing.flags = 0;
6200
6201         ret = 0;
6202         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6203                             sizeof(struct kvm_clock_pairing)))
6204                 ret = -KVM_EFAULT;
6205
6206         return ret;
6207 }
6208 #endif
6209
6210 /*
6211  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6212  *
6213  * @apicid - apicid of vcpu to be kicked.
6214  */
6215 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6216 {
6217         struct kvm_lapic_irq lapic_irq;
6218
6219         lapic_irq.shorthand = 0;
6220         lapic_irq.dest_mode = 0;
6221         lapic_irq.level = 0;
6222         lapic_irq.dest_id = apicid;
6223         lapic_irq.msi_redir_hint = false;
6224
6225         lapic_irq.delivery_mode = APIC_DM_REMRD;
6226         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6227 }
6228
6229 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6230 {
6231         vcpu->arch.apicv_active = false;
6232         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6233 }
6234
6235 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6236 {
6237         unsigned long nr, a0, a1, a2, a3, ret;
6238         int op_64_bit, r;
6239
6240         r = kvm_skip_emulated_instruction(vcpu);
6241
6242         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6243                 return kvm_hv_hypercall(vcpu);
6244
6245         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6246         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6247         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6248         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6249         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6250
6251         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6252
6253         op_64_bit = is_64_bit_mode(vcpu);
6254         if (!op_64_bit) {
6255                 nr &= 0xFFFFFFFF;
6256                 a0 &= 0xFFFFFFFF;
6257                 a1 &= 0xFFFFFFFF;
6258                 a2 &= 0xFFFFFFFF;
6259                 a3 &= 0xFFFFFFFF;
6260         }
6261
6262         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6263                 ret = -KVM_EPERM;
6264                 goto out;
6265         }
6266
6267         switch (nr) {
6268         case KVM_HC_VAPIC_POLL_IRQ:
6269                 ret = 0;
6270                 break;
6271         case KVM_HC_KICK_CPU:
6272                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6273                 ret = 0;
6274                 break;
6275 #ifdef CONFIG_X86_64
6276         case KVM_HC_CLOCK_PAIRING:
6277                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6278                 break;
6279 #endif
6280         default:
6281                 ret = -KVM_ENOSYS;
6282                 break;
6283         }
6284 out:
6285         if (!op_64_bit)
6286                 ret = (u32)ret;
6287         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6288         ++vcpu->stat.hypercalls;
6289         return r;
6290 }
6291 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6292
6293 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6294 {
6295         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6296         char instruction[3];
6297         unsigned long rip = kvm_rip_read(vcpu);
6298
6299         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6300
6301         return emulator_write_emulated(ctxt, rip, instruction, 3,
6302                 &ctxt->exception);
6303 }
6304
6305 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6306 {
6307         return vcpu->run->request_interrupt_window &&
6308                 likely(!pic_in_kernel(vcpu->kvm));
6309 }
6310
6311 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6312 {
6313         struct kvm_run *kvm_run = vcpu->run;
6314
6315         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6316         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6317         kvm_run->cr8 = kvm_get_cr8(vcpu);
6318         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6319         kvm_run->ready_for_interrupt_injection =
6320                 pic_in_kernel(vcpu->kvm) ||
6321                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6322 }
6323
6324 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6325 {
6326         int max_irr, tpr;
6327
6328         if (!kvm_x86_ops->update_cr8_intercept)
6329                 return;
6330
6331         if (!lapic_in_kernel(vcpu))
6332                 return;
6333
6334         if (vcpu->arch.apicv_active)
6335                 return;
6336
6337         if (!vcpu->arch.apic->vapic_addr)
6338                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6339         else
6340                 max_irr = -1;
6341
6342         if (max_irr != -1)
6343                 max_irr >>= 4;
6344
6345         tpr = kvm_lapic_get_cr8(vcpu);
6346
6347         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6348 }
6349
6350 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6351 {
6352         int r;
6353
6354         /* try to reinject previous events if any */
6355         if (vcpu->arch.exception.pending) {
6356                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6357                                         vcpu->arch.exception.has_error_code,
6358                                         vcpu->arch.exception.error_code);
6359
6360                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6361                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6362                                              X86_EFLAGS_RF);
6363
6364                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6365                     (vcpu->arch.dr7 & DR7_GD)) {
6366                         vcpu->arch.dr7 &= ~DR7_GD;
6367                         kvm_update_dr7(vcpu);
6368                 }
6369
6370                 kvm_x86_ops->queue_exception(vcpu);
6371                 return 0;
6372         }
6373
6374         if (vcpu->arch.nmi_injected) {
6375                 kvm_x86_ops->set_nmi(vcpu);
6376                 return 0;
6377         }
6378
6379         if (vcpu->arch.interrupt.pending) {
6380                 kvm_x86_ops->set_irq(vcpu);
6381                 return 0;
6382         }
6383
6384         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6385                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6386                 if (r != 0)
6387                         return r;
6388         }
6389
6390         /* try to inject new event if pending */
6391         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6392                 vcpu->arch.smi_pending = false;
6393                 enter_smm(vcpu);
6394         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6395                 --vcpu->arch.nmi_pending;
6396                 vcpu->arch.nmi_injected = true;
6397                 kvm_x86_ops->set_nmi(vcpu);
6398         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6399                 /*
6400                  * Because interrupts can be injected asynchronously, we are
6401                  * calling check_nested_events again here to avoid a race condition.
6402                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6403                  * proposal and current concerns.  Perhaps we should be setting
6404                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6405                  */
6406                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6407                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6408                         if (r != 0)
6409                                 return r;
6410                 }
6411                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6412                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6413                                             false);
6414                         kvm_x86_ops->set_irq(vcpu);
6415                 }
6416         }
6417
6418         return 0;
6419 }
6420
6421 static void process_nmi(struct kvm_vcpu *vcpu)
6422 {
6423         unsigned limit = 2;
6424
6425         /*
6426          * x86 is limited to one NMI running, and one NMI pending after it.
6427          * If an NMI is already in progress, limit further NMIs to just one.
6428          * Otherwise, allow two (and we'll inject the first one immediately).
6429          */
6430         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6431                 limit = 1;
6432
6433         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6434         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6435         kvm_make_request(KVM_REQ_EVENT, vcpu);
6436 }
6437
6438 #define put_smstate(type, buf, offset, val)                       \
6439         *(type *)((buf) + (offset) - 0x7e00) = val
6440
6441 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6442 {
6443         u32 flags = 0;
6444         flags |= seg->g       << 23;
6445         flags |= seg->db      << 22;
6446         flags |= seg->l       << 21;
6447         flags |= seg->avl     << 20;
6448         flags |= seg->present << 15;
6449         flags |= seg->dpl     << 13;
6450         flags |= seg->s       << 12;
6451         flags |= seg->type    << 8;
6452         return flags;
6453 }
6454
6455 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6456 {
6457         struct kvm_segment seg;
6458         int offset;
6459
6460         kvm_get_segment(vcpu, &seg, n);
6461         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6462
6463         if (n < 3)
6464                 offset = 0x7f84 + n * 12;
6465         else
6466                 offset = 0x7f2c + (n - 3) * 12;
6467
6468         put_smstate(u32, buf, offset + 8, seg.base);
6469         put_smstate(u32, buf, offset + 4, seg.limit);
6470         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6471 }
6472
6473 #ifdef CONFIG_X86_64
6474 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6475 {
6476         struct kvm_segment seg;
6477         int offset;
6478         u16 flags;
6479
6480         kvm_get_segment(vcpu, &seg, n);
6481         offset = 0x7e00 + n * 16;
6482
6483         flags = enter_smm_get_segment_flags(&seg) >> 8;
6484         put_smstate(u16, buf, offset, seg.selector);
6485         put_smstate(u16, buf, offset + 2, flags);
6486         put_smstate(u32, buf, offset + 4, seg.limit);
6487         put_smstate(u64, buf, offset + 8, seg.base);
6488 }
6489 #endif
6490
6491 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6492 {
6493         struct desc_ptr dt;
6494         struct kvm_segment seg;
6495         unsigned long val;
6496         int i;
6497
6498         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6499         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6500         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6501         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6502
6503         for (i = 0; i < 8; i++)
6504                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6505
6506         kvm_get_dr(vcpu, 6, &val);
6507         put_smstate(u32, buf, 0x7fcc, (u32)val);
6508         kvm_get_dr(vcpu, 7, &val);
6509         put_smstate(u32, buf, 0x7fc8, (u32)val);
6510
6511         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6512         put_smstate(u32, buf, 0x7fc4, seg.selector);
6513         put_smstate(u32, buf, 0x7f64, seg.base);
6514         put_smstate(u32, buf, 0x7f60, seg.limit);
6515         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6516
6517         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6518         put_smstate(u32, buf, 0x7fc0, seg.selector);
6519         put_smstate(u32, buf, 0x7f80, seg.base);
6520         put_smstate(u32, buf, 0x7f7c, seg.limit);
6521         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6522
6523         kvm_x86_ops->get_gdt(vcpu, &dt);
6524         put_smstate(u32, buf, 0x7f74, dt.address);
6525         put_smstate(u32, buf, 0x7f70, dt.size);
6526
6527         kvm_x86_ops->get_idt(vcpu, &dt);
6528         put_smstate(u32, buf, 0x7f58, dt.address);
6529         put_smstate(u32, buf, 0x7f54, dt.size);
6530
6531         for (i = 0; i < 6; i++)
6532                 enter_smm_save_seg_32(vcpu, buf, i);
6533
6534         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6535
6536         /* revision id */
6537         put_smstate(u32, buf, 0x7efc, 0x00020000);
6538         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6539 }
6540
6541 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6542 {
6543 #ifdef CONFIG_X86_64
6544         struct desc_ptr dt;
6545         struct kvm_segment seg;
6546         unsigned long val;
6547         int i;
6548
6549         for (i = 0; i < 16; i++)
6550                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6551
6552         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6553         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6554
6555         kvm_get_dr(vcpu, 6, &val);
6556         put_smstate(u64, buf, 0x7f68, val);
6557         kvm_get_dr(vcpu, 7, &val);
6558         put_smstate(u64, buf, 0x7f60, val);
6559
6560         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6561         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6562         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6563
6564         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6565
6566         /* revision id */
6567         put_smstate(u32, buf, 0x7efc, 0x00020064);
6568
6569         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6570
6571         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6572         put_smstate(u16, buf, 0x7e90, seg.selector);
6573         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6574         put_smstate(u32, buf, 0x7e94, seg.limit);
6575         put_smstate(u64, buf, 0x7e98, seg.base);
6576
6577         kvm_x86_ops->get_idt(vcpu, &dt);
6578         put_smstate(u32, buf, 0x7e84, dt.size);
6579         put_smstate(u64, buf, 0x7e88, dt.address);
6580
6581         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6582         put_smstate(u16, buf, 0x7e70, seg.selector);
6583         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6584         put_smstate(u32, buf, 0x7e74, seg.limit);
6585         put_smstate(u64, buf, 0x7e78, seg.base);
6586
6587         kvm_x86_ops->get_gdt(vcpu, &dt);
6588         put_smstate(u32, buf, 0x7e64, dt.size);
6589         put_smstate(u64, buf, 0x7e68, dt.address);
6590
6591         for (i = 0; i < 6; i++)
6592                 enter_smm_save_seg_64(vcpu, buf, i);
6593 #else
6594         WARN_ON_ONCE(1);
6595 #endif
6596 }
6597
6598 static void enter_smm(struct kvm_vcpu *vcpu)
6599 {
6600         struct kvm_segment cs, ds;
6601         struct desc_ptr dt;
6602         char buf[512];
6603         u32 cr0;
6604
6605         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6606         vcpu->arch.hflags |= HF_SMM_MASK;
6607         memset(buf, 0, 512);
6608         if (guest_cpuid_has_longmode(vcpu))
6609                 enter_smm_save_state_64(vcpu, buf);
6610         else
6611                 enter_smm_save_state_32(vcpu, buf);
6612
6613         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6614
6615         if (kvm_x86_ops->get_nmi_mask(vcpu))
6616                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6617         else
6618                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6619
6620         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6621         kvm_rip_write(vcpu, 0x8000);
6622
6623         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6624         kvm_x86_ops->set_cr0(vcpu, cr0);
6625         vcpu->arch.cr0 = cr0;
6626
6627         kvm_x86_ops->set_cr4(vcpu, 0);
6628
6629         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6630         dt.address = dt.size = 0;
6631         kvm_x86_ops->set_idt(vcpu, &dt);
6632
6633         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6634
6635         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6636         cs.base = vcpu->arch.smbase;
6637
6638         ds.selector = 0;
6639         ds.base = 0;
6640
6641         cs.limit    = ds.limit = 0xffffffff;
6642         cs.type     = ds.type = 0x3;
6643         cs.dpl      = ds.dpl = 0;
6644         cs.db       = ds.db = 0;
6645         cs.s        = ds.s = 1;
6646         cs.l        = ds.l = 0;
6647         cs.g        = ds.g = 1;
6648         cs.avl      = ds.avl = 0;
6649         cs.present  = ds.present = 1;
6650         cs.unusable = ds.unusable = 0;
6651         cs.padding  = ds.padding = 0;
6652
6653         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6654         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6655         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6656         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6657         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6658         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6659
6660         if (guest_cpuid_has_longmode(vcpu))
6661                 kvm_x86_ops->set_efer(vcpu, 0);
6662
6663         kvm_update_cpuid(vcpu);
6664         kvm_mmu_reset_context(vcpu);
6665 }
6666
6667 static void process_smi(struct kvm_vcpu *vcpu)
6668 {
6669         vcpu->arch.smi_pending = true;
6670         kvm_make_request(KVM_REQ_EVENT, vcpu);
6671 }
6672
6673 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6674 {
6675         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6676 }
6677
6678 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6679 {
6680         u64 eoi_exit_bitmap[4];
6681
6682         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6683                 return;
6684
6685         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6686
6687         if (irqchip_split(vcpu->kvm))
6688                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6689         else {
6690                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6691                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6692                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6693         }
6694         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6695                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6696         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6697 }
6698
6699 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6700 {
6701         ++vcpu->stat.tlb_flush;
6702         kvm_x86_ops->tlb_flush(vcpu);
6703 }
6704
6705 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6706 {
6707         struct page *page = NULL;
6708
6709         if (!lapic_in_kernel(vcpu))
6710                 return;
6711
6712         if (!kvm_x86_ops->set_apic_access_page_addr)
6713                 return;
6714
6715         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6716         if (is_error_page(page))
6717                 return;
6718         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6719
6720         /*
6721          * Do not pin apic access page in memory, the MMU notifier
6722          * will call us again if it is migrated or swapped out.
6723          */
6724         put_page(page);
6725 }
6726 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6727
6728 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6729                                            unsigned long address)
6730 {
6731         /*
6732          * The physical address of apic access page is stored in the VMCS.
6733          * Update it when it becomes invalid.
6734          */
6735         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6736                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6737 }
6738
6739 /*
6740  * Returns 1 to let vcpu_run() continue the guest execution loop without
6741  * exiting to the userspace.  Otherwise, the value will be returned to the
6742  * userspace.
6743  */
6744 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6745 {
6746         int r;
6747         bool req_int_win =
6748                 dm_request_for_irq_injection(vcpu) &&
6749                 kvm_cpu_accept_dm_intr(vcpu);
6750
6751         bool req_immediate_exit = false;
6752
6753         if (kvm_request_pending(vcpu)) {
6754                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6755                         kvm_mmu_unload(vcpu);
6756                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6757                         __kvm_migrate_timers(vcpu);
6758                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6759                         kvm_gen_update_masterclock(vcpu->kvm);
6760                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6761                         kvm_gen_kvmclock_update(vcpu);
6762                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6763                         r = kvm_guest_time_update(vcpu);
6764                         if (unlikely(r))
6765                                 goto out;
6766                 }
6767                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6768                         kvm_mmu_sync_roots(vcpu);
6769                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6770                         kvm_vcpu_flush_tlb(vcpu);
6771                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6772                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6773                         r = 0;
6774                         goto out;
6775                 }
6776                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6777                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6778                         r = 0;
6779                         goto out;
6780                 }
6781                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6782                         /* Page is swapped out. Do synthetic halt */
6783                         vcpu->arch.apf.halted = true;
6784                         r = 1;
6785                         goto out;
6786                 }
6787                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6788                         record_steal_time(vcpu);
6789                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6790                         process_smi(vcpu);
6791                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6792                         process_nmi(vcpu);
6793                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6794                         kvm_pmu_handle_event(vcpu);
6795                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6796                         kvm_pmu_deliver_pmi(vcpu);
6797                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6798                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6799                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6800                                      vcpu->arch.ioapic_handled_vectors)) {
6801                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6802                                 vcpu->run->eoi.vector =
6803                                                 vcpu->arch.pending_ioapic_eoi;
6804                                 r = 0;
6805                                 goto out;
6806                         }
6807                 }
6808                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6809                         vcpu_scan_ioapic(vcpu);
6810                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6811                         kvm_vcpu_reload_apic_access_page(vcpu);
6812                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6813                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6814                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6815                         r = 0;
6816                         goto out;
6817                 }
6818                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6819                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6820                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6821                         r = 0;
6822                         goto out;
6823                 }
6824                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6825                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6826                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6827                         r = 0;
6828                         goto out;
6829                 }
6830
6831                 /*
6832                  * KVM_REQ_HV_STIMER has to be processed after
6833                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6834                  * depend on the guest clock being up-to-date
6835                  */
6836                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6837                         kvm_hv_process_stimers(vcpu);
6838         }
6839
6840         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6841                 ++vcpu->stat.req_event;
6842                 kvm_apic_accept_events(vcpu);
6843                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6844                         r = 1;
6845                         goto out;
6846                 }
6847
6848                 if (inject_pending_event(vcpu, req_int_win) != 0)
6849                         req_immediate_exit = true;
6850                 else {
6851                         /* Enable NMI/IRQ window open exits if needed.
6852                          *
6853                          * SMIs have two cases: 1) they can be nested, and
6854                          * then there is nothing to do here because RSM will
6855                          * cause a vmexit anyway; 2) or the SMI can be pending
6856                          * because inject_pending_event has completed the
6857                          * injection of an IRQ or NMI from the previous vmexit,
6858                          * and then we request an immediate exit to inject the SMI.
6859                          */
6860                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6861                                 req_immediate_exit = true;
6862                         if (vcpu->arch.nmi_pending)
6863                                 kvm_x86_ops->enable_nmi_window(vcpu);
6864                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6865                                 kvm_x86_ops->enable_irq_window(vcpu);
6866                 }
6867
6868                 if (kvm_lapic_enabled(vcpu)) {
6869                         update_cr8_intercept(vcpu);
6870                         kvm_lapic_sync_to_vapic(vcpu);
6871                 }
6872         }
6873
6874         r = kvm_mmu_reload(vcpu);
6875         if (unlikely(r)) {
6876                 goto cancel_injection;
6877         }
6878
6879         preempt_disable();
6880
6881         kvm_x86_ops->prepare_guest_switch(vcpu);
6882         kvm_load_guest_fpu(vcpu);
6883
6884         /*
6885          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6886          * IPI are then delayed after guest entry, which ensures that they
6887          * result in virtual interrupt delivery.
6888          */
6889         local_irq_disable();
6890         vcpu->mode = IN_GUEST_MODE;
6891
6892         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6893
6894         /*
6895          * 1) We should set ->mode before checking ->requests.  Please see
6896          * the comment in kvm_vcpu_exiting_guest_mode().
6897          *
6898          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6899          * pairs with the memory barrier implicit in pi_test_and_set_on
6900          * (see vmx_deliver_posted_interrupt).
6901          *
6902          * 3) This also orders the write to mode from any reads to the page
6903          * tables done while the VCPU is running.  Please see the comment
6904          * in kvm_flush_remote_tlbs.
6905          */
6906         smp_mb__after_srcu_read_unlock();
6907
6908         /*
6909          * This handles the case where a posted interrupt was
6910          * notified with kvm_vcpu_kick.
6911          */
6912         if (kvm_lapic_enabled(vcpu)) {
6913                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6914                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6915         }
6916
6917         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6918             || need_resched() || signal_pending(current)) {
6919                 vcpu->mode = OUTSIDE_GUEST_MODE;
6920                 smp_wmb();
6921                 local_irq_enable();
6922                 preempt_enable();
6923                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6924                 r = 1;
6925                 goto cancel_injection;
6926         }
6927
6928         kvm_load_guest_xcr0(vcpu);
6929
6930         if (req_immediate_exit) {
6931                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6932                 smp_send_reschedule(vcpu->cpu);
6933         }
6934
6935         trace_kvm_entry(vcpu->vcpu_id);
6936         wait_lapic_expire(vcpu);
6937         guest_enter_irqoff();
6938
6939         if (unlikely(vcpu->arch.switch_db_regs)) {
6940                 set_debugreg(0, 7);
6941                 set_debugreg(vcpu->arch.eff_db[0], 0);
6942                 set_debugreg(vcpu->arch.eff_db[1], 1);
6943                 set_debugreg(vcpu->arch.eff_db[2], 2);
6944                 set_debugreg(vcpu->arch.eff_db[3], 3);
6945                 set_debugreg(vcpu->arch.dr6, 6);
6946                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6947         }
6948
6949         kvm_x86_ops->run(vcpu);
6950
6951         /*
6952          * Do this here before restoring debug registers on the host.  And
6953          * since we do this before handling the vmexit, a DR access vmexit
6954          * can (a) read the correct value of the debug registers, (b) set
6955          * KVM_DEBUGREG_WONT_EXIT again.
6956          */
6957         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6958                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6959                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6960                 kvm_update_dr0123(vcpu);
6961                 kvm_update_dr6(vcpu);
6962                 kvm_update_dr7(vcpu);
6963                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6964         }
6965
6966         /*
6967          * If the guest has used debug registers, at least dr7
6968          * will be disabled while returning to the host.
6969          * If we don't have active breakpoints in the host, we don't
6970          * care about the messed up debug address registers. But if
6971          * we have some of them active, restore the old state.
6972          */
6973         if (hw_breakpoint_active())
6974                 hw_breakpoint_restore();
6975
6976         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6977
6978         vcpu->mode = OUTSIDE_GUEST_MODE;
6979         smp_wmb();
6980
6981         kvm_put_guest_xcr0(vcpu);
6982
6983         kvm_x86_ops->handle_external_intr(vcpu);
6984
6985         ++vcpu->stat.exits;
6986
6987         guest_exit_irqoff();
6988
6989         local_irq_enable();
6990         preempt_enable();
6991
6992         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6993
6994         /*
6995          * Profile KVM exit RIPs:
6996          */
6997         if (unlikely(prof_on == KVM_PROFILING)) {
6998                 unsigned long rip = kvm_rip_read(vcpu);
6999                 profile_hit(KVM_PROFILING, (void *)rip);
7000         }
7001
7002         if (unlikely(vcpu->arch.tsc_always_catchup))
7003                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7004
7005         if (vcpu->arch.apic_attention)
7006                 kvm_lapic_sync_from_vapic(vcpu);
7007
7008         r = kvm_x86_ops->handle_exit(vcpu);
7009         return r;
7010
7011 cancel_injection:
7012         kvm_x86_ops->cancel_injection(vcpu);
7013         if (unlikely(vcpu->arch.apic_attention))
7014                 kvm_lapic_sync_from_vapic(vcpu);
7015 out:
7016         return r;
7017 }
7018
7019 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7020 {
7021         if (!kvm_arch_vcpu_runnable(vcpu) &&
7022             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7023                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7024                 kvm_vcpu_block(vcpu);
7025                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7026
7027                 if (kvm_x86_ops->post_block)
7028                         kvm_x86_ops->post_block(vcpu);
7029
7030                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7031                         return 1;
7032         }
7033
7034         kvm_apic_accept_events(vcpu);
7035         switch(vcpu->arch.mp_state) {
7036         case KVM_MP_STATE_HALTED:
7037                 vcpu->arch.pv.pv_unhalted = false;
7038                 vcpu->arch.mp_state =
7039                         KVM_MP_STATE_RUNNABLE;
7040         case KVM_MP_STATE_RUNNABLE:
7041                 vcpu->arch.apf.halted = false;
7042                 break;
7043         case KVM_MP_STATE_INIT_RECEIVED:
7044                 break;
7045         default:
7046                 return -EINTR;
7047                 break;
7048         }
7049         return 1;
7050 }
7051
7052 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7053 {
7054         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7055                 kvm_x86_ops->check_nested_events(vcpu, false);
7056
7057         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7058                 !vcpu->arch.apf.halted);
7059 }
7060
7061 static int vcpu_run(struct kvm_vcpu *vcpu)
7062 {
7063         int r;
7064         struct kvm *kvm = vcpu->kvm;
7065
7066         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7067
7068         for (;;) {
7069                 if (kvm_vcpu_running(vcpu)) {
7070                         r = vcpu_enter_guest(vcpu);
7071                 } else {
7072                         r = vcpu_block(kvm, vcpu);
7073                 }
7074
7075                 if (r <= 0)
7076                         break;
7077
7078                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7079                 if (kvm_cpu_has_pending_timer(vcpu))
7080                         kvm_inject_pending_timer_irqs(vcpu);
7081
7082                 if (dm_request_for_irq_injection(vcpu) &&
7083                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7084                         r = 0;
7085                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7086                         ++vcpu->stat.request_irq_exits;
7087                         break;
7088                 }
7089
7090                 kvm_check_async_pf_completion(vcpu);
7091
7092                 if (signal_pending(current)) {
7093                         r = -EINTR;
7094                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7095                         ++vcpu->stat.signal_exits;
7096                         break;
7097                 }
7098                 if (need_resched()) {
7099                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7100                         cond_resched();
7101                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7102                 }
7103         }
7104
7105         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7106
7107         return r;
7108 }
7109
7110 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7111 {
7112         int r;
7113         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7114         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7115         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7116         if (r != EMULATE_DONE)
7117                 return 0;
7118         return 1;
7119 }
7120
7121 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7122 {
7123         BUG_ON(!vcpu->arch.pio.count);
7124
7125         return complete_emulated_io(vcpu);
7126 }
7127
7128 /*
7129  * Implements the following, as a state machine:
7130  *
7131  * read:
7132  *   for each fragment
7133  *     for each mmio piece in the fragment
7134  *       write gpa, len
7135  *       exit
7136  *       copy data
7137  *   execute insn
7138  *
7139  * write:
7140  *   for each fragment
7141  *     for each mmio piece in the fragment
7142  *       write gpa, len
7143  *       copy data
7144  *       exit
7145  */
7146 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7147 {
7148         struct kvm_run *run = vcpu->run;
7149         struct kvm_mmio_fragment *frag;
7150         unsigned len;
7151
7152         BUG_ON(!vcpu->mmio_needed);
7153
7154         /* Complete previous fragment */
7155         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7156         len = min(8u, frag->len);
7157         if (!vcpu->mmio_is_write)
7158                 memcpy(frag->data, run->mmio.data, len);
7159
7160         if (frag->len <= 8) {
7161                 /* Switch to the next fragment. */
7162                 frag++;
7163                 vcpu->mmio_cur_fragment++;
7164         } else {
7165                 /* Go forward to the next mmio piece. */
7166                 frag->data += len;
7167                 frag->gpa += len;
7168                 frag->len -= len;
7169         }
7170
7171         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7172                 vcpu->mmio_needed = 0;
7173
7174                 /* FIXME: return into emulator if single-stepping.  */
7175                 if (vcpu->mmio_is_write)
7176                         return 1;
7177                 vcpu->mmio_read_completed = 1;
7178                 return complete_emulated_io(vcpu);
7179         }
7180
7181         run->exit_reason = KVM_EXIT_MMIO;
7182         run->mmio.phys_addr = frag->gpa;
7183         if (vcpu->mmio_is_write)
7184                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7185         run->mmio.len = min(8u, frag->len);
7186         run->mmio.is_write = vcpu->mmio_is_write;
7187         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7188         return 0;
7189 }
7190
7191
7192 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7193 {
7194         struct fpu *fpu = &current->thread.fpu;
7195         int r;
7196         sigset_t sigsaved;
7197
7198         fpu__activate_curr(fpu);
7199
7200         if (vcpu->sigset_active)
7201                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7202
7203         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7204                 kvm_vcpu_block(vcpu);
7205                 kvm_apic_accept_events(vcpu);
7206                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7207                 r = -EAGAIN;
7208                 goto out;
7209         }
7210
7211         /* re-sync apic's tpr */
7212         if (!lapic_in_kernel(vcpu)) {
7213                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7214                         r = -EINVAL;
7215                         goto out;
7216                 }
7217         }
7218
7219         if (unlikely(vcpu->arch.complete_userspace_io)) {
7220                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7221                 vcpu->arch.complete_userspace_io = NULL;
7222                 r = cui(vcpu);
7223                 if (r <= 0)
7224                         goto out;
7225         } else
7226                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7227
7228         if (kvm_run->immediate_exit)
7229                 r = -EINTR;
7230         else
7231                 r = vcpu_run(vcpu);
7232
7233 out:
7234         post_kvm_run_save(vcpu);
7235         if (vcpu->sigset_active)
7236                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7237
7238         return r;
7239 }
7240
7241 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7242 {
7243         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7244                 /*
7245                  * We are here if userspace calls get_regs() in the middle of
7246                  * instruction emulation. Registers state needs to be copied
7247                  * back from emulation context to vcpu. Userspace shouldn't do
7248                  * that usually, but some bad designed PV devices (vmware
7249                  * backdoor interface) need this to work
7250                  */
7251                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7252                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7253         }
7254         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7255         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7256         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7257         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7258         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7259         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7260         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7261         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7262 #ifdef CONFIG_X86_64
7263         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7264         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7265         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7266         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7267         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7268         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7269         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7270         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7271 #endif
7272
7273         regs->rip = kvm_rip_read(vcpu);
7274         regs->rflags = kvm_get_rflags(vcpu);
7275
7276         return 0;
7277 }
7278
7279 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7280 {
7281         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7282         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7283
7284         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7285         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7286         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7287         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7288         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7289         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7290         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7291         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7292 #ifdef CONFIG_X86_64
7293         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7294         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7295         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7296         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7297         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7298         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7299         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7300         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7301 #endif
7302
7303         kvm_rip_write(vcpu, regs->rip);
7304         kvm_set_rflags(vcpu, regs->rflags);
7305
7306         vcpu->arch.exception.pending = false;
7307
7308         kvm_make_request(KVM_REQ_EVENT, vcpu);
7309
7310         return 0;
7311 }
7312
7313 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7314 {
7315         struct kvm_segment cs;
7316
7317         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7318         *db = cs.db;
7319         *l = cs.l;
7320 }
7321 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7322
7323 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7324                                   struct kvm_sregs *sregs)
7325 {
7326         struct desc_ptr dt;
7327
7328         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7329         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7330         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7331         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7332         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7333         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7334
7335         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7336         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7337
7338         kvm_x86_ops->get_idt(vcpu, &dt);
7339         sregs->idt.limit = dt.size;
7340         sregs->idt.base = dt.address;
7341         kvm_x86_ops->get_gdt(vcpu, &dt);
7342         sregs->gdt.limit = dt.size;
7343         sregs->gdt.base = dt.address;
7344
7345         sregs->cr0 = kvm_read_cr0(vcpu);
7346         sregs->cr2 = vcpu->arch.cr2;
7347         sregs->cr3 = kvm_read_cr3(vcpu);
7348         sregs->cr4 = kvm_read_cr4(vcpu);
7349         sregs->cr8 = kvm_get_cr8(vcpu);
7350         sregs->efer = vcpu->arch.efer;
7351         sregs->apic_base = kvm_get_apic_base(vcpu);
7352
7353         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7354
7355         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7356                 set_bit(vcpu->arch.interrupt.nr,
7357                         (unsigned long *)sregs->interrupt_bitmap);
7358
7359         return 0;
7360 }
7361
7362 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7363                                     struct kvm_mp_state *mp_state)
7364 {
7365         kvm_apic_accept_events(vcpu);
7366         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7367                                         vcpu->arch.pv.pv_unhalted)
7368                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7369         else
7370                 mp_state->mp_state = vcpu->arch.mp_state;
7371
7372         return 0;
7373 }
7374
7375 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7376                                     struct kvm_mp_state *mp_state)
7377 {
7378         if (!lapic_in_kernel(vcpu) &&
7379             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7380                 return -EINVAL;
7381
7382         /* INITs are latched while in SMM */
7383         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7384             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7385              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7386                 return -EINVAL;
7387
7388         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7389                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7390                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7391         } else
7392                 vcpu->arch.mp_state = mp_state->mp_state;
7393         kvm_make_request(KVM_REQ_EVENT, vcpu);
7394         return 0;
7395 }
7396
7397 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7398                     int reason, bool has_error_code, u32 error_code)
7399 {
7400         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7401         int ret;
7402
7403         init_emulate_ctxt(vcpu);
7404
7405         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7406                                    has_error_code, error_code);
7407
7408         if (ret)
7409                 return EMULATE_FAIL;
7410
7411         kvm_rip_write(vcpu, ctxt->eip);
7412         kvm_set_rflags(vcpu, ctxt->eflags);
7413         kvm_make_request(KVM_REQ_EVENT, vcpu);
7414         return EMULATE_DONE;
7415 }
7416 EXPORT_SYMBOL_GPL(kvm_task_switch);
7417
7418 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7419                                   struct kvm_sregs *sregs)
7420 {
7421         struct msr_data apic_base_msr;
7422         int mmu_reset_needed = 0;
7423         int pending_vec, max_bits, idx;
7424         struct desc_ptr dt;
7425
7426         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7427                 return -EINVAL;
7428
7429         dt.size = sregs->idt.limit;
7430         dt.address = sregs->idt.base;
7431         kvm_x86_ops->set_idt(vcpu, &dt);
7432         dt.size = sregs->gdt.limit;
7433         dt.address = sregs->gdt.base;
7434         kvm_x86_ops->set_gdt(vcpu, &dt);
7435
7436         vcpu->arch.cr2 = sregs->cr2;
7437         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7438         vcpu->arch.cr3 = sregs->cr3;
7439         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7440
7441         kvm_set_cr8(vcpu, sregs->cr8);
7442
7443         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7444         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7445         apic_base_msr.data = sregs->apic_base;
7446         apic_base_msr.host_initiated = true;
7447         kvm_set_apic_base(vcpu, &apic_base_msr);
7448
7449         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7450         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7451         vcpu->arch.cr0 = sregs->cr0;
7452
7453         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7454         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7455         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7456                 kvm_update_cpuid(vcpu);
7457
7458         idx = srcu_read_lock(&vcpu->kvm->srcu);
7459         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7460                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7461                 mmu_reset_needed = 1;
7462         }
7463         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7464
7465         if (mmu_reset_needed)
7466                 kvm_mmu_reset_context(vcpu);
7467
7468         max_bits = KVM_NR_INTERRUPTS;
7469         pending_vec = find_first_bit(
7470                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7471         if (pending_vec < max_bits) {
7472                 kvm_queue_interrupt(vcpu, pending_vec, false);
7473                 pr_debug("Set back pending irq %d\n", pending_vec);
7474         }
7475
7476         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7477         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7478         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7479         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7480         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7481         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7482
7483         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7484         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7485
7486         update_cr8_intercept(vcpu);
7487
7488         /* Older userspace won't unhalt the vcpu on reset. */
7489         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7490             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7491             !is_protmode(vcpu))
7492                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7493
7494         kvm_make_request(KVM_REQ_EVENT, vcpu);
7495
7496         return 0;
7497 }
7498
7499 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7500                                         struct kvm_guest_debug *dbg)
7501 {
7502         unsigned long rflags;
7503         int i, r;
7504
7505         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7506                 r = -EBUSY;
7507                 if (vcpu->arch.exception.pending)
7508                         goto out;
7509                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7510                         kvm_queue_exception(vcpu, DB_VECTOR);
7511                 else
7512                         kvm_queue_exception(vcpu, BP_VECTOR);
7513         }
7514
7515         /*
7516          * Read rflags as long as potentially injected trace flags are still
7517          * filtered out.
7518          */
7519         rflags = kvm_get_rflags(vcpu);
7520
7521         vcpu->guest_debug = dbg->control;
7522         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7523                 vcpu->guest_debug = 0;
7524
7525         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7526                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7527                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7528                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7529         } else {
7530                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7531                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7532         }
7533         kvm_update_dr7(vcpu);
7534
7535         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7536                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7537                         get_segment_base(vcpu, VCPU_SREG_CS);
7538
7539         /*
7540          * Trigger an rflags update that will inject or remove the trace
7541          * flags.
7542          */
7543         kvm_set_rflags(vcpu, rflags);
7544
7545         kvm_x86_ops->update_bp_intercept(vcpu);
7546
7547         r = 0;
7548
7549 out:
7550
7551         return r;
7552 }
7553
7554 /*
7555  * Translate a guest virtual address to a guest physical address.
7556  */
7557 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7558                                     struct kvm_translation *tr)
7559 {
7560         unsigned long vaddr = tr->linear_address;
7561         gpa_t gpa;
7562         int idx;
7563
7564         idx = srcu_read_lock(&vcpu->kvm->srcu);
7565         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7566         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7567         tr->physical_address = gpa;
7568         tr->valid = gpa != UNMAPPED_GVA;
7569         tr->writeable = 1;
7570         tr->usermode = 0;
7571
7572         return 0;
7573 }
7574
7575 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7576 {
7577         struct fxregs_state *fxsave =
7578                         &vcpu->arch.guest_fpu.state.fxsave;
7579
7580         memcpy(fpu->fpr, fxsave->st_space, 128);
7581         fpu->fcw = fxsave->cwd;
7582         fpu->fsw = fxsave->swd;
7583         fpu->ftwx = fxsave->twd;
7584         fpu->last_opcode = fxsave->fop;
7585         fpu->last_ip = fxsave->rip;
7586         fpu->last_dp = fxsave->rdp;
7587         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7588
7589         return 0;
7590 }
7591
7592 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7593 {
7594         struct fxregs_state *fxsave =
7595                         &vcpu->arch.guest_fpu.state.fxsave;
7596
7597         memcpy(fxsave->st_space, fpu->fpr, 128);
7598         fxsave->cwd = fpu->fcw;
7599         fxsave->swd = fpu->fsw;
7600         fxsave->twd = fpu->ftwx;
7601         fxsave->fop = fpu->last_opcode;
7602         fxsave->rip = fpu->last_ip;
7603         fxsave->rdp = fpu->last_dp;
7604         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7605
7606         return 0;
7607 }
7608
7609 static void fx_init(struct kvm_vcpu *vcpu)
7610 {
7611         fpstate_init(&vcpu->arch.guest_fpu.state);
7612         if (boot_cpu_has(X86_FEATURE_XSAVES))
7613                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7614                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7615
7616         /*
7617          * Ensure guest xcr0 is valid for loading
7618          */
7619         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7620
7621         vcpu->arch.cr0 |= X86_CR0_ET;
7622 }
7623
7624 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7625 {
7626         if (vcpu->guest_fpu_loaded)
7627                 return;
7628
7629         /*
7630          * Restore all possible states in the guest,
7631          * and assume host would use all available bits.
7632          * Guest xcr0 would be loaded later.
7633          */
7634         vcpu->guest_fpu_loaded = 1;
7635         __kernel_fpu_begin();
7636         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7637         trace_kvm_fpu(1);
7638 }
7639
7640 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7641 {
7642         if (!vcpu->guest_fpu_loaded)
7643                 return;
7644
7645         vcpu->guest_fpu_loaded = 0;
7646         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7647         __kernel_fpu_end();
7648         ++vcpu->stat.fpu_reload;
7649         trace_kvm_fpu(0);
7650 }
7651
7652 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7653 {
7654         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7655
7656         kvmclock_reset(vcpu);
7657
7658         kvm_x86_ops->vcpu_free(vcpu);
7659         free_cpumask_var(wbinvd_dirty_mask);
7660 }
7661
7662 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7663                                                 unsigned int id)
7664 {
7665         struct kvm_vcpu *vcpu;
7666
7667         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7668                 printk_once(KERN_WARNING
7669                 "kvm: SMP vm created on host with unstable TSC; "
7670                 "guest TSC will not be reliable\n");
7671
7672         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7673
7674         return vcpu;
7675 }
7676
7677 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7678 {
7679         int r;
7680
7681         kvm_vcpu_mtrr_init(vcpu);
7682         r = vcpu_load(vcpu);
7683         if (r)
7684                 return r;
7685         kvm_vcpu_reset(vcpu, false);
7686         kvm_mmu_setup(vcpu);
7687         vcpu_put(vcpu);
7688         return r;
7689 }
7690
7691 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7692 {
7693         struct msr_data msr;
7694         struct kvm *kvm = vcpu->kvm;
7695
7696         kvm_hv_vcpu_postcreate(vcpu);
7697
7698         if (vcpu_load(vcpu))
7699                 return;
7700         msr.data = 0x0;
7701         msr.index = MSR_IA32_TSC;
7702         msr.host_initiated = true;
7703         kvm_write_tsc(vcpu, &msr);
7704         vcpu_put(vcpu);
7705
7706         if (!kvmclock_periodic_sync)
7707                 return;
7708
7709         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7710                                         KVMCLOCK_SYNC_PERIOD);
7711 }
7712
7713 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7714 {
7715         int r;
7716         vcpu->arch.apf.msr_val = 0;
7717
7718         r = vcpu_load(vcpu);
7719         BUG_ON(r);
7720         kvm_mmu_unload(vcpu);
7721         vcpu_put(vcpu);
7722
7723         kvm_x86_ops->vcpu_free(vcpu);
7724 }
7725
7726 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7727 {
7728         vcpu->arch.hflags = 0;
7729
7730         vcpu->arch.smi_pending = 0;
7731         atomic_set(&vcpu->arch.nmi_queued, 0);
7732         vcpu->arch.nmi_pending = 0;
7733         vcpu->arch.nmi_injected = false;
7734         kvm_clear_interrupt_queue(vcpu);
7735         kvm_clear_exception_queue(vcpu);
7736
7737         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7738         kvm_update_dr0123(vcpu);
7739         vcpu->arch.dr6 = DR6_INIT;
7740         kvm_update_dr6(vcpu);
7741         vcpu->arch.dr7 = DR7_FIXED_1;
7742         kvm_update_dr7(vcpu);
7743
7744         vcpu->arch.cr2 = 0;
7745
7746         kvm_make_request(KVM_REQ_EVENT, vcpu);
7747         vcpu->arch.apf.msr_val = 0;
7748         vcpu->arch.st.msr_val = 0;
7749
7750         kvmclock_reset(vcpu);
7751
7752         kvm_clear_async_pf_completion_queue(vcpu);
7753         kvm_async_pf_hash_reset(vcpu);
7754         vcpu->arch.apf.halted = false;
7755
7756         if (!init_event) {
7757                 kvm_pmu_reset(vcpu);
7758                 vcpu->arch.smbase = 0x30000;
7759
7760                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7761                 vcpu->arch.msr_misc_features_enables = 0;
7762         }
7763
7764         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7765         vcpu->arch.regs_avail = ~0;
7766         vcpu->arch.regs_dirty = ~0;
7767
7768         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7769 }
7770
7771 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7772 {
7773         struct kvm_segment cs;
7774
7775         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7776         cs.selector = vector << 8;
7777         cs.base = vector << 12;
7778         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7779         kvm_rip_write(vcpu, 0);
7780 }
7781
7782 int kvm_arch_hardware_enable(void)
7783 {
7784         struct kvm *kvm;
7785         struct kvm_vcpu *vcpu;
7786         int i;
7787         int ret;
7788         u64 local_tsc;
7789         u64 max_tsc = 0;
7790         bool stable, backwards_tsc = false;
7791
7792         kvm_shared_msr_cpu_online();
7793         ret = kvm_x86_ops->hardware_enable();
7794         if (ret != 0)
7795                 return ret;
7796
7797         local_tsc = rdtsc();
7798         stable = !check_tsc_unstable();
7799         list_for_each_entry(kvm, &vm_list, vm_list) {
7800                 kvm_for_each_vcpu(i, vcpu, kvm) {
7801                         if (!stable && vcpu->cpu == smp_processor_id())
7802                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7803                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7804                                 backwards_tsc = true;
7805                                 if (vcpu->arch.last_host_tsc > max_tsc)
7806                                         max_tsc = vcpu->arch.last_host_tsc;
7807                         }
7808                 }
7809         }
7810
7811         /*
7812          * Sometimes, even reliable TSCs go backwards.  This happens on
7813          * platforms that reset TSC during suspend or hibernate actions, but
7814          * maintain synchronization.  We must compensate.  Fortunately, we can
7815          * detect that condition here, which happens early in CPU bringup,
7816          * before any KVM threads can be running.  Unfortunately, we can't
7817          * bring the TSCs fully up to date with real time, as we aren't yet far
7818          * enough into CPU bringup that we know how much real time has actually
7819          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7820          * variables that haven't been updated yet.
7821          *
7822          * So we simply find the maximum observed TSC above, then record the
7823          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7824          * the adjustment will be applied.  Note that we accumulate
7825          * adjustments, in case multiple suspend cycles happen before some VCPU
7826          * gets a chance to run again.  In the event that no KVM threads get a
7827          * chance to run, we will miss the entire elapsed period, as we'll have
7828          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7829          * loose cycle time.  This isn't too big a deal, since the loss will be
7830          * uniform across all VCPUs (not to mention the scenario is extremely
7831          * unlikely). It is possible that a second hibernate recovery happens
7832          * much faster than a first, causing the observed TSC here to be
7833          * smaller; this would require additional padding adjustment, which is
7834          * why we set last_host_tsc to the local tsc observed here.
7835          *
7836          * N.B. - this code below runs only on platforms with reliable TSC,
7837          * as that is the only way backwards_tsc is set above.  Also note
7838          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7839          * have the same delta_cyc adjustment applied if backwards_tsc
7840          * is detected.  Note further, this adjustment is only done once,
7841          * as we reset last_host_tsc on all VCPUs to stop this from being
7842          * called multiple times (one for each physical CPU bringup).
7843          *
7844          * Platforms with unreliable TSCs don't have to deal with this, they
7845          * will be compensated by the logic in vcpu_load, which sets the TSC to
7846          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7847          * guarantee that they stay in perfect synchronization.
7848          */
7849         if (backwards_tsc) {
7850                 u64 delta_cyc = max_tsc - local_tsc;
7851                 list_for_each_entry(kvm, &vm_list, vm_list) {
7852                         kvm->arch.backwards_tsc_observed = true;
7853                         kvm_for_each_vcpu(i, vcpu, kvm) {
7854                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7855                                 vcpu->arch.last_host_tsc = local_tsc;
7856                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7857                         }
7858
7859                         /*
7860                          * We have to disable TSC offset matching.. if you were
7861                          * booting a VM while issuing an S4 host suspend....
7862                          * you may have some problem.  Solving this issue is
7863                          * left as an exercise to the reader.
7864                          */
7865                         kvm->arch.last_tsc_nsec = 0;
7866                         kvm->arch.last_tsc_write = 0;
7867                 }
7868
7869         }
7870         return 0;
7871 }
7872
7873 void kvm_arch_hardware_disable(void)
7874 {
7875         kvm_x86_ops->hardware_disable();
7876         drop_user_return_notifiers();
7877 }
7878
7879 int kvm_arch_hardware_setup(void)
7880 {
7881         int r;
7882
7883         r = kvm_x86_ops->hardware_setup();
7884         if (r != 0)
7885                 return r;
7886
7887         if (kvm_has_tsc_control) {
7888                 /*
7889                  * Make sure the user can only configure tsc_khz values that
7890                  * fit into a signed integer.
7891                  * A min value is not calculated needed because it will always
7892                  * be 1 on all machines.
7893                  */
7894                 u64 max = min(0x7fffffffULL,
7895                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7896                 kvm_max_guest_tsc_khz = max;
7897
7898                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7899         }
7900
7901         kvm_init_msr_list();
7902         return 0;
7903 }
7904
7905 void kvm_arch_hardware_unsetup(void)
7906 {
7907         kvm_x86_ops->hardware_unsetup();
7908 }
7909
7910 void kvm_arch_check_processor_compat(void *rtn)
7911 {
7912         kvm_x86_ops->check_processor_compatibility(rtn);
7913 }
7914
7915 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7916 {
7917         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7918 }
7919 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7920
7921 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7922 {
7923         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7924 }
7925
7926 struct static_key kvm_no_apic_vcpu __read_mostly;
7927 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7928
7929 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7930 {
7931         struct page *page;
7932         struct kvm *kvm;
7933         int r;
7934
7935         BUG_ON(vcpu->kvm == NULL);
7936         kvm = vcpu->kvm;
7937
7938         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7939         vcpu->arch.pv.pv_unhalted = false;
7940         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7941         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7942                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7943         else
7944                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7945
7946         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7947         if (!page) {
7948                 r = -ENOMEM;
7949                 goto fail;
7950         }
7951         vcpu->arch.pio_data = page_address(page);
7952
7953         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7954
7955         r = kvm_mmu_create(vcpu);
7956         if (r < 0)
7957                 goto fail_free_pio_data;
7958
7959         if (irqchip_in_kernel(kvm)) {
7960                 r = kvm_create_lapic(vcpu);
7961                 if (r < 0)
7962                         goto fail_mmu_destroy;
7963         } else
7964                 static_key_slow_inc(&kvm_no_apic_vcpu);
7965
7966         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7967                                        GFP_KERNEL);
7968         if (!vcpu->arch.mce_banks) {
7969                 r = -ENOMEM;
7970                 goto fail_free_lapic;
7971         }
7972         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7973
7974         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7975                 r = -ENOMEM;
7976                 goto fail_free_mce_banks;
7977         }
7978
7979         fx_init(vcpu);
7980
7981         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7982         vcpu->arch.pv_time_enabled = false;
7983
7984         vcpu->arch.guest_supported_xcr0 = 0;
7985         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7986
7987         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7988
7989         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7990
7991         kvm_async_pf_hash_reset(vcpu);
7992         kvm_pmu_init(vcpu);
7993
7994         vcpu->arch.pending_external_vector = -1;
7995
7996         kvm_hv_vcpu_init(vcpu);
7997
7998         return 0;
7999
8000 fail_free_mce_banks:
8001         kfree(vcpu->arch.mce_banks);
8002 fail_free_lapic:
8003         kvm_free_lapic(vcpu);
8004 fail_mmu_destroy:
8005         kvm_mmu_destroy(vcpu);
8006 fail_free_pio_data:
8007         free_page((unsigned long)vcpu->arch.pio_data);
8008 fail:
8009         return r;
8010 }
8011
8012 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8013 {
8014         int idx;
8015
8016         kvm_hv_vcpu_uninit(vcpu);
8017         kvm_pmu_destroy(vcpu);
8018         kfree(vcpu->arch.mce_banks);
8019         kvm_free_lapic(vcpu);
8020         idx = srcu_read_lock(&vcpu->kvm->srcu);
8021         kvm_mmu_destroy(vcpu);
8022         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8023         free_page((unsigned long)vcpu->arch.pio_data);
8024         if (!lapic_in_kernel(vcpu))
8025                 static_key_slow_dec(&kvm_no_apic_vcpu);
8026 }
8027
8028 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8029 {
8030         kvm_x86_ops->sched_in(vcpu, cpu);
8031 }
8032
8033 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8034 {
8035         if (type)
8036                 return -EINVAL;
8037
8038         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8039         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8040         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8041         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8042         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8043
8044         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8045         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8046         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8047         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8048                 &kvm->arch.irq_sources_bitmap);
8049
8050         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8051         mutex_init(&kvm->arch.apic_map_lock);
8052         mutex_init(&kvm->arch.hyperv.hv_lock);
8053         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8054
8055         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8056         pvclock_update_vm_gtod_copy(kvm);
8057
8058         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8059         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8060
8061         kvm_page_track_init(kvm);
8062         kvm_mmu_init_vm(kvm);
8063
8064         if (kvm_x86_ops->vm_init)
8065                 return kvm_x86_ops->vm_init(kvm);
8066
8067         return 0;
8068 }
8069
8070 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8071 {
8072         int r;
8073         r = vcpu_load(vcpu);
8074         BUG_ON(r);
8075         kvm_mmu_unload(vcpu);
8076         vcpu_put(vcpu);
8077 }
8078
8079 static void kvm_free_vcpus(struct kvm *kvm)
8080 {
8081         unsigned int i;
8082         struct kvm_vcpu *vcpu;
8083
8084         /*
8085          * Unpin any mmu pages first.
8086          */
8087         kvm_for_each_vcpu(i, vcpu, kvm) {
8088                 kvm_clear_async_pf_completion_queue(vcpu);
8089                 kvm_unload_vcpu_mmu(vcpu);
8090         }
8091         kvm_for_each_vcpu(i, vcpu, kvm)
8092                 kvm_arch_vcpu_free(vcpu);
8093
8094         mutex_lock(&kvm->lock);
8095         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8096                 kvm->vcpus[i] = NULL;
8097
8098         atomic_set(&kvm->online_vcpus, 0);
8099         mutex_unlock(&kvm->lock);
8100 }
8101
8102 void kvm_arch_sync_events(struct kvm *kvm)
8103 {
8104         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8105         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8106         kvm_free_pit(kvm);
8107 }
8108
8109 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8110 {
8111         int i, r;
8112         unsigned long hva;
8113         struct kvm_memslots *slots = kvm_memslots(kvm);
8114         struct kvm_memory_slot *slot, old;
8115
8116         /* Called with kvm->slots_lock held.  */
8117         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8118                 return -EINVAL;
8119
8120         slot = id_to_memslot(slots, id);
8121         if (size) {
8122                 if (slot->npages)
8123                         return -EEXIST;
8124
8125                 /*
8126                  * MAP_SHARED to prevent internal slot pages from being moved
8127                  * by fork()/COW.
8128                  */
8129                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8130                               MAP_SHARED | MAP_ANONYMOUS, 0);
8131                 if (IS_ERR((void *)hva))
8132                         return PTR_ERR((void *)hva);
8133         } else {
8134                 if (!slot->npages)
8135                         return 0;
8136
8137                 hva = 0;
8138         }
8139
8140         old = *slot;
8141         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8142                 struct kvm_userspace_memory_region m;
8143
8144                 m.slot = id | (i << 16);
8145                 m.flags = 0;
8146                 m.guest_phys_addr = gpa;
8147                 m.userspace_addr = hva;
8148                 m.memory_size = size;
8149                 r = __kvm_set_memory_region(kvm, &m);
8150                 if (r < 0)
8151                         return r;
8152         }
8153
8154         if (!size) {
8155                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8156                 WARN_ON(r < 0);
8157         }
8158
8159         return 0;
8160 }
8161 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8162
8163 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8164 {
8165         int r;
8166
8167         mutex_lock(&kvm->slots_lock);
8168         r = __x86_set_memory_region(kvm, id, gpa, size);
8169         mutex_unlock(&kvm->slots_lock);
8170
8171         return r;
8172 }
8173 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8174
8175 void kvm_arch_destroy_vm(struct kvm *kvm)
8176 {
8177         if (current->mm == kvm->mm) {
8178                 /*
8179                  * Free memory regions allocated on behalf of userspace,
8180                  * unless the the memory map has changed due to process exit
8181                  * or fd copying.
8182                  */
8183                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8184                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8185                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8186         }
8187         if (kvm_x86_ops->vm_destroy)
8188                 kvm_x86_ops->vm_destroy(kvm);
8189         kvm_pic_destroy(kvm);
8190         kvm_ioapic_destroy(kvm);
8191         kvm_free_vcpus(kvm);
8192         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8193         kvm_mmu_uninit_vm(kvm);
8194         kvm_page_track_cleanup(kvm);
8195 }
8196
8197 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8198                            struct kvm_memory_slot *dont)
8199 {
8200         int i;
8201
8202         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8203                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8204                         kvfree(free->arch.rmap[i]);
8205                         free->arch.rmap[i] = NULL;
8206                 }
8207                 if (i == 0)
8208                         continue;
8209
8210                 if (!dont || free->arch.lpage_info[i - 1] !=
8211                              dont->arch.lpage_info[i - 1]) {
8212                         kvfree(free->arch.lpage_info[i - 1]);
8213                         free->arch.lpage_info[i - 1] = NULL;
8214                 }
8215         }
8216
8217         kvm_page_track_free_memslot(free, dont);
8218 }
8219
8220 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8221                             unsigned long npages)
8222 {
8223         int i;
8224
8225         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8226                 struct kvm_lpage_info *linfo;
8227                 unsigned long ugfn;
8228                 int lpages;
8229                 int level = i + 1;
8230
8231                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8232                                       slot->base_gfn, level) + 1;
8233
8234                 slot->arch.rmap[i] =
8235                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8236                 if (!slot->arch.rmap[i])
8237                         goto out_free;
8238                 if (i == 0)
8239                         continue;
8240
8241                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8242                 if (!linfo)
8243                         goto out_free;
8244
8245                 slot->arch.lpage_info[i - 1] = linfo;
8246
8247                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8248                         linfo[0].disallow_lpage = 1;
8249                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8250                         linfo[lpages - 1].disallow_lpage = 1;
8251                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8252                 /*
8253                  * If the gfn and userspace address are not aligned wrt each
8254                  * other, or if explicitly asked to, disable large page
8255                  * support for this slot
8256                  */
8257                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8258                     !kvm_largepages_enabled()) {
8259                         unsigned long j;
8260
8261                         for (j = 0; j < lpages; ++j)
8262                                 linfo[j].disallow_lpage = 1;
8263                 }
8264         }
8265
8266         if (kvm_page_track_create_memslot(slot, npages))
8267                 goto out_free;
8268
8269         return 0;
8270
8271 out_free:
8272         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8273                 kvfree(slot->arch.rmap[i]);
8274                 slot->arch.rmap[i] = NULL;
8275                 if (i == 0)
8276                         continue;
8277
8278                 kvfree(slot->arch.lpage_info[i - 1]);
8279                 slot->arch.lpage_info[i - 1] = NULL;
8280         }
8281         return -ENOMEM;
8282 }
8283
8284 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8285 {
8286         /*
8287          * memslots->generation has been incremented.
8288          * mmio generation may have reached its maximum value.
8289          */
8290         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8291 }
8292
8293 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8294                                 struct kvm_memory_slot *memslot,
8295                                 const struct kvm_userspace_memory_region *mem,
8296                                 enum kvm_mr_change change)
8297 {
8298         return 0;
8299 }
8300
8301 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8302                                      struct kvm_memory_slot *new)
8303 {
8304         /* Still write protect RO slot */
8305         if (new->flags & KVM_MEM_READONLY) {
8306                 kvm_mmu_slot_remove_write_access(kvm, new);
8307                 return;
8308         }
8309
8310         /*
8311          * Call kvm_x86_ops dirty logging hooks when they are valid.
8312          *
8313          * kvm_x86_ops->slot_disable_log_dirty is called when:
8314          *
8315          *  - KVM_MR_CREATE with dirty logging is disabled
8316          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8317          *
8318          * The reason is, in case of PML, we need to set D-bit for any slots
8319          * with dirty logging disabled in order to eliminate unnecessary GPA
8320          * logging in PML buffer (and potential PML buffer full VMEXT). This
8321          * guarantees leaving PML enabled during guest's lifetime won't have
8322          * any additonal overhead from PML when guest is running with dirty
8323          * logging disabled for memory slots.
8324          *
8325          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8326          * to dirty logging mode.
8327          *
8328          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8329          *
8330          * In case of write protect:
8331          *
8332          * Write protect all pages for dirty logging.
8333          *
8334          * All the sptes including the large sptes which point to this
8335          * slot are set to readonly. We can not create any new large
8336          * spte on this slot until the end of the logging.
8337          *
8338          * See the comments in fast_page_fault().
8339          */
8340         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8341                 if (kvm_x86_ops->slot_enable_log_dirty)
8342                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8343                 else
8344                         kvm_mmu_slot_remove_write_access(kvm, new);
8345         } else {
8346                 if (kvm_x86_ops->slot_disable_log_dirty)
8347                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8348         }
8349 }
8350
8351 void kvm_arch_commit_memory_region(struct kvm *kvm,
8352                                 const struct kvm_userspace_memory_region *mem,
8353                                 const struct kvm_memory_slot *old,
8354                                 const struct kvm_memory_slot *new,
8355                                 enum kvm_mr_change change)
8356 {
8357         int nr_mmu_pages = 0;
8358
8359         if (!kvm->arch.n_requested_mmu_pages)
8360                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8361
8362         if (nr_mmu_pages)
8363                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8364
8365         /*
8366          * Dirty logging tracks sptes in 4k granularity, meaning that large
8367          * sptes have to be split.  If live migration is successful, the guest
8368          * in the source machine will be destroyed and large sptes will be
8369          * created in the destination. However, if the guest continues to run
8370          * in the source machine (for example if live migration fails), small
8371          * sptes will remain around and cause bad performance.
8372          *
8373          * Scan sptes if dirty logging has been stopped, dropping those
8374          * which can be collapsed into a single large-page spte.  Later
8375          * page faults will create the large-page sptes.
8376          */
8377         if ((change != KVM_MR_DELETE) &&
8378                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8379                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8380                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8381
8382         /*
8383          * Set up write protection and/or dirty logging for the new slot.
8384          *
8385          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8386          * been zapped so no dirty logging staff is needed for old slot. For
8387          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8388          * new and it's also covered when dealing with the new slot.
8389          *
8390          * FIXME: const-ify all uses of struct kvm_memory_slot.
8391          */
8392         if (change != KVM_MR_DELETE)
8393                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8394 }
8395
8396 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8397 {
8398         kvm_mmu_invalidate_zap_all_pages(kvm);
8399 }
8400
8401 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8402                                    struct kvm_memory_slot *slot)
8403 {
8404         kvm_page_track_flush_slot(kvm, slot);
8405 }
8406
8407 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8408 {
8409         if (!list_empty_careful(&vcpu->async_pf.done))
8410                 return true;
8411
8412         if (kvm_apic_has_events(vcpu))
8413                 return true;
8414
8415         if (vcpu->arch.pv.pv_unhalted)
8416                 return true;
8417
8418         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8419             (vcpu->arch.nmi_pending &&
8420              kvm_x86_ops->nmi_allowed(vcpu)))
8421                 return true;
8422
8423         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8424             (vcpu->arch.smi_pending && !is_smm(vcpu)))
8425                 return true;
8426
8427         if (kvm_arch_interrupt_allowed(vcpu) &&
8428             kvm_cpu_has_interrupt(vcpu))
8429                 return true;
8430
8431         if (kvm_hv_has_stimer_pending(vcpu))
8432                 return true;
8433
8434         return false;
8435 }
8436
8437 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8438 {
8439         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8440 }
8441
8442 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8443 {
8444         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8445 }
8446
8447 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8448 {
8449         return kvm_x86_ops->interrupt_allowed(vcpu);
8450 }
8451
8452 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8453 {
8454         if (is_64_bit_mode(vcpu))
8455                 return kvm_rip_read(vcpu);
8456         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8457                      kvm_rip_read(vcpu));
8458 }
8459 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8460
8461 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8462 {
8463         return kvm_get_linear_rip(vcpu) == linear_rip;
8464 }
8465 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8466
8467 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8468 {
8469         unsigned long rflags;
8470
8471         rflags = kvm_x86_ops->get_rflags(vcpu);
8472         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8473                 rflags &= ~X86_EFLAGS_TF;
8474         return rflags;
8475 }
8476 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8477
8478 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8479 {
8480         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8481             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8482                 rflags |= X86_EFLAGS_TF;
8483         kvm_x86_ops->set_rflags(vcpu, rflags);
8484 }
8485
8486 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8487 {
8488         __kvm_set_rflags(vcpu, rflags);
8489         kvm_make_request(KVM_REQ_EVENT, vcpu);
8490 }
8491 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8492
8493 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8494 {
8495         int r;
8496
8497         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8498               work->wakeup_all)
8499                 return;
8500
8501         r = kvm_mmu_reload(vcpu);
8502         if (unlikely(r))
8503                 return;
8504
8505         if (!vcpu->arch.mmu.direct_map &&
8506               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8507                 return;
8508
8509         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8510 }
8511
8512 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8513 {
8514         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8515 }
8516
8517 static inline u32 kvm_async_pf_next_probe(u32 key)
8518 {
8519         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8520 }
8521
8522 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8523 {
8524         u32 key = kvm_async_pf_hash_fn(gfn);
8525
8526         while (vcpu->arch.apf.gfns[key] != ~0)
8527                 key = kvm_async_pf_next_probe(key);
8528
8529         vcpu->arch.apf.gfns[key] = gfn;
8530 }
8531
8532 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8533 {
8534         int i;
8535         u32 key = kvm_async_pf_hash_fn(gfn);
8536
8537         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8538                      (vcpu->arch.apf.gfns[key] != gfn &&
8539                       vcpu->arch.apf.gfns[key] != ~0); i++)
8540                 key = kvm_async_pf_next_probe(key);
8541
8542         return key;
8543 }
8544
8545 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8546 {
8547         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8548 }
8549
8550 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8551 {
8552         u32 i, j, k;
8553
8554         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8555         while (true) {
8556                 vcpu->arch.apf.gfns[i] = ~0;
8557                 do {
8558                         j = kvm_async_pf_next_probe(j);
8559                         if (vcpu->arch.apf.gfns[j] == ~0)
8560                                 return;
8561                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8562                         /*
8563                          * k lies cyclically in ]i,j]
8564                          * |    i.k.j |
8565                          * |....j i.k.| or  |.k..j i...|
8566                          */
8567                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8568                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8569                 i = j;
8570         }
8571 }
8572
8573 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8574 {
8575
8576         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8577                                       sizeof(val));
8578 }
8579
8580 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8581                                      struct kvm_async_pf *work)
8582 {
8583         struct x86_exception fault;
8584
8585         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8586         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8587
8588         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8589             (vcpu->arch.apf.send_user_only &&
8590              kvm_x86_ops->get_cpl(vcpu) == 0))
8591                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8592         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8593                 fault.vector = PF_VECTOR;
8594                 fault.error_code_valid = true;
8595                 fault.error_code = 0;
8596                 fault.nested_page_fault = false;
8597                 fault.address = work->arch.token;
8598                 fault.async_page_fault = true;
8599                 kvm_inject_page_fault(vcpu, &fault);
8600         }
8601 }
8602
8603 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8604                                  struct kvm_async_pf *work)
8605 {
8606         struct x86_exception fault;
8607
8608         if (work->wakeup_all)
8609                 work->arch.token = ~0; /* broadcast wakeup */
8610         else
8611                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8612         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8613
8614         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8615             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8616                 fault.vector = PF_VECTOR;
8617                 fault.error_code_valid = true;
8618                 fault.error_code = 0;
8619                 fault.nested_page_fault = false;
8620                 fault.address = work->arch.token;
8621                 fault.async_page_fault = true;
8622                 kvm_inject_page_fault(vcpu, &fault);
8623         }
8624         vcpu->arch.apf.halted = false;
8625         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8626 }
8627
8628 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8629 {
8630         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8631                 return true;
8632         else
8633                 return kvm_can_do_async_pf(vcpu);
8634 }
8635
8636 void kvm_arch_start_assignment(struct kvm *kvm)
8637 {
8638         atomic_inc(&kvm->arch.assigned_device_count);
8639 }
8640 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8641
8642 void kvm_arch_end_assignment(struct kvm *kvm)
8643 {
8644         atomic_dec(&kvm->arch.assigned_device_count);
8645 }
8646 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8647
8648 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8649 {
8650         return atomic_read(&kvm->arch.assigned_device_count);
8651 }
8652 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8653
8654 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8655 {
8656         atomic_inc(&kvm->arch.noncoherent_dma_count);
8657 }
8658 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8659
8660 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8661 {
8662         atomic_dec(&kvm->arch.noncoherent_dma_count);
8663 }
8664 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8665
8666 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8667 {
8668         return atomic_read(&kvm->arch.noncoherent_dma_count);
8669 }
8670 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8671
8672 bool kvm_arch_has_irq_bypass(void)
8673 {
8674         return kvm_x86_ops->update_pi_irte != NULL;
8675 }
8676
8677 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8678                                       struct irq_bypass_producer *prod)
8679 {
8680         struct kvm_kernel_irqfd *irqfd =
8681                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8682
8683         irqfd->producer = prod;
8684
8685         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8686                                            prod->irq, irqfd->gsi, 1);
8687 }
8688
8689 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8690                                       struct irq_bypass_producer *prod)
8691 {
8692         int ret;
8693         struct kvm_kernel_irqfd *irqfd =
8694                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8695
8696         WARN_ON(irqfd->producer != prod);
8697         irqfd->producer = NULL;
8698
8699         /*
8700          * When producer of consumer is unregistered, we change back to
8701          * remapped mode, so we can re-use the current implementation
8702          * when the irq is masked/disabled or the consumer side (KVM
8703          * int this case doesn't want to receive the interrupts.
8704         */
8705         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8706         if (ret)
8707                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8708                        " fails: %d\n", irqfd->consumer.token, ret);
8709 }
8710
8711 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8712                                    uint32_t guest_irq, bool set)
8713 {
8714         if (!kvm_x86_ops->update_pi_irte)
8715                 return -EINVAL;
8716
8717         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8718 }
8719
8720 bool kvm_vector_hashing_enabled(void)
8721 {
8722         return vector_hashing;
8723 }
8724 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8725
8726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);