]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/mm/init_64.c
Merge remote-tracking branch 'hid/for-next'
[karo-tx-linux.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/setup.h>
56
57 #include "mm_internal.h"
58
59 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
60                            unsigned long addr, unsigned long end)
61 {
62         addr &= PMD_MASK;
63         for (; addr < end; addr += PMD_SIZE) {
64                 pmd_t *pmd = pmd_page + pmd_index(addr);
65
66                 if (!pmd_present(*pmd))
67                         set_pmd(pmd, __pmd(addr | pmd_flag));
68         }
69 }
70 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
71                           unsigned long addr, unsigned long end)
72 {
73         unsigned long next;
74
75         for (; addr < end; addr = next) {
76                 pud_t *pud = pud_page + pud_index(addr);
77                 pmd_t *pmd;
78
79                 next = (addr & PUD_MASK) + PUD_SIZE;
80                 if (next > end)
81                         next = end;
82
83                 if (pud_present(*pud)) {
84                         pmd = pmd_offset(pud, 0);
85                         ident_pmd_init(info->pmd_flag, pmd, addr, next);
86                         continue;
87                 }
88                 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
89                 if (!pmd)
90                         return -ENOMEM;
91                 ident_pmd_init(info->pmd_flag, pmd, addr, next);
92                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
93         }
94
95         return 0;
96 }
97
98 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
99                               unsigned long addr, unsigned long end)
100 {
101         unsigned long next;
102         int result;
103         int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
104
105         for (; addr < end; addr = next) {
106                 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
107                 pud_t *pud;
108
109                 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
110                 if (next > end)
111                         next = end;
112
113                 if (pgd_present(*pgd)) {
114                         pud = pud_offset(pgd, 0);
115                         result = ident_pud_init(info, pud, addr, next);
116                         if (result)
117                                 return result;
118                         continue;
119                 }
120
121                 pud = (pud_t *)info->alloc_pgt_page(info->context);
122                 if (!pud)
123                         return -ENOMEM;
124                 result = ident_pud_init(info, pud, addr, next);
125                 if (result)
126                         return result;
127                 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
128         }
129
130         return 0;
131 }
132
133 /*
134  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
135  * physical space so we can cache the place of the first one and move
136  * around without checking the pgd every time.
137  */
138
139 pteval_t __supported_pte_mask __read_mostly = ~0;
140 EXPORT_SYMBOL_GPL(__supported_pte_mask);
141
142 int force_personality32;
143
144 /*
145  * noexec32=on|off
146  * Control non executable heap for 32bit processes.
147  * To control the stack too use noexec=off
148  *
149  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
150  * off  PROT_READ implies PROT_EXEC
151  */
152 static int __init nonx32_setup(char *str)
153 {
154         if (!strcmp(str, "on"))
155                 force_personality32 &= ~READ_IMPLIES_EXEC;
156         else if (!strcmp(str, "off"))
157                 force_personality32 |= READ_IMPLIES_EXEC;
158         return 1;
159 }
160 __setup("noexec32=", nonx32_setup);
161
162 /*
163  * When memory was added/removed make sure all the processes MM have
164  * suitable PGD entries in the local PGD level page.
165  */
166 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
167 {
168         unsigned long address;
169
170         for (address = start; address <= end; address += PGDIR_SIZE) {
171                 const pgd_t *pgd_ref = pgd_offset_k(address);
172                 struct page *page;
173
174                 /*
175                  * When it is called after memory hot remove, pgd_none()
176                  * returns true. In this case (removed == 1), we must clear
177                  * the PGD entries in the local PGD level page.
178                  */
179                 if (pgd_none(*pgd_ref) && !removed)
180                         continue;
181
182                 spin_lock(&pgd_lock);
183                 list_for_each_entry(page, &pgd_list, lru) {
184                         pgd_t *pgd;
185                         spinlock_t *pgt_lock;
186
187                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
188                         /* the pgt_lock only for Xen */
189                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
190                         spin_lock(pgt_lock);
191
192                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
193                                 BUG_ON(pgd_page_vaddr(*pgd)
194                                        != pgd_page_vaddr(*pgd_ref));
195
196                         if (removed) {
197                                 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
198                                         pgd_clear(pgd);
199                         } else {
200                                 if (pgd_none(*pgd))
201                                         set_pgd(pgd, *pgd_ref);
202                         }
203
204                         spin_unlock(pgt_lock);
205                 }
206                 spin_unlock(&pgd_lock);
207         }
208 }
209
210 /*
211  * NOTE: This function is marked __ref because it calls __init function
212  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
213  */
214 static __ref void *spp_getpage(void)
215 {
216         void *ptr;
217
218         if (after_bootmem)
219                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
220         else
221                 ptr = alloc_bootmem_pages(PAGE_SIZE);
222
223         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
224                 panic("set_pte_phys: cannot allocate page data %s\n",
225                         after_bootmem ? "after bootmem" : "");
226         }
227
228         pr_debug("spp_getpage %p\n", ptr);
229
230         return ptr;
231 }
232
233 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
234 {
235         if (pgd_none(*pgd)) {
236                 pud_t *pud = (pud_t *)spp_getpage();
237                 pgd_populate(&init_mm, pgd, pud);
238                 if (pud != pud_offset(pgd, 0))
239                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
240                                pud, pud_offset(pgd, 0));
241         }
242         return pud_offset(pgd, vaddr);
243 }
244
245 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
246 {
247         if (pud_none(*pud)) {
248                 pmd_t *pmd = (pmd_t *) spp_getpage();
249                 pud_populate(&init_mm, pud, pmd);
250                 if (pmd != pmd_offset(pud, 0))
251                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
252                                pmd, pmd_offset(pud, 0));
253         }
254         return pmd_offset(pud, vaddr);
255 }
256
257 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
258 {
259         if (pmd_none(*pmd)) {
260                 pte_t *pte = (pte_t *) spp_getpage();
261                 pmd_populate_kernel(&init_mm, pmd, pte);
262                 if (pte != pte_offset_kernel(pmd, 0))
263                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
264         }
265         return pte_offset_kernel(pmd, vaddr);
266 }
267
268 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
269 {
270         pud_t *pud;
271         pmd_t *pmd;
272         pte_t *pte;
273
274         pud = pud_page + pud_index(vaddr);
275         pmd = fill_pmd(pud, vaddr);
276         pte = fill_pte(pmd, vaddr);
277
278         set_pte(pte, new_pte);
279
280         /*
281          * It's enough to flush this one mapping.
282          * (PGE mappings get flushed as well)
283          */
284         __flush_tlb_one(vaddr);
285 }
286
287 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
288 {
289         pgd_t *pgd;
290         pud_t *pud_page;
291
292         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
293
294         pgd = pgd_offset_k(vaddr);
295         if (pgd_none(*pgd)) {
296                 printk(KERN_ERR
297                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
298                 return;
299         }
300         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
301         set_pte_vaddr_pud(pud_page, vaddr, pteval);
302 }
303
304 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
305 {
306         pgd_t *pgd;
307         pud_t *pud;
308
309         pgd = pgd_offset_k(vaddr);
310         pud = fill_pud(pgd, vaddr);
311         return fill_pmd(pud, vaddr);
312 }
313
314 pte_t * __init populate_extra_pte(unsigned long vaddr)
315 {
316         pmd_t *pmd;
317
318         pmd = populate_extra_pmd(vaddr);
319         return fill_pte(pmd, vaddr);
320 }
321
322 /*
323  * Create large page table mappings for a range of physical addresses.
324  */
325 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
326                                         enum page_cache_mode cache)
327 {
328         pgd_t *pgd;
329         pud_t *pud;
330         pmd_t *pmd;
331         pgprot_t prot;
332
333         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
334                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
335         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
336         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
337                 pgd = pgd_offset_k((unsigned long)__va(phys));
338                 if (pgd_none(*pgd)) {
339                         pud = (pud_t *) spp_getpage();
340                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
341                                                 _PAGE_USER));
342                 }
343                 pud = pud_offset(pgd, (unsigned long)__va(phys));
344                 if (pud_none(*pud)) {
345                         pmd = (pmd_t *) spp_getpage();
346                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
347                                                 _PAGE_USER));
348                 }
349                 pmd = pmd_offset(pud, phys);
350                 BUG_ON(!pmd_none(*pmd));
351                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
352         }
353 }
354
355 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
356 {
357         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
358 }
359
360 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
361 {
362         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
363 }
364
365 /*
366  * The head.S code sets up the kernel high mapping:
367  *
368  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
369  *
370  * phys_base holds the negative offset to the kernel, which is added
371  * to the compile time generated pmds. This results in invalid pmds up
372  * to the point where we hit the physaddr 0 mapping.
373  *
374  * We limit the mappings to the region from _text to _brk_end.  _brk_end
375  * is rounded up to the 2MB boundary. This catches the invalid pmds as
376  * well, as they are located before _text:
377  */
378 void __init cleanup_highmap(void)
379 {
380         unsigned long vaddr = __START_KERNEL_map;
381         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
382         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
383         pmd_t *pmd = level2_kernel_pgt;
384
385         /*
386          * Native path, max_pfn_mapped is not set yet.
387          * Xen has valid max_pfn_mapped set in
388          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
389          */
390         if (max_pfn_mapped)
391                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
392
393         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
394                 if (pmd_none(*pmd))
395                         continue;
396                 if (vaddr < (unsigned long) _text || vaddr > end)
397                         set_pmd(pmd, __pmd(0));
398         }
399 }
400
401 static unsigned long __meminit
402 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
403               pgprot_t prot)
404 {
405         unsigned long pages = 0, next;
406         unsigned long last_map_addr = end;
407         int i;
408
409         pte_t *pte = pte_page + pte_index(addr);
410
411         for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
412                 next = (addr & PAGE_MASK) + PAGE_SIZE;
413                 if (addr >= end) {
414                         if (!after_bootmem &&
415                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
416                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
417                                 set_pte(pte, __pte(0));
418                         continue;
419                 }
420
421                 /*
422                  * We will re-use the existing mapping.
423                  * Xen for example has some special requirements, like mapping
424                  * pagetable pages as RO. So assume someone who pre-setup
425                  * these mappings are more intelligent.
426                  */
427                 if (pte_val(*pte)) {
428                         if (!after_bootmem)
429                                 pages++;
430                         continue;
431                 }
432
433                 if (0)
434                         printk("   pte=%p addr=%lx pte=%016lx\n",
435                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
436                 pages++;
437                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
438                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
439         }
440
441         update_page_count(PG_LEVEL_4K, pages);
442
443         return last_map_addr;
444 }
445
446 static unsigned long __meminit
447 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
448               unsigned long page_size_mask, pgprot_t prot)
449 {
450         unsigned long pages = 0, next;
451         unsigned long last_map_addr = end;
452
453         int i = pmd_index(address);
454
455         for (; i < PTRS_PER_PMD; i++, address = next) {
456                 pmd_t *pmd = pmd_page + pmd_index(address);
457                 pte_t *pte;
458                 pgprot_t new_prot = prot;
459
460                 next = (address & PMD_MASK) + PMD_SIZE;
461                 if (address >= end) {
462                         if (!after_bootmem &&
463                             !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
464                             !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
465                                 set_pmd(pmd, __pmd(0));
466                         continue;
467                 }
468
469                 if (pmd_val(*pmd)) {
470                         if (!pmd_large(*pmd)) {
471                                 spin_lock(&init_mm.page_table_lock);
472                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
473                                 last_map_addr = phys_pte_init(pte, address,
474                                                                 end, prot);
475                                 spin_unlock(&init_mm.page_table_lock);
476                                 continue;
477                         }
478                         /*
479                          * If we are ok with PG_LEVEL_2M mapping, then we will
480                          * use the existing mapping,
481                          *
482                          * Otherwise, we will split the large page mapping but
483                          * use the same existing protection bits except for
484                          * large page, so that we don't violate Intel's TLB
485                          * Application note (317080) which says, while changing
486                          * the page sizes, new and old translations should
487                          * not differ with respect to page frame and
488                          * attributes.
489                          */
490                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
491                                 if (!after_bootmem)
492                                         pages++;
493                                 last_map_addr = next;
494                                 continue;
495                         }
496                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
497                 }
498
499                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
500                         pages++;
501                         spin_lock(&init_mm.page_table_lock);
502                         set_pte((pte_t *)pmd,
503                                 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
504                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
505                         spin_unlock(&init_mm.page_table_lock);
506                         last_map_addr = next;
507                         continue;
508                 }
509
510                 pte = alloc_low_page();
511                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
512
513                 spin_lock(&init_mm.page_table_lock);
514                 pmd_populate_kernel(&init_mm, pmd, pte);
515                 spin_unlock(&init_mm.page_table_lock);
516         }
517         update_page_count(PG_LEVEL_2M, pages);
518         return last_map_addr;
519 }
520
521 static unsigned long __meminit
522 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
523                          unsigned long page_size_mask)
524 {
525         unsigned long pages = 0, next;
526         unsigned long last_map_addr = end;
527         int i = pud_index(addr);
528
529         for (; i < PTRS_PER_PUD; i++, addr = next) {
530                 pud_t *pud = pud_page + pud_index(addr);
531                 pmd_t *pmd;
532                 pgprot_t prot = PAGE_KERNEL;
533
534                 next = (addr & PUD_MASK) + PUD_SIZE;
535                 if (addr >= end) {
536                         if (!after_bootmem &&
537                             !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
538                             !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
539                                 set_pud(pud, __pud(0));
540                         continue;
541                 }
542
543                 if (pud_val(*pud)) {
544                         if (!pud_large(*pud)) {
545                                 pmd = pmd_offset(pud, 0);
546                                 last_map_addr = phys_pmd_init(pmd, addr, end,
547                                                          page_size_mask, prot);
548                                 __flush_tlb_all();
549                                 continue;
550                         }
551                         /*
552                          * If we are ok with PG_LEVEL_1G mapping, then we will
553                          * use the existing mapping.
554                          *
555                          * Otherwise, we will split the gbpage mapping but use
556                          * the same existing protection  bits except for large
557                          * page, so that we don't violate Intel's TLB
558                          * Application note (317080) which says, while changing
559                          * the page sizes, new and old translations should
560                          * not differ with respect to page frame and
561                          * attributes.
562                          */
563                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
564                                 if (!after_bootmem)
565                                         pages++;
566                                 last_map_addr = next;
567                                 continue;
568                         }
569                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
570                 }
571
572                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
573                         pages++;
574                         spin_lock(&init_mm.page_table_lock);
575                         set_pte((pte_t *)pud,
576                                 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
577                                         PAGE_KERNEL_LARGE));
578                         spin_unlock(&init_mm.page_table_lock);
579                         last_map_addr = next;
580                         continue;
581                 }
582
583                 pmd = alloc_low_page();
584                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
585                                               prot);
586
587                 spin_lock(&init_mm.page_table_lock);
588                 pud_populate(&init_mm, pud, pmd);
589                 spin_unlock(&init_mm.page_table_lock);
590         }
591         __flush_tlb_all();
592
593         update_page_count(PG_LEVEL_1G, pages);
594
595         return last_map_addr;
596 }
597
598 unsigned long __meminit
599 kernel_physical_mapping_init(unsigned long start,
600                              unsigned long end,
601                              unsigned long page_size_mask)
602 {
603         bool pgd_changed = false;
604         unsigned long next, last_map_addr = end;
605         unsigned long addr;
606
607         start = (unsigned long)__va(start);
608         end = (unsigned long)__va(end);
609         addr = start;
610
611         for (; start < end; start = next) {
612                 pgd_t *pgd = pgd_offset_k(start);
613                 pud_t *pud;
614
615                 next = (start & PGDIR_MASK) + PGDIR_SIZE;
616
617                 if (pgd_val(*pgd)) {
618                         pud = (pud_t *)pgd_page_vaddr(*pgd);
619                         last_map_addr = phys_pud_init(pud, __pa(start),
620                                                  __pa(end), page_size_mask);
621                         continue;
622                 }
623
624                 pud = alloc_low_page();
625                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
626                                                  page_size_mask);
627
628                 spin_lock(&init_mm.page_table_lock);
629                 pgd_populate(&init_mm, pgd, pud);
630                 spin_unlock(&init_mm.page_table_lock);
631                 pgd_changed = true;
632         }
633
634         if (pgd_changed)
635                 sync_global_pgds(addr, end - 1, 0);
636
637         __flush_tlb_all();
638
639         return last_map_addr;
640 }
641
642 #ifndef CONFIG_NUMA
643 void __init initmem_init(void)
644 {
645         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
646 }
647 #endif
648
649 void __init paging_init(void)
650 {
651         sparse_memory_present_with_active_regions(MAX_NUMNODES);
652         sparse_init();
653
654         /*
655          * clear the default setting with node 0
656          * note: don't use nodes_clear here, that is really clearing when
657          *       numa support is not compiled in, and later node_set_state
658          *       will not set it back.
659          */
660         node_clear_state(0, N_MEMORY);
661         if (N_MEMORY != N_NORMAL_MEMORY)
662                 node_clear_state(0, N_NORMAL_MEMORY);
663
664         zone_sizes_init();
665 }
666
667 /*
668  * Memory hotplug specific functions
669  */
670 #ifdef CONFIG_MEMORY_HOTPLUG
671 /*
672  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
673  * updating.
674  */
675 static void  update_end_of_memory_vars(u64 start, u64 size)
676 {
677         unsigned long end_pfn = PFN_UP(start + size);
678
679         if (end_pfn > max_pfn) {
680                 max_pfn = end_pfn;
681                 max_low_pfn = end_pfn;
682                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
683         }
684 }
685
686 /*
687  * Memory is added always to NORMAL zone. This means you will never get
688  * additional DMA/DMA32 memory.
689  */
690 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
691 {
692         struct pglist_data *pgdat = NODE_DATA(nid);
693         struct zone *zone = pgdat->node_zones +
694                 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
695         unsigned long start_pfn = start >> PAGE_SHIFT;
696         unsigned long nr_pages = size >> PAGE_SHIFT;
697         int ret;
698
699         init_memory_mapping(start, start + size);
700
701         ret = __add_pages(nid, zone, start_pfn, nr_pages);
702         WARN_ON_ONCE(ret);
703
704         /* update max_pfn, max_low_pfn and high_memory */
705         update_end_of_memory_vars(start, size);
706
707         return ret;
708 }
709 EXPORT_SYMBOL_GPL(arch_add_memory);
710
711 #define PAGE_INUSE 0xFD
712
713 static void __meminit free_pagetable(struct page *page, int order)
714 {
715         unsigned long magic;
716         unsigned int nr_pages = 1 << order;
717
718         /* bootmem page has reserved flag */
719         if (PageReserved(page)) {
720                 __ClearPageReserved(page);
721
722                 magic = (unsigned long)page->lru.next;
723                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
724                         while (nr_pages--)
725                                 put_page_bootmem(page++);
726                 } else
727                         while (nr_pages--)
728                                 free_reserved_page(page++);
729         } else
730                 free_pages((unsigned long)page_address(page), order);
731 }
732
733 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
734 {
735         pte_t *pte;
736         int i;
737
738         for (i = 0; i < PTRS_PER_PTE; i++) {
739                 pte = pte_start + i;
740                 if (pte_val(*pte))
741                         return;
742         }
743
744         /* free a pte talbe */
745         free_pagetable(pmd_page(*pmd), 0);
746         spin_lock(&init_mm.page_table_lock);
747         pmd_clear(pmd);
748         spin_unlock(&init_mm.page_table_lock);
749 }
750
751 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
752 {
753         pmd_t *pmd;
754         int i;
755
756         for (i = 0; i < PTRS_PER_PMD; i++) {
757                 pmd = pmd_start + i;
758                 if (pmd_val(*pmd))
759                         return;
760         }
761
762         /* free a pmd talbe */
763         free_pagetable(pud_page(*pud), 0);
764         spin_lock(&init_mm.page_table_lock);
765         pud_clear(pud);
766         spin_unlock(&init_mm.page_table_lock);
767 }
768
769 /* Return true if pgd is changed, otherwise return false. */
770 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
771 {
772         pud_t *pud;
773         int i;
774
775         for (i = 0; i < PTRS_PER_PUD; i++) {
776                 pud = pud_start + i;
777                 if (pud_val(*pud))
778                         return false;
779         }
780
781         /* free a pud table */
782         free_pagetable(pgd_page(*pgd), 0);
783         spin_lock(&init_mm.page_table_lock);
784         pgd_clear(pgd);
785         spin_unlock(&init_mm.page_table_lock);
786
787         return true;
788 }
789
790 static void __meminit
791 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
792                  bool direct)
793 {
794         unsigned long next, pages = 0;
795         pte_t *pte;
796         void *page_addr;
797         phys_addr_t phys_addr;
798
799         pte = pte_start + pte_index(addr);
800         for (; addr < end; addr = next, pte++) {
801                 next = (addr + PAGE_SIZE) & PAGE_MASK;
802                 if (next > end)
803                         next = end;
804
805                 if (!pte_present(*pte))
806                         continue;
807
808                 /*
809                  * We mapped [0,1G) memory as identity mapping when
810                  * initializing, in arch/x86/kernel/head_64.S. These
811                  * pagetables cannot be removed.
812                  */
813                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
814                 if (phys_addr < (phys_addr_t)0x40000000)
815                         return;
816
817                 if (IS_ALIGNED(addr, PAGE_SIZE) &&
818                     IS_ALIGNED(next, PAGE_SIZE)) {
819                         /*
820                          * Do not free direct mapping pages since they were
821                          * freed when offlining, or simplely not in use.
822                          */
823                         if (!direct)
824                                 free_pagetable(pte_page(*pte), 0);
825
826                         spin_lock(&init_mm.page_table_lock);
827                         pte_clear(&init_mm, addr, pte);
828                         spin_unlock(&init_mm.page_table_lock);
829
830                         /* For non-direct mapping, pages means nothing. */
831                         pages++;
832                 } else {
833                         /*
834                          * If we are here, we are freeing vmemmap pages since
835                          * direct mapped memory ranges to be freed are aligned.
836                          *
837                          * If we are not removing the whole page, it means
838                          * other page structs in this page are being used and
839                          * we canot remove them. So fill the unused page_structs
840                          * with 0xFD, and remove the page when it is wholly
841                          * filled with 0xFD.
842                          */
843                         memset((void *)addr, PAGE_INUSE, next - addr);
844
845                         page_addr = page_address(pte_page(*pte));
846                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
847                                 free_pagetable(pte_page(*pte), 0);
848
849                                 spin_lock(&init_mm.page_table_lock);
850                                 pte_clear(&init_mm, addr, pte);
851                                 spin_unlock(&init_mm.page_table_lock);
852                         }
853                 }
854         }
855
856         /* Call free_pte_table() in remove_pmd_table(). */
857         flush_tlb_all();
858         if (direct)
859                 update_page_count(PG_LEVEL_4K, -pages);
860 }
861
862 static void __meminit
863 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
864                  bool direct)
865 {
866         unsigned long next, pages = 0;
867         pte_t *pte_base;
868         pmd_t *pmd;
869         void *page_addr;
870
871         pmd = pmd_start + pmd_index(addr);
872         for (; addr < end; addr = next, pmd++) {
873                 next = pmd_addr_end(addr, end);
874
875                 if (!pmd_present(*pmd))
876                         continue;
877
878                 if (pmd_large(*pmd)) {
879                         if (IS_ALIGNED(addr, PMD_SIZE) &&
880                             IS_ALIGNED(next, PMD_SIZE)) {
881                                 if (!direct)
882                                         free_pagetable(pmd_page(*pmd),
883                                                        get_order(PMD_SIZE));
884
885                                 spin_lock(&init_mm.page_table_lock);
886                                 pmd_clear(pmd);
887                                 spin_unlock(&init_mm.page_table_lock);
888                                 pages++;
889                         } else {
890                                 /* If here, we are freeing vmemmap pages. */
891                                 memset((void *)addr, PAGE_INUSE, next - addr);
892
893                                 page_addr = page_address(pmd_page(*pmd));
894                                 if (!memchr_inv(page_addr, PAGE_INUSE,
895                                                 PMD_SIZE)) {
896                                         free_pagetable(pmd_page(*pmd),
897                                                        get_order(PMD_SIZE));
898
899                                         spin_lock(&init_mm.page_table_lock);
900                                         pmd_clear(pmd);
901                                         spin_unlock(&init_mm.page_table_lock);
902                                 }
903                         }
904
905                         continue;
906                 }
907
908                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
909                 remove_pte_table(pte_base, addr, next, direct);
910                 free_pte_table(pte_base, pmd);
911         }
912
913         /* Call free_pmd_table() in remove_pud_table(). */
914         if (direct)
915                 update_page_count(PG_LEVEL_2M, -pages);
916 }
917
918 static void __meminit
919 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
920                  bool direct)
921 {
922         unsigned long next, pages = 0;
923         pmd_t *pmd_base;
924         pud_t *pud;
925         void *page_addr;
926
927         pud = pud_start + pud_index(addr);
928         for (; addr < end; addr = next, pud++) {
929                 next = pud_addr_end(addr, end);
930
931                 if (!pud_present(*pud))
932                         continue;
933
934                 if (pud_large(*pud)) {
935                         if (IS_ALIGNED(addr, PUD_SIZE) &&
936                             IS_ALIGNED(next, PUD_SIZE)) {
937                                 if (!direct)
938                                         free_pagetable(pud_page(*pud),
939                                                        get_order(PUD_SIZE));
940
941                                 spin_lock(&init_mm.page_table_lock);
942                                 pud_clear(pud);
943                                 spin_unlock(&init_mm.page_table_lock);
944                                 pages++;
945                         } else {
946                                 /* If here, we are freeing vmemmap pages. */
947                                 memset((void *)addr, PAGE_INUSE, next - addr);
948
949                                 page_addr = page_address(pud_page(*pud));
950                                 if (!memchr_inv(page_addr, PAGE_INUSE,
951                                                 PUD_SIZE)) {
952                                         free_pagetable(pud_page(*pud),
953                                                        get_order(PUD_SIZE));
954
955                                         spin_lock(&init_mm.page_table_lock);
956                                         pud_clear(pud);
957                                         spin_unlock(&init_mm.page_table_lock);
958                                 }
959                         }
960
961                         continue;
962                 }
963
964                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
965                 remove_pmd_table(pmd_base, addr, next, direct);
966                 free_pmd_table(pmd_base, pud);
967         }
968
969         if (direct)
970                 update_page_count(PG_LEVEL_1G, -pages);
971 }
972
973 /* start and end are both virtual address. */
974 static void __meminit
975 remove_pagetable(unsigned long start, unsigned long end, bool direct)
976 {
977         unsigned long next;
978         unsigned long addr;
979         pgd_t *pgd;
980         pud_t *pud;
981         bool pgd_changed = false;
982
983         for (addr = start; addr < end; addr = next) {
984                 next = pgd_addr_end(addr, end);
985
986                 pgd = pgd_offset_k(addr);
987                 if (!pgd_present(*pgd))
988                         continue;
989
990                 pud = (pud_t *)pgd_page_vaddr(*pgd);
991                 remove_pud_table(pud, addr, next, direct);
992                 if (free_pud_table(pud, pgd))
993                         pgd_changed = true;
994         }
995
996         if (pgd_changed)
997                 sync_global_pgds(start, end - 1, 1);
998
999         flush_tlb_all();
1000 }
1001
1002 void __ref vmemmap_free(unsigned long start, unsigned long end)
1003 {
1004         remove_pagetable(start, end, false);
1005 }
1006
1007 #ifdef CONFIG_MEMORY_HOTREMOVE
1008 static void __meminit
1009 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1010 {
1011         start = (unsigned long)__va(start);
1012         end = (unsigned long)__va(end);
1013
1014         remove_pagetable(start, end, true);
1015 }
1016
1017 int __ref arch_remove_memory(u64 start, u64 size)
1018 {
1019         unsigned long start_pfn = start >> PAGE_SHIFT;
1020         unsigned long nr_pages = size >> PAGE_SHIFT;
1021         struct zone *zone;
1022         int ret;
1023
1024         zone = page_zone(pfn_to_page(start_pfn));
1025         kernel_physical_mapping_remove(start, start + size);
1026         ret = __remove_pages(zone, start_pfn, nr_pages);
1027         WARN_ON_ONCE(ret);
1028
1029         return ret;
1030 }
1031 #endif
1032 #endif /* CONFIG_MEMORY_HOTPLUG */
1033
1034 static struct kcore_list kcore_vsyscall;
1035
1036 static void __init register_page_bootmem_info(void)
1037 {
1038 #ifdef CONFIG_NUMA
1039         int i;
1040
1041         for_each_online_node(i)
1042                 register_page_bootmem_info_node(NODE_DATA(i));
1043 #endif
1044 }
1045
1046 void __init mem_init(void)
1047 {
1048         pci_iommu_alloc();
1049
1050         /* clear_bss() already clear the empty_zero_page */
1051
1052         register_page_bootmem_info();
1053
1054         /* this will put all memory onto the freelists */
1055         free_all_bootmem();
1056         after_bootmem = 1;
1057
1058         /* Register memory areas for /proc/kcore */
1059         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1060                          PAGE_SIZE, KCORE_OTHER);
1061
1062         mem_init_print_info(NULL);
1063 }
1064
1065 #ifdef CONFIG_DEBUG_RODATA
1066 const int rodata_test_data = 0xC3;
1067 EXPORT_SYMBOL_GPL(rodata_test_data);
1068
1069 int kernel_set_to_readonly;
1070
1071 void set_kernel_text_rw(void)
1072 {
1073         unsigned long start = PFN_ALIGN(_text);
1074         unsigned long end = PFN_ALIGN(__stop___ex_table);
1075
1076         if (!kernel_set_to_readonly)
1077                 return;
1078
1079         pr_debug("Set kernel text: %lx - %lx for read write\n",
1080                  start, end);
1081
1082         /*
1083          * Make the kernel identity mapping for text RW. Kernel text
1084          * mapping will always be RO. Refer to the comment in
1085          * static_protections() in pageattr.c
1086          */
1087         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1088 }
1089
1090 void set_kernel_text_ro(void)
1091 {
1092         unsigned long start = PFN_ALIGN(_text);
1093         unsigned long end = PFN_ALIGN(__stop___ex_table);
1094
1095         if (!kernel_set_to_readonly)
1096                 return;
1097
1098         pr_debug("Set kernel text: %lx - %lx for read only\n",
1099                  start, end);
1100
1101         /*
1102          * Set the kernel identity mapping for text RO.
1103          */
1104         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1105 }
1106
1107 void mark_rodata_ro(void)
1108 {
1109         unsigned long start = PFN_ALIGN(_text);
1110         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1111         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1112         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1113         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1114         unsigned long all_end;
1115
1116         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1117                (end - start) >> 10);
1118         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1119
1120         kernel_set_to_readonly = 1;
1121
1122         /*
1123          * The rodata/data/bss/brk section (but not the kernel text!)
1124          * should also be not-executable.
1125          *
1126          * We align all_end to PMD_SIZE because the existing mapping
1127          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1128          * split the PMD and the reminder between _brk_end and the end
1129          * of the PMD will remain mapped executable.
1130          *
1131          * Any PMD which was setup after the one which covers _brk_end
1132          * has been zapped already via cleanup_highmem().
1133          */
1134         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1135         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1136
1137         rodata_test();
1138
1139 #ifdef CONFIG_CPA_DEBUG
1140         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1141         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1142
1143         printk(KERN_INFO "Testing CPA: again\n");
1144         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1145 #endif
1146
1147         free_init_pages("unused kernel",
1148                         (unsigned long) __va(__pa_symbol(text_end)),
1149                         (unsigned long) __va(__pa_symbol(rodata_start)));
1150         free_init_pages("unused kernel",
1151                         (unsigned long) __va(__pa_symbol(rodata_end)),
1152                         (unsigned long) __va(__pa_symbol(_sdata)));
1153
1154         debug_checkwx();
1155 }
1156
1157 #endif
1158
1159 int kern_addr_valid(unsigned long addr)
1160 {
1161         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1162         pgd_t *pgd;
1163         pud_t *pud;
1164         pmd_t *pmd;
1165         pte_t *pte;
1166
1167         if (above != 0 && above != -1UL)
1168                 return 0;
1169
1170         pgd = pgd_offset_k(addr);
1171         if (pgd_none(*pgd))
1172                 return 0;
1173
1174         pud = pud_offset(pgd, addr);
1175         if (pud_none(*pud))
1176                 return 0;
1177
1178         if (pud_large(*pud))
1179                 return pfn_valid(pud_pfn(*pud));
1180
1181         pmd = pmd_offset(pud, addr);
1182         if (pmd_none(*pmd))
1183                 return 0;
1184
1185         if (pmd_large(*pmd))
1186                 return pfn_valid(pmd_pfn(*pmd));
1187
1188         pte = pte_offset_kernel(pmd, addr);
1189         if (pte_none(*pte))
1190                 return 0;
1191
1192         return pfn_valid(pte_pfn(*pte));
1193 }
1194
1195 static unsigned long probe_memory_block_size(void)
1196 {
1197         /* start from 2g */
1198         unsigned long bz = 1UL<<31;
1199
1200         if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) {
1201                 pr_info("Using 2GB memory block size for large-memory system\n");
1202                 return 2UL * 1024 * 1024 * 1024;
1203         }
1204
1205         /* less than 64g installed */
1206         if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1207                 return MIN_MEMORY_BLOCK_SIZE;
1208
1209         /* get the tail size */
1210         while (bz > MIN_MEMORY_BLOCK_SIZE) {
1211                 if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1212                         break;
1213                 bz >>= 1;
1214         }
1215
1216         printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1217
1218         return bz;
1219 }
1220
1221 static unsigned long memory_block_size_probed;
1222 unsigned long memory_block_size_bytes(void)
1223 {
1224         if (!memory_block_size_probed)
1225                 memory_block_size_probed = probe_memory_block_size();
1226
1227         return memory_block_size_probed;
1228 }
1229
1230 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1231 /*
1232  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1233  */
1234 static long __meminitdata addr_start, addr_end;
1235 static void __meminitdata *p_start, *p_end;
1236 static int __meminitdata node_start;
1237
1238 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1239                                                 unsigned long end, int node)
1240 {
1241         unsigned long addr;
1242         unsigned long next;
1243         pgd_t *pgd;
1244         pud_t *pud;
1245         pmd_t *pmd;
1246
1247         for (addr = start; addr < end; addr = next) {
1248                 next = pmd_addr_end(addr, end);
1249
1250                 pgd = vmemmap_pgd_populate(addr, node);
1251                 if (!pgd)
1252                         return -ENOMEM;
1253
1254                 pud = vmemmap_pud_populate(pgd, addr, node);
1255                 if (!pud)
1256                         return -ENOMEM;
1257
1258                 pmd = pmd_offset(pud, addr);
1259                 if (pmd_none(*pmd)) {
1260                         void *p;
1261
1262                         p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1263                         if (p) {
1264                                 pte_t entry;
1265
1266                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1267                                                 PAGE_KERNEL_LARGE);
1268                                 set_pmd(pmd, __pmd(pte_val(entry)));
1269
1270                                 /* check to see if we have contiguous blocks */
1271                                 if (p_end != p || node_start != node) {
1272                                         if (p_start)
1273                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1274                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1275                                         addr_start = addr;
1276                                         node_start = node;
1277                                         p_start = p;
1278                                 }
1279
1280                                 addr_end = addr + PMD_SIZE;
1281                                 p_end = p + PMD_SIZE;
1282                                 continue;
1283                         }
1284                 } else if (pmd_large(*pmd)) {
1285                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1286                         continue;
1287                 }
1288                 pr_warn_once("vmemmap: falling back to regular page backing\n");
1289                 if (vmemmap_populate_basepages(addr, next, node))
1290                         return -ENOMEM;
1291         }
1292         return 0;
1293 }
1294
1295 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1296 {
1297         int err;
1298
1299         if (cpu_has_pse)
1300                 err = vmemmap_populate_hugepages(start, end, node);
1301         else
1302                 err = vmemmap_populate_basepages(start, end, node);
1303         if (!err)
1304                 sync_global_pgds(start, end - 1, 0);
1305         return err;
1306 }
1307
1308 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1309 void register_page_bootmem_memmap(unsigned long section_nr,
1310                                   struct page *start_page, unsigned long size)
1311 {
1312         unsigned long addr = (unsigned long)start_page;
1313         unsigned long end = (unsigned long)(start_page + size);
1314         unsigned long next;
1315         pgd_t *pgd;
1316         pud_t *pud;
1317         pmd_t *pmd;
1318         unsigned int nr_pages;
1319         struct page *page;
1320
1321         for (; addr < end; addr = next) {
1322                 pte_t *pte = NULL;
1323
1324                 pgd = pgd_offset_k(addr);
1325                 if (pgd_none(*pgd)) {
1326                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1327                         continue;
1328                 }
1329                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1330
1331                 pud = pud_offset(pgd, addr);
1332                 if (pud_none(*pud)) {
1333                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1334                         continue;
1335                 }
1336                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1337
1338                 if (!cpu_has_pse) {
1339                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1340                         pmd = pmd_offset(pud, addr);
1341                         if (pmd_none(*pmd))
1342                                 continue;
1343                         get_page_bootmem(section_nr, pmd_page(*pmd),
1344                                          MIX_SECTION_INFO);
1345
1346                         pte = pte_offset_kernel(pmd, addr);
1347                         if (pte_none(*pte))
1348                                 continue;
1349                         get_page_bootmem(section_nr, pte_page(*pte),
1350                                          SECTION_INFO);
1351                 } else {
1352                         next = pmd_addr_end(addr, end);
1353
1354                         pmd = pmd_offset(pud, addr);
1355                         if (pmd_none(*pmd))
1356                                 continue;
1357
1358                         nr_pages = 1 << (get_order(PMD_SIZE));
1359                         page = pmd_page(*pmd);
1360                         while (nr_pages--)
1361                                 get_page_bootmem(section_nr, page++,
1362                                                  SECTION_INFO);
1363                 }
1364         }
1365 }
1366 #endif
1367
1368 void __meminit vmemmap_populate_print_last(void)
1369 {
1370         if (p_start) {
1371                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1372                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1373                 p_start = NULL;
1374                 p_end = NULL;
1375                 node_start = 0;
1376         }
1377 }
1378 #endif