]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/mm/pageattr.c
Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
[karo-tx-linux.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         unsigned long   numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         if (direct_pages_count[level] == 0)
70                 return;
71
72         direct_pages_count[level]--;
73         direct_pages_count[level - 1] += PTRS_PER_PTE;
74 }
75
76 void arch_report_meminfo(struct seq_file *m)
77 {
78         seq_printf(m, "DirectMap4k:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_4K] << 2);
80 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
81         seq_printf(m, "DirectMap2M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 11);
83 #else
84         seq_printf(m, "DirectMap4M:    %8lu kB\n",
85                         direct_pages_count[PG_LEVEL_2M] << 12);
86 #endif
87         if (direct_gbpages)
88                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
89                         direct_pages_count[PG_LEVEL_1G] << 20);
90 }
91 #else
92 static inline void split_page_count(int level) { }
93 #endif
94
95 #ifdef CONFIG_X86_64
96
97 static inline unsigned long highmap_start_pfn(void)
98 {
99         return __pa_symbol(_text) >> PAGE_SHIFT;
100 }
101
102 static inline unsigned long highmap_end_pfn(void)
103 {
104         /* Do not reference physical address outside the kernel. */
105         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
106 }
107
108 #endif
109
110 static inline int
111 within(unsigned long addr, unsigned long start, unsigned long end)
112 {
113         return addr >= start && addr < end;
114 }
115
116 static inline int
117 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
118 {
119         return addr >= start && addr <= end;
120 }
121
122 /*
123  * Flushing functions
124  */
125
126 /**
127  * clflush_cache_range - flush a cache range with clflush
128  * @vaddr:      virtual start address
129  * @size:       number of bytes to flush
130  *
131  * clflushopt is an unordered instruction which needs fencing with mfence or
132  * sfence to avoid ordering issues.
133  */
134 void clflush_cache_range(void *vaddr, unsigned int size)
135 {
136         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
137         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
138         void *vend = vaddr + size;
139
140         if (p >= vend)
141                 return;
142
143         mb();
144
145         for (; p < vend; p += clflush_size)
146                 clflushopt(p);
147
148         mb();
149 }
150 EXPORT_SYMBOL_GPL(clflush_cache_range);
151
152 static void __cpa_flush_all(void *arg)
153 {
154         unsigned long cache = (unsigned long)arg;
155
156         /*
157          * Flush all to work around Errata in early athlons regarding
158          * large page flushing.
159          */
160         __flush_tlb_all();
161
162         if (cache && boot_cpu_data.x86 >= 4)
163                 wbinvd();
164 }
165
166 static void cpa_flush_all(unsigned long cache)
167 {
168         BUG_ON(irqs_disabled());
169
170         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
171 }
172
173 static void __cpa_flush_range(void *arg)
174 {
175         /*
176          * We could optimize that further and do individual per page
177          * tlb invalidates for a low number of pages. Caveat: we must
178          * flush the high aliases on 64bit as well.
179          */
180         __flush_tlb_all();
181 }
182
183 static void cpa_flush_range(unsigned long start, int numpages, int cache)
184 {
185         unsigned int i, level;
186         unsigned long addr;
187
188         BUG_ON(irqs_disabled());
189         WARN_ON(PAGE_ALIGN(start) != start);
190
191         on_each_cpu(__cpa_flush_range, NULL, 1);
192
193         if (!cache)
194                 return;
195
196         /*
197          * We only need to flush on one CPU,
198          * clflush is a MESI-coherent instruction that
199          * will cause all other CPUs to flush the same
200          * cachelines:
201          */
202         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
203                 pte_t *pte = lookup_address(addr, &level);
204
205                 /*
206                  * Only flush present addresses:
207                  */
208                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
209                         clflush_cache_range((void *) addr, PAGE_SIZE);
210         }
211 }
212
213 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
214                             int in_flags, struct page **pages)
215 {
216         unsigned int i, level;
217         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
218
219         BUG_ON(irqs_disabled());
220
221         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
222
223         if (!cache || do_wbinvd)
224                 return;
225
226         /*
227          * We only need to flush on one CPU,
228          * clflush is a MESI-coherent instruction that
229          * will cause all other CPUs to flush the same
230          * cachelines:
231          */
232         for (i = 0; i < numpages; i++) {
233                 unsigned long addr;
234                 pte_t *pte;
235
236                 if (in_flags & CPA_PAGES_ARRAY)
237                         addr = (unsigned long)page_address(pages[i]);
238                 else
239                         addr = start[i];
240
241                 pte = lookup_address(addr, &level);
242
243                 /*
244                  * Only flush present addresses:
245                  */
246                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
247                         clflush_cache_range((void *)addr, PAGE_SIZE);
248         }
249 }
250
251 /*
252  * Certain areas of memory on x86 require very specific protection flags,
253  * for example the BIOS area or kernel text. Callers don't always get this
254  * right (again, ioremap() on BIOS memory is not uncommon) so this function
255  * checks and fixes these known static required protection bits.
256  */
257 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
258                                    unsigned long pfn)
259 {
260         pgprot_t forbidden = __pgprot(0);
261
262         /*
263          * The BIOS area between 640k and 1Mb needs to be executable for
264          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
265          */
266 #ifdef CONFIG_PCI_BIOS
267         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
268                 pgprot_val(forbidden) |= _PAGE_NX;
269 #endif
270
271         /*
272          * The kernel text needs to be executable for obvious reasons
273          * Does not cover __inittext since that is gone later on. On
274          * 64bit we do not enforce !NX on the low mapping
275          */
276         if (within(address, (unsigned long)_text, (unsigned long)_etext))
277                 pgprot_val(forbidden) |= _PAGE_NX;
278
279         /*
280          * The .rodata section needs to be read-only. Using the pfn
281          * catches all aliases.
282          */
283         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
284                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
285                 pgprot_val(forbidden) |= _PAGE_RW;
286
287 #if defined(CONFIG_X86_64)
288         /*
289          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
290          * kernel text mappings for the large page aligned text, rodata sections
291          * will be always read-only. For the kernel identity mappings covering
292          * the holes caused by this alignment can be anything that user asks.
293          *
294          * This will preserve the large page mappings for kernel text/data
295          * at no extra cost.
296          */
297         if (kernel_set_to_readonly &&
298             within(address, (unsigned long)_text,
299                    (unsigned long)__end_rodata_hpage_align)) {
300                 unsigned int level;
301
302                 /*
303                  * Don't enforce the !RW mapping for the kernel text mapping,
304                  * if the current mapping is already using small page mapping.
305                  * No need to work hard to preserve large page mappings in this
306                  * case.
307                  *
308                  * This also fixes the Linux Xen paravirt guest boot failure
309                  * (because of unexpected read-only mappings for kernel identity
310                  * mappings). In this paravirt guest case, the kernel text
311                  * mapping and the kernel identity mapping share the same
312                  * page-table pages. Thus we can't really use different
313                  * protections for the kernel text and identity mappings. Also,
314                  * these shared mappings are made of small page mappings.
315                  * Thus this don't enforce !RW mapping for small page kernel
316                  * text mapping logic will help Linux Xen parvirt guest boot
317                  * as well.
318                  */
319                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
320                         pgprot_val(forbidden) |= _PAGE_RW;
321         }
322 #endif
323
324         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
325
326         return prot;
327 }
328
329 /*
330  * Lookup the page table entry for a virtual address in a specific pgd.
331  * Return a pointer to the entry and the level of the mapping.
332  */
333 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
334                              unsigned int *level)
335 {
336         pud_t *pud;
337         pmd_t *pmd;
338
339         *level = PG_LEVEL_NONE;
340
341         if (pgd_none(*pgd))
342                 return NULL;
343
344         pud = pud_offset(pgd, address);
345         if (pud_none(*pud))
346                 return NULL;
347
348         *level = PG_LEVEL_1G;
349         if (pud_large(*pud) || !pud_present(*pud))
350                 return (pte_t *)pud;
351
352         pmd = pmd_offset(pud, address);
353         if (pmd_none(*pmd))
354                 return NULL;
355
356         *level = PG_LEVEL_2M;
357         if (pmd_large(*pmd) || !pmd_present(*pmd))
358                 return (pte_t *)pmd;
359
360         *level = PG_LEVEL_4K;
361
362         return pte_offset_kernel(pmd, address);
363 }
364
365 /*
366  * Lookup the page table entry for a virtual address. Return a pointer
367  * to the entry and the level of the mapping.
368  *
369  * Note: We return pud and pmd either when the entry is marked large
370  * or when the present bit is not set. Otherwise we would return a
371  * pointer to a nonexisting mapping.
372  */
373 pte_t *lookup_address(unsigned long address, unsigned int *level)
374 {
375         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
376 }
377 EXPORT_SYMBOL_GPL(lookup_address);
378
379 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
380                                   unsigned int *level)
381 {
382         if (cpa->pgd)
383                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
384                                                address, level);
385
386         return lookup_address(address, level);
387 }
388
389 /*
390  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
391  * or NULL if not present.
392  */
393 pmd_t *lookup_pmd_address(unsigned long address)
394 {
395         pgd_t *pgd;
396         pud_t *pud;
397
398         pgd = pgd_offset_k(address);
399         if (pgd_none(*pgd))
400                 return NULL;
401
402         pud = pud_offset(pgd, address);
403         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
404                 return NULL;
405
406         return pmd_offset(pud, address);
407 }
408
409 /*
410  * This is necessary because __pa() does not work on some
411  * kinds of memory, like vmalloc() or the alloc_remap()
412  * areas on 32-bit NUMA systems.  The percpu areas can
413  * end up in this kind of memory, for instance.
414  *
415  * This could be optimized, but it is only intended to be
416  * used at inititalization time, and keeping it
417  * unoptimized should increase the testing coverage for
418  * the more obscure platforms.
419  */
420 phys_addr_t slow_virt_to_phys(void *__virt_addr)
421 {
422         unsigned long virt_addr = (unsigned long)__virt_addr;
423         phys_addr_t phys_addr;
424         unsigned long offset;
425         enum pg_level level;
426         pte_t *pte;
427
428         pte = lookup_address(virt_addr, &level);
429         BUG_ON(!pte);
430
431         /*
432          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
433          * before being left-shifted PAGE_SHIFT bits -- this trick is to
434          * make 32-PAE kernel work correctly.
435          */
436         switch (level) {
437         case PG_LEVEL_1G:
438                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
439                 offset = virt_addr & ~PUD_PAGE_MASK;
440                 break;
441         case PG_LEVEL_2M:
442                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
443                 offset = virt_addr & ~PMD_PAGE_MASK;
444                 break;
445         default:
446                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
447                 offset = virt_addr & ~PAGE_MASK;
448         }
449
450         return (phys_addr_t)(phys_addr | offset);
451 }
452 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
453
454 /*
455  * Set the new pmd in all the pgds we know about:
456  */
457 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
458 {
459         /* change init_mm */
460         set_pte_atomic(kpte, pte);
461 #ifdef CONFIG_X86_32
462         if (!SHARED_KERNEL_PMD) {
463                 struct page *page;
464
465                 list_for_each_entry(page, &pgd_list, lru) {
466                         pgd_t *pgd;
467                         pud_t *pud;
468                         pmd_t *pmd;
469
470                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
471                         pud = pud_offset(pgd, address);
472                         pmd = pmd_offset(pud, address);
473                         set_pte_atomic((pte_t *)pmd, pte);
474                 }
475         }
476 #endif
477 }
478
479 static int
480 try_preserve_large_page(pte_t *kpte, unsigned long address,
481                         struct cpa_data *cpa)
482 {
483         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
484         pte_t new_pte, old_pte, *tmp;
485         pgprot_t old_prot, new_prot, req_prot;
486         int i, do_split = 1;
487         enum pg_level level;
488
489         if (cpa->force_split)
490                 return 1;
491
492         spin_lock(&pgd_lock);
493         /*
494          * Check for races, another CPU might have split this page
495          * up already:
496          */
497         tmp = _lookup_address_cpa(cpa, address, &level);
498         if (tmp != kpte)
499                 goto out_unlock;
500
501         switch (level) {
502         case PG_LEVEL_2M:
503                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
504                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
505                 break;
506         case PG_LEVEL_1G:
507                 old_prot = pud_pgprot(*(pud_t *)kpte);
508                 old_pfn = pud_pfn(*(pud_t *)kpte);
509                 break;
510         default:
511                 do_split = -EINVAL;
512                 goto out_unlock;
513         }
514
515         psize = page_level_size(level);
516         pmask = page_level_mask(level);
517
518         /*
519          * Calculate the number of pages, which fit into this large
520          * page starting at address:
521          */
522         nextpage_addr = (address + psize) & pmask;
523         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
524         if (numpages < cpa->numpages)
525                 cpa->numpages = numpages;
526
527         /*
528          * We are safe now. Check whether the new pgprot is the same:
529          * Convert protection attributes to 4k-format, as cpa->mask* are set
530          * up accordingly.
531          */
532         old_pte = *kpte;
533         req_prot = pgprot_large_2_4k(old_prot);
534
535         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
536         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
537
538         /*
539          * req_prot is in format of 4k pages. It must be converted to large
540          * page format: the caching mode includes the PAT bit located at
541          * different bit positions in the two formats.
542          */
543         req_prot = pgprot_4k_2_large(req_prot);
544
545         /*
546          * Set the PSE and GLOBAL flags only if the PRESENT flag is
547          * set otherwise pmd_present/pmd_huge will return true even on
548          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
549          * for the ancient hardware that doesn't support it.
550          */
551         if (pgprot_val(req_prot) & _PAGE_PRESENT)
552                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
553         else
554                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
555
556         req_prot = canon_pgprot(req_prot);
557
558         /*
559          * old_pfn points to the large page base pfn. So we need
560          * to add the offset of the virtual address:
561          */
562         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
563         cpa->pfn = pfn;
564
565         new_prot = static_protections(req_prot, address, pfn);
566
567         /*
568          * We need to check the full range, whether
569          * static_protection() requires a different pgprot for one of
570          * the pages in the range we try to preserve:
571          */
572         addr = address & pmask;
573         pfn = old_pfn;
574         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
575                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
576
577                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
578                         goto out_unlock;
579         }
580
581         /*
582          * If there are no changes, return. maxpages has been updated
583          * above:
584          */
585         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
586                 do_split = 0;
587                 goto out_unlock;
588         }
589
590         /*
591          * We need to change the attributes. Check, whether we can
592          * change the large page in one go. We request a split, when
593          * the address is not aligned and the number of pages is
594          * smaller than the number of pages in the large page. Note
595          * that we limited the number of possible pages already to
596          * the number of pages in the large page.
597          */
598         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
599                 /*
600                  * The address is aligned and the number of pages
601                  * covers the full page.
602                  */
603                 new_pte = pfn_pte(old_pfn, new_prot);
604                 __set_pmd_pte(kpte, address, new_pte);
605                 cpa->flags |= CPA_FLUSHTLB;
606                 do_split = 0;
607         }
608
609 out_unlock:
610         spin_unlock(&pgd_lock);
611
612         return do_split;
613 }
614
615 static int
616 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
617                    struct page *base)
618 {
619         pte_t *pbase = (pte_t *)page_address(base);
620         unsigned long ref_pfn, pfn, pfninc = 1;
621         unsigned int i, level;
622         pte_t *tmp;
623         pgprot_t ref_prot;
624
625         spin_lock(&pgd_lock);
626         /*
627          * Check for races, another CPU might have split this page
628          * up for us already:
629          */
630         tmp = _lookup_address_cpa(cpa, address, &level);
631         if (tmp != kpte) {
632                 spin_unlock(&pgd_lock);
633                 return 1;
634         }
635
636         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
637
638         switch (level) {
639         case PG_LEVEL_2M:
640                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
641                 /* clear PSE and promote PAT bit to correct position */
642                 ref_prot = pgprot_large_2_4k(ref_prot);
643                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
644                 break;
645
646         case PG_LEVEL_1G:
647                 ref_prot = pud_pgprot(*(pud_t *)kpte);
648                 ref_pfn = pud_pfn(*(pud_t *)kpte);
649                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
650
651                 /*
652                  * Clear the PSE flags if the PRESENT flag is not set
653                  * otherwise pmd_present/pmd_huge will return true
654                  * even on a non present pmd.
655                  */
656                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
657                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
658                 break;
659
660         default:
661                 spin_unlock(&pgd_lock);
662                 return 1;
663         }
664
665         /*
666          * Set the GLOBAL flags only if the PRESENT flag is set
667          * otherwise pmd/pte_present will return true even on a non
668          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
669          * for the ancient hardware that doesn't support it.
670          */
671         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
672                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
673         else
674                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
675
676         /*
677          * Get the target pfn from the original entry:
678          */
679         pfn = ref_pfn;
680         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
681                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
682
683         if (virt_addr_valid(address)) {
684                 unsigned long pfn = PFN_DOWN(__pa(address));
685
686                 if (pfn_range_is_mapped(pfn, pfn + 1))
687                         split_page_count(level);
688         }
689
690         /*
691          * Install the new, split up pagetable.
692          *
693          * We use the standard kernel pagetable protections for the new
694          * pagetable protections, the actual ptes set above control the
695          * primary protection behavior:
696          */
697         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
698
699         /*
700          * Intel Atom errata AAH41 workaround.
701          *
702          * The real fix should be in hw or in a microcode update, but
703          * we also probabilistically try to reduce the window of having
704          * a large TLB mixed with 4K TLBs while instruction fetches are
705          * going on.
706          */
707         __flush_tlb_all();
708         spin_unlock(&pgd_lock);
709
710         return 0;
711 }
712
713 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
714                             unsigned long address)
715 {
716         struct page *base;
717
718         if (!debug_pagealloc_enabled())
719                 spin_unlock(&cpa_lock);
720         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
721         if (!debug_pagealloc_enabled())
722                 spin_lock(&cpa_lock);
723         if (!base)
724                 return -ENOMEM;
725
726         if (__split_large_page(cpa, kpte, address, base))
727                 __free_page(base);
728
729         return 0;
730 }
731
732 static bool try_to_free_pte_page(pte_t *pte)
733 {
734         int i;
735
736         for (i = 0; i < PTRS_PER_PTE; i++)
737                 if (!pte_none(pte[i]))
738                         return false;
739
740         free_page((unsigned long)pte);
741         return true;
742 }
743
744 static bool try_to_free_pmd_page(pmd_t *pmd)
745 {
746         int i;
747
748         for (i = 0; i < PTRS_PER_PMD; i++)
749                 if (!pmd_none(pmd[i]))
750                         return false;
751
752         free_page((unsigned long)pmd);
753         return true;
754 }
755
756 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
757 {
758         pte_t *pte = pte_offset_kernel(pmd, start);
759
760         while (start < end) {
761                 set_pte(pte, __pte(0));
762
763                 start += PAGE_SIZE;
764                 pte++;
765         }
766
767         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
768                 pmd_clear(pmd);
769                 return true;
770         }
771         return false;
772 }
773
774 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
775                               unsigned long start, unsigned long end)
776 {
777         if (unmap_pte_range(pmd, start, end))
778                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
779                         pud_clear(pud);
780 }
781
782 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
783 {
784         pmd_t *pmd = pmd_offset(pud, start);
785
786         /*
787          * Not on a 2MB page boundary?
788          */
789         if (start & (PMD_SIZE - 1)) {
790                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
791                 unsigned long pre_end = min_t(unsigned long, end, next_page);
792
793                 __unmap_pmd_range(pud, pmd, start, pre_end);
794
795                 start = pre_end;
796                 pmd++;
797         }
798
799         /*
800          * Try to unmap in 2M chunks.
801          */
802         while (end - start >= PMD_SIZE) {
803                 if (pmd_large(*pmd))
804                         pmd_clear(pmd);
805                 else
806                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
807
808                 start += PMD_SIZE;
809                 pmd++;
810         }
811
812         /*
813          * 4K leftovers?
814          */
815         if (start < end)
816                 return __unmap_pmd_range(pud, pmd, start, end);
817
818         /*
819          * Try again to free the PMD page if haven't succeeded above.
820          */
821         if (!pud_none(*pud))
822                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
823                         pud_clear(pud);
824 }
825
826 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
827 {
828         pud_t *pud = pud_offset(pgd, start);
829
830         /*
831          * Not on a GB page boundary?
832          */
833         if (start & (PUD_SIZE - 1)) {
834                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
835                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
836
837                 unmap_pmd_range(pud, start, pre_end);
838
839                 start = pre_end;
840                 pud++;
841         }
842
843         /*
844          * Try to unmap in 1G chunks?
845          */
846         while (end - start >= PUD_SIZE) {
847
848                 if (pud_large(*pud))
849                         pud_clear(pud);
850                 else
851                         unmap_pmd_range(pud, start, start + PUD_SIZE);
852
853                 start += PUD_SIZE;
854                 pud++;
855         }
856
857         /*
858          * 2M leftovers?
859          */
860         if (start < end)
861                 unmap_pmd_range(pud, start, end);
862
863         /*
864          * No need to try to free the PUD page because we'll free it in
865          * populate_pgd's error path
866          */
867 }
868
869 static int alloc_pte_page(pmd_t *pmd)
870 {
871         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
872         if (!pte)
873                 return -1;
874
875         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
876         return 0;
877 }
878
879 static int alloc_pmd_page(pud_t *pud)
880 {
881         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
882         if (!pmd)
883                 return -1;
884
885         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
886         return 0;
887 }
888
889 static void populate_pte(struct cpa_data *cpa,
890                          unsigned long start, unsigned long end,
891                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
892 {
893         pte_t *pte;
894
895         pte = pte_offset_kernel(pmd, start);
896
897         /*
898          * Set the GLOBAL flags only if the PRESENT flag is
899          * set otherwise pte_present will return true even on
900          * a non present pte. The canon_pgprot will clear
901          * _PAGE_GLOBAL for the ancient hardware that doesn't
902          * support it.
903          */
904         if (pgprot_val(pgprot) & _PAGE_PRESENT)
905                 pgprot_val(pgprot) |= _PAGE_GLOBAL;
906         else
907                 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
908
909         pgprot = canon_pgprot(pgprot);
910
911         while (num_pages-- && start < end) {
912                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
913
914                 start    += PAGE_SIZE;
915                 cpa->pfn++;
916                 pte++;
917         }
918 }
919
920 static int populate_pmd(struct cpa_data *cpa,
921                         unsigned long start, unsigned long end,
922                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
923 {
924         unsigned int cur_pages = 0;
925         pmd_t *pmd;
926         pgprot_t pmd_pgprot;
927
928         /*
929          * Not on a 2M boundary?
930          */
931         if (start & (PMD_SIZE - 1)) {
932                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
933                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
934
935                 pre_end   = min_t(unsigned long, pre_end, next_page);
936                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
937                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
938
939                 /*
940                  * Need a PTE page?
941                  */
942                 pmd = pmd_offset(pud, start);
943                 if (pmd_none(*pmd))
944                         if (alloc_pte_page(pmd))
945                                 return -1;
946
947                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
948
949                 start = pre_end;
950         }
951
952         /*
953          * We mapped them all?
954          */
955         if (num_pages == cur_pages)
956                 return cur_pages;
957
958         pmd_pgprot = pgprot_4k_2_large(pgprot);
959
960         while (end - start >= PMD_SIZE) {
961
962                 /*
963                  * We cannot use a 1G page so allocate a PMD page if needed.
964                  */
965                 if (pud_none(*pud))
966                         if (alloc_pmd_page(pud))
967                                 return -1;
968
969                 pmd = pmd_offset(pud, start);
970
971                 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
972                                    massage_pgprot(pmd_pgprot)));
973
974                 start     += PMD_SIZE;
975                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
976                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
977         }
978
979         /*
980          * Map trailing 4K pages.
981          */
982         if (start < end) {
983                 pmd = pmd_offset(pud, start);
984                 if (pmd_none(*pmd))
985                         if (alloc_pte_page(pmd))
986                                 return -1;
987
988                 populate_pte(cpa, start, end, num_pages - cur_pages,
989                              pmd, pgprot);
990         }
991         return num_pages;
992 }
993
994 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
995                         pgprot_t pgprot)
996 {
997         pud_t *pud;
998         unsigned long end;
999         int cur_pages = 0;
1000         pgprot_t pud_pgprot;
1001
1002         end = start + (cpa->numpages << PAGE_SHIFT);
1003
1004         /*
1005          * Not on a Gb page boundary? => map everything up to it with
1006          * smaller pages.
1007          */
1008         if (start & (PUD_SIZE - 1)) {
1009                 unsigned long pre_end;
1010                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1011
1012                 pre_end   = min_t(unsigned long, end, next_page);
1013                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1014                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1015
1016                 pud = pud_offset(pgd, start);
1017
1018                 /*
1019                  * Need a PMD page?
1020                  */
1021                 if (pud_none(*pud))
1022                         if (alloc_pmd_page(pud))
1023                                 return -1;
1024
1025                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1026                                          pud, pgprot);
1027                 if (cur_pages < 0)
1028                         return cur_pages;
1029
1030                 start = pre_end;
1031         }
1032
1033         /* We mapped them all? */
1034         if (cpa->numpages == cur_pages)
1035                 return cur_pages;
1036
1037         pud = pud_offset(pgd, start);
1038         pud_pgprot = pgprot_4k_2_large(pgprot);
1039
1040         /*
1041          * Map everything starting from the Gb boundary, possibly with 1G pages
1042          */
1043         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1044                 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1045                                    massage_pgprot(pud_pgprot)));
1046
1047                 start     += PUD_SIZE;
1048                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1049                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1050                 pud++;
1051         }
1052
1053         /* Map trailing leftover */
1054         if (start < end) {
1055                 int tmp;
1056
1057                 pud = pud_offset(pgd, start);
1058                 if (pud_none(*pud))
1059                         if (alloc_pmd_page(pud))
1060                                 return -1;
1061
1062                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1063                                    pud, pgprot);
1064                 if (tmp < 0)
1065                         return cur_pages;
1066
1067                 cur_pages += tmp;
1068         }
1069         return cur_pages;
1070 }
1071
1072 /*
1073  * Restrictions for kernel page table do not necessarily apply when mapping in
1074  * an alternate PGD.
1075  */
1076 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1077 {
1078         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1079         pud_t *pud = NULL;      /* shut up gcc */
1080         pgd_t *pgd_entry;
1081         int ret;
1082
1083         pgd_entry = cpa->pgd + pgd_index(addr);
1084
1085         /*
1086          * Allocate a PUD page and hand it down for mapping.
1087          */
1088         if (pgd_none(*pgd_entry)) {
1089                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1090                 if (!pud)
1091                         return -1;
1092
1093                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1094         }
1095
1096         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1097         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1098
1099         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1100         if (ret < 0) {
1101                 /*
1102                  * Leave the PUD page in place in case some other CPU or thread
1103                  * already found it, but remove any useless entries we just
1104                  * added to it.
1105                  */
1106                 unmap_pud_range(pgd_entry, addr,
1107                                 addr + (cpa->numpages << PAGE_SHIFT));
1108                 return ret;
1109         }
1110
1111         cpa->numpages = ret;
1112         return 0;
1113 }
1114
1115 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1116                                int primary)
1117 {
1118         if (cpa->pgd) {
1119                 /*
1120                  * Right now, we only execute this code path when mapping
1121                  * the EFI virtual memory map regions, no other users
1122                  * provide a ->pgd value. This may change in the future.
1123                  */
1124                 return populate_pgd(cpa, vaddr);
1125         }
1126
1127         /*
1128          * Ignore all non primary paths.
1129          */
1130         if (!primary) {
1131                 cpa->numpages = 1;
1132                 return 0;
1133         }
1134
1135         /*
1136          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1137          * to have holes.
1138          * Also set numpages to '1' indicating that we processed cpa req for
1139          * one virtual address page and its pfn. TBD: numpages can be set based
1140          * on the initial value and the level returned by lookup_address().
1141          */
1142         if (within(vaddr, PAGE_OFFSET,
1143                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1144                 cpa->numpages = 1;
1145                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1146                 return 0;
1147         } else {
1148                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1149                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1150                         *cpa->vaddr);
1151
1152                 return -EFAULT;
1153         }
1154 }
1155
1156 static int __change_page_attr(struct cpa_data *cpa, int primary)
1157 {
1158         unsigned long address;
1159         int do_split, err;
1160         unsigned int level;
1161         pte_t *kpte, old_pte;
1162
1163         if (cpa->flags & CPA_PAGES_ARRAY) {
1164                 struct page *page = cpa->pages[cpa->curpage];
1165                 if (unlikely(PageHighMem(page)))
1166                         return 0;
1167                 address = (unsigned long)page_address(page);
1168         } else if (cpa->flags & CPA_ARRAY)
1169                 address = cpa->vaddr[cpa->curpage];
1170         else
1171                 address = *cpa->vaddr;
1172 repeat:
1173         kpte = _lookup_address_cpa(cpa, address, &level);
1174         if (!kpte)
1175                 return __cpa_process_fault(cpa, address, primary);
1176
1177         old_pte = *kpte;
1178         if (pte_none(old_pte))
1179                 return __cpa_process_fault(cpa, address, primary);
1180
1181         if (level == PG_LEVEL_4K) {
1182                 pte_t new_pte;
1183                 pgprot_t new_prot = pte_pgprot(old_pte);
1184                 unsigned long pfn = pte_pfn(old_pte);
1185
1186                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1187                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1188
1189                 new_prot = static_protections(new_prot, address, pfn);
1190
1191                 /*
1192                  * Set the GLOBAL flags only if the PRESENT flag is
1193                  * set otherwise pte_present will return true even on
1194                  * a non present pte. The canon_pgprot will clear
1195                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1196                  * support it.
1197                  */
1198                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1199                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1200                 else
1201                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1202
1203                 /*
1204                  * We need to keep the pfn from the existing PTE,
1205                  * after all we're only going to change it's attributes
1206                  * not the memory it points to
1207                  */
1208                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1209                 cpa->pfn = pfn;
1210                 /*
1211                  * Do we really change anything ?
1212                  */
1213                 if (pte_val(old_pte) != pte_val(new_pte)) {
1214                         set_pte_atomic(kpte, new_pte);
1215                         cpa->flags |= CPA_FLUSHTLB;
1216                 }
1217                 cpa->numpages = 1;
1218                 return 0;
1219         }
1220
1221         /*
1222          * Check, whether we can keep the large page intact
1223          * and just change the pte:
1224          */
1225         do_split = try_preserve_large_page(kpte, address, cpa);
1226         /*
1227          * When the range fits into the existing large page,
1228          * return. cp->numpages and cpa->tlbflush have been updated in
1229          * try_large_page:
1230          */
1231         if (do_split <= 0)
1232                 return do_split;
1233
1234         /*
1235          * We have to split the large page:
1236          */
1237         err = split_large_page(cpa, kpte, address);
1238         if (!err) {
1239                 /*
1240                  * Do a global flush tlb after splitting the large page
1241                  * and before we do the actual change page attribute in the PTE.
1242                  *
1243                  * With out this, we violate the TLB application note, that says
1244                  * "The TLBs may contain both ordinary and large-page
1245                  *  translations for a 4-KByte range of linear addresses. This
1246                  *  may occur if software modifies the paging structures so that
1247                  *  the page size used for the address range changes. If the two
1248                  *  translations differ with respect to page frame or attributes
1249                  *  (e.g., permissions), processor behavior is undefined and may
1250                  *  be implementation-specific."
1251                  *
1252                  * We do this global tlb flush inside the cpa_lock, so that we
1253                  * don't allow any other cpu, with stale tlb entries change the
1254                  * page attribute in parallel, that also falls into the
1255                  * just split large page entry.
1256                  */
1257                 flush_tlb_all();
1258                 goto repeat;
1259         }
1260
1261         return err;
1262 }
1263
1264 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1265
1266 static int cpa_process_alias(struct cpa_data *cpa)
1267 {
1268         struct cpa_data alias_cpa;
1269         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1270         unsigned long vaddr;
1271         int ret;
1272
1273         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1274                 return 0;
1275
1276         /*
1277          * No need to redo, when the primary call touched the direct
1278          * mapping already:
1279          */
1280         if (cpa->flags & CPA_PAGES_ARRAY) {
1281                 struct page *page = cpa->pages[cpa->curpage];
1282                 if (unlikely(PageHighMem(page)))
1283                         return 0;
1284                 vaddr = (unsigned long)page_address(page);
1285         } else if (cpa->flags & CPA_ARRAY)
1286                 vaddr = cpa->vaddr[cpa->curpage];
1287         else
1288                 vaddr = *cpa->vaddr;
1289
1290         if (!(within(vaddr, PAGE_OFFSET,
1291                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1292
1293                 alias_cpa = *cpa;
1294                 alias_cpa.vaddr = &laddr;
1295                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1296
1297                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1298                 if (ret)
1299                         return ret;
1300         }
1301
1302 #ifdef CONFIG_X86_64
1303         /*
1304          * If the primary call didn't touch the high mapping already
1305          * and the physical address is inside the kernel map, we need
1306          * to touch the high mapped kernel as well:
1307          */
1308         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1309             within_inclusive(cpa->pfn, highmap_start_pfn(),
1310                              highmap_end_pfn())) {
1311                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1312                                                __START_KERNEL_map - phys_base;
1313                 alias_cpa = *cpa;
1314                 alias_cpa.vaddr = &temp_cpa_vaddr;
1315                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1316
1317                 /*
1318                  * The high mapping range is imprecise, so ignore the
1319                  * return value.
1320                  */
1321                 __change_page_attr_set_clr(&alias_cpa, 0);
1322         }
1323 #endif
1324
1325         return 0;
1326 }
1327
1328 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1329 {
1330         int ret, numpages = cpa->numpages;
1331
1332         while (numpages) {
1333                 /*
1334                  * Store the remaining nr of pages for the large page
1335                  * preservation check.
1336                  */
1337                 cpa->numpages = numpages;
1338                 /* for array changes, we can't use large page */
1339                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1340                         cpa->numpages = 1;
1341
1342                 if (!debug_pagealloc_enabled())
1343                         spin_lock(&cpa_lock);
1344                 ret = __change_page_attr(cpa, checkalias);
1345                 if (!debug_pagealloc_enabled())
1346                         spin_unlock(&cpa_lock);
1347                 if (ret)
1348                         return ret;
1349
1350                 if (checkalias) {
1351                         ret = cpa_process_alias(cpa);
1352                         if (ret)
1353                                 return ret;
1354                 }
1355
1356                 /*
1357                  * Adjust the number of pages with the result of the
1358                  * CPA operation. Either a large page has been
1359                  * preserved or a single page update happened.
1360                  */
1361                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1362                 numpages -= cpa->numpages;
1363                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1364                         cpa->curpage++;
1365                 else
1366                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1367
1368         }
1369         return 0;
1370 }
1371
1372 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1373                                     pgprot_t mask_set, pgprot_t mask_clr,
1374                                     int force_split, int in_flag,
1375                                     struct page **pages)
1376 {
1377         struct cpa_data cpa;
1378         int ret, cache, checkalias;
1379         unsigned long baddr = 0;
1380
1381         memset(&cpa, 0, sizeof(cpa));
1382
1383         /*
1384          * Check, if we are requested to change a not supported
1385          * feature:
1386          */
1387         mask_set = canon_pgprot(mask_set);
1388         mask_clr = canon_pgprot(mask_clr);
1389         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1390                 return 0;
1391
1392         /* Ensure we are PAGE_SIZE aligned */
1393         if (in_flag & CPA_ARRAY) {
1394                 int i;
1395                 for (i = 0; i < numpages; i++) {
1396                         if (addr[i] & ~PAGE_MASK) {
1397                                 addr[i] &= PAGE_MASK;
1398                                 WARN_ON_ONCE(1);
1399                         }
1400                 }
1401         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1402                 /*
1403                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1404                  * No need to cehck in that case
1405                  */
1406                 if (*addr & ~PAGE_MASK) {
1407                         *addr &= PAGE_MASK;
1408                         /*
1409                          * People should not be passing in unaligned addresses:
1410                          */
1411                         WARN_ON_ONCE(1);
1412                 }
1413                 /*
1414                  * Save address for cache flush. *addr is modified in the call
1415                  * to __change_page_attr_set_clr() below.
1416                  */
1417                 baddr = *addr;
1418         }
1419
1420         /* Must avoid aliasing mappings in the highmem code */
1421         kmap_flush_unused();
1422
1423         vm_unmap_aliases();
1424
1425         cpa.vaddr = addr;
1426         cpa.pages = pages;
1427         cpa.numpages = numpages;
1428         cpa.mask_set = mask_set;
1429         cpa.mask_clr = mask_clr;
1430         cpa.flags = 0;
1431         cpa.curpage = 0;
1432         cpa.force_split = force_split;
1433
1434         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1435                 cpa.flags |= in_flag;
1436
1437         /* No alias checking for _NX bit modifications */
1438         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1439
1440         ret = __change_page_attr_set_clr(&cpa, checkalias);
1441
1442         /*
1443          * Check whether we really changed something:
1444          */
1445         if (!(cpa.flags & CPA_FLUSHTLB))
1446                 goto out;
1447
1448         /*
1449          * No need to flush, when we did not set any of the caching
1450          * attributes:
1451          */
1452         cache = !!pgprot2cachemode(mask_set);
1453
1454         /*
1455          * On success we use CLFLUSH, when the CPU supports it to
1456          * avoid the WBINVD. If the CPU does not support it and in the
1457          * error case we fall back to cpa_flush_all (which uses
1458          * WBINVD):
1459          */
1460         if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1461                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1462                         cpa_flush_array(addr, numpages, cache,
1463                                         cpa.flags, pages);
1464                 } else
1465                         cpa_flush_range(baddr, numpages, cache);
1466         } else
1467                 cpa_flush_all(cache);
1468
1469 out:
1470         return ret;
1471 }
1472
1473 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1474                                        pgprot_t mask, int array)
1475 {
1476         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1477                 (array ? CPA_ARRAY : 0), NULL);
1478 }
1479
1480 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1481                                          pgprot_t mask, int array)
1482 {
1483         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1484                 (array ? CPA_ARRAY : 0), NULL);
1485 }
1486
1487 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1488                                        pgprot_t mask)
1489 {
1490         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1491                 CPA_PAGES_ARRAY, pages);
1492 }
1493
1494 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1495                                          pgprot_t mask)
1496 {
1497         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1498                 CPA_PAGES_ARRAY, pages);
1499 }
1500
1501 int _set_memory_uc(unsigned long addr, int numpages)
1502 {
1503         /*
1504          * for now UC MINUS. see comments in ioremap_nocache()
1505          * If you really need strong UC use ioremap_uc(), but note
1506          * that you cannot override IO areas with set_memory_*() as
1507          * these helpers cannot work with IO memory.
1508          */
1509         return change_page_attr_set(&addr, numpages,
1510                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1511                                     0);
1512 }
1513
1514 int set_memory_uc(unsigned long addr, int numpages)
1515 {
1516         int ret;
1517
1518         /*
1519          * for now UC MINUS. see comments in ioremap_nocache()
1520          */
1521         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1522                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1523         if (ret)
1524                 goto out_err;
1525
1526         ret = _set_memory_uc(addr, numpages);
1527         if (ret)
1528                 goto out_free;
1529
1530         return 0;
1531
1532 out_free:
1533         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1534 out_err:
1535         return ret;
1536 }
1537 EXPORT_SYMBOL(set_memory_uc);
1538
1539 static int _set_memory_array(unsigned long *addr, int addrinarray,
1540                 enum page_cache_mode new_type)
1541 {
1542         enum page_cache_mode set_type;
1543         int i, j;
1544         int ret;
1545
1546         for (i = 0; i < addrinarray; i++) {
1547                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1548                                         new_type, NULL);
1549                 if (ret)
1550                         goto out_free;
1551         }
1552
1553         /* If WC, set to UC- first and then WC */
1554         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1555                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1556
1557         ret = change_page_attr_set(addr, addrinarray,
1558                                    cachemode2pgprot(set_type), 1);
1559
1560         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1561                 ret = change_page_attr_set_clr(addr, addrinarray,
1562                                                cachemode2pgprot(
1563                                                 _PAGE_CACHE_MODE_WC),
1564                                                __pgprot(_PAGE_CACHE_MASK),
1565                                                0, CPA_ARRAY, NULL);
1566         if (ret)
1567                 goto out_free;
1568
1569         return 0;
1570
1571 out_free:
1572         for (j = 0; j < i; j++)
1573                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1574
1575         return ret;
1576 }
1577
1578 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1579 {
1580         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1581 }
1582 EXPORT_SYMBOL(set_memory_array_uc);
1583
1584 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1585 {
1586         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1587 }
1588 EXPORT_SYMBOL(set_memory_array_wc);
1589
1590 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1591 {
1592         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1593 }
1594 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1595
1596 int _set_memory_wc(unsigned long addr, int numpages)
1597 {
1598         int ret;
1599         unsigned long addr_copy = addr;
1600
1601         ret = change_page_attr_set(&addr, numpages,
1602                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1603                                    0);
1604         if (!ret) {
1605                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1606                                                cachemode2pgprot(
1607                                                 _PAGE_CACHE_MODE_WC),
1608                                                __pgprot(_PAGE_CACHE_MASK),
1609                                                0, 0, NULL);
1610         }
1611         return ret;
1612 }
1613
1614 int set_memory_wc(unsigned long addr, int numpages)
1615 {
1616         int ret;
1617
1618         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1619                 _PAGE_CACHE_MODE_WC, NULL);
1620         if (ret)
1621                 return ret;
1622
1623         ret = _set_memory_wc(addr, numpages);
1624         if (ret)
1625                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1626
1627         return ret;
1628 }
1629 EXPORT_SYMBOL(set_memory_wc);
1630
1631 int _set_memory_wt(unsigned long addr, int numpages)
1632 {
1633         return change_page_attr_set(&addr, numpages,
1634                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1635 }
1636
1637 int set_memory_wt(unsigned long addr, int numpages)
1638 {
1639         int ret;
1640
1641         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1642                               _PAGE_CACHE_MODE_WT, NULL);
1643         if (ret)
1644                 return ret;
1645
1646         ret = _set_memory_wt(addr, numpages);
1647         if (ret)
1648                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1649
1650         return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(set_memory_wt);
1653
1654 int _set_memory_wb(unsigned long addr, int numpages)
1655 {
1656         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1657         return change_page_attr_clear(&addr, numpages,
1658                                       __pgprot(_PAGE_CACHE_MASK), 0);
1659 }
1660
1661 int set_memory_wb(unsigned long addr, int numpages)
1662 {
1663         int ret;
1664
1665         ret = _set_memory_wb(addr, numpages);
1666         if (ret)
1667                 return ret;
1668
1669         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1670         return 0;
1671 }
1672 EXPORT_SYMBOL(set_memory_wb);
1673
1674 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1675 {
1676         int i;
1677         int ret;
1678
1679         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1680         ret = change_page_attr_clear(addr, addrinarray,
1681                                       __pgprot(_PAGE_CACHE_MASK), 1);
1682         if (ret)
1683                 return ret;
1684
1685         for (i = 0; i < addrinarray; i++)
1686                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1687
1688         return 0;
1689 }
1690 EXPORT_SYMBOL(set_memory_array_wb);
1691
1692 int set_memory_x(unsigned long addr, int numpages)
1693 {
1694         if (!(__supported_pte_mask & _PAGE_NX))
1695                 return 0;
1696
1697         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1698 }
1699 EXPORT_SYMBOL(set_memory_x);
1700
1701 int set_memory_nx(unsigned long addr, int numpages)
1702 {
1703         if (!(__supported_pte_mask & _PAGE_NX))
1704                 return 0;
1705
1706         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1707 }
1708 EXPORT_SYMBOL(set_memory_nx);
1709
1710 int set_memory_ro(unsigned long addr, int numpages)
1711 {
1712         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1713 }
1714
1715 int set_memory_rw(unsigned long addr, int numpages)
1716 {
1717         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1718 }
1719
1720 int set_memory_np(unsigned long addr, int numpages)
1721 {
1722         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1723 }
1724
1725 int set_memory_4k(unsigned long addr, int numpages)
1726 {
1727         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1728                                         __pgprot(0), 1, 0, NULL);
1729 }
1730
1731 int set_pages_uc(struct page *page, int numpages)
1732 {
1733         unsigned long addr = (unsigned long)page_address(page);
1734
1735         return set_memory_uc(addr, numpages);
1736 }
1737 EXPORT_SYMBOL(set_pages_uc);
1738
1739 static int _set_pages_array(struct page **pages, int addrinarray,
1740                 enum page_cache_mode new_type)
1741 {
1742         unsigned long start;
1743         unsigned long end;
1744         enum page_cache_mode set_type;
1745         int i;
1746         int free_idx;
1747         int ret;
1748
1749         for (i = 0; i < addrinarray; i++) {
1750                 if (PageHighMem(pages[i]))
1751                         continue;
1752                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1753                 end = start + PAGE_SIZE;
1754                 if (reserve_memtype(start, end, new_type, NULL))
1755                         goto err_out;
1756         }
1757
1758         /* If WC, set to UC- first and then WC */
1759         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1760                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1761
1762         ret = cpa_set_pages_array(pages, addrinarray,
1763                                   cachemode2pgprot(set_type));
1764         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1765                 ret = change_page_attr_set_clr(NULL, addrinarray,
1766                                                cachemode2pgprot(
1767                                                 _PAGE_CACHE_MODE_WC),
1768                                                __pgprot(_PAGE_CACHE_MASK),
1769                                                0, CPA_PAGES_ARRAY, pages);
1770         if (ret)
1771                 goto err_out;
1772         return 0; /* Success */
1773 err_out:
1774         free_idx = i;
1775         for (i = 0; i < free_idx; i++) {
1776                 if (PageHighMem(pages[i]))
1777                         continue;
1778                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1779                 end = start + PAGE_SIZE;
1780                 free_memtype(start, end);
1781         }
1782         return -EINVAL;
1783 }
1784
1785 int set_pages_array_uc(struct page **pages, int addrinarray)
1786 {
1787         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1788 }
1789 EXPORT_SYMBOL(set_pages_array_uc);
1790
1791 int set_pages_array_wc(struct page **pages, int addrinarray)
1792 {
1793         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1794 }
1795 EXPORT_SYMBOL(set_pages_array_wc);
1796
1797 int set_pages_array_wt(struct page **pages, int addrinarray)
1798 {
1799         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1800 }
1801 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1802
1803 int set_pages_wb(struct page *page, int numpages)
1804 {
1805         unsigned long addr = (unsigned long)page_address(page);
1806
1807         return set_memory_wb(addr, numpages);
1808 }
1809 EXPORT_SYMBOL(set_pages_wb);
1810
1811 int set_pages_array_wb(struct page **pages, int addrinarray)
1812 {
1813         int retval;
1814         unsigned long start;
1815         unsigned long end;
1816         int i;
1817
1818         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1819         retval = cpa_clear_pages_array(pages, addrinarray,
1820                         __pgprot(_PAGE_CACHE_MASK));
1821         if (retval)
1822                 return retval;
1823
1824         for (i = 0; i < addrinarray; i++) {
1825                 if (PageHighMem(pages[i]))
1826                         continue;
1827                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1828                 end = start + PAGE_SIZE;
1829                 free_memtype(start, end);
1830         }
1831
1832         return 0;
1833 }
1834 EXPORT_SYMBOL(set_pages_array_wb);
1835
1836 int set_pages_x(struct page *page, int numpages)
1837 {
1838         unsigned long addr = (unsigned long)page_address(page);
1839
1840         return set_memory_x(addr, numpages);
1841 }
1842 EXPORT_SYMBOL(set_pages_x);
1843
1844 int set_pages_nx(struct page *page, int numpages)
1845 {
1846         unsigned long addr = (unsigned long)page_address(page);
1847
1848         return set_memory_nx(addr, numpages);
1849 }
1850 EXPORT_SYMBOL(set_pages_nx);
1851
1852 int set_pages_ro(struct page *page, int numpages)
1853 {
1854         unsigned long addr = (unsigned long)page_address(page);
1855
1856         return set_memory_ro(addr, numpages);
1857 }
1858
1859 int set_pages_rw(struct page *page, int numpages)
1860 {
1861         unsigned long addr = (unsigned long)page_address(page);
1862
1863         return set_memory_rw(addr, numpages);
1864 }
1865
1866 #ifdef CONFIG_DEBUG_PAGEALLOC
1867
1868 static int __set_pages_p(struct page *page, int numpages)
1869 {
1870         unsigned long tempaddr = (unsigned long) page_address(page);
1871         struct cpa_data cpa = { .vaddr = &tempaddr,
1872                                 .pgd = NULL,
1873                                 .numpages = numpages,
1874                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1875                                 .mask_clr = __pgprot(0),
1876                                 .flags = 0};
1877
1878         /*
1879          * No alias checking needed for setting present flag. otherwise,
1880          * we may need to break large pages for 64-bit kernel text
1881          * mappings (this adds to complexity if we want to do this from
1882          * atomic context especially). Let's keep it simple!
1883          */
1884         return __change_page_attr_set_clr(&cpa, 0);
1885 }
1886
1887 static int __set_pages_np(struct page *page, int numpages)
1888 {
1889         unsigned long tempaddr = (unsigned long) page_address(page);
1890         struct cpa_data cpa = { .vaddr = &tempaddr,
1891                                 .pgd = NULL,
1892                                 .numpages = numpages,
1893                                 .mask_set = __pgprot(0),
1894                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1895                                 .flags = 0};
1896
1897         /*
1898          * No alias checking needed for setting not present flag. otherwise,
1899          * we may need to break large pages for 64-bit kernel text
1900          * mappings (this adds to complexity if we want to do this from
1901          * atomic context especially). Let's keep it simple!
1902          */
1903         return __change_page_attr_set_clr(&cpa, 0);
1904 }
1905
1906 void __kernel_map_pages(struct page *page, int numpages, int enable)
1907 {
1908         if (PageHighMem(page))
1909                 return;
1910         if (!enable) {
1911                 debug_check_no_locks_freed(page_address(page),
1912                                            numpages * PAGE_SIZE);
1913         }
1914
1915         /*
1916          * The return value is ignored as the calls cannot fail.
1917          * Large pages for identity mappings are not used at boot time
1918          * and hence no memory allocations during large page split.
1919          */
1920         if (enable)
1921                 __set_pages_p(page, numpages);
1922         else
1923                 __set_pages_np(page, numpages);
1924
1925         /*
1926          * We should perform an IPI and flush all tlbs,
1927          * but that can deadlock->flush only current cpu:
1928          */
1929         __flush_tlb_all();
1930
1931         arch_flush_lazy_mmu_mode();
1932 }
1933
1934 #ifdef CONFIG_HIBERNATION
1935
1936 bool kernel_page_present(struct page *page)
1937 {
1938         unsigned int level;
1939         pte_t *pte;
1940
1941         if (PageHighMem(page))
1942                 return false;
1943
1944         pte = lookup_address((unsigned long)page_address(page), &level);
1945         return (pte_val(*pte) & _PAGE_PRESENT);
1946 }
1947
1948 #endif /* CONFIG_HIBERNATION */
1949
1950 #endif /* CONFIG_DEBUG_PAGEALLOC */
1951
1952 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1953                             unsigned numpages, unsigned long page_flags)
1954 {
1955         int retval = -EINVAL;
1956
1957         struct cpa_data cpa = {
1958                 .vaddr = &address,
1959                 .pfn = pfn,
1960                 .pgd = pgd,
1961                 .numpages = numpages,
1962                 .mask_set = __pgprot(0),
1963                 .mask_clr = __pgprot(0),
1964                 .flags = 0,
1965         };
1966
1967         if (!(__supported_pte_mask & _PAGE_NX))
1968                 goto out;
1969
1970         if (!(page_flags & _PAGE_NX))
1971                 cpa.mask_clr = __pgprot(_PAGE_NX);
1972
1973         if (!(page_flags & _PAGE_RW))
1974                 cpa.mask_clr = __pgprot(_PAGE_RW);
1975
1976         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1977
1978         retval = __change_page_attr_set_clr(&cpa, 0);
1979         __flush_tlb_all();
1980
1981 out:
1982         return retval;
1983 }
1984
1985 /*
1986  * The testcases use internal knowledge of the implementation that shouldn't
1987  * be exposed to the rest of the kernel. Include these directly here.
1988  */
1989 #ifdef CONFIG_CPA_DEBUG
1990 #include "pageattr-test.c"
1991 #endif